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ABSTRACT

Point clouds are popular 3D representations for real-life objects (such as in LiDAR
and Kinect) due to their detailed and compact representation of surface-based ge-
ometry. Recent approaches characterise the geometry of point clouds by bringing
deep learning based techniques together with geometric fidelity metrics such as
optimal transportation costs (e.g. Chamfer and Wasserstein metrics). In this pa-
per, we propose a new surface geometry characterisation within this realm, namely
a neural varifold representation of point clouds. Here the surface is represented
as a measure/distribution over both point positions and tangent spaces of point
clouds. The varifold representation not only helps to quantify the surface geom-
etry of point clouds through the manifold-based discrimination, but also subtle
geometric consistency on the surface due to the combined product space. This
study proposes neural varifold algorithms to compute varifold norm between two
point clouds using neural networks on point clouds and their neural tangent kernel
representations. The proposed neural varifold is evaluated on three different tasks
– shape classification, shape reconstruction and shape matching. Detailed evalua-
tion and comparison to the state-of-the-art methods demonstrate that the proposed
versatile neural varifold is superior in shape classification particularly for limited
data and is quite competitive for shape reconstruction and matching.

1 INTRODUCTION

Point clouds are preferred in more and more applications including computer graphics, autonomous
driving, robotics and augmented reality. However, manipulating/editing point clouds data in their
raw form is rather cumbersome. Neural networks have made breakthroughs in a wide variety of
fields ranging from natural language processing to computer vision, albeit its success is mainly on
audio, texts and images in which there is an underlying Euclidean grid structure. Three-dimensional
(3D) data in general do not have underlying grid structures, such that convolution operations on
Euclidean grid are not applicable. Geometric deep learning and its variants have addressed techni-
cal problems of translating neural networks on non-Euclidean data (Bronstein et al., 2017). With
advanced graph theory and harmonic analysis, convolutions on non-Euclidean data can be defined
in the context of spectral (Bruna et al., 2014; Defferrard et al., 2016) or spatial (Monti et al., 2017;
Wang et al., 2019) domains. Although geometric deep learning on point clouds has successfully
achieved top performance in shape classification and segmentation tasks, capturing subtle changes
in 3D surface remains challenging due to the unstructured and non-smooth nature of point clouds. A
possible direction to learn subtle changes on 3D surface adopts some concepts developed in the field
of theoretical geometric analysis. In other words, deep learning architectures might be improved by
incorporating theoretical knowledge from geometric analysis. In this work, we introduce concepts
borrowed from geometric measure theory, where representing shapes as measures or distributions
has been instrumental.

Geometric measure theory has been actively investigated by mathematicians; however, its technical-
ity may have hindered its popularity and its use in many applications. Geometric measure-theoretic
concepts have recently been introduced to measure shape correspondence in non-rigid shape match-
ing (Vaillant & Glaunès, 2005; Charon & Trouvé, 2013; Hsieh & Charon, 2021) and curvature
estimation (Buet et al., 2017; 2022). We introduce the theory of varifolds to improve learning repre-
sentation of 3D point clouds. An oriented d-varifold is a measure over point positions and oriented
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tangent k-planes, i.e. a measure on the Cartesian product space of Rn and the oriented Grassmannian
manifold G̃(d, n). Varifolds can be viewed as generalisations of d-dimensional smooth shapes in Eu-
clidean space Rn. The varifold structure not only helps to better differentiate the macro-geometry of
the surface through the manifold-based discrimination, but also the subtle singularities in the surface
due to the combined product space. Varifolds provide representations of general surfaces without
parameterization, and not only they can represent consistently point clouds that approximate sur-
faces in 3D, but they are also scalable to arbitrary surface discretisation (e.g., meshes). In this study,
we use varifolds to analyze and quantify the geometry of point clouds.

Our contributions:

• Introduce neural varifold as learning representation of point clouds. Varifold representation of 3D
point clouds coupling space position and tangent planes can provide both theoretical and practical
analyses of the surface geometry.

• Propose two algorithms to compute varifold norm between two point clouds using neural networks
on point clouds and their neural tangent kernel representations. The reproducing kernel Hilbert
space of varifold is computed by the product of two neural tangent kernels of positional and
Grassmannian features of point clouds. Neural varifold can take advantage of the expressive
power of neural networks as well as varifold representation of point clouds.

• Neural varifold can be used to evaluate shape similarity between point clouds on various tasks
including shape classification with limited data, shape reconstruction and shape matching.

2 RELATED WORKS

Geometric deep learning on point clouds. PointNet is the first pioneering work on point clouds.
It consists of a set of fully connected layers followed by symmetric functions to aggregate feature
representations. In other words, PointNet is neural networks on a graph without edge connections. In
order to incorporate local neighbourhood information with PointNet, PointNet++ (Qi et al., 2017b)
applied PointNet to individual patches of the local neighbourhood, and then stacking them together.
PointCNN (Li et al., 2018) further refined the PointNet framework with hierarchical X -Conv which
calculates inner products of X -transformation and convolution filters of point clouds. Dynamic
graph CNN (DGCNN) (Wang et al., 2019) adopted the graph neural network framework to incorpo-
rate local neighbourhood information by applying convolutions over the graph edges and dynami-
cally updating graph for each layer. Furthermore, the tangent convolution architecture (Tatarchenko
et al., 2018) incorporated 3D surface geometry by projecting point clouds on local tangent plane,
and then applying convolution filters.

Varifold. Theoretical understanding of surface geometry has been studied in the context of geo-
metric measure theory and calculus of variations. Various tools from geometric measure theory can
be used to study surface geometry, e.g., currents (Vaillant & Glaunès, 2005), varifolds (Charon &
Trouvé, 2013; Buet et al., 2017; 2022) and normal cycles (Roussillon & Glaunès, 2019). Despite of
its potential usage for many applications, a few studies have explored real-world applications in the
context of non-rigid surface registration (Charon & Trouvé, 2013).

