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Abstract
Data-parallel SGD is the de facto algorithm for
distributed optimization, especially for large scale
machine learning. Despite its merits, communi-
cation bottleneck is one of its persistent issues.
Most compression schemes to alleviate this either
assume noiseless communication links, or fail
to achieve good performance on practical tasks.
In this paper, we close this gap and introduce
LASER: LineAr CompreSsion in WirEless
DistRibuted Optimization. LASER capitalizes
on the inherent low-rank structure of gradients and
transmits them efficiently over the noisy channels.
Whilst enjoying theoretical guarantees similar to
those of the classical SGD, LASER shows consis-
tent gains over baselines on a variety of practical
benchmarks. In particular, it outperforms
the state-of-the-art compression schemes on
challenging computer vision and GPT language
modeling tasks. On the latter, we obtain 50-64%
improvement in perplexity over our baselines
for noisy channels. Code is available at https:
//github.com/Bond1995/LASER.

1. Introduction
Distributed optimization is one of the most widely used
frameworks for training large scale deep learning models
(Bottou et al., 2018; Dean et al., 2012; Tang et al., 2020).
In particular, data-parallel SGD is the workhorse algorithm
for this task. Underpinning this approach is the communi-
cation of large gradient vectors between the workers and
the central server which performs their aggregation. While
these methods harness the inherent parallelism to reduce the
overall training time, their communication cost is a major
bottleneck that limits scalability to large models. Design
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of communication-efficient distributed algorithms is thus a
must for reaping the full benefits of distributed optimization
(Xu et al., 2020).

Existing approaches to reduce the communication cost can
be broadly classified into two themes: (i) compressing the
gradients before transmission; or (ii) utilizing the communi-
cation link for native ‘over-the-air’ aggregation (averaging)
across workers. Along (i), a number of gradient compres-
sion schemes have been designed such as quantization (Bern-
stein et al., 2018; Vargaftik et al., 2022), sparsification (Aji
& Heafield, 2017; Isik et al., 2022), hybrid methods (Jiang
et al., 2018; Basu et al., 2019), and low-rank compression
(Wang et al., 2018; Vogels et al., 2019). These methods
show gains over the full-precision SGD in various settings
(Xu et al. (2020) is a detailed survey). Notwithstanding the
merits, their key shortcoming is that they assume a noiseless
communication link between the clients and the server. In
settings such as federated learning with differential privacy
or wireless communication, these links are noisy. Mak-
ing them noiseless requires error-correcting codes which
exacerbates the latency, as the server needs to wait till it
receives the gradient from each worker before aggregating
(Guo et al., 2020).

Under theme (ii), communication cost is reduced by har-
nessing the physical layer aspects of (noisy) communication.
In particular, the superposition nature of wireless channels
is exploited to perform over-the-air averaging of gradients
across workers, which reduces the latency, see e.g. (Shi
et al., 2020) and the references therein. Notable works in-
clude A-DSGD (Amiri & Gündüz, 2020b), analog-gradient-
aggregation (Guo et al., 2020; Zhu et al., 2019), channel
aware quantization (Chang & Tandon, 2020), etc. How-
ever, to the best of our knowledge, the majority of these
approaches are restricted to synthetic datasets and shallow
neural networks (often single layer) and do not scale well
to the practical neural network models (which we verify in
Sec. 4). This leads to a natural question:

Can we design efficient and practical gradient compression
schemes for noisy communication channels?

In this work, we precisely address this and propose LASER,
a principled gradient compression scheme for distributed
training over wireless noisy channels. Specifically, we make
the following contributions:
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Figure 1: Final test perplexity after 20k iterations (lower is better)
vs. power budget for GPT-2 language modeling on WIKITEXT-103.
LASER consistently requires orders-of-magnitude less power than other
methods for the same perplexity.

Table 1: Power required (lower is better) to reach the
target perplexity on WIKITEXT-103. Z-SGD sends the
uncompressed gradients directly, while LASER sends a
rank-4 approximation. LASER requires 16× less power
than Z-SGD to achieve the target perplexity over a wide
interval. In the very-high-power regime with perplexity
close to that of the noiseless SGD, we see no power gains.

Target Power required Reduction
Z-SGD LASER

80 160K 10K 16×
50 640K 40K 16×
40 2560K 160K 16×
35 2560K 160K 16×

• Capitalizing on the inherent low-rank structure of the
gradients, LASER efficiently computes these low-rank
factors and transmits them reliably over the noisy chan-
nel while allowing the gradients to be averaged in tran-
sit (Sec. 3).

• We show that LASER enjoys similar convergence rate
as that of the classical SGD for both quasi-convex and
non-convex functions, except for a small additive con-
stant depending on the channel degradation (Thm 1).

• We empirically demonstrate the superiority of LASER
over the baselines on the challenging tasks of (i) lan-
guage modeling with GPT-2→WIKITEXT-103 and
(ii) image classification with RESNET18→ (CIFAR10,
CIFAR100) and 1-LAYER NN→ MNIST. With high
gradient compression (165×), LASER achieves 50-
64% perplexity improvement in the low and moderate
power regimes on WIKITEXT-103. To the best of our
knowledge, LASER is the first to exhibit such gains
for GPT language modeling (Sec. 4).

Notation. Euclidean vectors and matrices are denoted by
bold letters x,y,M , etc. ∥ · ∥ denotes the Frobenius norm
for matrices and the ℓ2-norm for Euclidean vectors. O(·)
is an upper bound subsuming universal constants whereas
Õ(·) hides any logarithmic problem-variable dependencies.

2. Background
Distributed optimization. Consider the (synchronous)
data-parallel distributed setting where we minimize an
objective f : Rd → R defined as the empirical loss on a

global dataset D = {(xj , yj)}Nj=1:

min
θ∈Rd

f(θ), f(θ) ≜
1

N

N∑
j=1

ℓ(xj , yj ;θ),

where ℓ(·) evaluates the loss for each data sample (xj , yj)
on model θ. In this setup, there are k (data-homogeneous)
training clients, where the ith client has access to a
stochastic gradient oracle gi, e.g. mini-batch gradient
on a set of samples randomly chosen from D, such that
E[gi|θ] = ∇f(θ) for all θ ∈ Rd. In distributed SGD
(Robbins & Monro, 1951; Bottou et al., 2018), the server
aggregates all gis and performs the following updates:

θt+1 = θt − γt ·
1

k

k∑
i=1

g
(t)
i ,

E[g(t)
i |θt] = ∇f(θt), t ≥ 0,

(SGD)

where {γt}t≥0 is a stepsize schedule. Implicit here is the
assumption that the communication link between the clients
and the server is noiseless, which we expound upon next.

Communication model. For the communication uplink
from the clients to the server, we consider the standard wire-
less channel for over-the-air distributed learning (Amiri &
Gündüz, 2020a; Guo et al., 2020; Zhu et al., 2019; Chang &
Tandon, 2020; Wei & Shen, 2022a): the additive slow-fading
channel, e.g., the classical multiple-access-channel (Nazer
& Gastpar, 2007). The defining property of this family is
the superposition of incoming wireless signals (enabling
over-the-air computation) possibly corrupted together with
an independent channel noise (Shi et al., 2020). Specifically,
we denote the channel as a (random) mapping ZP (·) that
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transforms the set of (time-varying) messages transmitted
by the clients {xi}i∈[k] ⊂ Rd to its noisy version y ∈ Rd

received by the server:

y = ZP ({xi}) ≜
k∑

i=1

xi +Z,

∥xi∥2 ≤ Pt,
1

T

T−1∑
t=0

Pt ≤ P,

(1)

where the noise Z ∈ Rd is independent of the channel
inputs and has zero mean and unit variance per dimension,
i.e. E∥Z∥2 = d. The power constraint on each client
∥xi∥2 ≤ Pt at time t serves as a communication cost (and
budget), while the power policy {Pt} allots the total budget
P over T epochs as per the average power constraint (Wei
& Shen, 2022b; Amiri & Gündüz, 2020b). A key metric
that captures the channel degradation quality is the signal-
to-noise ratio per coordinate (SNR), defined as the ratio
between the average signal energy (P ) and that of the noise
(d), i.e. SNR ≜ P/d. The larger it is the better the signal
fidelity. The power budget P encourages the compression
of signals: if each client can transmit the same information
xi via fewer entries (smaller d), they can utilize more power
per entry (higher SNR) and hence a more faithful signal.

The downlink communication from the server to the clients
is usually modeled as a standard broadcast channel (Cover,
1972): for input x with ∥x∥2 ≤ Pb, the output yi = x+Zi,
one for each of the clients. Usually in practice, Pb ≫ P and
therefore we set Pb =∞, though our results readily extend
to finite Pb.

In the rest of the paper by channel we mean the uplink
channel. The channel model in Eq. (1) readily generalizes
to the fast fading setup as discussed in Sec. 4.4.

Gradient transmission over the channel. In the distributed
optimization setting the goal is to communicate the (time-
varying) local gradients gi ∈ Rd to the central server over
the noisy channel in Eq. (1). Here we set the messages xi

as linear scaling of gradients (as we want to estimate the
gradient average), i.e. xi = ai gi with the scalars ai ∈ R
enforcing the power constraints:

y =

k∑
i=1

ai gi +Z, ∥ai gi∥2 ≤ Pt. (2)

Now the received signal is a weighted sum of the gra-
dients corrupted by noise, whereas we need the sum of
the gradients

∑
i gi (upto zero mean additive noise) for

the model training. Towards this goal, a common mild
technical assumption is that the gradient norms {∥gi∥}
are known at the receiver at each communication round
(Chang & Tandon, 2020; Guo et al., 2020) (can be relaxed

in practice, Sec. 4). The optimal scalars are then given
by ai =

√
Pt/(maxj ∥gj∥),∀i ∈ [K], which are uniform

across all the clients (§ E.1). Now substituting this ai in
Eq. (2) and rearranging, the effective channel can be written
as

y = Z̃P ({gi}) ≜
1

k

k∑
i=1

gi +
maxi ∥gi∥
k
√
Pt

Z.

(noisy channel)

Equivalently, we can assume this as the actual channel
model where the server receives the gradient average cor-
rupted by a zero mean noise proportional to the gradients.
Note that the noise magnitude decays in time as gradients
converge to zero. We denote Z̃P (·) as simply ZP (·) hence-
forth as these two mappings are equivalent.

Z-SGD. Recall that the SGD aggregates the uncompressed
gradients directly. In the presence of the noisy channel, it
naturally modifies to

θt+1 = θt − γtZP ({g(t)
i }). (Z-SGD)

Thus Z-SGD is a canonical baseline to compare against.
It has two sources of stochasticity: one stemming for the
stochastic gradients and the other from the channel noise.
While the gradient in the Z-SGD update still has the same
conditional mean as the noiseless case (zero mean Gaussian
in noisy channel), it has higher variance due to the Gaussian
term. When P =∞, Z-SGD reduces to SGD.

3. LASER: Novel Linear Compression cum
Transmission Scheme

In this section we describe our main contribution, LASER,
a novel method to compress gradients and transmit them ef-
ficiently over noisy channels. The central idea underpinning
our approach is that, given the channel power constraint in
Eq. (1), we can get a more faithful gradient signal at the
receiver by transmitting its ‘appropriate’ compressed ver-
sion (fewer entries sent and hence more power per entry) as
opposed to sending the full-gradient naively as in Z-SGD.
This raises a natural question: what’s a good compression
scheme that facilitates this? To address this, we posit that
we can capitalize on the inherent low-rank structure of the
gradient matrices (Martin & Mahoney, 2021; Mazumder
et al., 2010; Yoshida & Miyato, 2017) for efficient gradient
compression and transmission. Indeed, as illustrated below
and in Thm 1, we can get a variance reduction of the order
of the smaller dimension when the gradient matrices are
approximately low-rank.

