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Abstract

Time series foundation models promise to be powerful tools for a wide range of
applications. However, little is known about the concepts that these models learn
and how we can manipulate them in the latent space. Our study bridges these gaps
by identifying concepts learned by these models, localizing them to specific parts
of the model, and steering model predictions along these conceptual directions,
using synthetic time series data. Our results show that MOMENT, a state-of-the-art
foundation model, can discern distinct time series patterns, and that this ability
peaks in the middle layers of the network. Moreover, we show that model outputs
can be steered using insights from its activations (e.g., by introducing periodic
trends to initially constant signals through intervention during inference). Our
findings underscore the importance of synthetic data in studying and steering
time series foundation models and intervening throughout the whole model (using
steering matrices), instead of a single layer.

1 Introduction

Foundation models have taken significant strides in modeling both textual [Brown et al., 2020]
and visual [Dosovitskiy et al., 2020] data, and have made complex language and image processing
accessible to non-experts. These models are pre-trained on massive internet-scale datasets and can
be used to solve multiple tasks across a variety of domains, with little to no adaptation. Recently, a
growing body of work [Garza and Mergenthaler-Canseco, 2023, Goswami et al., 2024, Rasul et al.,
2024, Das et al., 2024, Woo et al., 2024, Ansari et al., 2024] has extended the benefits of this paradigm
to time series data, a modality prevalent in fields such as finance [Taylor, 2008], healthcare [Goswami
et al., 2021], and climate science [Schneider and Dickinson, 1974].

Time series foundation models (TSFMs) have shown promising performance on multiple modeling
tasks such as forecasting, classification, anomaly detection, and imputation, across a wide range of
domains, and in settings with varying amounts of data and supervision. However, little is known
about why these models work, the kinds of concepts that these models are learning, and how these
concepts can be manipulated to influence model outputs.

In this paper, we take initial steps towards addressing these gaps by identifying concepts learned by
these models, localizing them to a small subset of their hidden states, and steering model predictions
along these conceptual directions, using only synthetic time series. To the best of our knowledge,
our work is among the first to identify, localize, and manipulate learned concepts in time series
foundation models by solely using carefully generated synthetic time series. We also demonstrate
the effectiveness of intervening throughout the model using steering matrices for precise control, in
contrast to the single-layer steering vector approach (Fig. 4).
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Figure 1: Overview of the methodology for synthetic data generation and feature localization
in TSFMs. The synthetic data is generated by combining trend, pattern, and noise components.
Linear feature localization is performed using principal component analysis and linear models, while
interventions are applied to control features in the latent space.

2 Methodology

For brevity, we defer a detailed discussion of related work to Appendix A.

Figure 2: Time series generated using Eq. 1.

Synthetic Data Generation To investigate the
representations learned in TSFMs, we generate
synthetic univariate time series by combining
three key components: trend, pattern, and noise.
This approach provides control over diversity
and features included in inputs for our analysis.
A typical univariate time series used in our setup
{xt}Tt=1 is defined as:

xt = Trend(t) + Period(t) + Noise(t), t = 1, 2, . . . , T . (1)

Each component serves a specific role: trend models long-term monotonic increase or decrease in
time series values, periodic pattern captures periodic or cyclical behaviors, and noise accounts for
random fluctuations. This flexible framework enables us to systematically vary input properties and
evaluate how different features are represented across model layers. Further information about the
data-generating process, mathematical definitions of the components, and hyper-parameters can be
found in Appendix B.

Identifying and Localizing Linearly Represented Features. To investigate which features are
linearly represented in the model’s latent space, we build on the investigation approach outlined in
[Marks and Tegmark, 2023]. In particular, we first train a set of linear probes (linear models trained
on the model’s intermediate activations) to identify the layers with the greatest linear separation of a
given feature and then visualize the embeddings in the lower-dimensional space using PCA to directly
analyze the representations.1

Let hl
M(x) ∈ Rs×d denote the hidden representation of a time series x at layer lM of a time series

foundation model M, where s is the number of symbols (patches in our case), d is the dimensionality
of the hidden layer. Our objective is two-fold: (1) to ascertain whether a feature of interest f , such as
discriminating a sinusoidal vs. constant pattern (Fig. 2), is represented as a direction in M’s latent
space. We say that such a feature is linearly represented in M. If f is linearly represented by M, we
also want to (2) identify which layer l in M learns this concept in the most discriminant way.

