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ABSTRACT

Pre-trained Language Models (LMs) struggle with efficiently removing specific
data samples and associated knowledge due to their massive scale and computa-
tional requirement. Existing machine unlearning methods suffer from excessive
parameter updates and an imbalanced forgetting-remaining performance. We first
derived critical insight that fine-tuning only a single layer of the model achieves
competitive performance to full-model fine-tuning. Inspired by this observation,
we introduce KARMA (Keyword-Aware Representation Modification for Model
Amnesiac Unlearning), which efficiently forgets representation traces by selec-
tively perturbing the embedding parameters of semantically critical tokens, while
restricting parameter updates within a bounded spherical region to preserve stabil-
ity. Specifically, to identify high-influence keywords, we first introduce a Fisher
scoring mechanism that precisely captures the semantics of data to be forgotten.
To further enhance privacy during the unlearning process, we propose a keyword-
driven pseudo sample based method that eliminates the need for raw data by
inserting keyword embeddings within irrelevant corpora. Moreover, to mitigate
the adverse impact on the remaining samples, we propose a bounded fine-tuning
regularization strategy to prevent excessive semantic drift in the representation
space. The efficiency of KARMA is underpinned by rigorous convergence ra-
dius analysis, and the robustness of KARMA on remaining samples is theoreti-
cally proved by the bounded regularization strategy. Experiments on sentiment
classification show that KARMA achieves near-retraining efficacy with a 99.5%
reduction in parameter updates compared to gradient-based methods, while ex-
hibiting a low performance degradation on retained data. Codes are available at
https://anonymous.4open.science/r/KARMA-4501.

1 INTRODUCTION

Pre-trained language models (LMs), trained on large-scale corpora, have become fundamental tools
in natural language processing to accelerate downstream applications. However, this paradigm
presents challenges when users need to remove specific samples and the associated knowledge,
especially when increasing concerns are given over data privacy and compliance with regulations
like GDPR Voigt & von dem Bussche (2017). As a promising solution, recent works in machine
unlearning have explored multiple strategies tailored to language models. Some methods estimate
the influence of training samples on model outputs using influence functions to guide the gradi-
ent update direction Wang et al. (2023b). Others design custom loss functions, such as asymmet-
ric Kullback–Leibler (KL) divergence or negative gradient alignment, to selectively forget specific
knowledge Wang et al. (2025a); Yao et al. (2024). However, these two types of methods share a
critical limitation: they focus on “how to forget” but overlook “how to forget efficiently,” laying the
groundwork for excessive computational costs in large-scale models.
Despite their contributions, existing unlearning methods remain impractical for resource-constrained
scenarios. Firstly, they require massive parameter updates and face scalability issues, since updated
parameters grow with model size. For example, computing a full Hessian requires O(P 2) memory,
even approximations like the Fisher matrix remain costly. Moreover, current approaches lack fine-
grained control over update regions, causing unnecessary perturbations to retained samples. Strong
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Figure 1: Performance of retraining with fine-
tuning different layers. The x-axis represents
the layers that remain unfrozen during fine-
tuning, while the y-axis denotes the absolute
percentage difference from the retrain perfor-
mance across different metrics.

Figure 2: Impact of keyword ratio on accuracy
in unlearning. The x-axis indicates the percent-
age of keyword length relative to the sentence
length, while the y-axis shows the test perfor-
mance across different metrics. The horizontal
line represents the retrain performance.

updates erase target knowledge but degrade performance on remaining data, while conservative
updates preserve utility yet yield incomplete forgetting.

While parameter-efficient fine-tuning methods (e.g., LoRA, SparseGrad) reduce training cost by re-
stricting updates to a small subset of parameters, they are not well-suited for unlearning. These
methods typically operate on fixed parameter subsets, which can cause excessive model changes
even when forgetting only a few samples. Moreover, they lack semantic awareness, making them
less applicable in privacy-sensitive scenarios mentioned above. To enable forgetting within a more
targeted parameter space, we study how different layers contribute to knowledge retention during
unlearning process. In the setting of layer-wise fine-tuning unlearning, we use full-parameter fine-
tuning as the baseline and measure the performance deviations across five evaluation metrics (see
Section 5 for more details) when only a single layer is fine-tuned. As shown in Figure 1, fine-tuning
individual layers have performance comparable on the forget set to full fine-tuning. However, fine-
tuning the embedding layer or the classifier leads to noticeable performance drops on the retain set,
due to interference with unrelated parameters. To further reduce the number of parameters used
during unlearning, we explore partial fine-tuning within a single layer. Since only the embedding
layer has clear semantic representation, we focus on selectively fine-tuning in this layer to avoid un-
necessary disturbance and enable more targeted forgetting. As shown in Figure 2, selecting only 1%
of the most relevant tokens per sample achieves the best unlearning performance. Carefully chosen
keywords effectively capture the semantics of individual samples, whereas using too many tokens
can lead to negative interference with irrelevant samples. As show in the above study, fine-tuning
critical tokens within specific layers can effectively achieve unlearning. Leveraging semantic infor-
mation helps confine the impact of unlearning to a targeted scope, thereby minimizing catastrophic
forgetting effect.