3 VARIFOLD REPRESENTATIONS FOR POINT CLOUDS

The notion of varifold comes from geometric measure theory in the context of finding a minimal
surface spanning a given closed curve in R3, which is known as Plateau’s problem (Allard, 1975).
Let Ω ⊂ Rn be an open set. A general oriented d-varifold V on Ω is a non-negative Radon measure
on the product space of Ω with the oriented Grassmannian G̃(d, n). In this study, we focus on a
specific class of varifolds, the rectifiable varifolds, that are concentrated on d-rectifiable sets and can
represent non-smooth surfaces such as 3D cubes.

Definition 3.1 (Rectifiable oriented d-varifolds) Let Ω ⊂ Rn be an open set, X an oriented d-
rectifiable set, and let θ be a non-negative measurable function with θ > 0 Hd-almost everywhere
in X . The rectifiable oriented d-varifold V = v(θ,X) in Ω is the Radon measure on Ω × G̃(d, n)
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defined by V = θHd
X∩Ω ⊗ δTxX , i.e.,∫

Ω×G̃(d,n)

ϕ(x, T )dµ(x, T ) =

∫
X

ϕ(x, TxX)θ(x)dHd(x), ∀ϕ ∈ C0(Ω× G̃(d, n)),

where C0 denotes the class of continuous functions vanishing at infinity.

The mass of a d-rectifiable varifold V = v(θ,X) is the measure ∥V ∥ = θHd
X . The non-negative

function θ is usually called multiplicity. We assume in the rest of the paper that θ = 1 for simplicity.

Various metrics and topologies can be defined on the space of varifolds. The mass distance defined
as follows is a possible choice for a metric:

dmass(µ, ν) = sup
{∣∣∣ ∫

Ω× G̃(d,n)

ϕdµ−
∫
Ω×G̃(d,n)

ϕdν
∣∣∣, ϕ ∈ C0(Ω× G̃(d, n)), ∥ϕ∥∞ ≤ 1

}
. (1)

However, the mass distance is not well suited for point clouds. For example, given the two varifolds
associated with Dirac masses δε and δ0, their distance remains bounded away from 0 as it is always
possible to find a test function ϕ such that |ϕ(0)−ϕ(ε)| = 2, regardless of how close the two points
are. The 1-Wasserstein distance is not a more suitable choice in our context for it cannot compare
two varifold measures with different mass. For example, given two Dirac masses (1 + ε)δ0 and δ0,
the 1-Wasserstein distance between them goes to infinity as ε|ϕ(0)| → ∞.

Definition 3.2 (Bounded Lipschitz distance) Being µ and ν two varifolds on a locally compact
metric space (X, d), we define

dBL(µ, ν) = sup
{∣∣∣ ∫

Ω×G̃(d,n)

ϕdµ−
∫
Ω×G̃(d,n)

ϕdν
∣∣∣, ϕ ∈ C1

0 (Ω×G̃(d, n)), ∥ϕ∥Lip ≤ 1, ∥ϕ∥∞ ≤ 1
}
.

(2)

The bounded Lipschitz distance (flat distance) can handle both problems, we refer for more details to
Piccoli & Rossi (2016) and the references therein. Although the bounded Lipschitz distance dBL can
provide theoretical properties for comparing varifolds, in practice, there is no straightforward way
to numerically evaluate it. Instead, kernel regime has been used to evaluate varifolds numerically
(Charon & Trouvé, 2013; Hsieh & Charon, 2021).

Proposition 3.3 (Hsieh & Charon (2021)) Let kpos and kG be continuous positive definite kernels
on Rn and G̃(d, n), respectively. Assume in addition that for any x ∈ Rn, kpos(x, ·) ∈ C0(Rn).
Then kpos ⊗ kG is a positive definite kernel on Rn × G̃(d, n), and the reproducing kernel Hilbert
space (RKHS) W associated with kpos ⊗ kG is continuously embedded in C0(Rn × G̃(d, n)), i.e.,
there exists cW > 0 such that for any ϕ ∈ W , we have ∥ϕ∥∞ < cW ∥ϕ∥W .

Let τW : W 7→ C0(Rn × G̃(d, n)) be the continuous embedding given by Proposition 3.3 and τW∗

be its adjoint. Then varifolds can be viewed as elements of the dual RKHS W ∗. Let µ and ν be two
varifolds. By the Hilbert norm of W ∗, the pseudo-metric can be induced as follows

dW∗(µ, ν)2 = ∥µ− ν∥2W∗ = ∥µ∥2W∗− 2⟨µ, ν⟩W∗ + ∥ν∥2W∗ . (3)

The above pseudo-metric (since τW∗ is not injective in general) is associated with the RKHS W ,
and it provides an efficient way to compute varifold by separating the positional and Grassmannian
components. Indeed, one can derive a bound with respect to dBL if we further assume that RKHS
W is continuously embedded into C1

0 (Rn × G̃(d, n)) (Charon & Trouvé, 2013), i.e.,

∥µ− ν∥W∗ = sup
ϕ∈W,∥ϕ∥W≤1

∫
Rn×G̃(d,n)

ϕ d(µ− ν) ≤ cW dBL(µ, ν).

Neural tangent kernel. The recent advances of neural network theory finds a link between kernel
theory and over-parameterised neural networks (Jacot et al., 2018; Arora et al., 2019a). If a neural
network has a large but finite width, the weights at each layer remain close to its initialisation. Given
training data pairs {xi, yi}Ni=1 where xi ∈ Rd0 and yi ∈ R, let f(θ;xi) be a fully-connected neural
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network with L-hidden layers with inputs xi and parameters θ = {W (0), b(0), . . . ,W (L), b(L)}.
Let dh be the width of the neural network for each layer h. The neural network function f can be
written recursively as

f (h)(x) = W (h)g(h)(x) + b(h), g(h)(x) = φ(f (h−1)(x)), h = 0, . . . , L, (4)

where g(0)(x) = x and φ is a non-linear activation function.