More concretely, let us consider the single worker case
where the goal is to transmit the stochastic gradient
g ∈ Rm×m (viewed as a matrix) to the server with constant
power Pt = P . Further let’s suppose that g is approximately
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rank-one, i.e. g ≈ pq⊤, with the factors p, q ∈ Rm known.
If we transmit g uncompressed over the noisy channel, as in
Z-SGD, the server receives yZ-SGD = g+(∥g∥/

√
P ) Z ∈

Rm×m. On the other hand, if we capitalize on the low-rank
structure of g and instead transmit the factors p and q with
power P/2 each, the server would receive:

yp = p+ (
√
2∥p∥/

√
P ) Zp ∈ Rm,

yq = q + (
√
2∥q∥/

√
P ) Zq ∈ Rm,

where Zp and Zq are the channel noise. Now we
reconstruct the stochastic gradient as

yLASER ≜ ypy
⊤
q = (p+ (

√
2∥p∥/

√
P ) Zp)

· (q + (
√
2∥q∥/

√
P ) Zq)

⊤. (3)

Conditioned on the gradient g, while the received signal y
has the same mean g under both Z-SGD and LASER, we
observe that for Z-SGD it has variance E∥yZ-SGD − g∥2 =
∥g∥2/SNR with SNR ≜ P/m2, whereas that of LASER is
roughly ∥g∥2 ·(4/mSNR)(1+1/(mSNR)), as further elab-
orated in Definition 1. When SNR is of constant order Ω(1),
we observe that the variance for LASER is roughly O(m)
times smaller than that of Z-SGD, which is significant
given that variance directly affects the convergence speed
of stochastic-gradient based methods (Bottou et al., 2018).

More generally, even if the gradients are not inherently low-
rank and we only know their rank factors approximately,
with standard techniques like error-feedback (Seide et al.,
2014) we can naturally generalize the aforementioned pro-
cedure, which is the basis for LASER. Alg. 1 below details
LASER and Thm 1 establishes its theoretical justification.
While LASER works with any power policy {Pt} in noisy
channel, it suffices to consider the constant law Pt = P as
justified in Sec. 4.2.

3.1. Algorithm

For distributed training of neural network models, we apply
Alg. 1 to each layer independently. Further we use it only
for the weight matrices (fully connected layers) and the
convolutional filters (after reshaping the multi-dimensional
tensors to matrices), and transmit the bias vectors uncom-
pressed. Now we delineate the two main components of
LASER: (i) Gradient compression + Error-feedback (EF),
and (ii) Power allocation + Channel transmission.

Gradient compression and error feedback (7-9). Since
we transmit low-rank gradient approximations, we use error
feedback (EF) to incorporate the previous errors into the cur-
rent gradient update. This ensures convergence of SGD with
biased compressed gradients (Karimireddy et al., 2019). For
the rank-r compression of the updated gradient M , Cr(M),
we use the PowerSGD algorithm from Vogels et al. (2019),
a linear compression scheme to compute the left and right

Algorithm 1 LASER

0: input: initial model parameters θ ∈ Rm×n, learning
rate γ, compression rank r, power budget P

0: output: trained parameters θ
0: at each worker i = 1, . . . , k do
0: initialize memory ei ← 0 ∈ Rm×n

0: for each iterate t = 0, . . . do
0: Compute a stochastic gradient gi ∈ Rm×n

0: M i ← ei + γgi

0: P i,Qi ← Cr(M i)
0: ei ←M i − DECOMPRESS(Cr(M i))
0: α,β ← POWERALLOC({Cr(M j),M j})
0: Y p, Y q← Zα({P j}), Zβ({Qj})
0: g ← DECOMPRESS(Y p,Y q)
0: θ ← θ − g
0: end for
0: end at=0

singular components P ∈ Rm×r and Q ∈ Rn×r respec-
tively. PowerSGD uses a single step of the subspace iteration
(Stewart & Miller, 1975) with a warm start from the previ-
ous updates to compute these factors. The approximation
error, M −PQ⊤, is then used to update the error-feedback
for next iteration. Note that the clients do not have access to
the channel output and only include the local compression
errors into their feedback. The decompression function in
line 9 is given by DECOMPRESS(P ,Q) ≜ PQ⊤ ∈ Rm×n.

Power allocation and channel transmission (10-11). This
block is similar to Eq. (3) we saw earlier but generalized
to multiple workers and higher rank. For each client, to
transmit the rank-r factors P and Q over the noisy channel,
we compute the corresponding power-allocation vectors
α,β ∈ Rr

+, given by α,β = POWERALLOC(P ,Q,M).
This allocation is uniform across all the clients. Given these
power scalars, all the clients synchronously transmit the
corresponding left factors over the channel which results
in Y p ∈ Rm×r. Similarly for Y q ∈ Rn×r. Finally, the
stochastic gradient for the model update is reconstructed as
g = Y pY

⊤
q . For brevity we defer the full details to § E.1.

3.2. Theoretical Results

We now provide theoretical justification for LASER for
learning parameters in Rm×n with m ≤ n (without loss of
generality). While our algorithm works for any number of
clients, for the theory we consider k = 1 to illustrate the
primary gains with our approach. Our results readily extend
to the multiple clients setting following Cordonnier (2018).
Specifically, Thm 1 below highlights that the asymptotic
convergence rate of LASER is almost the same as that
of the classical SGD, except for a small additive constant
λLASER which is O(m) times smaller than that of Z-SGD.
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Our results hold for both quasi-convex and arbitrary non-
convex functions. We start with the preliminaries.
Definition 1 (Channel influence factor). For any compres-
sion cum transmission algorithm ALG, let yALG(g) be the
reconstructed gradient at the server after transmitting g
over the noisy channel. Then the channel influence factor
λALG is defined as

λALG ≜
EZ∥yALG(g)− g∥2

∥g∥2
. (4)

The influence factor gauges the effect of the channel on the
variance of the final gradient yALG: if the original stochastic
gradient g has variance σ2 with respect to the actual gradient
∇f , then yALG has (1 + λALG)σ

2. Note that this variance
directly affects the convergence speed of the SGD and hence
the smaller λALG is, the better the compression scheme is.
In view of this, the following fact (§ B.2) illustrates the
crucial gains of LASER compared to Z-SGD, which are
roughly of order O(m):

λLASER ≤
4

(m/r)SNR

(
1 +

1

(n/r)SNR

)
≪ 1

SNR
= λZ-SGD. (5)

In the low-rank (Vogels et al., 2019) and constant-order SNR
regime where r = O(1) and SNR = Ω(1), we observe that
λLASER is roughly O(m) times smaller than λZ-SGD. In
other words, the effective SNR seen by LASER roughly
gets boosted to O(m SNR) due to capitalizing on the low-
rank factors whereas Z-SGD perceives only the standard
factor SNR. Constant-order SNR, i.e. P/mn = Ω(1),
means that the energy used to transmit each coordinate is
roughly a constant, analogous to the constant-order bits used
in quantization schemes (Vargaftik et al., 2021). In fact, a
weaker condition that P/4r2 > 1 suffices (§ E.3). With a
slight abuse of notation, we denote the first upper bounding
quantity in Eq. (5) as λLASER too and DECOMPRESS(Cr(·))
as Cr(·) for brevity.

We briefly recall the standard assumptions for SGD conver-
gence following the framework in Bottou et al. (2018) and
Stich & Karimireddy (2019).
Assumption 1. The objective f : Rm×n → R is dif-
ferentiable and µ-quasi-convex for a constant µ ≥ 0
with respect to θ⋆, i.e. f(θ) − f(θ⋆) +

µ
2 ∥θ − θ⋆∥2 ≤

⟨∇f(θ),θ − θ⋆⟩, ∀θ ∈ Rm×n.

Assumption 2. f is L-smooth for some L > 0, i.e. f(θ′) ≤
f(θ) + ⟨∇f(θ),θ′ − θ⟩+ L

2 ∥θ
′ − θ∥2, ∀θ,θ′ ∈ Rm×n.

Assumption 3. For any θ, a gradient oracle g(θ, ξ) =
∇f(θ) + ξ, and conditionally independent noise ξ,
there exist scalars (M,σ2) ≥ 0 such that E [ξ|θ] =
0, E[∥ξ∥2|θ] ≤M∥∇f(θ)∥2 + σ2.

Assumption 4. The compressor Cr(·) satisifes the δr-

compression property: there exists a δr ∈ [0, 1] such that
ECr∥Cr(M)−M∥2 ≤ (1− δr)∥M∥2, ∀M ∈ Rm×n.

δr-compression is a standard assumption in the convergence
analysis of Error Feedback SGD (EF-SGD) (Stich & Karim-
ireddy, 2020). It ensures that the norm of the feedback mem-
ory remains bounded. We make the following assumption
on the influence factor λLASER, which ensures that the over-
all composition of the channel and compressor mappings,
ZP (Cr(·)), still behaves nicely.

Assumption 5. The channel influence factor λLASER satis-
fies λLASER ≤ 1/(10(2/δr +M)).

We note that a similar assumption is needed for convergence
even in the hypothetical ideal scenario when the clients have
access to the channel output (§ B.2), which we do not have.
This bound can be roughly interpreted as λLASER = O(δr).
We are now ready to state our main result.

Theorem 1 (LASER convergence). Let {θt}t≥0 be the
LASER iterates (Alg. 1) with constant stepsize sched-
ule {γt = γ}t≥0 and suppose Assumptions 2-5 hold.
Denote θ⋆ ≜ argminθ f(θ), f⋆ ≜ f(θ⋆), and τ ≜

10L
(

2
δr

+M
)

. Then for k = 1,

(i) if f is µ-quasi convex for µ > 0, there exists a stepsize
γ ≤ 1

τ(1+λLASER)
such that

Ef(θout)− f⋆ =

Õ

(
τ(1 + λLASER)∥θ0 − θ⋆∥2 exp

(
−µT

τ(1 + λLASER)

)

+
σ2(1 + λLASER)

µT

)
,

where θout is chosen from {θ}T−1
t=0 such that θout = θt

with probability (1− µγ/2)−t.
(ii) if f is µ-quasi convex for µ = 0, there exists a stepsize

γ ≤ 1
τ(1+λLASER)

such that

Ef(θout)− f⋆ = O

(
τ∥θ0 − θ⋆∥2(1 + λLASER)

T

+ σ∥θ − θ⋆∥
√

1 + λLASER

T

)
,

where θout is chosen uniformly at random from {θ}T−1
t=0 .

(iii) if f is an arbitrary non-convex function, there exists a
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stepsize γ ≤ 1
τ(1+λLASER)

such that

E∥∇f(θout)∥2 = O

(
τ∥f(θ0)− f⋆∥2(1 + λLASER)

T

+ σ

√
L(f(θ)− f⋆)(1 + λLASER)

T

)
,

where θout is chosen uniformly at random from {θ}T−1
t=0 .

(iv) Z-SGD obeys the convergence bounds (i)-(iii) with δr =
1 and λLASER replaced by λZ-SGD.

LASER vs. Z-SGD. Thus the asymptotic rate of LASER
is dictated by the timescale (1 + λLASER)/T , very close to
the 1/T rate for the classical SGD. In contrast, Z-SGD has
the factor (1 + λZ-SGD)/T with λZ-SGD = O(m)λLASER.

Multiple clients. As all the workers in LASER (Alg. 1) ap-
ply the same linear operations for gradient compression (via
PowerSGD), Thm 1 can be extended to (homogenous) mul-
tiple workers by shrinking the constants σ2,SNR, λLASER,
and λZ-SGD by a factor of k, following Cordonnier (2018).