Build on above observations, we propose KARMA (Keyword-Aware Representation Modification
for Efficient and Robust Model Amnesiac Unlearning), a lightweight framework for targeted un-
learning in pre-trained language models. KARMA identifies semantically critical tokens via a Fisher
scoring–based mechanism and fine-tunes only their embedding parameters to remove associated
knowledge, ensuring minimal parameter updates and preserving overall model behavior. To further
mitigate unintended side effects on retained samples, we propose a bounded fine-tuning regulariza-
tion to constrain semantic drift in the representation space. Theoretical analysis supports our design,
where convergence radius analysis confirms its efficiency, and the robustness of retained knowledge
is guaranteed by the bounded regularization strategy. For privacy-sensitive settings, we further in-
troduce a key-aware-only pseudo sample construction approach, enabling unlearning without using
raw data or full parameters.

Our contributions are as follows:

• We propose KARMA, a novel machine unlearning method based on layer-restricted em-
bedding fine-tuning, which is both theoretically grounded and empirically motivated. By
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confining updates to a single layer and a bounded parameter space, KARMA achieves ef-
fective unlearning with significantly reduced parameter updates, while maintaining high
performance on retained data.

• We introduce a Fisher scoring–based semantic keyword extraction mechanism to identify
the most influential tokens in the samples to be forgotten. This enables targeted fine-tuning
at the keyword level, drastically reducing the number of parameters to be modified. Fur-
thermore, we develop a privacy-preserving pseudo sample strategy that supports unlearning
under limited-information settings, without access to raw training samples.

• We theoretically analyze the fine-tuning process under a Lipschitz continuity constraint,
and provide a convergence radius analysis to justify the stability and bounded impact of
representation updates. These theoretical insights are validated through experiments on
sentiment classification tasks, demonstrating comparable unlearning efficacy to retraining
with up to 60% fewer updates, and strong resistance to membership inference attacks.

2 RELATED WORK

Previous research on unlearning in language models primarily focuses on precision Wang et al.
(2025b; 2023b), robustness Yuan et al. (2025), and functionality Yuan et al. (2025). To adapt PLMs
efficiently, various parameter-efficient fine-tuning (PEFT) methods have been proposed. Adapter
tuning Houlsby et al. (2019), LoRA Hu et al. (2022), and partial update method Zaken et al. (2022)
enable task-specific adaptation by updating only a small subset of parameters. These techniques
offer scalability and modularity, making them attractive for scenarios requiring lightweight model
updates. Recent works have explored integrating PEFT into unlearning to reduce retraining costs.
For example, adapter-based methods isolate forgettable knowledge without altering the full model,
while LoRA variants apply low-rank masking to suppress sensitive information. These approaches
demonstrate the potential of PEFT in facilitating efficient and targeted unlearning. Hu et al. propose
a novel parameter-effect module-based unlearning method to provide detoxification by generating
effective fabricated content Hu et al. (2024). Cha et al. Cha et al. (2025) propose an efficient unlearn-
ing method that combines Inverted Hinge Loss with LoRA layers whose initialization is adaptively
adjusted using Fisher Information, effectively suppressing sensitive information in generative mod-
els. However, the method relies on specific architectures and lacks aware of semantic granularity,
limiting its applicability in low-resource or interpretability-sensitive scenarios.

Despite their efficiency, previous methods often tune numerous parameters and ignore semantic
representation, leading to suboptimal forgetting or privacy leakage. To enhance unlearning speci-
ficity and efficiency, our proposed KARMA constrains both the scope and value range of fine-tuned
parameters through a lightweight regularization mechanism. To further support forgetting under
limited data access, KARMA introduces a pseudo sample construction method guided by semantic
cues, enabling effective unlearning without reliance on original data.