Assume the weights W (h) ∈ Rdh+1×dh and bias b(h) ∈ Rdh at each layer h are initialised with
Gaussian distribution W (h) ∼ N (0,

σ2
ω

dh
) and b(h) ∼ N (0, σ2

b ), respectively. Consider training a
neural network by minimising the least square loss function

l(θ)) =
1

2

N∑
i=1

(f(θ;xi)− yi)
2. (5)

Suppose the least square loss l(θ)) is minimised with an infinitesimally small learning rate, i.e.,
dθ
dt = −∇l(θ(t)). Let u(t) = (f(θ(t);xi))i∈[N ] ∈ RN be the neural network outputs on all xi at
time t, and y = (yi)i∈[N ] be the desired output. Then u(t) follows the evolution

du

dt
= −H(t)(u(t)− y), (6)

where

H(t)ij =

〈
∂f(θ(t);xi)

∂θ
,
∂f(θ(t);xj)

∂θ

〉
. (7)

If the width of the neural network at each layer goes to infinity, i.e., dh → ∞, with a fixed training
set, then H(t) remains unchanged. Under random initialisation of the parameters θ, H(0) con-
verges in probability to a deterministic kernel H∗ – the “neural tangent kernel” (i.e., NTK) (Jacot
et al., 2018). Indeed, with few known activation functions φ (e.g. ReLU), the neural tangent kernel
H∗ can be computed by a closed-form solution recursively using Gaussian process (Lee et al., 2017;
Arora et al., 2019a). For each layer h, the corresponding covariance function is defined as

Σ(0)(xi,xj) = σ2
b +

σ2
ω

d0
xix

T
j , (8)

Λ(h)(xi,xj) =

[
Σ(h−1)(xi,xi) Σ(h−1)(xi,xj)
Σ(h−1)(xi,xj) Σ(h−1)(xj ,xj)

]
∈ R2×2,

Σ(h)(xi,xj) = σ2
b + σ2

ωE(u,v)∼N (0,Λ(h)) [φ(u)φ(v)] . (9)

In order to compute the neural tangent kernel, derivative covariance is defined as

Σ̇(h)(xi,xj) = σ2
ωE(u,v)∼N (0,Λ(h)) [φ̇(u)φ̇(v)] . (10)

Then, the neural tangent kernel at each layer Θ(h) can be computed as follows

Θ(h)(xi,xj) = Σ(h)(xi,xj) +Θ(h−1)Σ̇(xi,xj), Θ(0)(xi,xj) = Σ(0)(xi,xj). (11)

The convergence of Θ(L)(xi,xj) to H∗
ij is proven in Theorem 3.1 in Arora et al. (2019a).

3.1 NEURAL VARIFOLD COMPUTATION

In this section, we present the kernel representation of varifold on point clouds via neural tangent
kernel. We first introduce neural tangent kernel representation of popular neural networks on point
clouds (Qi et al., 2017a; Arora et al., 2019a) by computing the neural tangent kernel for position and
Grassmannian components, individually.

Given the set of n point clouds S = {s1, s2, . . . , sn}, where each point cloud si = {p1, p2, . . . , pm}
is a set of points, and n,m are respectively the number of point clouds and points in each point cloud.
Consider PointNet-like architecture that consists of L-hidden layers fully connected neural network
shared by all points. For (i, j) ∈ [m] × [m], the covariance matrix Σ(h)(pi, pj) and neural tangent
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kernel Θ(h)(pi, pj) at layer h are defined and computed in the same way of Equations 8 and 11.
Assuming each point pi consists of positional information and surface normal direction such that
pi ∈ R3 × S2, the varifold representation can be defined with neural tangent kernel theory in two
different ways. One way is to follow the Charon-Trouvé approach (Charon & Trouvé, 2013) by
computing the position and Grassmannian kernels separately. While the original Charon-Trouvé
approach uses the radial basis kernel for the positional elements and a Cauchy-Binet kernel for
the Grassmannian parts, in our cases, we use the neural tangent kernel representation for both the
positional and Grassmannian parts. Let {xi, ni} ∈ pi be a set of positions xi ∈ R3 and its surface
normal ni ∈ S2 pairs. The neural varifold representation is defined as

Θvarifold
(i,j) (pi, pj) = Θpos

(i,j)(xi, xj)⊙ΘG
(i,j)(ni, nj). (12)

We refer the above representation as PointNet-NTK1. As shown in Corollary 3.4, PointNet-NTK1
is a valid Charon-Trouvé type kernel. From the neural tangent theory of view, PointNet-NTK1 in
Equation 12 has two infinite-width neural networks on positional and Grassmannian components
separately, and then aggregates information from the neural networks by element-wise product of
two neural tangent kernels.

Corollary 3.4 In the limit of resolution going to infinity, neural tangent kernels Θpos and ΘG

are continuous positive definite kernels on positions and tangent planes, respectively. The varifold
kernel Θvarifold = Θpos ⊙ ΘG is a positive definite kernel on Rn × G̃(d, n) and the associated
RKHS W is continuously embedded into C0(Rn × G̃(d, n)).