Proof. (Sketch) First we write the LASER iterates {θt}t≥0

succinctly as

θt+1 = θt −Z(Cr(et + γtgt)),

et+1 = (et + γtgt)− Cr(et + γtgt).

First we establish a bound on the gap to the optimum,
E∥θt+1 − θ⋆∥2, by the descent lemma (Lemma 11). This
optimality gap depends on the behavior of the error updates
via E∥et∥2, which we characterize by the error-control
lemma (Lemma 12). When f is quasi-convex, these two
lemmas help us establish a recursive inequality between the
optimality gap Ef(θt+1) − f⋆ at time t + 1 and with that
of at time t: Ef(θt) − f⋆. Upon unrolling this recursion
and taking a weighted summation, Lemma 3 establishes
the desired result. In the case of non-convexity, the same
idea helps us to control E∥∇f(θt)∥2 in a similar fashion
and when combined with Lemma 6, yields the final result.
The proof for Z-SGD is similar.

4. Experimental Results
We empirically demonstrate the superiority of LASER over
state-of-the-art baselines on a variety of benchmarks, sum-
marized in Table 2.

Setup. We consider four challenging tasks of practical
interest: (i) GPT language modeling on WIKITEXT-103,
and (ii, iii, iv) image classification on MNIST, CIFAR10
and CIFAR100. For the language modeling, we use the
GPT-2 like architecture following Pagliardini (2023) (§ F).
RESNET18 is used for the CIFAR datasets. For MNIST, we

Table 2: Benchmarks for evaluating LASER. Baseline refers to
the noiseless SGD.

Model Dataset Metric Baseline

GPT-2 (123.6M) WIKITEXT Perplexity 19.2

RESNET18 (11.2M) CIFAR10 Top-1
accuracy

93.0%
CIFAR100 73.1%

1-LAYER NN (7850) MNIST 92.3%
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Figure 2: Test accuracy (higher the better) for a given power bud-
get on CIFAR-10 for different algorithms. LASER demonstrates
consistent accuracy gains over the baselines over a wide range of
power levels.

use a 1-hidden-layer network for a fair comparison with
Amiri & Gündüz (2020b). For distributed training of these
models, we consider k = 4 clients for language modeling
and k = 16 for image classification. We simulate the noisy
channel by sampling Z ∼ N (0, Id). To gauge the perfor-
mance of algorithms over a wide range of noisy conditions,
we vary the power P geometrically in the range [0.1, 10]
for MNIST, [250, 128000] for CIFAR10 and CIFAR100, and
[10000, 1024 × 10000] for WIKITEXT-103. The chosen
ranges can be roughly split into low-moderate-high power

Table 3: Power required (lower the better) to reach the given
target accuracy on CIFAR-10. LASER requires 16× lesser power
than the Z-SGD to achieve the same targetaccuracy. Equivalently,
LASER tolerates more channel noise than the Z-SGD for the
same target accuracy as is partly supported by our theoretical
analysis.

Target Power required Reduction
LASER Z-SGD

88% 250 4000 16×
89% 500 8000 16×
90% 1000 16000 16×
91% 2000 32000 16×
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regimes. Recall from noisy channel that the smaller the
power, the higher the noise in the channel.

Baselines. We benchmark LASER against three different
sets of baselines: (i) Z-SGD, (ii) SIGNUM, RANDOM-K,
SKETCHING, and (iii) A-DSGD. Z-SGD sends the uncom-
pressed gradients directly over the noisy channel and acts
as a canonical baseline. The algorithms in (ii) are state-of-
the-art distributed compression schemes for noiseless com-
munication (Vogels et al., 2019). SIGNUM (Bernstein et al.,
2018) transmits the gradient sign followed by the majority
vote and SKETCHING (Rothchild et al., 2020; Haddadpour
et al., 2020) uses a Count Mean Sketch to compress the
gradients. We omit comparison with quantization methods
(Vargaftik et al., 2022) given the difference in our objec-
tives and the settings (noisy channel). A-DSGD (Amiri
& Gündüz, 2020b) is a popular compression scheme for
noisy channels, relying on Top-K and random sketching.
However A-DSGD does not scale to tasks of the size we
consider and hence we benchmark against it only on MNIST.
SGD serves as the noiseless baseline (Table 2). All the
compression algorithms use the error-feedback, and use the
compression factor (compressed-gradient-size/original-size)
0.2, the optimal in the range [0.1, 0.8]. We report the best
results among 3 independent runs for all the baselines (§ F).

4.1. Results on Language Modeling and Image
Classification

For GPT language modeling, Fig. 1 in Sec. 1 highlights
that LASER outperforms the baselines over a wide range of
power levels. To the best of our knowledge, this is the first
result of its kind to demonstrate gains for GPT training over
noisy channels. Specifically, we obtain 64% improvement
in perplexity over Z-SGD (76 vs. 212) in the low power
regime (P = 10K) and 50% (35 vs. 71) for the moder-
ate one (P = 160K). This demonstrates the efficacy of
LASER especially in the limited power environment. In-
deed, Table 1 illustrates that for a fixed target perplexity,
LASER requires 16× less power than the second best, Z-
SGD. In the very high power regime, we observe no clear
gains (as expected) compared to transmitting the uncom-
pressed gradients directly via the Z-SGD. We note that for
the language modeling task, the popular optimization algo-
rithm is AdamW (Loshchilov & Hutter, 2017) and hence
Z-SGD (LASER) here refers to the noisy transmission via Z-
SGD (noisy channel) and subsequent gradient based update
by AdamW.

We observe a similar trend for CIFAR10 classification, as
Fig. 2 and Table 3 demonstrate the superiority of LASER
over other compression schemes; RANDOM-K does better
than the other baselines till moderate power levels after
which Z-SGD dominates. SIGNUM is considerably worse
than others, as it hasn’t converged yet after 150 epochs, and
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Figure 3: Accuracy vs. budget P for various laws. Constant is the
best for both LASER and Z-SGD.

hence omitted. With regards to power reduction, Table 3
highlights that LASER requires just (1/16)th the power
compared to Z-SGD to reach any target accuracy till 91%.
We observe similar gains for CIFAR100 (§ F).

Table 4 compares the performance of LASER against vari-
ous compression algorithms on MNIST. In the very noisy
regime (P = 0.1), RANDOM-K is slightly better than
LASER and outperforms the other baselines, whereas in
the moderate (P = 1) and high power (P = 10) regimes,
LASER is slightly better than the other algorithms. On the
other hand, we observe that A-DSGD performs worse than
even simple compression schemes like RANDOM-K in all
the settings.

4.2. Power Control: Static vs. Dynamic Policies

The formulation in noisy channel allows for any power
control law Pt as long as it satisfies the average power
constraint:

∑
t(Pt/T ) ≤ P . This begs a natural ques-

tion: what’s the best power scheme for LASER? To answer
this, for CIFAR10 classification, under a fixed budget P we
consider different power policies with both increasing and
decreasing power across epochs: the constant, piecewise
constant and linear schemes. Fig. 3 illustrates the results
for the decreasing power laws, while Fig. 7 their increas-
ing counterparts. These results highlight that the constant
power policy achieves the best performance for both LASER
and Z-SGD, compared to the time-varying ones. Further
LASER attains significant accuracy gains over Z-SGD for
all the power control laws. Interestingly LASER performs
the same with all the power schemes. We posit this be-
havior to the fact that the noisy channel already contains a
time-varying noise due to the term maxi ∥∥gi∥∥√

Pt
. Since the

gradients decay over time, this inherently allows for an im-
plicit power/SNR-control law even with a constant Pt, thus

7
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Table 4: Test accuracy (higher the better) after 50 epochs on MNIST
for low, moderate, and high power regimes.

Algorithm Test accuracy

P = 0.1 P = 1 P = 10

Z-SGD 81.3% 87.9% 91.9%

SIGNUM 76.7% 83.2% 85.4%
RANDOM-K 86.1% 89.3% 91.5%
SKETCHING 81.9% 88.2% 91.7%

A-DSGD 81.6% 86.9% 87.3%
LASER 84.3% 89.9% 92.3%

Table 5: Communication cost (lower the better) for GPT
language modeling on WIKITEXT-103. LASER trans-
mits the lowest volume of data during training.

Algorithm Data sent per iteration

Z-SGD 496MB (1×)

SIGNUM 15MB (33×)
RANDOM-K 99MB (5×)
SKETCHING 99MB (5×)

A-DSGD n/a n/a
LASER 3MB (165×)

enabling the constant power scheme to fare as good as the
others. Hence, without loss of generality, we consider the
static power schedule for our theory and experiments. We
refer to § F.7 for a detailed discussion.

4.3. Computational Complexity and Communication
Cost

Recall from Alg. 1 that the two critical components of
LASER are gradient compression and channel transmission.
To gauge their efficacy we analyze them via two important
metrics: (i) computational complexity of compression and
(ii) communication cost of transmission. For (ii), recall
from Eq. (1) that the power constraint indirectly serves as a
communication cost and encourages compression. Table 5
quantitatively measures the total data sent by clients for each
training iteration (doesn’t change with the power P ) for
GPT language modeling on WIKITEXT-103. As illustrated,
LASER incurs the lowest communication cost among all
the baselines with 165× cost reduction as compared to the
Z-SGD, followed by SIGNUM which obtains 33× reduc-
tion. Interestingly, LASER also achieves the best perplexity
scores as highlighted in Fig. 1. For these experiments, we let
rank r = 4 for LASER and the best compression factor 0.2
for the baselines (as detailed earlier). SIGNUM does not re-
quire any compression factor. For (i), since LASER relies on
PowerSGD for the rank decomposition, it inherits the same
low-complexity benefits: Tables 3-7 of Vogels et al. (2019)
demonstrate that PowerSGD is efficient with significantly
lower computational needs and has much smaller processing
time/batch as compared to baselines without any accuracy
drop. In fact, it is the core distributed algorithm behind the
recent breakthrough DALL-E (§ E in Ramesh et al. (2021)).

4.4. Slow and fast fading channels

The slow/non-fading model in Eq. (1) readily generalizes
to the popular fast fading channel (Guo et al., 2020; Amiri
& Gündüz, 2020a): y =

∑
i γixi + Z, where γi are the

channel fading coefficients. A standard technique here in
the literature is to assume that channel-state-information

(CSI) is known in the form of fading coefficients or their
statistics, which essentially reduces the problem to a
non-fading one. Likewise LASER can be extended to the
fast fading channel as well.

5. Related Work
In relation to our work, the existing literature can be broadly
classified into two categories:

(i) Compression schemes with noiseless communication.
Assuming a noiseless bit pipe from clients to the server,
quantization methods (Dettmers, 2015; Alistarh et al., 2017;
Horvóth et al., 2022; Li et al., 2018; Wen et al., 2017; Yu
et al., 2019; Vargaftik et al., 2021) quantize each coordi-
nate and send as fewer bits as possible. Sparsification tech-
niques (Ivkin et al., 2019; Stich et al., 2018; Sun et al.,
2019; Tsuzuku et al., 2018; Wangni et al., 2018) send a
reduced number of coordinates, based on criteria such as
Top/Random-K, as opposed to sending the full gradient di-
rectly. Hybrid methods (Dryden et al., 2016; Lim et al.,
2019) combine both. Rank compression methods (Yu et al.,
2018; Cho et al., 2019; Wang et al., 2018) spectrally decom-
pose gradient matrix (often via SVD) and transmit these fac-
tors. Since SVD is computationally prohibitive, we rely on
the state-of-the-art light-weight compressor PowerSGD (Vo-
gels et al., 2019).