To determine whether a feature f (e.g., sinusoidal vs. constant time series) is linearly represented,
we first: (1) generate a synthetic time series dataset by varying f . In our example, the dataset
comprises multiple sinusoids and constant time series randomly sampled using Eq. 1. Using this

1Note that nonlinear alternatives to PCA can be used to harness non-linearly separable feature artifacts.
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dataset, we (2) extract intermediate representations hl
M(x) of each time series from the residual

stream of each layer lM. Finally for each layer, we (3) find and assess the dominant direction of
all time series in our dataset using linear probes and PCA. We begin by training the probes on the
data to discriminate a specific feature, then we assess which of the layers yield the greatest margin
of separation, and based on that we perform a closer investigation of the representations of these
layers using PCA projection to visualize embeddings in the low-dimensional (2D) space for ease of
inspection. This enables an intuitive way to look into the results of the linear probing.

Figure 3: 1⃝ Linear separability between constant and sine signals increases through the model,
peaking at intermediate layers. 2⃝ The 2D projection shows clear separation between the two signal
types. 3⃝ Steering demonstrates expected transformations at the representation level. 4⃝ These
transformations are effectively reflected in the output space.

Deriving Steering Matrices for Model Steering. After identifying that a feature f is linearly
represented in model M’s latent space, we apply interventions by adjusting the hidden representations
hl
M(x) across multiple layers. Instead of using a single steering vector, we utilize a steering matrix

S ∈ RL×s×d, where L is the number of layers, s is the number of symbols (patches), and d is the
dimensionality of hidden representations. This matrix allows us to simultaneously intervene across
multiple layers, which we found to be more effective than single-layer interventions (Fig. 4).

Matrix S is calculated by computing the difference between the medoids of hidden representations
of time series corresponding to different values of feature f . If ml

f=constant and ml
f=sine denote

the medoids of constant and time series at layer l, then the steering vector at layer l is given by
Sl = ml

f=sine −ml
f=constant. We stack these vectors for all layers to derive the steering matrix.

During inference, to steer model prediction, at each layer l we update the hidden representation
hl
M(x) as hl

M(x)← hl
M(x) + αSl, where α is scalar that controls the strength of the intervention.
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Figure 4: Comparison of 4 different strategies in steering MOMENT’s reconstruction outputs, give a
constant time series green as input. We found that steering MOMENT predictions towards the medoid
of the sine signals throughout the model (rightmost), was more effective than alternatives such as
intervening in a single layer (leftmost).

3 Experimental Setup

Research Questions. Our study is structured around the following research questions: (1) Identify:
Are time series foundation models capable of learning different time series concepts? (2) Localize:
Which parts of the model learn the concept? (3) Manipulate: Can we leverage these learned concepts
to bias model predictions?

Experimental Setup. For all our experiments, we utilize the open-source MOMENT-Large2 model
introduced by Goswami et al. [2024]. MOMENT is pre-trained to reconstruct input time series. We
randomly generate a total of N = 1024 time series with two basic patterns: constant and sinusoidal
(Fig. 2). We use these time series and the methods outlined in the previous section to find out: (1)
if MOMENT can distinguish constant time series from sinusoidal signals, (2) which layer(s) learn this
concept, and (3) how we can introduce periodic (sinusoidal) trends to constant signals by steering
MOMENT’s predictions (Fig. 3.4).

4 Results and Future Work

Results. Our results are summarized in Fig. 3. The first two parts of the figure clearly show that
MOMENT can discern constant signals from sinusoidal ones. This capability peaks at layer 18 of the
model, as measured by the separation between clusters representing embeddings of constant (blue)
and sine (red) signals. Parts 3 and 4 of Fig. 3 illustrate the impact of steering constant signals towards
sinusoidal signals, both in the latent space (as shown, in layer 18) and the output space.