3 METHODOLOGY

3.1 OVERVIEW

In this section, we present the proposed KARMA framework, which achieves effective unlearning
by modifying only a small subset of highly influential embedding parameters in the model. KARMA
consists of two components: (1) a Keywords Selection module, and (2) a Selective Representation
Modification module, which supports both full-sample and keyword-aware-only training modes.
Specifically, to enable forgetting with minimal parameter updates, we first employ the Keywords
Selection module to identify keywords for each individual sample in the subset to be forgotten, and
then leverage the Selective Representation Modification module to fine-tune only the embeddings
of these selected keywords, thereby accomplishing efficient unlearning.

3.2 PROBLEM FORMULATION.

Let D = {(xi, yi)}Ni=1 be the training dataset, where N is the number of samples and yi is the label
of sample xi. We fine-tune a pre-trained model f(·; θp) on D to obtain a downstream model f(·; θ),
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where θp and θ denote the model parameters before and after fine-tuning, respectively. Let Df ⊂ D
be the subset to be forgotten, while Dr := D \ Df be the remaining dataset. Performing unlearning
is to erase any influence of Df from θ by obtaining a set of new parameters θ̂ that closely align with
the performance of the retrained model parameters θr, where θr is fine-tuned from scratch by the θp
on Dr. Given that retrained models typically exhibit performance degradation on Df (performing
similarly to non-fine-tuned models) while retaining nearly full performance onDr, KARMA aims to
eliminate information related to Df while maintaining performance on Dr comparable to retrained
models. To minimize parameter modifications and computational overhead, KARMA selectively
fine-tuning the embeddings of a small set of influential tokens instead of retraining the full model. In
addition, KARMA supports privacy-sensitive scenarios like remote unlearning requests, by enabling
forgetting ofDf using only selective keywords without exposing the full original data. To accurately
forgetting the subset to be forgotten Df and preserving performance on the remaining subset Dr,
excessive semantic drift is relieved by a bounded fine-tuning regularization strategy (see Equation
5), whuch is theoretically guaranteed in Theorem 1.

3.3 KEYWORDS SELECTION

In the keyword selection module, we adopt a Fisher-scoring method to assign scores to the subword
tokens of each instance. These subword tokens are then restored into natural language words, and
the words are ranked according to the average score of their constituent subword tokens. Finally, the
highest-scoring words are selected as keywords for the instance.

Specifically, the score of each token can be calculated as follows:

score(t) =
∥∥∥∥ gt ⊙ 1

g2t

∥∥∥∥
2

, (1)

where gt = ∇etL denotes the gradient of the loss Lwith respect to the embedding vector et of token
t. Here, g2t provides a diagonal approximation of the Fisher Information Matrix. The score reflects
the sensitivity of the model to perturbations in token t. After scoring subword tokens, we compute
the average score for each consecutive sequence of n tokens. The highest-scoring n-gram is then
reconstructed into natural words by concatenating subwords back into complete words or phrases via
the tokenizer’s standard detokenization procedure (e.g., ’play’ + ’##ing’ → ’playing’). This mapping
ensures that the extracted instance keywords ki are interpretable and aligned with human-readable
language. Notably, it carries an additional implication for the key-aware-only mode (detailed in
Section 3.4): when constructing pseudo-samples, we can avoid inserting raw subword pieces into
the text and instead use natural language expressions. As a result, the semantic readability and
coherence are preserved with these natural language expressions while preventing the exposure of
raw subword fragments.

3.4 SELECTIVE REPRESENTATION MODIFICATION.

To enable sample-level machine unlearning by altering the semantic representation of samples in
Df , we adopt a sample confusion strategy. We resample each yi ∈ Df to obtain the corresponding
confusing sample label ŷi = resample(yi), where resample(·) chooses ŷi ∈ Y following the dis-
tribution of {y}. Y is the label set ofD. By replacing the original labels with confusing alternatives,
we weaken the association between input texts and their ground-truth labels. At the same time,
we guide the model’s predictions on these samples to align more closely with those of the original
pre-trained model.