(ii) Compression schemes for noisy channels. The main
idea here is to enable over-the-air-aggregation of gradients
via the superposition nature of wireless channels (Nazer &
Gastpar, 2007) thus reducing the communication latency
and bandwidth. The popular A-DSGD (Amiri & Gündüz,
2020b) relies on Top-K sparsification and random sketching.
However, being memory intensive, A-DSGD is restricted
to MNIST with 1-layer NN and doesn’t scale beyond.
Guo et al. (2020) propose an analog-gradient-aggregation
scheme but it is limited to shallow neural networks. Chang
& Tandon (2020) design a digital quantizer for training over
Gaussian MAC channels. (iii) Power laws. In the absence
of explicit power constraints, Wei & Shen (2022a) show that
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O(1/t2) noise-decay ensures the standard 1/T convergence
rate for noisy FED-AVG whereas Saha et al. (2022) propose
a t0.8 increase in SNR for the decentralized setup.

6. Conclusion
We propose a principled gradient compression scheme,
LASER, for wireless distributed optimization over addi-
tive noise channels. LASER attains significant gains over its
baselines on a variety of metrics such as accuracy/perplexity,
complexity and communication cost. It is an interesting av-
enue of future research to extend LASER to channels with
downlink noise and fast fading without CSI.
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A. Error feedback and SGD convergence toolbox
In this section we briefly recall the main techniques for the convergence analysis of SGD with error feedback (EF-SGD) from
(Stich & Karimireddy, 2020). We consider k = 1 clients with a compressor Cr(·) and without any channel communication
noise ZP (Sec. 2):

θt+1 = θt − Cr(et + γtgt)

et+1 = (et + γtgt)− Cr(et + γtgt).
(EF-SGD)

Now we define the virtual iterates {θ̃t}t≥0 which are helpful for the convergence analysis:

θ̃t ≜ θt − et. (6)

Hence θ̃t+1 = θt − et − γtgt = θ̃t − γtgt. First we consider the case when f is quasi-convex followed by the non-convex
setting. In all the results below, we assume that the objective f is L-smooth, gradient oracle g has (M,σ2)-bounded noise,
and that Cr(·) satisfies the δr compression property (Assumptions 2, 3, and 4).

f is quasi-convex:

The following lemma gives a handle on the gap to optimality E∥θ̃t − θ⋆∥2.

Lemma 1 ((Stich & Karimireddy, 2020), Lemma 8). Let {θt, et}t≥0 be defined as in EF-SGD. Assume that f is µ-quasi
convex for some µ ≥ 0. If γt ≤ 1

4L(1+M) for all t ≥ 0, then for {θ̃t}t≥0 defined in Eq. (6),

E∥θ̃t+1 − θ⋆∥2 ≤
(
1− µγt

2

)
E∥θ̃t − θ⋆∥2 −

γt
2
E(f(θt)− f⋆) + γ2

t σ
2 + 3LγtE∥θt − θ̃t∥2 . (7)

The following lemma bounds the squared norm of the error, i.e. E∥et∥2, appearing in Eq. (7). Recall that a positive sequence
{at}t≥0 is τ -slow decreasing for parameter τ ≥ 1 if at+1 ≤ at and at+1(1 + 1/2τ) ≥ at. The sequence {at}t≥0 is τ -slow
increasing if {a−1

t }t≥0 is τ -slow decreasing (Stich & Karimireddy, 2020), Definition 10.

Lemma 2 ((Stich & Karimireddy, 2020), Lemma 22). Let et be as in (EF-SGD) for a δr-approximate compressor Cr and

13
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stepsizes {γt}t≥0 with γt+1 ≤ 1
10L(2/δr+M) , ∀t ≥ 0 and {γ2

t }t≥0
2
δr

-slow decaying. Then

E
[
3L∥et+1∥2

]
≤ δr

64L

t∑
i=0

(
1− δr

4

)t−i (
E∥∇f(θt−i)∥2

)
+ γtσ

2 . (8)

Furthermore, for any 4
δr

-slow increasing non-negative sequence {wt}t≥0 it holds:

3L

T∑
t=0

wtE∥et∥2 ≤
1

8L

T∑
t=0

wt

(
E∥∇f(θt)∥2

)
+ σ2

T∑
t=0

wtγt .

The following result controls the summations of the optimality gap that appear when combining Lemma 1 and Lemma 2.

Lemma 3 ((Stich & Karimireddy, 2020), Lemma 13). For every non-negative sequence {rt}t≥0 and any parameters
d ≥ a > 0, c ≥ 0, T ≥ 0, there exists a constant γ ≤ 1

d , such that for constant stepsizes {γt = γ}t≥0 and weights
wt := (1− aγ)−(t+1) it holds

ΨT :=
1

WT

T∑
t=0

(
wt

γt
(1− aγt) rt −

wt

γt
rt+1 + cγtwt

)
= Õ

(
dr0 exp

[
−aT

d

]
+

c

aT

)
.

Combining the above lemmas, we obtain the following result for the convergence rate of EF-SGD.

Theorem 2 ((Stich & Karimireddy, 2020), Theorem 22). Let {θt}t≥0 denote the iterates of the error compensated stochastic
gradient descent (EF-SGD) with constant stepsize {γt = γ}t≥0 and with a δr-approximate compressor on a differentiable
function f : Rd → R under Assumptions 2 and 3. Then, if f

• satisfies Assumption 1 for µ > 0, then there exists a stepsize γ ≤ 1
10L(2/δr+M) (chosen as in Lemma 3) such that

where the output θout ∈ {θt}T−1
t=0 is chosen to be θt with probability proportional to (1− µγ/2)−t.

• satisfies Assumption 1 for µ = 0, then there exists a stepsize γ ≤ 1
10L(2/δr+M) (chosen as in Lemma 3) such that

Ef(θout)− f∗ = O
(
L(1/δr +M)∥θ0 − θ⋆∥2

T
+

σ∥θ0 − θ⋆∥√
T

)
,

where the output θout ∈ {θt}T−1
t=0 is chosen uniformly at random from the iterates {θt}T−1

t=0 .

f is non-convex:

Now we consider the case where f is an arbitrary non-convex function. The above set of results extend in a similar fashion
to this setting too as described below:

Lemma 4 ((Stich & Karimireddy, 2020), Lemma 9). Let {θt, et}t≥0 be defined as in EF-SGD. If γt ≤ 1
2L(1+M) for all

t ≥ 0, then for {θ̃t}t≥0 defined in Eq. (6),

E[f(θ̃t+1)] ≤ E[f(θ̃t)]−
γt
4
E∥∇f(θt)∥2 +

γ2
tLσ

2

2
+

γtL
2

2
E∥θt − θ̃t∥2 . (9)

Lemma 5 ((Stich & Karimireddy, 2020), Lemma 22). Let et be as in (EF-SGD) for a δr-approximate compressor Cr and
stepsizes {γt}t≥0 with γt+1 ≤ 1

10L(2/δr+M) , ∀t ≥ 0 and {γ2
t }t≥0

2
δr

-slow decaying. Then

E
[
3L∥et+1∥2

]
≤ δr

64L

t∑
i=0

(
1− δr

4

)t−i (
E∥∇f(θt−i)∥2

)
+ γtσ

2 . (10)

14



LASER: Linear Compression in Wireless Distributed Optimization

Furthermore, for any 4
δr

-slow increasing non-negative sequence {wt}t≥0 it holds:

3L

T∑
t=0

wtE∥et∥2 ≤
1

8L

T∑
t=0

wt

(
E∥∇f(θt−i)∥2

)
+ σ2

T∑
t=0

wtγt .

Lemma 6 ((Stich & Karimireddy, 2020), Lemma 14). For every non-negative sequence {rt}t≥0 and any parameters d ≥ 0,
c ≥ 0, T ≥ 0, there exists a constant γ ≤ 1

d , such that for constant stepsizes {γt = γ}t≥0 it holds:

ΨT :=
1

T + 1

T∑
t=0

(
rt
γt
− rt+1

γt
+ cγt

)
≤ dr0

T + 1
+

2
√
cr0√

T + 1
.

Now we have the final convergence result for the non-convex setting.

Theorem 3 ((Stich & Karimireddy, 2020), Theorem 22). Let {θt}t≥0 denote the iterates of the error compensated stochastic
gradient descent (EF-SGD) with constant stepsize {γt = γ}t≥0 and with a δr-approximate compressor on a differentiable
function f : Rd → R under Assumptions 2 and 3. Then, if f is an arbitrary non-convex function, there exists a stepsize
γ ≤ 1

10L(1/δr+M) (chosen as in Lemma 6), such that

E∥∇f(θout)∥2 = O

(
L(1/δr +M)(f(θ0)− f⋆)

T
+ σ

√
L(f(θ0)− f⋆)

T

)
.

where the output θout ∈ {θt}T−1
t=0 is chosen uniformly at random from the iterates {θt}T−1

t=0 .

B. Technical lemmas for LASER convergence
Towards the convergence analysis of LASER for k = 1, we rewrite the Alg. 1 succinctly as:

θt+1 = θt −Z(α,β) (Cr(et + γtgt))

et+1 = (et + γtgt)− Cr(et + γtgt) ,
(LASER)

where the channel corrupted gradient approximation Z(α,β)(·) is given by

Z(α,β)(Cr(et + γtgt)︸ ︷︷ ︸
=PQ⊤

) ≜
r∑

i=1

(
pi +

∥pi∥√
αi
·Z(i)

m

)(
qi +

∥qi∥√
βi

·Z(i)
n

)⊤

, (11)

and α = (αi)
r
i=1 and β = (βi)

r
i=1 are appropriate power allocations to transmit the respective left and right factors

P = [p1, . . . ,pr] ∈ Rm×r and Q = [q1, . . . , qr] ∈ Rn×r for the decomposition Cr(et + γtgt) = PQ⊤. Z(i)
m ∈ Rm and

Z(i)
n ∈ Rn denote the independent channel noises for each factor i ∈ [r].

Thus we observe from LASER that it has an additional channel corruption in the form of Z(α,β)(·) as compared to the
EF-SGD. Now in the remainder of this section, we explain how to choose the power allocation (α,β) (App. B.1), how
to control the influence of the channel Z(α,β)(·) on the convergence of LASER (App. B.2), and utilize these results to
establish technical lemmas along the lines of App. A for LASER (App. B.3).

B.1. Power allocation

In this section, we introduce the key technical lemmas about power allocation that are crucial for the theoretical results. We
start with the rank one case.

Lemma 7 (Rank-1 power allocation). For a power P > 0 and m,n ∈ N with m ≤ n, define the function fP : R+×R+ →
R+ as

fP (α, β) ≜
(
1 +

m

α

)(
1 +

n

β

)
,

and the constraint set SP ≜ {(α, β) : α ≥ 0, β ≥ 0, α+ β = P}. Then for the minimizer (α⋆, β⋆) =

15
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argmin(α,β)∈SP
fP (α, β), we have

fP (α
⋆, β⋆) ≤ 1 +

4

m SNR

(
1 +

1

nSNR

)
, SNR ≜

P

mn
.

Further the minimizer is given by

α⋆ =


√
1 + P

n

(√
1+ P

m−
√

1+P
n

1
m− 1

n

)
, m ̸= n

P/2, m = n

β⋆ = P − α⋆.