The other way to define a varifold representation is by treating each point as a 6-dimensional feature
pi = {xi, ni} ∈ R6. In this case, a single neural tangent kernel corresponding to an infinite-width
neural network can be used, i.e.,

Θvarifold
(i,j) (pi, pj) = Θpos

(i,j)({xi, ni}, {xj , nj}). (13)

We refer it as PointNet-NTK2. Since PointNet-NTK2 does not compute the positional and Grass-
mannian kernels separately, it is computationally cheaper than PointNet-NTK1. It cannot be associ-
ated in the limit with a Charon-Trouvé type kernel, in contrast with PointNet-NTK1, but it remains
theoretically well grounded because the explicit coupling of positions and normals is a key aspect of
the theory of varifolds that provides strong theoretical guarantees (convergence, compactness, weak
regularity, second-order information, etc.). Furthermore, PointNet-NTK2 falls into the category of
neural networks proposed for point clouds (Qi et al., 2017a;b) that treat point positions and sur-
face normals as 6-feature vectors, and thus PointNet-NTK2 is a natural extension of current neural
networks practices for point clouds.

PointNet-NTK1 and PointNet-NTK2 in Equations 12 and 13 are computing NTK values between
two points pi and pj . The above forms can compute only pointwise-relationship in a single point
cloud. However, in many point cloud applications, two or more point clouds need to be evaluated.
Given the set of point clouds S, one needs to compute a Gram matrix of size n×n×m×m, which is
computationally prohibitive in general. In order to reduce the size of the Gram matrix, we aggregate
information by summation/average in all elements of Θvarifold

(k,l) , thus forming an n× n matrix, i.e.,

Θvarifold(sk, sl) =
∑
i∈|sk|

∑
j∈|sk|

Θvarifold
(i,j) (pi, pj). (14)

Analogous to Equation 3, the varifold representation Θvarifold can be used as a shape similarity metric
between two sets of point clouds sk and sl. The varifold metric can be computed as follows

∥sk − sl∥2varifold = Θvarifold(sk, sk)− 2Θvarifold(sk, sl) +Θvarifold(sl, sl). (15)

Furthermore, the varifold representation can be used for shape classification or any regression with
the labels on point clouds data. Given training and test point cloud sets and their label pairs
(χtrain,Y train) = {(s1, y1), . . . , (sl, yl)} and (χtest,Y test) = {(sl+1, yl+1), . . . , (sn, yn)}, then neu-
ral varifold and its norm can be reformulated to predict labels using kernel ridge regression, i.e.,

Y test = Θvarifold
test (χtest,χtrain)(Θ

varifold
train (χtrain,χtrain) + λI)−1Y train, (16)

where λ is the regularisation parameter.
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4 EXPERIMENTS

Dataset and experimental setting. We evaluate the varifold kernel representations and conduct
comparisons on three different tasks: point cloud based shape classification with limited data, point
cloud based 3D shape reconstruction and point cloud based shape matching between two different
3D meshes. For ease of reference, we below shorten our proposed neural varifold methods PointNet-
NTK1 and PointNet-NTK2 as NTK1 and NTK2, respectively.

To perform shape classification on point cloud data with limited samples, we utilised the Prince-
ton ModelNet benchmark (Wu et al., 2015; Ye et al., 2023). The ModelNet benchmark has two
classification tasks: (i) ModelNet10 is a shape classification benchmark for 10 selected classes;
and (ii) ModelNet40 is a shape classification benchmark for the whole 40 classes. The number of
1024 points and their corresponding normals for each object were sampled from the original meshes
and used for both ModelNet10 and ModelNet40 classification tasks. The proposed neural varifold
methods are compared with popular neural networks on point clouds including PointNet (Qi et al.,
2017a), DGCNN (Wang et al., 2019) as well as the kernel method Charon & Trouvé (2013). The
computation of the neural varifold kernels (NTK1 and NTK2) is based on the neural tangent li-
brary (Novak et al., 2020). Each method was also trained with different number of training samples
varying from 1 to 50. To make the results more consistent, samples were randomly chosen and iter-
ated 20 times with different seeds. Both NTK1 and NTK2 are required to fix the number of layers
corresponding to the equivalent finite-width neural networks. NTK1 uses 5 fully connected neural
network layers while NTK2 adopts 9 fully connected neural network layers. Each layer consists of
MLP, layer normalization and ReLU activation for both NTK1 and NTK2. The shape classification
performance on the full ModelNet data is available at Appendix A.2. The criteria used to choose the
number of layers and different layer width for both NTK1 and NTK2 are available at Appendix A.4.

For shape reconstruction from point clouds, ShapeNet dataset (Chang et al., 2015) was used. In
particular, we followed the data processing and shape reconstruction experiments from Williams
et al. (2021), i.e., 20 objects from the individual 13 classes were randomly chosen and used for
evaluating the shape reconstruction performance. For each shape, 2048 points were sampled from
the surface and used for the reconstruction. Our approach was compared with the state-of-the-art
shape reconstruction methods including Neural Splines (Williams et al., 2021), SIREN (Sitzmann
et al., 2020) and neural kernel surface reconstruction (NKSR) (Huang et al., 2023). To be consistent
with existing point cloud based shape reconstruction literature, Chamfer distance (CD) and Earth
Mover’s distance (EMD) were used to evaluate each method. Unlike CD, EMD has a number
of different implementations for solving a sub-optimisation problem about the transportation of
mass. In this study, we borrowed the EMD implementation code from Liu et al. (2020). In the
experiment, we fixed the number of NTK1 network layers as 1. This is because there is no significant
performance change when different number of network layers is used. The shape reconstruction
using neural varifold is heavily influenced by the approaches from kernel interpolation (Cuomo
et al., 2013) and neural splines (Williams et al., 2021). The implementation details are available at
Appendix A.1. In addition, the shape reconstruction results with different number of points (i.e.,
512 and 1024) are available at Appendix A.4.4. The visualisation of the ShapeNet reconstruction
performance by all the methods compared is available at Appendix A.5.