To accommodate varying privacy requirements, we propose two unlearning strategies: full-sample
mode and key-aware-only mode. In the full-sample mode, we freeze all parameters except for the
embedding layer θe and fine-tune the model with Df . Specifically, we fine-tune only the parameters
θe

K
associated with the keyword set K = {ki|i ∈ N} extracted from Df , using the confusing labels

{ŷ}. The unlearned model can be represented by the updated embedding parameters θ̂Ke , which are
obtained by optimizing the following objective:

ˆθeK := θe
K
− lr ∗ (αLCE + (1− α)LKL). (2)
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Here, lr is the learning rate, α balances the contribution of LCE and LKL. The details of LCE can
be described as follows:

LCE = E(ŷ, f(x, θe
K
)), (3)

where E(ŷ, f(x, θeK)) is the cross-entropy loss. The details of LKL can be described as follows:

LKL = KL(f(x, θe
K
); f(x, θe

K

p )), (4)

where KL is the KL divergence which measures the distance between local model θe
K

and original
pre-trained model θe

K

p . The output of θe
K

is the prediction result of the unlearning model, and
the output of θe

K

p can be regarded as the prediction if the pre-trained model has not learned any
knowledge of Df . By minimizing the difference between the outputs of θe

K
and θe

K

p , we can
approximate the performance of the local model to the performance of the model that has not been
fine-tuned on D.

To stabilize training and avoid excessive semantic drift, we constrain each updated embedding vector
in terms of magnitude. Specifically, we rescale each updated keyword embedding θ̂e

ki to match the
original norm:

θ̂e
ki ← θ̂e

ki · (∥θe
ki∥2/∥θ̂e

ki ∥2) (5)

This operation preserves the original vector magnitude and regularizes the update, preventing em-
beddings from over drifting in representation space. By bounding the scale of modifications, it acts
as a constraint that helps stabilize the unlearning process and maintain consistency with the original
representation distribution, as further analyzed in Section 4.

The unlearning process in the key-aware-only mode closely follows that of the full-sample mode.
The key difference is that the key-aware-only mode uses only pseudo samples setD∗ constructed by
inserting selected keywords instead of Df . Specifically, for each ki ∈ K, we extract a segment from
an irrelevant corpus with larger sentence spaces, whose length matches the average sample length
in Df , and randomly insert ki into the segment. For instance, to unlearn instances from movie
reviews, we can use WikiText-103 as the irrelevant corpus. The confusing label associated with the
instance containing ki is then assigned to this pseudo-sample. These pseudo-samples are then used
to fine-tune θe for unlearning, without exposing the original content of Df .

4 THEORETICAL ANALYSIS

In this section, we present the robustness and convergence analysis with the following assumptions:

Assumption 1: (Smoothness). L is ℓ− smooth if ∀x, y ∈ ℜd:

L(x)− L(y) + (x− y)T ▽ L(x) ≤ ℓ

2
||x− y||22. (6)

Assumption 2: (Bound of Variance). Let △̃ be the variance of the weighted matrix. According to
equation 10 and the Lipschitz continuous, the weighted matrix is bounded: ||W + △̃||22 = ||W ||22.
Assumption 3: Any gradient has a uniform upper bound, i.e. ∃G > 0, ∀i, s.t.|| ▽ Lt|| < G.

Theorem 1. KARMA has a bigger Certified Radius for the remaining learning task.

Proof. For the retraining method, under the assumption that each layer of the network is ℓ−smooth,
the global perturbation propagation satisfies the following equation,

||△̃K ||2 =

K∏
k=1

||Wl||2 · Lδ · δ (7)

where Wl is the weighted matrix of the l-th layer, Lδ is the Lipschitz constant of δ.

Considering the acceptable perturbation threshold as η, we can get the Certified Radius for the
retraining method as folllows,

ϵretrainrobust =
η∏K

k=1 ||Wl||2 · Lδ · δ
(8)
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For the embedding layer finetune method without constraint (equation 10), under the assumption
that the embedding layer is ℓ − smooth, the robustness for the remaining samples x should satisfy
||△̃x||2 ≤ η.

Suppose x// is the projection in the space of column W , i.e., x// = Ww+x, where W+ is the
pseudo-inverse of W . Suppose x⊥ is the projection in the orthogonal complementary space of
W , i.e., x⊥ = x − x//. Then, the influence of parameter perturbation on the output is △̃x =

△̃x// + △̃x⊥.

For ||△̃x//||2, according to Cauchy-Schwarz inequality, we can get ||△̃x//||2 ≤ ||△̃||2||x//||2.
Further considering the parameter perturbation ||△̃|| = ϵE−non

robust , we can get ||△̃x//||2 ≤
ϵE−non
robust

||wx//||2
||w||2 .

For ||△̃x⊥||2, since without constraint by w, we can get ||△̃x⊥||2 ≤ ϵE−non
robust ||x⊥||2.

Then, we can get the Certified Radius for the embedding layer finetune method without constraint
(equation 10), i.e., ϵE−non

robust = η
||wx//||2

||w||2
+||x⊥||2

.