Lemma 8 (Rank-r power allocation). For a power P > 0, m,n, r ∈ N with m ≤ n, and positive scalars κ1, . . . , κr > 0
with

∑
i κi = 1, define the function fP : (R+)

r × (R+)
r → R+ as

fP (α,β) ≜
r∑

i=1

κi

(
1 +

m

αi

)(
1 +

n

βi

)
, α = (αi)

r
i=1, β = (βi)

r
i=1,

and the constraint set SP ≜ {{(α,β) : α ≥ 0,β ≥ 0,
∑

i(αi + βi) = P}. Then there exists a power allocation scheme
(α⋆,β⋆) ∈ SP such that

min
(α,β)∈SP

fP (α,β) ≤ fP (α
⋆,β⋆) ≤ 1 +

4

(m/r) SNR

(
1 +

1

(n/r) SNR

)
,

where SNR ≜ P
mn . Further (α⋆,β⋆) is given by

α⋆
i =


√
1 + Pi

n

(√
1+

Pi
m −

√
1+

Pi
n

1
m− 1

n

)
, m ̸= n

Pi/2, m = n

β⋆
i = Pi − α⋆

i ,

Pi = P

( √
κi∑

j

√
κj

)
.

Remark 1. In other words, we first divide the power P proportional to
√
κi for each i ∈ [r] and further allocate this Pi

amongst α⋆
i and β⋆

i as per the optimal rank one allocation scheme in Lemma 7.

B.2. Channel influence factor

In this section we establish the bounds for the channel influence defined in Eq. (4) for both Z-SGD and LASER. This helps
us give a handle to control the second moment of the gradient corrupted by channel noise.

Lemma 9 (Channel influence on Z-SGD). For the Z-SGD algorithm that sends the uncompressed gradients directly over
the noisy channel with power constraint P , we have

λZ-SGD =
1

SNR
, (12)

where SNR = P
mn .

Lemma 10. For the LASER algorithm with the optimal power allocation (α,β) (chosen as in Lemma 8), we have

λLASER ≤
4

(m/r) SNR

(
1 +

1

(n/r) SNR

)
, (13)

where SNR = P
mn .

Remark 2. Note that for the optimal power allocation via Lemma 8, we need the positive scalars κ1, . . . , κr. In the context
of LASER, we will later see in the proof in App. D that κi ∝ ∥pi∥2.
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Thus Lemma 9 and Lemma 10 establish that

λLASER ≤
4

(m/r) SNR

(
1 +

1

(n/r) SNR

)
≪ 1

SNR
= λZ-SGD.

In the low-rank (Vogels et al., 2019) and constant-order SNR regime where r = O(1) and SNR = Ω(1), we observe that
λLASER is roughly O(m) times smaller than λZ-SGD.

Note on assumption between λLASER and δr. Recall from LASER that the local memory et has only access to the
compressed gradients and not the channel output. In an hypothetical scenario, where it has access to the same, it follows that
EZ∥Z(α,β)(Cr(M))−M∥2 ≤ (1− (δr − λLASER))∥M∥2. Hence for the compression property in this ideal scenario, we
need λLASER ≤ δr.

B.3. Optimality gap and error bounds for LASER iterates

In this section, we characterize the gap to the optimality and the error norm for the LASER iterates {θt}t≥0 (similar to
Lemmas 1, 2, 2 and 5 for EF-SGD). Towards the same, first we define the virtual iterates {θ̃t}t≥0 as follows:

θ̃t ≜ θt − et . (14)

Thus,

θ̃t+1 = θt+1 − et+1 = θ̃t − γtgt + Cr(et + γtgt)−Z(α,β) (Cr(et + γtgt)) . (15)

The following lemma controls the optimality gap E∥θ̃t − θ⋆∥2 when f is quasi-convex.

Lemma 11 (Descent for quasi-convex). Let {θt, et}t≥0 be defined as in LASER. Assume that f is µ-quasi convex for

some µ ≥ 0 and that Assumptions 2 and 3 hold. If γt ≤ 1
4L(1+M)

(
1−2λLASER
1+λLASER

)
for all t ≥ 0, then for {θ̃t}t≥0 defined in

Eq. (14),

E∥θ̃t+1 − θ⋆∥2 ≤
(
1− µγt

2

)
E∥θ̃t − θ⋆∥2 −

γt
2
E(f(θt)− f⋆) + γ2

t σ
2(1 + λLASER)

+ (3Lγt(1 + λLASER) + λLASER)E∥θt − θ̃t∥2 .
(16)

Notice that Lemma 11 is similar to Lemma 1 for noiseless EF-SGD except for an additional channel influence factor λLASER.
The following result bounds the error norm.

Lemma 12 (Error control). Let et be as in (LASER) for a δr-approximate compressor Cr and stepsizes {γt}t≥0 with
γt ≤ 1

10L(2/δr+M)(1+λLASER)
, ∀t ≥ 0 and {γ2

t }t≥0
2
δr

-slow decaying. Further suppose that Assumption 5 holds. Then(
3L(1 + λLASER) +

λLASER

γt

)
E∥et+1∥2 ≤

δr
32L

t∑
i=0

(
1− δr

4

)t−i (
E∥∇f(θt−i)∥2

)
+ γtσ

2(1 + λLASER) .

(17)

Furthermore, for any 4
δr

-slow increasing non-negative sequence {wt}t≥0 it holds:(
3L(1 + λLASER) +

λLASER

γt

) T∑
t=0

wtE∥et∥2 ≤
1

6L

T∑
t=0

wt

(
E∥∇f(θt)∥2

)
+ σ2(1 + λLASER)

T∑
t=0

wtγt .

(18)

The following lemma establishes the progress in the descent for non-convex case.

Lemma 13 (Descent for non-convex). Let {θt, et}t≥0 be defined as in LASER and that Assumptions 2 and 3 hold. If

17
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γt ≤ 1
4L(1+M)(1+λLASER)

for all t ≥ 0, then for {θ̃t}t≥0 defined in Eq. (14),

E[f(θ̃t+1)] ≤ E[f(θ̃t)]−
γt
4
E∥∇f(θt)∥2 +

γ2
tLσ

2(1 + λLASER)

2

+ E∥θt − θ̃t∥2
(
L2γt
2

+ LλLASER

)
.

(19)

C. Proof of Thm 1
Proof. We prove the bounds in (i) and (ii) when f is quasi-convex, (iii) when f is an arbitrary non-convex function, and (iv)
for Z-SGD.

(i), (ii) f is µ-quasi-convex: Observe that the assumptions of Thm 1 automatically satisfy the conditions of Lemma 11.
Denoting rt ≜ E∥θ̃t+1 − θ⋆∥2 and st ≜ E(f(θt)− f⋆), for any wt > 0 we obtain

wt

2
st

(16)
≤ wt

γt

(
1− µγt

2

)
rt −

wt

γt
rt+1 + γtwtσ

2(1 + λLASER) + 3wt(L(1 + λLASER) +
λLASER

γt
)E∥et∥2 .

Taking summation on both sides and invoking Lemma 2 (assumption on wt verified below),

T∑
t=0

wt

2
st

(18)
≤

T∑
t=0

(
wt

γt

(
1− µγt

2

)
rt −

wt

γt
rt+1 + 2γtwtσ

2(1 + λLASER)

)
+

1

6L

T∑
t=0

wt

(
E∥∇f(θt)∥2

)
.

Since f is L-smooth, we have ∥∇f(θt)∥2 ≤ 2L(f(θt)− f⋆). Now rewriting the above inequality, we have

1

6

T∑
t=0

wtst ≤
T∑

t=0

(
wt

γt

(
1− µγt

2

)
rt −

wt

γt
rt+1 + 2γtwtσ

2(1 + λLASER)

)
.

Substituting WT ≜
∑T

t=0 wt,

1

WT

T∑
t=0

wtst ≤
6

WT

T∑
t=0

(
wt

γt

(
1− µγt

2

)
rt −

wt

γt
rt+1 + 2γtwtσ

2(1 + λLASER)

)
=: ΞT .

Now it remains to derive the estimate for ΞT . Towards this, (i) if µ > 0 and with constant stepsize γt = γ ≤
1

10L( 2
δr

+M)(1+λLASER)
, we observe that (1 − µγ

2 ) ≥
(
1− δr

16

)
and by Example 1 in (Stich & Karimireddy, 2020), the

weights wt =
(
1− µγ

2

)−(t+1)
are 2τ -slow increasing with τ = 2

δr
. Hence the claim in (i) follows by applying Lemma 3

and observing that the sampling probablity to choose θout from {θt}T−1
t=0 is same as wt.

For (ii) with constant stepsize and µ = 0, we apply Lemma 6 by setting the weights wt = 1.

(iii) f is non-convex The proof in this case is very similar to that of the above. Denoting rt ≜ 4E[f(θ̃t) − f⋆], st ≜
E∥∇f(θt)∥2, c = 4Lσ2(1 + λLASER), and wt = 1, we have from Lemma 13 that

st
4

(19)
≤ rt

4γt
− rt+1

4γt
+

γtc

8
+ L

(
L

2
+

λLASER

γt

)
E∥et∥2.

Since L
2 ≤ 3L(1 + λLASER), multiplying both sides of the above inequality by wt and taking summation, we obtain

1

4WT

T∑
t=0

wtst
(18)
≤ 1

WT

T∑
t=0

wt

(
rt
4γt
− rt+1

4γt
+

γtc

8

)
+

L

WT

(
T∑

t=0

wtst
6L

+
cwtγt
4L

)
,

which upon rearranging gives

1

WT

T∑
t=0

wtst≤
12

WT

T∑
t=0

wt

(
rt
4γt
− rt+1

4γt
+

3γtc

8

)
.

18



LASER: Linear Compression in Wireless Distributed Optimization

Now invoking Lemma 6 yields the final result in (iii).

Z-SGD: Recall from Z-SGD that the iterates {θt}t≥0 are given by

θt+1 = θt − γtZP (gt).

Thus Z-SGD can be thought of as a special case of EF-SGD with no compression, i.e. δr = 1, and hence we can utilize
the same convergence tools. It remains to estimate the first and second moments of the stochastic gradient ZP (gt). Recall
from the definition of ZP in the noisy channel that ZP (gt) = gt +

∥gt∥√
P

Zt, where Zt is a zero-mean independent channel
noise, and from Assumption 3 that gt = ∇f(θt) + ξt with a (M,σ2)-bounded noise ξt. Hence

E [ZP (gt)|θt] = E[gt|θt] = ∇f(θt),

E
[
∥ZP (gt)−∇f(θt)∥2|θt

]
= E

[
∥ZP (gt)− gt + gt −∇f(θt)∥2|θt

]
= E

[
∥ZP (gt)− gt∥2|θt

]
+ E

[
∥gt −∇f(θt)∥2|θt

]
4
= E

[
λZ-SGD∥gt∥2|θt

]
+ E∥ξt∥2

= λZ-SGD∥∇f(θt)∥2 + (1 + λZ-SGD)E∥ξt∥2

≤ (M + 1)(1 + λZ-SGD)∥∇f(θt)∥2 + (1 + λZ-SGD)σ
2.

Thus Z-SGD satifies the (M̃, σ̃2)-bounded noise condition in Assumption 3 with M̃ = (M + 1)(1 + λZ-SGD) and σ̃2 =

(1+λZ-SGD)σ
2. Thus the claim (iv) follows from applying Thm 2 and Thm 3 with the constants δr → 1,M → M̃, σ2 → σ̃2.

Finally, Lemma 9 and Lemma 10 establish the relation between the channel influence factors λZ-SGD and λLASER.

D. Proof of technical lemmas
D.1. Proof of Lemma 7

Proof. Since log(·) is a monotonic function, minimizing fP (α, β) over SP = {(α, β) : α ≥ 0, β ≥ 0, α+ β = P} is
equivalent to minimizing log fP (α, β) = log

(
1 + m

α

)
+ log

(
1 + n

β

)
. Define the Lagrangian L(α, β, λ) as

L(α, β, λ) ≜ log
(
1 +

m

α

)
+ log

(
1 +

n

β

)
+ λ(α+ β − P ).