Lastly, for point cloud based shape matching, simple 3-layer MLP neural networks were trained
for deforming the source shape to the target shape with different shape similarity metric losses
including neural varifold. The first example is deforming the source unit sphere into the target
dolphin shape; the second is matching two different cup designs; the third is matching between
two hippocampi; and more results are available at Appendix A.3. The data is acquired from the
PyTorch3D, SRNFmatch and KeOps GitHub repositories (Ravi et al., 2020; Martin Bauer & Hsieh,
2020; Charlier et al., 2021). This experiment evaluates how well the source shape can be deformed
based on the chosen shape similarity measure as the loss function. A simple 3-layer MLP network
was solely trained with a single shape similarity measure loss, with the learning rate fixed to 1E-3
and the Adam optimizer. The network was trained with popular shape similarity measures including
the CD, EMD, Charon-Trouvé varifold norm, and the proposed neural varifold norms (NTK1 and
NTK2). In the case of CD and EMD, we followed the same method used for shape reconstruction.
For varifold metrics, we used Equation 15; note that it is a squared distance commonly used for
optimisation. For the numerical evaluation as a metric in Table 3, the square-root of Equation 15
was used. To be consistent with shape classification experiments, we chose the 5-layer NTK1 and
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9-layer NTK2 to train and evaluate the similarity between two shapes. The detailed analysis for the
role of the neural network layers on shape matching is available at Appendix A.4.3. The final outputs
from the networks were evaluated with all of the shape similarity measures used in the experiments.

4.1 SHAPE CLASSIFICATION WITH LIMITED DATA

Table 1: ModelNet classification with limited training samples
selected randomly. Every value indicates the average classifica-
tion accuracy with standard deviation from 20 times iterations.

Methods 1-sample 5-sample 10-sample 50-sample
ModelNet10

PointNet 38.84 ± 6.41 76.57 ± 2.28 84.14 ± 1.43 91.42 ± 0.89
DGCNN 33.56 ± 4.60 75.81 ± 2.40 83.90 ± 1.70 91.54 ± 0.68
Charon-Trouvé 59.06 ± 4.76 78.64 ± 2.90 83.35 ± 1.57 87.98 ± 0.79
NTK1 59.49 ± 4.80 81.34 ± 2.78 86.07 ± 1.62 90.18 ± 0.93
NTK2 59.64 ± 5.50 81.74 ± 3.15 86.12 ± 1.56 90.10 ± 0.73

ModelNet40
PointNet 33.11 ± 3.28 63.30 ± 2.12 73.63 ± 1.06 85.43 ± 0.31
DGCNN 36.04 ± 3.22 67.49 ± 1.80 77.04 ± 0.81 88.17 ± 0.57
Charon-Trouvé 37.71 ± 3.42 60.43 ± 1.51 67.13 ± 1.11 77.20 ± 0.54
NTK1 44.03 ± 3.51 69.30 ± 1.48 75.81 ± 1.23 83.88 ± 0.53
NTK2 42.85 ± 3.51 67.81 ± 1.47 74.62 ± 1.00 83.26 ± 0.42

Small-data tasks are prevalent in
applications when data is lim-
ited/scarce. Below we compare
the performance of the finite-
width neural networks and ker-
nel methods when few train-
ing samples are given (Arora
et al., 2019b). Table 1 presents
the ModelNet classification ac-
curacy with limited number of
training samples. In general, the
kernel based approaches show
their strength for those small-
data tasks. In detail, if only one
training sample is used, then all
kernel based methods reveal their dramatically strong performance in both ModelNet10 and Model-
Net40 classification in comparison to the finite-width neural networks like PointNet and DGCNN,
with NTK2 and NTK1 achieving the best classification results on ModelNet10 and ModelNet40
classification tasks, respectively. Interestingly, if only a single sample is used, the performance of
the Charon-Trouvé kernel is as good as the neural varifold approaches (NTK1 and NTK2) on Model-
Net10 classification; however, its performance significantly drops on the ModelNet40 classification
task. Analogous results are obtained when five samples are used for training. NTK1 and NTK2
achieve similar results (i.e., 81.3% and 81.7%) on ModelNet10, while Charon-Trouvé, PointNet
and DGCNN underperformed by 3.1%, 5.1% and 5.9%, respectively; in the case of ModelNet40,
NTK1 outperforms all other methods with higher gain comparing to the results on ModelNet10. As
the number of training samples increases, the finite-width neural network based approaches signifi-
cantly improve their performance on both ModelNet10 and ModelNet40 classification tasks. When
ten samples are used for training, the proposed NTK1 and NTK2 show around 86.1% accuracy
in Table 1, outperforming other methods with a small margin (i.e., 2∼3%) on ModelNet10, while
DGCNN can outperform NTK as well as PointNet on ModelNet40. When 50 sample are used for
training, then both PointNet and DGCNN outperform the NTK approaches with around 1% margin
on ModelNet10 and 3∼5% margin on ModelNet40. Overall, NTK1 and NTK2 show similar perfor-
mance (i.e., 0.3% difference) on ModelNet10, while NTK1 performs slightly better than NTK2 on
ModelNet40 by 0.6∼1.6%. It is worth highlighting that our proposed NTK1 and NTK2 outperform
the Charon-Trouvé varifold kernel in all the cases.

In terms of the computational efficiency, it is well known that kernel based learning has quadratic
computational complexity. Interestingly, our proposed NTK1 and NTK2 are computationally com-
petitive in the limited data scenario. For example, the computational cost for 5-sample training on
ModelNet10 for NTK1 and NTK2 is respectively 47 and 18 seconds, while it takes respectively 254
and 502 seconds for training PointNet and DGCNN epochs with a single 3090 GPU.