According to Cauchy-Schwarz inequality and Expansion, we can get the low bond of ϵE−non
robust as

follows,
ϵE−non
robust ≥

η

||x//||2 + ||x⊥||2
(9)

For the embedding layer finetune method with constraint equation 10 (i.e., KARMA), according to
assumption 2, the relation can be approximated as wT △̃ = 0. Then, we can get ||△̃x//||2 = 0. The
Certified Radius for KARMA is ϵKARMA

robust = η
||x⊥||2 .

From the above analysis process, we can obtain the inequality ϵKARMA
robust ≥ ϵE−non

robust > ϵretrainrobust ,
which means that our method KARMA is more robust for the remaining learning tasks while fine-
tuning for unleaning task.

Theorem 2. Consider θ to be a a variable constant. Then we have the covergence radius for
KARMA:

Rc =
ηtG

2
(10)

Proof. The parameter update rule for KARMA:

θt+1 = θt − ηt(▽L(θt)) (11)

Then, we can get
||θt+1||2 = ||θt||2 − 2ηt < θt,▽

L(θt) > +η2t || ▽ L(θt)||2
(12)

We need to show that ||θt+1||2 ≤ R2 under the assumption that ||θt|| ≤ R. According to Cauchy-
Schwarz inequality, < θt,▽L(θt) >≥ GR. Then, we can get the inequality R2+2ηtGR+η2tR

2 ≤
R2.

The above formulation is simplified as 2ηtGR+ η2tR
2 ≤ 0. We can get R ≥ Rc =

ηtG
2 .

5 EXPERIMENTS

5.1 DATASETS.

We utilize semantic analysis datasets, IMDb Tripathi et al. (2020) and SST-2 Srinivasan et al. (2016),
to demonstrate the effectiveness of the proposed method. To observe the impact of unlearning on
the model’s performance with respect to both the forgotten and the remaining samples, β% of the
data is randomly selected as the forgotten samples, with the rest serving as the remaining samples.
Here, we set β = 1% by default.
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5.2 MODELS AND BASELINES.

In this paper, the proposed method and three baselines are implemented based on the bert-base-
uncased model. For KARMA, we set the learning rate to 2e-2 and alpha to 0.8, with batch sizes
of 32 for the IMDb dataset and 1024 for the SST-2 dataset. In addition, KARMA performs only a
single epoch of fine-tuning across all settings.

The three baselines are ”gold standard” model retraining (Retrain), fine-tuning with a high learning
rate (Fine-tune), gradient ascent (GA), and KGA Wang et al. (2023a). All the baselines use Adam
as the optimizer and the batch sizes are set as the proposed method. Detailed implementation can be
found in Section 9.1.

5.3 EVALUATION METRICS.

The most intuitive impact of unlearning on classification models is the overall classification accu-
racy. Therefore, we primarily use inference accuracy for performance analysis, and additionally
report F1-score to better capture unlearning effects on remained data. We first measure the accuracy
of the local model and the model after the unlearning task on the test dataset Dt (including both
IMDb and SST-2 datasets). To quantify the effectiveness of forgetting the data to be forgotten, we
also test the inference accuracy of the unlearned model on Df . Then, we apply the k-means algo-
rithm to the remaining samples and test samples separately, to obtain the semantic closest subset
Dkr and Dkt, respectively. The performance metrics on these two datasets, which contain samples
from Dr and Dt that are semantically similar to Df , quantify the effectiveness of the unlearning
method in removing semantic knowledge. Specifically, degraded model performance on these sub-
sets correlates with the extent of semantic knowledge erasure, where poorer performance indicates
more comprehensive removal of target knowledge.

We further evaluate the privacy protection capability of our method via Membership Inference At-
tack (MIA) tests using two metrics, ∆ASR and ∆AUC. ∆ASR measures the change in Attack
Success Rate (ASR) before and after unlearning, smaller values indicate lower risk of information
leakage. ∆AUC quantifies the deviation of the model’s Area Under the Curve (AUC) from 50%
after unlearning, smaller value implies that an adversary’s classifier is less effective.

5.4 RESULTS AND ANALYSIS.

Overall performance.

Table 1 shows the results of the sentiment analysis task for unlearning the original model in different
Metrics. In this experiment, we set 3 cluster centers and 1 nearest neighbor sample to observe the
performance of Dkr and Dkt. We summarize the performance of different unlearning methods
across multiple evaluation datasets (Dr, Df , Dt, Dkr, and Dkt) on IMDb and SST-2. The proposed
method KARMA consistently achieves competitive or superior performance in most settings.