Letting ∇αL = ∇βL = 0, we obtain that m
α(m+α) = n

β(n+β) . Now constraining α + β = P , we obtain the following
quadratic equation:

α2

(
1

m
− 1

n

)
+ 2α

(
1 +

P

n

)
−
(
P 2

n
+ P

)
= 0.

If m = n, the solution is given by α⋆ = β⋆ = P/2. If m ̸= n, the solution is given by

α⋆ =

√
1 +

P

n


√

1 + P
m −

√
1 + P

n

1
m −

1
n

 , (20)

β⋆ = P − α⋆.

It is easy to verify that (α⋆, β⋆) is the unique minimizer to fP since it’s convex over SP . Now it remains to show the upper
bound for fP (α⋆, β⋆). Without loss of generality, in the reminder of the proof we assume m < n and denote α⋆ by simply
α. Rewriting the optimal α in Eq. (20) in terms of SNR = P/mn, we obtain

α

mn
=

√
(1 + n SNR)(1 +mSNR)− (1 +m SNR)

n−m
. (21)
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Now substituting this α and corresponding β in fP (α, β) =
(
1 + m

α

) (
1 + n

β

)
and rearranging the terms, we get

fP (α, β) = 1 +
1

SNR

(
n−m

mn

) (
1

1− 2α
mn SNR

)
= 1 +

1

n SNR

( n
m − 1

1− 2α
mn SNR

)
.

Let γ ≜ m
n < 1. Now we study the behavior of α in Eq. (21) as a function of γ. In particular, define g(γ) ≜√

1 + n SNR
√
1 + nγ SNR. Observe that g(1) = 1 + nSNR and g′(1) = n SNR

2 . Rewriting Eq. (21) as a function
of γ, we get

α

mn
=

g(γ)− (1 + nγ SNR)

n(1− γ)

=
g(1) + g′(1)(γ − 1)− (1 + nγ SNR) + g′′

2 (γ − 1)2 + g′′′

3! (γ − 1)3 + . . .

n(1− γ)

=
SNR

2
+

1

n

(
g′′

2
(1− γ)− g′′′

3!
(1− γ)2 + . . .

)
.

Utilizing the fact that g′′(1) = −1
4

n2SNR2

1+nSNR , g′′(1) = 3
8

n3SNR3

(1+nSNR)2 and so forth, we obtain

1− 2α

mnSNR
=

2(1− γ)

n SNR

(
1

2

1

4

n2 SNR2

1 + nSNR
+

1

3!

3

8

n3 SNR3

(1 + n SNR)2
(1− γ) + . . .

)
≥ 2(1− γ)

n SNR

1

2

1

4

n2 SNR2

1 + nSNR

=
(1− γ)

4

nSNR

1 + nSNR
.

Substituting this bound back in the experssion for fP yields the final bound:

fP (α, β) ≤ 1 +
4

nγ SNR

(
1 +

1

n SNR

)
= 1 +

4

m SNR

(
1 +

1

n SNR

)
.

D.2. Proof of Lemma 8

Proof. To minimize fP (α,β) over SP = {{(α,β) : α ≥ 0,β ≥ 0,
∑

i(αi + βi) = P}, we consider a slightly relaxed
version that serves as an upper bound to this problem. In particular, first we divide the power P into P1, . . . , Pr such that∑

i Pi = P and Pi ≥ 0. Then for each Pi we find the optimal αi and βi from rank-1 allocation scheme in Lemma 7
and compute the corresponding objective value. In the end, we find a tractable scheme for division of power P among
P1, . . . , Pr minimizing this objective. Mathematically,

min
(α,β)∈SP

fP (α,β) ≤ min
{
∑

i Pi=P}
min

{(αi,βi):αi+βi=Pi,i∈[r]}

∑
i

κi

(
1 +

m

αi

)(
1 +

n

βi

)
= min

{
∑

i Pi=P}

∑
i

κi min
(αi,βi):αi+βi=Pi

(
1 +

m

αi

)(
1 +

n

βi

)
(Lemma 7)

≤ min
{
∑

i Pi=P}

∑
i

κi

(
1 +

4

mSNRi

(
1 +

1

nSNRi

))
, SNRi ≜

Pi

mn
,

= min
{
∑

i Pi=P}

(
1 +

4

m

∑
i

κi

SNRi
+

4

mn

∑
i

κi

SNR2
i

)
.
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Choosing SNRi ∝
√
κi, i.e. SNRi = SNR

√
κi∑

j

√
κj

, and substituting this allocation above, we obtain

min
(α,β)∈SP

fP (α,β) ≤ 1 +
4

m SNR

(∑
i

√
κi

)2

+
4

mnSNR2 R

(∑
i

√
κi

)2

≤ 1 +
4

(m/r) SNR

(
1 +

4

(n/r) SNR

)
,

where we used the inequality
(∑

i

√
κi

)2 ≤ r together with the fact that
∑

i κi = 1.

D.3. Proof of Lemma 9

Proof. Recall from Z-SGD that the stochastic gradient reconstructed at the receiver after transmitting g is yZ-SGD(g) ≜
ZP (g) = g + ∥g∥√

P
Z, where Z is a zero-mean independent channel noise in Rm×n. Thus

λZ-SGD =
1

∥g∥2
EZ∥yZ-SGD(g)− g∥2 =

1

∥g∥2
∥g∥2

P
E∥Z∥2 =

mn

P
=

1

SNR
.

D.4. Proof of Lemma 10

Proof. In view of LASER, denote the error compensated gradient at time t as M = et + γtgt and its compression as
M r = Cr(M) =

∑r
i=1 piq

⊤
i with orthogonal factors {pi} and orthonormal {qi} (without loss of generality). After

transmitting these factors of M r via the noisy channel, we obtain

yLASER(M r) = Z(α,β)(M r) =

r∑
i=1

(
pi +

∥pi∥√
αi
·Z(i)

m

)(
qi +

∥qi∥√
βi

·Z(i)
n

)⊤

.

Denote p̃i ≜ pi +
∥pi∥√

αi
·Z(i)

m , q̃i ≜ qi +
∥qi∥√

βi
·Z(i)

n , and Z = (Z(i)
m ,Z(i)

n )ri=1. We observe that EZ [yLASER(M r)] = M r.
Hence

EZ∥yLASER(M r)−M r∥2 = EZ∥
∑
i

p̃iq̃
⊤
i ∥2 − ∥M r∥2

=
∑
i

EZ∥p̃i∥2 EZ∥q̃i∥2 −
∑
i

∥p∥2∥q∥2

=
∑
i

∥p∥2∥q∥2
[(

1 +
m

αi

)(
1 +

n

βi

)
− 1

]

= ∥M r∥2
(∑

i

κi

(
1 +

m

αi

)(
1 +

n

βi

)
− 1

)
(Lemma 8)

= ∥M r∥2 (fP (α,β)− 1) ,

where we set κi = ∥pi∥2/∥M r∥2. Now choosing (α,β) = (α⋆,β⋆) as in Lemma 8 yields the desired result.

D.5. Proof of Lemma 11

Proof. From Eq. (15), we have that

θ̃t+1 = θ̃t − γtgt + Cr(et + γtgt)−Z(α,β) (Cr(et + γtgt)) .
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Denoting ErrorZ = Cr(et + γtgt) − Z(α,β) (Cr(et + γtgt)), we observe that EZ [ErrorZ ] = 0 and EZ∥ErrorZ∥2 ≤
λLASER∥Cr(et + γtgt)∥2 ≤ λLASER∥et + γtgt∥2 (see App. D.4). Thus

E∥θ̃t+1 − θ⋆∥2

= E∥θ̃t − θ⋆ − γtgt∥2 + E∥ErrorZ∥2

= E∥θ̃t − θ⋆∥2 − 2γtE⟨gt, θ̃t − θ⋆⟩+ γ2
t E∥gt∥2 + E∥ErrorZ∥2

≤ E∥θ̃t − θ⋆∥2 − 2γtE⟨gt,θt − θ⋆⟩+ 2γtE⟨gt,θt − θ̃t⟩+ γ2
t E∥gt∥2 + λLASERE∥et + γtgt∥2

= E∥θ̃t − θ⋆∥2 − 2γtE⟨gt,θt − θ⋆⟩+ 2γtE⟨gt,θt − θ̃t⟩(1 + λLASER) + γ2
t E∥gt∥2(1 + λLASER)

+ λLASERE∥et∥2

(Assump. 3)

≤ E∥θ̃t − θ⋆∥2 − 2γtE⟨∇f(θt),θt − θ⋆⟩+ 2γtE⟨∇f(θt),θt − θ̃t⟩(1 + λLASER)

+ (M + 1)(1 + λLASER)γ
2
t E∥∇f(θt)∥2 + γ2

t σ
2(1 + λLASER) + λLASERE∥et∥2. (22)

Now we closely follow the steps as in the proof of (Stich & Karimireddy, 2020), Lemma 8. Since f is L-smooth, we have
∥∇f(θt)∥2 ≤ 2L(f(θt)− f⋆. Further, by Assumption 1,

−2⟨∇f(θt),θt − θ⋆⟩≤ − µ∥θt − θ⋆∥2 − 2(f(θt)− f⋆) ,

and since 2⟨a, b⟩ ≤ α∥a∥2 + α−1∥b∥2 for α > 0, a, b ∈ Rd, we have

2⟨∇f(θt), θ̃t − θt⟩ ≤
1

2L
∥∇f(θt)∥2 + 2L∥θt − θ̃t∥2≤f(θt)− f⋆ + 2L∥θt − θ̃t∥2 .

And by ∥a+ b∥2 ≤ (1 + β)∥a∥2 + (1 + β−1)∥b∥2 for β > 0 (via Jensen’s inequality), we observe

−∥θt − θ⋆∥2 ≤ −
1

2
∥θ̃t − θ⋆∥2 + ∥θt − θ̃t∥2 .

Plugging these inequalities in Eq. (22), we obtain that

E∥θ̃t+1 − θ⋆∥2

≤
(
1− µγt

2

)
E∥θ̃t − θ⋆∥2 − γt (1− λLASER − 2L(M + 1)(1 + λLASER)γt)E(f(θt)− f⋆)

+ γ2
t σ

2(1 + λLASER) + (µγt + 2Lγt(1 + λLASER))E∥et∥2.

Utilizing the fact that γt ≤ 1−2λLASER
4L(M+1)(1+λLASER)

and µ ≤ L yields the desired claim.

D.6. Proof of Lemma 12

Proof. The proof of Lemma 12 is very similar to that of Lemma 2 for EF-SGD. In that proof, a key step is to establish
that (3L(2/δ+M)γ2

t ) ≤ δ
64L and (3Lγt 4/δ) ≤ 1. In our setting, γt ≤ 1

10L(2/δr+M)(1+λLASER)
and λLASER ≤ 1

10(2/δr+M) .
Thus (

3L(1 + λLASER) +
λLASER

γt

)
γ2
t

(
2

δr
+M

)
= 3L

(
2

δr
+M

)
(1 + λLASER)γt · γt + λLASER

(
2

δr
+M

)
γt

≤ 3

10
· γt +

1

10
· γt

=
4

10

1

10L( 2
δr

+M)(1 + λLASER)

≤ δr
32L

.
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Similarly,

4

δr
(3L(1 + λLASER)γt + λLASER) = 3L(1 + λLASER)

4

δr
γt + λLASER

4

δr

≤ 6

10
+

2

10
≤ 1.