4.2 SHAPE RECONSTRUCTION

Shape reconstruction from point clouds is tested for NTK1 as well as the state-of-the-art methods
SIREN, neural splines and NKSR. Note that NTK2 is excluded in this test as it is not suitable to
reconstruct the given shapes from point clouds. To be consistent with the existing shape reconstruc-
tion ways from point clouds, the quality of the reconstruction is evaluated with two popular shape
similarity metrics – CD and EMD. Figure 1 showcases some shape reconstruction examples (e.g.,
airplane and cabinet) of the methods compared, with 2048 points samples. The performance of our
NTK1 is visually better in terms of the surface completion and smoothness.

Quantitatively, Table 2 shows the mean and median of using the CD and EMD for 20 shapes ran-
domly selected from each of the 13 different shape categories in the ShapeNet dataset. For the CD,
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Table 2: ShapeNet 3D mesh reconstruction with 2048 points (mean/median values ×1E3).
Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 1.501 1.624 2.430 2.725 1.556 2.193 1.392 7.906 1.212 1.734 1.856 1.478 2.557
Neural Splines 4.145 1.304 1.969 2.131 1.828 4.577 1.062 2.798 0.400 1.650 1.576 10.058 2.210
NKSR 1.141 2.000 2.423 2.198 2.520 17.720 5.477 3.622 0.414 1.848 2.493 1.547 1.093
NTK1 0.644 1.314 1.991 2.107 1.734 4.666 1.134 2.806 0.425 1.654 1.586 10.397 1.079

CD
(median)

SIREN 0.733 1.384 2.153 2.134 1.230 1.469 0.661 3.304 0.581 1.706 1.670 1.424 1.112
Neural Splines 0.947 1.289 1.799 1.640 1.160 1.413 0.479 2.749 0.347 1.586 1.372 1.600 0.788
NKSR 1.205 1.426 1.797 1.830 1.236 1.565 1.579 2.945 0.326 1.638 1.637 1.305 0.894
NTK1 0.621 1.259 1.828 1.836 1.237 1.499 0.566 2.794 0.352 1.578 1.350 1.558 0.797

EMD
(mean)

SIREN 2.990 3.763 4.983 5.208 4.649 4.658 24.068 13.292 2.418 3.688 8.745 3.237 4.500
Neural Splines 22.004 3.571 4.420 4.694 7.916 9.205 16.786 5.857 1.503 3.706 4.194 17.846 5.957
NKSR 7.153 8.456 8.018 8.190 16.824 31.182 21.182 9.984 2.329 5.871 13.658 4.152 4.581
NTK1 3.120 4.153 4.420 4.767 7.350 9.653 23.381 6.236 1.592 3.888 5.259 24.101 3.534

EMD
(median)

SIREN 2.690 2.938 4.520 3.803 4.411 3.314 2.279 6.240 1.605 3.653 3.782 3.060 2.576
Neural Splines 6.873 3.068 4.154 3.999 4.740 4.053 3.802 5.123 1.216 3.543 3.695 3.838 2.210
NKSR 5.732 5.119 4.440 5.313 5.683 3.777 4.927 5.975 1.227 3.641 6.375 3.088 2.771
NTK1 2.864 3.319 4.284 3.947 5.293 3.875 3.288 5.795 1.271 3.738 3.980 3.380 2.074

NTK1 shows the best average reconstruction results for the airplane, cabinet, car and vessel cat-
egories, SIREN shows the best reconstruction results for the chair, display and phone categories;
and the neural splines method shows the best reconstruction results for the rest 6 categories. NTK1
based reconstruction achieves the lowest mean EMD for vessel and cabinet, while neural splines and
SIREN achieve the lowest mean EMD for 7 and 5 categories, respectively. NKSR does not achieve
the lowest mean CD and EMD for all the categories.
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Ground Truth SIREN Neural Splines NKSR NTK1

Figure 1: Examples of shape reconstruction.

SIREN shows the lowest distance
for both CD and EMD followed
by NTK1. Surprisingly, the neu-
ral splines method underperforms
in both the CD and EMD when
we consider all the 13 categories.
The performance of NTK1 on
shape reconstruction is clearly
comparable with these state-of-
the-art methods. This might be
counter-intuitive as it regularises
the kernel with additional normal
information. As shown in Ap-

pendix A.1, implicit neural representations with kernel ridge regression already incorporate the nor-
mal information by the definition of X̂ = X ∪ X−

δ ∪ X+
δ and Ŷ = Y ∪ Y−

δ ∪ Y+
δ . Furthermore,

there is no straightforward way to assign normals on the regular grid coordinates, where the signed
distance values are estimated by the kernel regression. Any arbitrary unit normal vectors can be used
for computing the varifold norm on the regular grid, which may cause errors on the signed distance
estimation.

4.3 SHAPE MATCHING

For shape matching, we test various shape similarity metrics as loss functions to deform the given
source shape into the target shape. Figure 2 shows three examples of shape matching based on vari-
ous shape similarity metric losses. The neural network trained with the CD can capture the geometric
details in all examples; however, it often shows non-smooth and broken surface geometry. For the
case of shape matching between the two hippocampi, CD tends to oversmooth the sharp edges on
the top right side of the target hippocampus. The network trained with EMD worked well on the dol-
phin shape but it could neither capture geometric details nor surface consistency of the target cup or
hippocampus shapes. This is probably because the parameter defined for solving the transportation
plan is not sufficient enough to accurately match the shapes. Moreover, more iterations and lower
convergence threshold in computing the transportation plan will make the network training highly
inefficient. The network trained with neural varifold metrics (NTK1 and NTK2) heavily penalises
the broken meshes and noises on the surface; therefore, it shows significantly better mesh quality for
all examples. In the case of dolphin, few high frequency features are over-smoothed for the shape
matching networks trained with NTK2, while NTK1 does not have this effect and achieves the good
shape matching result. The shape matching network trained with Charon-Trouvé shows acceptable
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Figure 2: Shape matching
examples with different shape
similarity metrics. In par-
ticular, CT: Charon-Trouvé.
Hippo is a shortened term re-
ferring to the hippocampus.

results for all examples. Note that one significant limitation of the Charon-Trouvé method is that the
radial basis kernel used in it is highly sensitive to the point clouds density. It is therefore necessary
to adjust the hyperparameter σ of the radial basis kernel for each pair of point clouds (the parameter
σ is set to 0.05, 0.2 and 0.05 for the dolphin, cup and hippocampus shapes, respectively); otherwise,
the Charon-Trouvé method may not converge or just lead to poor shape matching results.