Table 1: Overall Performance on IMDb and SST-2 for KARMA

Acc F1

Dataset Metric Ori Ret Fin GA KGA KARMA Ori Ret Fin GA KGA KARMA

Df 98.65 91.93 90.13 98.21 96.86 96.41 98.65 91.93 90.09 98.20 96.85 96.40
Dr 99.12 98.25 98.13 98.97 99.89 98.28 99.12 98.25 98.13 98.97 99.89 98.28

IMDb Dkt 91.48 93.72 93.27 91.48 93.27 93.27 91.46 93.72 93.26 91.46 93.27 93.26
Dkr 99.55 97.76 96.86 99.55 100.00 96.41 99.55 97.76 96.86 99.55 100.00 97.76
Dt 92.28 92.48 90.60 92.32 92.84 91.88 92.27 92.47 90.59 92.31 92.84 91.87

Df 96.20 93.06 93.39 95.87 99.83 95.21 96.14 92.92 93.30 95.81 99.83 95.14
Dr 97.20 97.06 96.76 97.13 99.96 98.86 97.16 97.02 96.72 97.10 99.96 98.84

SST-2 Dkt 97.19 97.85 97.52 97.02 58.02 98.51 96.22 97.06 96.67 96.01 57.43 97.97
Dkr 97.69 97.19 95.37 97.69 100.00 98.84 97.66 97.15 95.32 97.66 100.00 98.83
Dt 94.46 94.37 93.94 94.49 94.52 94.85 94.42 94.30 93.89 94.45 94.45 94.80

Size (Mb) - - 417 417 1251 2.31

For Dr, KARMA achieves comparable performance to Retrain, and even outperforms other base-
lines, demonstrating the effectiveness on preserving irrelevant knowledge. Regarding Df , KARMA
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Table 2: Performance comparison of KARMA and KARMAKO on IMDb and SST-2.

Method IMDb SST-2

Df Dr Dkt Dkr Dt Df Dr Dkt Dkr Dt

KARMA Acc 95.52 98.26 90.58 96.41 91.88 94.38 96.54 97.36 97.52 95.92
F1 95.51 90.57 90.58 96.41 91.88 94.34 96.51 96.49 97.49 95.89

KARMAKO
Acc 95.96 97.91 92.38 95.96 91.40 92.40 93.16 95.87 92.40 92.11
F1 95.96 97.90 91.93 96.85 91.36 92.36 92.46 92.49 92.54 91.76

also outperforms GA and KGA, while still maintaining better Dr. KARMA also performs well on
Dt across both datasets, indicating its strong generalizability. KARMA performs slightly better than
retrain on both Dkt and Dkr in IMDB, and similar in SST-2, suggesting that it better eliminates re-
lated knowledge in unseen subsets while preserving semantic information. In terms of modified data
size, KARMA is only 2.31 MB, compared to 417 MB for Fin and GA, and 1251 MB for KGA (since
it requires full fine-tuning of multiple models). Overall, KARMA achieves comparable unlearning
effectiveness with fewer parameter updates and fine-tuning steps, demonstrating the method’s abil-
ity to effectively constrain the fine-tuning scope, achieving an effective trade-off between forgetting
target knowledge and preserving retained information.

Privacy analysis. To assess the privacy-preserving capabilities of our method, we conduct Mem-
bership Inference Attacks (MIA). The ∆ASR reflects the privacy protection capability of a method
under MIA attacks. The ∆AUC quantifies the attacker’s ability to distinguish members from non-
members, with 0.5 indicating random guessing. As shown in Figure 3 and Figure 4, KARMA
outperforms the retraining strategy on both metrics, indicating its targeted effectiveness in removing
semantic traces of the forgotten samples. Moreover, KARMA with keyword-aware only strategy
(KARMAKO) achieves even better results, which may be attributed to the greater semantic shift
introduced by fine-tuning on pseudo samples. This indicates that KARMA can achieve security
performance comparable to or even surpassing that of retraining. In particular, for privacy-sensitive
scenarios, KARMAKO makes it difficult for malicious attackers to extract information about the
forgotten samples through model confidence scores.

Figure 3: Comparison of ∆ASR. The x-axis
represents the performance difference in the
ASR of MIA between each baseline and the θp.

Figure 4: Comparison of ∆ACU. The x-axis
represents the difference between the AUC val-
ues of each baseline and 0.5.

Ablations.