D.7. Proof of Lemma 13

Proof. From Eq. (15), we have that

θ̃t+1 = θ̃t − γtgt + Cr(et + γtgt)−Z(α,β) (Cr(et + γtgt)) .

Denoting ErrorZ = Cr(et + γtgt) − Z(α,β) (Cr(et + γtgt)), we observe that EZ [ErrorZ ] = 0 and EZ∥ErrorZ∥2 ≤
λLASER∥Cr(et + γtgt)∥2 ≤ λLASER∥et + γtgt∥2 (see App. D.4). Using the smoothness of f ,

f(θ̃t+1) ≤ f(θ̃t)− γt⟨∇f(θ̃t), gt⟩+ ⟨f(θ̃t),ErrorZ⟩+
L

2
∥ − γtgt + ErrorZ∥2

Taking expectation on both sides,

Ef(θ̃t+1) ≤ Ef(θ̃t)− γtE⟨∇f(θ̃t),∇f(θt)⟩+
L

2

(
γ2
t E∥gt∥2 + λLASERE∥et + γtgt∥2

)
.

Rewriting ⟨∇f(θ̃t),∇f(θt)⟩ = ∥∇f(θt)∥2 + ⟨∇f(θ̃t)−∇f(θt),∇f(θt)⟩ and using ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2, we can
simplify the expression as

⟨∇f(θ̃t)−∇f(θt),∇f(θt)⟩ ≤
1

2
∥∇f(θt)−∇f(θ̃t)∥2 +

1

2
∥∇f(θt)∥2

≤L2

2
∥θt − θ̃t∥2 +

1

2
∥∇f(θt)∥2 .

Pluggin this inequality back together with E∥gt∥2 ≤ (M + 1)E∥∇f(θt)∥2 + σ2, we get

Ef(θ̃t+1) ≤ Ef(θ̃t)−
γt
2
(1− 2γtL(M + 1)(1 + λLASER))E∥∇f(θt)∥2 +

Lγ2
t σ

2(1 + λLASER)

2

+ L

(
Lγt
2

+ λLASER

)
E∥et∥2.

Now utilizing the fact γt ≤ 1
4L(M+1)(1+λLASER)

establishes the desired result.

E. Additional details about noisy channel and LASER
E.1. Channel transformation

Recall from Eq. (2) in Sec. 2 that the server first obtains y =
∑k

i=1 aigi +Z, where ∥aigi∥2 ≤ P (note that we use the
constant scheme Pt = P as justified in Sec. 4.2). Now we want to show that for estimating the gradient sum

∑
i gi through

a linear transformation on y, the optimal power scalars are given by ai =
√
P

maxj ∥gj∥
, ∀i ∈ [k], which yields the channel

model in (noisy channel).

Towards this, first let k = 2 (the proof for general k is similar). Thus our objective is

min
a1,a2,b

E
∥∥∥y
b
− g1 − g2

∥∥∥2 .
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For any a1, a2, b, we have that

E
∥∥∥y
b
− g1 − g2

∥∥∥2 = min
a1,a2,b:∥aigi∥2≤P

E
∥∥∥∥g1

(a1
b
− 1
)
+ g2

(a2
b
− 1
)
+

Z

b

∥∥∥∥2
= min

a1,a2,b:∥aigi∥2≤P
E
∥∥∥∥∇f(θ)(∆1 +∆2) + ∆1 ξ1 +∆2 ξ2 +

Z

b

∥∥∥∥2 , ∆i =
ai
b
− 1

= min
a1,a2,b:∥aigi∥2≤P

(
∥∇f(θ)∥2(∆1 +∆2)

2 +∆2
1 E∥ξ1∥2 +∆2

2 E∥ξ2∥2 +
E∥Z∥2

b2

)
,

where we used the fact that g1 = ∇f(θ) + ξ1 and g2 = ∇f(θ) + ξ2 with zero-mean and independent ξ1, ξ2, and Z. We
now observe that for any fixed b the optimal ai’s are given by a1 = a2 = b, i.e. ∆1 = ∆2 = 0. To determine the optimal b,
we have to solve

max b s.t. ∥b gi∥2 ≤ P,

which yields b⋆ =
√
P/maxi ∥gi∥. The proof for general k is similar.

E.2. Detailed steps for Alg. 1

Recall from Alg. 1 that power allocation among clients is done via the function POWERALLOC({Cr(M j),M j}). The
theoretically optimal power allocation is discussed in App. B.1, and given explicitly in Lemma 8. However we empirically
observe that we can relax this allocation scheme and even simpler schemes suffice to beat the other considered baselines.
This is detailed in App. F.6.
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E.3. Constant-order SNR

As discussed in Sec. 3.2 and established in Lemmas 9 and 10 of App. B.2, we have that

λLASER ≤
4

(m/r) SNR

(
1 +

1

(n/r) SNR

)
≪ 1

SNR
= λZ-SGD.

In the low-rank (Vogels et al., 2019) and constant-order SNR regime where r = O(1) and SNR = Ω(1), we observe that
λLASER is roughly O(m) times smaller than λZ-SGD. Note that this is only a sufficient theoretical condition to ensure that
the ratio between λLASER and λZ-SGD is smaller than one. In fact, a much weaker condition that P/4r2 > 1 suffices. To
establish this, we note

λLASER

λZ-SGD
=

4r

m

(
1 +

r

nSNR

)
=

4r

m

(
1 +

rm

P

)
=

4r

m
+

4r2

P
.

The first term is usually negligible since we always fix the rank r = 4, which is much smaller compared to m in the
architectures we consider. Thus if P/4r2 > 1, we see that the above ratio is smaller than one. Note that the constant-order
SNR assumption already guarantees this: SNR = Ω(1)⇒ P ≳ mn⇒ P ≳ r2, since r is smaller than both m and n. On
the other hand, for the RESNET18 architecture with L = 61 layers and r = 4, the power levels P = 250, 500 violate the
above condition as P/(Lr2) < 4 (note that the budget P here is for the entire network and hence replaced by P/L). But
empirically we still observe the accuracy gains in this low-power regime (Fig. 2 in the paper).

F. Experimental details
We provide technical details for the experiments demonstrated in Sec. 4.

F.1. WIKITEXT-103 experimental setup

This section concerns the experimental details used to obtain Fig. 1 and Table 1 in the main text. Table 6 collects the
settings we adopted to run our code. Table 7 describes the model architecture, with its parameters, their shape and their
uncompressed size.

Table 6: Default experimental settings for the GPT-2 model used to learn the WIKITEXT-103 task.

Dataset WIKITEXT-103
Architecture GPT-2 (as implemented in (Pagliardini, 2023))

Number of workers 4
Batch size 15 per worker
Accumulation steps 3

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
# Iterations 20000
Weight decay 1× 10−3

Dropout 0.2
Sequence length 512
Embeddings 768
Transformer layers 12
Attention heads 12

Power budget 6 levels: 10k, 40k, 160k, 640k, 2560k, 10240k
Power allocation Proportional to norm of compressed gradients (uncompressed gradients for Z-SGD)
Compression Rank 4 for LASER; 0.2 compression factor for other baselines

Repetitions 1
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Table 7: Parameters in the GPT-2 architecture, with their shape and uncompressed size.

Parameter Gradient tensor shape Matrix shape Uncompressed size

transformer.wte 50304× 768 50304× 768 155 MB
transformer.wpe 512× 768 512× 768 1573 KB
transformer.h.ln_1 (×12) 768 768× 1 (12×) 3 KB
transformer.h.attn.c_attn (×12) 2304× 768 2304× 768 (12×) 7078 KB
transformer.h.attn.c_proj (×12) 768× 768 768× 768 (12×) 2359 KB
transformer.h.ln_2 (×12) 768 768× 1 (12×) 3 KB
transformer.h.mlp.c_fc (×12) 3072× 768 3072× 768 (12×) 9437 KB
transformer.h.mlp.c_proj (×12) 768× 3072 768× 3072 (12×) 9437 KB
transformer.ln_f 768 768× 1 3 KB

Total 496 MB
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F.2. CIFAR10 experimental setup

This section concerns the experimental details used to obtain Fig. 2 and Table 3 in the main text. Table 8 collects the
settings we adopted to run our code. Table 9 describes the model architecture, with its parameters, their shape and their
uncompressed size.

Table 8: Default experimental settings for the RESNET18 model used to learn the CIFAR10 task.

Dataset CIFAR10
Architecture RESNET18

Number of workers 16
Batch size 128 per worker

Optimizer SGD
Momentum 0.9
Learning rate Grid-searched in {0.001, 0.005, 0.01, 0.05} for each power level
# Epochs 150
Weight decay 1× 10−4,

0 for BatchNorm parameters

Power budget 10 levels: 250, 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000
Power allocation Proportional to norm of compressed gradients (uncompressed gradients for Z-SGD)
Compression Rank 4 for LASER; 0.2 compression factor for other baselines

Repetitions 3, with varying seeds

Table 9: Parameters in the ResNet18 architecture, with their shape and uncompressed size.

Parameter Gradient tensor shape Matrix shape Uncompressed size

layer4.1.conv2 512× 512× 3× 3 512× 4608 9437 KB
layer4.0.conv2 512× 512× 3× 3 512× 4608 9437 KB
layer4.1.conv1 512× 512× 3× 3 512× 4608 9437 KB
layer4.0.conv1 512× 256× 3× 3 512× 2304 4719 KB
layer3.1.conv2 256× 256× 3× 3 256× 2304 2359 KB
layer3.1.conv1 256× 256× 3× 3 256× 2304 2359 KB
layer3.0.conv2 256× 256× 3× 3 256× 2304 2359 KB
layer3.0.conv1 256× 128× 3× 3 256× 1152 1180 KB
layer2.1.conv2 128× 128× 3× 3 128× 1152 590 KB
layer2.1.conv1 128× 128× 3× 3 128× 1152 590 KB
layer2.0.conv2 128× 128× 3× 3 128× 1152 590 KB
layer4.0.shortcut.0 512× 256× 1× 1 512× 256 524 KB
layer2.0.conv1 128× 64× 3× 3 128× 576 295 KB
layer1.1.conv1 64× 64× 3× 3 64× 576 147 KB
layer1.1.conv2 64× 64× 3× 3 64× 576 147 KB
layer1.0.conv2 64× 64× 3× 3 64× 576 147 KB
layer1.0.conv1 64× 64× 3× 3 64× 576 147 KB
layer3.0.shortcut.0 256× 128× 1× 1 256× 128 131 KB
layer2.0.shortcut.0 128× 64× 1× 1 128× 64 33 KB
linear 10× 512 10× 512 20 KB
conv1 64× 3× 3× 3 64× 27 7 KB
Bias vectors (total) 38 KB

Total 45 MB
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F.3. CIFAR100 experimental results

This section concerns experimental results on CIFAR100. We used the same RESNET18 architecture as for CIFAR10
(except for the final layer, adapted to the 100-class dataset). We once again compared LASER to the usual baselines. Fig. 4
and Table 12 collect the results that we obtained. It can be seen that LASER outperforms the other algorithms with an
even wider margin compared to the CIFAR10 and WIKITEXT-103 tasks, with a power gain of around 32× across different
accuracy targets. SIGNUM is much more sensitive to noise and performs much worse than the other algorithms; therefore,
we decided to leave out its results in order to improve the quality of the plot. Table 10 collects the settings we adopted to run
our code. Table 11 describes the model architecture, with its parameters, their shape and their uncompressed size.

Table 10: Default experimental settings for the RESNET18 model used to learn the CIFAR100 task.