Fig. 4 compares four different strategies of steering MOMENT’s reconstruction outputs, given a constant
time series green as input. We found that steering predictions towards the medoid of the sine signals
throughout the model was more effective than alternatives such as mean probing a single layer
(Centroid/Single). In Appendix D, we further show that our proposed interventions generalize beyond
the time series used to derive the steering matrix, and specifically to time series with varying trends.

Future Work. This paper provides insights into how a few simple patterns are linearly represented
in time series foundation models. Future work must evaluate whether time series foundation models
can learn more complex patterns present in real-world time series and whether steering matrices
estimated using synthetic data can be used to steer predictions of out-of-distribution, real-world time
series. While our methods are broadly applicable to different transformer-based foundation models,
future research should explore other architectures such as state space models [Gu and Dao, 2023] and
stacked multi-layer perceptrons [Ekambaram et al., 2024]. Moreover, future studies should evaluate
whether our findings hold for other time series foundation models and tasks such as forecasting,
anomaly detection, and classification. Beyond time series, we hope that our work inspires the use of
synthetic data to steer large language and vision models as well.

2https://huggingface.co/AutonLab/MOMENT-1-large
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A Appendix: Related Work

Time Series Foundation Models. Transformers have long been used for various time series
modeling tasks [Wen et al., 2022], but large pre-trained transformers are a recent phenomenon. Garza
and Mergenthaler-Canseco [2023] first introduced TimeGPT, an encoder-decoder model pre-trained on
internet-scale time series data, with encouraging zero-shot forecasting performance. While TimeGPT
is accessible via API, its weights and datasets remain private. Following this, several open-source
pre-trained models have emerged, with slight modifications to the transformer architecture, different
pre-training datasets and strategies, primarily focusing on forecasting task [Rasul et al., 2024, Das
et al., 2024, Liu et al., 2023, Woo et al., 2024, Ansari et al., 2024]. Concurrently, Goswami et al.
[2024] released MOMENT, an open family of encoder-only foundation models designed to handle
multiple time series tasks beyond forecasting, including classification and anomaly detection. In
this paper, we perform experiments on the MOMENT-Large backbone, but our methods are broadly
applicable to other open-source foundation models as well.

Investigating Representations of Pre-trained Models. Understanding the internal representations
learned by pre-trained models has been an active area of research, particularly in the context of
LLMs and vision models. Previous studies have explored whether individual neurons or directions
in a model’s latent space correspond to specific features or concepts [Dalvi et al., 2019, Goh et al.,
2021, Gurnee et al., 2023, Elhage et al., 2022]. These investigations often focus on identifying
linear representations, where features are encoded as linear combinations of neuron activations.
Recent work has also employed various probing techniques to classify and interpret these internal
representations, addressing aspects such as truthfulness and model robustness [Azaria and Mitchell,
2023, Zou et al., 2023, Burns et al., 2023, Marks and Tegmark, 2023]. While many of these studies
rely on meticulously curated datasets to probe language and vision models, we demonstrate that
for time series models, synthetic data generated using simple mechanisms can effectively identify,
localize, and probe the linear concepts learned by these models.
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B Appendix: Synthetic Data Generation Procedure

The generated time series {xt}Tt=1 is modeled as a combination of three key components: trend,
pattern, and noise. Formally, the time series at time t is given by:

xt = Trend(t) + Pattern(t) + Noise(t), t = 1, 2, . . . , T

Where each component is defined as follows:

B.1 Trend Component

The trend component models the long-term progression of the time series. There are multiple options
for generating the trend:

Linear Trend: The linear trend is modeled as:

Trend(t) = αt+ β

Where α is the slope and β is the intercept. These parameters are sampled from uniform distributions:

α ∼ U(slopemin, slopemax), β ∼ U(interceptmin, interceptmax)

Exponential Trend: The exponential trend is modeled as:

Trend(t) = eγt

Where γ is the growth rate sampled from a uniform distribution:

γ ∼ U(growth_ratemin, growth_ratemax)

B.2 Pattern Component

The pattern component captures periodic variations. Several options exist for modeling the pattern:

Sine Pattern: The sine pattern is modeled as:

Pattern(t) = A sin

(
2πt

P

)
Where A is the amplitude and P is the period, both sampled from uniform distributions:

A ∼ U(amplitudemin, amplitudemax), P ∼ U(periodmin,periodmax)

Square Pattern: The square wave pattern is modeled as:

Pattern(t) = A · sign
(
sin

(
2πt

P

))
Where A and P follow the same distributions as the sine pattern.