Table 3: Results of shape matching deforming the given
source shapes into the target shapes using a neural network
training with various shape similarity metrics. Metrics used
in columns and rows are to train the neural network and for
quantitative evaluation, respectively. Every value indicates
the shape matching distance. In particular, the lowest one in
each row (i.e., the best) is highlighted.

Metric CD EMD CT NTK1 NTK2

D
ol

ph
in

CD 2.49E-4 3.39E-4 2.90E-4 2.84E-4 3.04E-4
EMD 7.56E0 3.87E0 4.15E0 4.13E0 4.27E0
CT 3.76E-2 2.94E-2 1.22E-2 1.63E-2 1.95E-2
NTK1 6.56E-3 1.89E-3 2.93E-3 4.82E-4 6.34E-4
NTK2 1.72E-2 4.33E-3 9.99E-3 1.34E-3 1.25E-3

C
up

CD 4.55E-3 9.74E-3 4.13E-3 3.26E-3 3.36E-3
EMD 2.03E1 3.53E1 2.06E1 1.85E1 1.79E1
CT 6.90E-1 2.85E0 4.07E-1 3.29E-1 3.20E-1
NTK1 1.72E-2 7.27E-1 1.97E-2 6.07E-3 6.50E-3
NTK2 3.14E-2 3.29E0 4.53E-2 1.34E-2 1.21E-2

H
ip

po
ca

m
pu

s CD 3.49E-1 3.2E-1 2.43E-1 2.67E-1 2.65-1
EMD 2.80E5 2.10E5 2.25E5 2.09E5 1.96E5
CT 2.27E3 2.92E5 2.32E3 2.19E3 2.15E3
NTK1 1.84E5 1.01E9 59.7E5 4.93E3 9.98E3
NTK2 6.37E4 3.09E9 1.56E6 1.54E3 1.54E3

Table 3 presents the quantitative eval-
uation of the shape matching task.
Each column indicates that the shape
matching neural network is trained
with a specific shape similarity met-
ric as the loss function. In the case
of dolphin, when the evaluation met-
ric is the same as the loss function
used to train the network, then the
network trained with the same evalu-
ation metric achieves the best results.
This is natural as the neural network
is trained to minimise the loss func-
tion. It is worth highlighting that
the shape matching network trained
with the NTK1 loss achieves the sec-
ond best score for all evaluation met-
rics except for itself. In other words,
NTK1 can capture common charac-
teristics of all shape similarity met-
rics used to train the network. Fur-
thermore, in the case of shape matching between two different cups, our neural varifold metrics
(NTK1 and NTK2) achieve either the best or second best results regardless which shape evaluation
metric is used. This indicates that the neural varifold metrics can capture better geometric details
as well as surface smoothness for the cup shape than other metrics. In the case of shape matching
between the source hippocampus and the target hippocampus, the network trained with CT excels in
the CD metric, while the network trained with NTK1 achieves superior results with respect to NTK1
and NTK2 metrics. The shape matching network trained with NTK2 outperforms in EMD, CT and
NTK2 metrics.

5 CONCLUSION

This paper presented the neural varifold as a highly competitive alternative representation to quantify
geometry of point clouds for various applications including shape classification, reconstruction and
matching. Detailed evaluation and comparison to the state-of-the-art methods demonstrate that the
proposed versatile neural varifold is superior in shape classification particularly in the data scarcity
scenario and is quite competitive for shape reconstruction and matching. In the future, to further
enhance the representation performance in surface geometry, new network designs and their corre-
sponding neural tangent kernels are of great interest to explore.
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A APPENDIX

A.1 KERNEL BASED SHAPE RECONSTRUCTION

Given a set of surface points X = {x1, . . . , xk} and the corresponding normals N = {n1, . . . , nk}
from an unknown surface M, i.e., X ⊂ M by definition of the implicit surface representation.
All the surface points satisfy the property f(x) = 0,∀x ∈ M for an unknown function f . The
best way to approximate the function f is to generate off-surface points and interpolate zero iso-
surface. Given Y = {y1, . . . , yk}, ∀yi = 0 and the distance parameter δ, we define X−

δ = {x1 −
δn1, · · · , xk−δnk}, X+

δ = {x1+δn1, · · · , xk+δnk}, Y−
δ = {−δ, · · · ,−δ}, and Y+

δ = {δ, . . . , δ}
in a similar manner. With union of the sets X̂ = X ∪X−

δ ∪X+
δ and Ŷ = Y ∪Y−

δ ∪Y+
δ , the training

data tuple (X̂ , Ŷ) can be used to represent the implicit representation of surface geometry.

Let us define regular voxel grids Xtest on which all the extended point clouds X̂ lie. Note that there
is no straightforward way to define normal vectors on the regular voxel grids, which are required
for PointNet-NTK1 computation. Here, we assign their normals as the unit normal vector to z-
axis. Then the signed distance corresponding to the regular grid Xtest can be computed by kernel
regression with neural splines or PointNet-NTK1 kernels K(Xtrain,Xtrain) and K(Xtest,Xtrain),
i.e.,

Ytest = K(Xtest,Xtrain)[K(Xtrain,Xtrain) + λI]−1Ytrain, (17)

where Ytrain and Ytest are the signed distances for the extended point clouds and the regular grids,
respectively. With the marching cube algorithm in Lorensen & Cline (1998), the implicit signed dis-
tance values on the regular grid with any resolution can be reformulated to the mesh representation.