Dataset CIFAR100
Architecture RESNET18

Number of workers 16
Batch size 128 per worker

Optimizer SGD
Momentum 0.9
Learning rate Grid-searched in {0.001, 0.005, 0.01, 0.05} for each power level
LR decay /10 at epoch 150
# Epochs 200
Weight decay 1× 10−4

0 for BatchNorm parameters

Power budget 10 levels: 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000
Power allocation Proportional to norm of compressed gradients (uncompressed gradients for Z-SGD)

Repetitions 3, with varying seeds
Compression Rank 4 for LASER; 0.2 compression factor for other baselines

Table 11: Parameters in the ResNet18 architecture, with their shape and uncompressed size.

Parameter Gradient tensor shape Matrix shape Uncompressed size

layer4.1.conv2 512× 512× 3× 3 512× 4608 9437 KB
layer4.0.conv2 512× 512× 3× 3 512× 4608 9437 KB
layer4.1.conv1 512× 512× 3× 3 512× 4608 9437 KB
layer4.0.conv1 512× 256× 3× 3 512× 2304 4719 KB
layer3.1.conv2 256× 256× 3× 3 256× 2304 2359 KB
layer3.1.conv1 256× 256× 3× 3 256× 2304 2359 KB
layer3.0.conv2 256× 256× 3× 3 256× 2304 2359 KB
layer3.0.conv1 256× 128× 3× 3 256× 1152 1180 KB
layer2.1.conv2 128× 128× 3× 3 128× 1152 590 KB
layer2.1.conv1 128× 128× 3× 3 128× 1152 590 KB
layer2.0.conv2 128× 128× 3× 3 128× 1152 590 KB
layer4.0.shortcut.0 512× 256× 1× 1 512× 256 524 KB
layer2.0.conv1 128× 64× 3× 3 128× 576 295 KB
layer1.1.conv1 64× 64× 3× 3 64× 576 147 KB
layer1.1.conv2 64× 64× 3× 3 64× 576 147 KB
layer1.0.conv2 64× 64× 3× 3 64× 576 147 KB
layer1.0.conv1 64× 64× 3× 3 64× 576 147 KB
layer3.0.shortcut.0 256× 128× 1× 1 256× 128 131 KB
layer2.0.shortcut.0 128× 64× 1× 1 128× 64 33 KB
linear 100× 512 100× 512 205 KB
conv1 64× 3× 3× 3 64× 27 7 KB
Bias vectors (total) 38 KB

Total 45 MB
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Figure 4: Test accuracy (higher the better) for a given power budget
on CIFAR-100 for different algorithms. The advantage of LASER is
evident across the entire power spectrum.

Table 12: Power required (lower the better) to reach the
given target accuracy on CIFAR-100. LASER requires
16 − 32× lesser power than the Z-SGD to achieve the
same targetaccuracy. Equivalently, LASER tolerates more
channel noise than the Z-SGD for the same target accu-
racy as is partly supported by our theoretical analysis.

Target Power required Reduction
LASER Z-SGD

65% 500 8000 16×
68% 1000 32000 32×
70% 2000 64000 32×
71% 8000 256000 32×
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F.4. MNIST experimental setup

This section concerns the experimental details used to obtain Table 4 in the main text. Table 13 collects the settings we
adopted to run our code.

Table 13: Default experimental settings for the 1-LAYER NN used to learn the MNIST task.

Dataset MNIST
Architecture 1-LAYER NN

Number of workers 16
Batch size 128 per worker

Optimizer SGD
Momentum 0.9
Learning rate 0.01
# Epochs 50
Weight decay 1× 10−4,

Power budget 3 levels: 0.1, 1, 10
Power allocation Proportional to norm of compressed gradients (uncompressed gradients for Z-SGD)

Repetitions 3, with varying seeds
Compression Rank 2 for LASER; 0.1 compression factor for other baselines

F.5. Rank-accuracy tradeoff

There exists an inherent tradeoff between the decomposition rank r (and hence the compression factor δr) and the final
model accuracy. In fact, a small rank r implies aggressive compression and hence the compression noise dominates the
channel noise. Similarly, for a high decomposition rank, the channel noise overpowers the compression noise as the power
available per each coordinate is small. We empirically investigate this phenomenon for CIFAR10 classification over various
power regimes in Fig. 5.
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Figure 5: Final accuracy vs. compression rank tradeoff for CIFAR-10 classification, for low, medium and high power regimes. Rank-
4/Rank-8 compression is optimal for all the three regimes. It reveals two interesting insights: (i) performance is uniformly worse in all the
regimes with overly aggressive rank-one compression, and (ii) higher rank compression impacts low power regime more significantly than
the medium and high-power counterparts. This confirms with the intuition that at low power (and hence noisier channel), it is better to
allocate the limited power budget appropriately to few “essential” rank components as opposed to thinning it out over many.

As Fig. 5 reveals, either Rank-4 or Rank-8 compression is optimal for all the three power regimes. Further we observe two
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interesting trends: (i) the final accuracy is uniformly worse in all the regimes with overly aggressive rank-one compression,
and (ii) higher rank compression impacts the low power regime more significantly than the medium and high-power
counterparts. This is in agreement with the intuition that at low power (and hence noisier channel), it is better to allocate
the limited power budget appropriately to few “essential” rank components as opposed to thinning it out over many. This
phenomenon can be theoretically explained by characterizing the compression factor δr as a function of rank r and its effect
on the model convergence. While the precise expression for δr is technically challenging, given the inherent difficulty in
analyzing the PowerSGD algorithm (Vogels et al., 2019), we believe that a tractable characterization of this quantity (via
upper bounds etc.) can offer fruitful insights into the fundamental rank-accuracy tradeoff at play.
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Figure 6: Fraction of energy in the top 8 components of the gradi-
ents of three layers in the network: the first and last hidden layer,
and one central layer.

To further shed light on this phenomenon, we trained the
noiseless SGD on CIFAR10 and captured the evolution
across the epochs of the energy contained in the top eight
components of each gradient matrix. As illustrated in
Fig. 6, we observe that for the first and last hidden lay-
ers, 80% of the energy is already captured in these eight
components. On the other hand, for the middle layer this
fares around 55%. It is interesting to further explore this
behavior for GPT models and other tasks.

F.6. Power allocation
across workers and neural network parameters

The choice of power allocation over the layers of the net-
work is perhaps the most important optimization required
in our experimental setup. Notice that, because of Eq. (2),
all clients must allocate the same power to a given gradi-
ent, since otherwise it would be impossible to recover the
correct average gradient. However, workers have a degree
of freedom in choosing how to distribute the power budget
among gradients, i.e. among the layers of the network, and
this power allocation can change over the iterations of the model training.

App. B.1 analyzes power allocation optimality from a theoretical point of view. On the experimental side, simpler schemes
are enough to get significant gains over the other baselines. As a matter of fact, we considered the following power allocation
scheme for the experiments: at each iteration, each worker determines locally how to allocate its power budget across the
gradients. Then, we assume that this power allocation choice is communicated by the client to the server noiselessly. The
server then takes the average of the power allocation choices, and communicates the final power allocation to the clients.
The clients then use this power allocation to send the gradients to the server via the noisy channel.

For the determination of each worker’s power allocation, three schemes were considered:

• uniform power to each gradient;

• power proportional to the Frobenius norm (or the square of it) of the gradients;

• power proportional to the norm of the compressed gradients (i.e., the norm of what is actually communicated to the
server).

For Z-SGD, where there is no gradient compression, the best power allocation turned out to be the one proportional to
the norm of the gradients, independently of the power constraint imposed. For all the other algorithms, the best is power
proportional to the norm of the compressed gradients.

F.7. Static vs. dynamic power policy

As discussed in Sec. 4.2, we analyzed different power allocation schemes across iterations, when a fixed budget in terms
of average power over the epochs is given. Fig. 3 shows the results for decreasing power allocations, while Fig. 7 here
shows their increasing counterparts. We observe that LASER exhibits similar gains over Z-SGD for all the power control
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laws. Further, constant power remains the best policy for both LASER and Z-SGD. Whilst matching the constant power
performance, the power-decreasing control performs better than the increasing counterpart for Z-SGD, especially in the
low-power regime, where the accuracy gains are roughly 4− 5%.
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Figure 7: Final accuracy vs. power budget P with various power control schemes, for distributed training across 16 workers with
RESNET18 on CIFAR10. For each budget P , we consider three increasing power control laws, as studied in the literature [1], that satisfy the
average power constraint: (i) constant power, Pt = P , (ii) piecewise constant, with the power levels Pt ∈ {P/3, 2P/3, P, 4P/3, 5P/3},
and (iii) linear law between the levels P/3 and 5P/3. The performance of increasing power allocation schemes is equal or worse
compared to their decreasing counterparts of Fig. 3.
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F.8. Baselines implementation

In this section we describe our implementation of the baselines considered in the paper.

F.8.1. COUNT-MEAN SKETCHING

Algorithm 2 COUNT-MEAN SKETCHING

0: function COMPRESS(gradient matrix M ∈ Rn×m)
0: Treat M as a vector of length nm.
0: The number of samples b is set to mn× (compression factor).
0: If the resulting b is less than 1, we set b = 1.
0: Sample a set of mn indices I i.i.d. between 0 and b− 1 using the same seed on all workers.
0: Sample a set of mn signs (+1 or −1) S i.i.d. using the same seed used for I .
0: Ĉ ← 0 ∈ Rb

0: for j = 0, . . . ,mn− 1 do
0: Ĉ(I(j))← Ĉ(I(j)) + S(j)×M(j)
0: end for
0: return Ĉ
0: function AGGREGATE+DECOMPRESS(worker’s values Ĉ1 . . . Ĉk)
0: Sample I and S as before, using the same seed.
0: M̂ ← 0 ∈ Rn×m

0: M̂(I)← 1
k

∑k
i=1 Ĉi(I)⊙ S

0: return M̂
=0

Power is allocated proportional to compressed gradients’ norms. The algorithm is implemented without local error feedback,
since error feedback causes the algorithm to diverge. The compression factor was grid-searched in {0.1, 0.2, 0.5, 0.8} and
0.2 was finally chosen as the overall best.

F.8.2. RANDOM K

Algorithm 3 Random K

0: function COMPRESS(gradient matrix M ∈ Rn×m)
0: Treat M as a vector of length nm.
0: The number of samples b is set to mn× (compression factor).
0: If the resulting b is less than 1, we set b = 1.
0: Sample a set of b indices I without replacement, using the same seed on all workers.
0: return Looked up values S = M(I).
0: function AGGREGATE+DECOMPRESS(worker’s values S1 . . . Sk)
0: M̂ ← 0 ∈ Rn×m

0: M̂(I)← 1
k

∑k
i=1 Si

0: return M̂
=0

Power is allocated proportional to compressed gradients’ norms. The algorithm is implemented with local error feedback.
The compression factor was grid-searched in {0.1, 0.2, 0.5, 0.8} and 0.2 was finally chosen as the overall best.
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F.8.3. SIGNUM

Algorithm 4 SIGNUM

0: function COMPRESS(gradient matrix M ∈ Rn×m)
0: Compute the signs S ∈ {−1, 1}n×m of M
0: return S
0: function AGGREGATE+DECOMPRESS(worker’s signs S1 . . . Sk)
0: return SIGN(

∑k
i=1 Si)

=0

We implemented SIGNUM following (Bernstein et al., 2018). We run it in its original form, without error feedback. Power is
allocated proporional to the compressed gradients’ norms. Since the compressed gradients are simply the sign matrices, in
this case power is allocated proportional to the square root of the number of parameters in each layer

√
mn. Unlike the

other baselines, SIGNUM does not require any compression factor.
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