Triangle Pattern: The triangle wave pattern is modeled as:

Pattern(t) = A

(
2

∣∣∣∣ tP −
⌊
t

P
+ 0.5

⌋∣∣∣∣− 1

)
Where A and P follow the same distributions as the sine pattern.

Sawtooth Pattern: The sawtooth wave pattern is modeled as:

Pattern(t) = A

(
2

(
t

P
−

⌊
t

P

⌋))
Where A and P follow the same distributions as the sine pattern.
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B.3 Noise Component

The noise component models random fluctuations and can follow one of two distributions:

Gaussian Noise: The Gaussian noise is modeled as:

Noise(t) ∼ N (µ, σ2)

Where µ is the mean and σ is the standard deviation, both sampled from uniform distributions:

µ ∼ U(meanmin,meanmax), σ ∼ U(stddevmin, stddevmax)

Uniform Noise: The uniform noise is modeled as:

Noise(t) ∼ U(low,high)

Where low and high are the lower and upper bounds of the uniform distribution, both sampled from
uniform distributions:

low ∼ U(lowmin, lowmax), high ∼ U(highmin,highmax)

B.4 Final Time Series

The final time series {xt}Tt=1 is computed as the sum of the selected trend, pattern, and noise
components. Each component may be absent, in which case the corresponding term is set to zero.

xt = (Trend(t) if present) + (Pattern(t) if present) + (Noise(t) if present)

C Appendix: Pattern Type Distribution with Varying Configurations

This appendix contains the plots for pattern type distributions and other related attributes for the
synthetic data generated with different configurations. The only variation across the configurations is
in the pattern type, while all other parameters remain the same. The following configuration was
used for generating the data:

n_series: 512
length: 512
trend_types: [’none’]
pattern_types: [’triangle’, ’none’, ’sine’]
noise_types: [’none’]
trend_params:

slope: [0.01, 0.1]
intercept: [-5, 5]
growth_rate: [0.01, 0.1]

pattern_params:
amplitude: [-1, 1]
period: [128, 164]
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C.1 Experiment: Constant & Sine Patterns
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Figure 5: Pattern type distribution and related attributes for the configuration where patterns are none
(constant) or sine.

C.2 Experiment: Constant & Triangular Patterns
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Figure 6: Pattern type distribution and related attributes for the configuration where patterns are none
(constant) or triangular.
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C.3 Experiment: Sine & Triangular Patterns
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Figure 7: Pattern type distribution and related attributes for the configuration where patterns are sine
or triangular.
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D Appendix: Constant-to-sine Steering Matrix Generalization

We want to assess the generalization of our steering matrix which we obtained in a constant-to-sine
setup we considered earlier. To do this, we check if inputs with increasing and decreasing trends
with linear and exponential growth will get altered into a sine-like series at the output.
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Figure 8: Constant-to-sine steering matrix generalization for other input trends: (Top left)
increasing linear, (Top right) decreasing linear, (Bottom left) increasing exponential, and (Bottom
right) decreasing exponential.

E Appendix: Linear Separability of Features

E.1 Constant vs Sine Pattern

Figure 9: Scaled separability for different types of linear discriminators across the layers of the model
for constant vs sine pattern setup.
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Figure 10: Comparison of constant and sine patterns in the embedding space across the layers with
maximum separability. The layer with max separability for LDA and mean-based methods is the
same (layer 18).

E.2 Constant vs Triangular Pattern

Figure 11: Scaled separability for different types of linear discriminators across the layer of the model
for constant vs triangular pattern setup.

Figure 12: Comparison of constant and triangular patterns in the embedding space across the layers
with maximum separability. The layer with max separability for LDA and mean-based methods is the
same (layer 18).

12



E.3 Sine vs Triangular Pattern

Figure 13: Scaled separability for different types of linear discriminators across the layer of the model
for sine vs triangular pattern setup.

Figure 14: Comparison of sine and triangular patterns in the embedding space across the layers with
maximum separability - max separability for all methods is the same, that’s why we show only the
mean-based plot.
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