(1)As shown in Table 2, we compare the performance of full-sample (KARMA) and key-aware-
only (KARMAKO) modes of KARMA. The comparison shows that while KARMAKO effectively
reduces retention of forgotten information, it suffers from decreased accuracy on remain and clean
sets and over-removal indicated by worse DKR performance. This is because pseudo-samples gen-
erated from keywords cannot fully capture the original data’s semantic richness, introducing noise
that harms generalization. In contrast, KARMA’s fine-tuning on real forgotten data achieves more
precise updates, better preserving overall model performance while effectively forgetting sensitive
information. Despite its limitations, KARMAKO offers a practical and privacy-friendly alternative
when access to original data is restricted, making a reasonable trade-off between privacy and un-
learning effectiveness.

8
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(2) To investigate the impact of historical information on model performance, we first analyze the
forgetting behavior under different values of the hyperparameter α. We vary α from 0.0 (no use of
historical knowledge) to 1.0 (only relying on historical knowledge), and measure the sum of absolute
differences in accuracy onDf ,Dr, andDt compared to the baseline. As shown in Figure 5, effective
unlearning of the target knowledge can only be achieved when sufficient historical information is
preserved (metric-wise results can be found in Table 4).

Figure 5: Performance with different α. The
y-axis shows the absolute performance differ-
ence on Df between the model under different
α values and the retrained model.

Figure 6: Performance with different keyword
number. Similarity is defined as the normal-
ized composite difference between the model
and the retrained model on Df , Dr, and Dt.

(3) We further examine how the number of selected keywords influences forgetting performance.
Based on keyword proportions derived from our observations, we test the model with 1 to 10 key-
words. Figure 6 illustrates the corresponding changes in performance (Df , Dr, Dt accuracy dif-
ferences from the baseline) under different keyword counts. Interestingly, a smaller, semantically
focused keyword set tends to yield better forgetting performance, while an overly large set may
degrade it by increasing the chance of keyword overlap with retained samples, thus weakening the
anchoring effect and causing unintended spillover (see metric-wise results and keyword extraction
study in Table 5 and Table 6).

(4) Table 3 shows the performance of the proposed KARMA under different size of Df . Although
performance declines as the proportion of forgotten samples increases, KARMA maintains a consis-
tent level of effectiveness. When forgetting no more than 10% of samples, KARMA’s performance
remains close to that of full retraining, demonstrating its robustness in balancing forgetting and
retention.

Table 3: Performance with different unlearning rate β (%)

Accuracy
Metrics β = 1% β = 5% β = 10% β = 15% β = 20% β = 30%

Df 92.38 95.46 94.71 94.99 93.29 88.83
Dt 92.32 92.12 92.04 91.84 91.76 86.47

6 CONCLUSION

In this paper, we propose KARMA, a lightweight and efficient unlearning method that selectively
modifies representation space to achieve unlearning. The design of KARMA ensures stable model
behavior and preserves the performance on remaining samples by constraining updates within a
bounded space. We theoretically demonstrate that the proposed regularization strategy effectively
controls semantic drift and maintains robustness on retained data. Experimental results show that
KARMA achieves comparable forgetting performance with a huge reduction in parameter updates
and minimal degradation on remaining samples. In addition, KARMA effectively defends against
MIA under both unlearning scenarios, demonstrating strong privacy-preserving capabilities.

9
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7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper and appendix. We have also provided a full
description of keyword selection and pseudo-sample generation, to assist others in reproducing our
experiments.

Additionally, public dataset like IMDb and SST-2 are publicly available, ensuring consistent and
reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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9 APPENDIX

9.1 EXPERIMENTAL IMPLEMENTATION

All experiments were conducted on a server running CentOS Linux 7, equipped with a single
NVIDIA RTX 4090 GPU (24GB). The implementation is based on the PyTorch framework. For
reproducibility, the exact versions of software libraries and dependencies can be found in our open-
source code repository: https://anonymous.4open.science/r/KARMA-4501. The following ablation
studies are conducted using hyperparameters lr = 2e-2, γ = 0.8, and epoch = 1 for KARMA. For
Ablation (3), α is set to the default value of 0.8.

Details of baselines are as follows:

Retrain (Ret). After removing Df from D, we fine-tuned the pre-trained model on the remaining
samples to obtain the retrained model. The learning rate of retraining is set to be 2 × 10−5 and
run for 3 epochs. This approach acts as the baseline for all other models, and it is required that the
quantitative metrics of other methods be as similar as possible to this method.

Fine-tuning (Fin). After removing Df from D, we continued to fine-tune the whole model param-
eters on the remaining samples. The learning rate of fine-tuning is set to 1 × 10−4 and run for 3
epochs.

Gradient Ascent (GA). The strategy of gradient ascent is widely used in previous works to achieve
unlearning Jang et al. (2023); Yuanshun et al. (2023). Considering the differences in scenarios and
objectives, we have implemented a basic version of the gradient ascent method as an alternative.
We employed a gradient ascent strategy on Df , using a smaller learning rate for fine-tuning. The
learning rate of GA is set to 1× 10−6 and run for 3 epochs.

KGA. KGA achieves an effect similar to KARMA by aligning the model with a knowledge-retaining
counterpart trained on the remain dataset. Most experimental settings follow the configurations in
Reference Wang et al. (2023a), with the learning rate adjusted to 2× 10−5 and the auxiliary dataset
Dn set to a size of 100, aiming to achieve reasonable performance on IMDb and SST-2.

9.2 METRIC-WISE PERFORMANCE UNDER VARYING α

As shown in Table 4, the model achieves effective forgetting of the target data without overfitting
when α is set between 0.7 and 0.8.

Table 4: Metric-wise performance under varying α.

α Df Dr Dkt Dkr Dt

0.0 99.10 99.39 95.07 98.65 93.32
0.1 98.65 99.39 95.07 98.65 93.32
0.2 99.10 99.36 94.62 98.65 93.36
0.3 99.10 99.34 94.17 98.65 93.44
0.4 99.10 99.30 94.62 98.65 93.36
0.5 98.65 99.08 93.72 98.65 92.60
0.6 98.65 99.12 94.17 98.21 92.80
0.7 95.96 97.86 90.58 97.31 91.04
0.8 97.76 98.94 92.83 98.65 92.60
0.9 98.65 99.20 94.17 98.65 92.92
1.0 98.21 99.00 93.72 98.65 92.52

9.3 METRIC-WISE PERFORMANCE UNDER VARYING NUMBERS OF KEYWORDS

As shown in Table 5, a smaller keyword set helps retain more knowledge on Dr. In contrast, using
too many keywords may cause excessive forgetting, leading to poor performance on both Df and
Dr.
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Table 5: Metric-wise performance under varying numbers of keywords.

Keyword Num Df Dr Dkt Dkr Dt

1 99.10 99.39 95.07 98.65 93.32
2 96.86 98.63 91.93 97.31 92.24
3 72.65 72.56 73.54 67.26 70.67
4 61.43 60.68 53.36 54.71 60.38
5 52.47 49.47 45.74 46.19 50.78
6 89.69 90.20 84.75 85.20 86.51
7 59.19 61.00 53.36 57.40 60.06
8 67.71 73.05 60.54 65.47 72.07
9 82.06 88.42 87.44 89.69 84.15

10 85.65 89.46 87.44 89.24 86.03

9.4 METRIC-WISE PERFORMANCE ACROSS VARIOUS KEYWORD SELECTION METHODS

We evaluate three keyword selection strategies: GradInput, TF-IDF, and Random. GradInput es-
timates token importance by computing the gradient of the loss with respect to input embeddings,
following saliency-based interpretability techniques Shrikumar et al. (2017). TF-IDF is a classical

Table 6: Metric-wise performance across various keyword selection methods.

Metric GradInput Tf-idf Random Ours

Df 96.41 90.58 92.38 96.86
Dr 98.36 95.24 94.90 98.63
Dkt 91.93 89.69 89.24 91.93
Dkr 97.76 94.62 93.72 97.31
Dt 92.00 89.68 89.36 92.24

statistical method that assigns importance scores based on a token’s term frequency and its inverse
document frequency across the corpus Grootendorst (2022). Random serves as a baseline by as-
signing each token a random importance score sampled uniformly from the range [0, 1). For all
methods, we retain semantically meaningful tokens, enumerate all n-gram combinations, compute
their mean importance scores, and rank them by absolute value. The top-k n-grams are selected as
keywords (n = 2, k = 2). As shown in Table 6, we apply grid search to optimize hyperparameters
for each method. While all approaches support effective forgetting under the 2-gram top-2 setting,
our method better preserves performance on remaining data.

9.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We confirm that large language models (LLMs) were used in the preparation of this manuscript.
Specifically, LLMs were employed only to aid or polish writing, such as improving grammar, style,
and readability. They were not used for generating research ideas, designing experiments, analyzing
results, or producing any scientific content. All substantive contributions are solely from the authors.
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