A.2 SHAPE CLASSIFICATION WITH THE FULL MODELNET DATASET

Table 4: ModelNet classification.
Methods ModelNet10 ModelNet40
PointNet∗[1] 94.4 90.5
PointNet++[2] 94.1 91.9
DGCNN [3] 95.0 92.2
Charon-Trouvé 89.0 80.5
NTK1 92.2 87.4
NTK2 92.2 86.5

* Point cloud inputs are positions and unit normal vectors – 6-feature vec-
tors; note that the original paper’s reported accuracy for ModelNet40 is
89.2% with only positions forming 3-feature vectors as inputs.

The overall shape classification accuracy with neu-
ral varifold and the comparison with state-of-the-art
methods on both ModelNet10 and ModelNet40 are
given in Table 4, where the entire training data is
used. It shows that the finite-width neural network
based shape classification methods (i.e., PointNet,
PointNet++ and DGCNN) in general outperform
the kernel based approaches, i.e., Charon-Trouvé,
NTK1 and NTK2. DGCNN shows the best accu-
racy on both ModelNet10 and ModelNet40 amongst
the methods compared. In the case of kernel based
methods, NTK1 outperforms both NTK2 and Charon-Trouvé. The results are largely expected since
the infinite-width neural networks with either NTK or NNGP kernel representations underperform in
comparison with the equivalent finite-width neural networks (Lee et al., 2020) when sufficient train-
ing sampes are available. The computational complexity of kernel-based approaches is quadratic.
With the ModelNet10 dataset containing 4899 samples, NTK1 and NTK2 respectively require ap-
proximately 12 hours and 6 hours of training time, whereas PointNet and DGCNN achieve similar
accuracy with nearly 1 hour of training time using the entire dataset.
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Figure 3: Additional qualitative shape matching examples (i.e., Stanford bunny and airplane) with different
shape similarity metrics. In particular, CT: Charon-Trouvé.
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Table 5: Additional quantitative shape matching results (cf. Figure 3) on shapes Stanford bunny and
airplane.

Metric CD EMD CT NTK1 NTK2

B
un

ny

CD 9.32E-3 5.12E-3 3.60E-3 4.40E-3 4.32E-3
EMD 2.31E4 4.74E3 3.72E3 3.13E3 3.52E3
CT 2.40E-1 1.25E0 7.51E-2 1.28E-1 1.23E-1
NTK1 2.57E-2 1.32E-2 1.83E-3 2.22E-4 2.94E-4
NTK2 3.85E-2 2.68E-2 3.33E-3 8.85E-4 6.43E-4

A
ir

pl
an

e CD 1.36E-3 4.07E-4 3.72 E-3 3.81E-3 5.90E-3
EMD 1.16E4 4.12E2 3.38E2 3.43E2 7.50E2
CT 8.71E-2 3.62E0 -3.58E-4 1.67E-3 3.68E-3
NTK1 2.27E-3 1.80E-1 0.41E-6 0.31E-6 0.72E-6
NTK2 6.14E-2 5.13E0 8.69E-6 3.17E-6 2.42E-6

A.3 ADDITIONAL EXPERIMENTAL RESULTS FOR SHAPE MATCHING

This section presents additional experiments for shape matching on two different shapes, i.e., Stan-
ford bunny and airplane, see Figure 3 and Table 5 for the qualitative and quantitative results, re-
spectively. For the assessment of shape matching between a sphere and the Stanford bunny, CT,
NTK1 and NTK2 reveal detailed structure matching including ears, legs and tail. It is noteworthy
that NTK1 tends to oversmooth the Stanford Bunny’s face, whereas CT and NTK2 exhibit closer
alignment to the ground truth. When matching the two airplanes, all methods fall short of achieving
great matches, presenting broken meshes with incomplete details. For example, all methods fail to
successfully match the tail wing and rear engines. In contrast, NTK1 and NTK2 showcase supe-
rior results concerning wings and fuselage, while CD, EMD and CT either exhibit heavily broken
meshes or excessively smooth wings and fuselage.

Metrics used in columns and rows in Table 5 are to train the neural network and for quantitative
evaluation, respectively. Every value indicates the shape matching distance. In particular, the lowest
one in each row (i.e., the best) is highlighted. Quantitative results in Table 5 demonstrate that
varifold metrics, including CT, NTK1 and NTK2, consistently outperform CD and EMD metrics.
When shape matching between a sphere and the Stanford bunny, CT attains the best results in CD
and CT metrics, NTK1 excels in EMD and NTK1 metrics, and NTK2 leads in its own metric NTK2.
Interestingly, the shape matching results for the two airplanes, as depicted in Figure 3, indicate that
CT, despite visual shortcomings, achieves the best scores in CD, EMD and CT metrics. NTK1 and
NTK2 outperform others in their respective metrics. Notably, CT shows negative distance, primarily
attributed to the point density parameter σ in the CT metric causing instability.

Table 6: Shape classification performance of PointNet-NTK1 and PointNet-NTK2 with different
number of neural network layers adopted in MLP and Conv1D on ModelNet40.

Number of Layers PointNet-NTK1 (5-sample) PointNet-NTK2 (5-sample)
1-layer MLP 67.70 ± 1.66 64.70 ± 1.34
3-layer MLP 69.06 ± 1.57 66.79 ± 1.50
5-layer MLP 69.29 ± 1.48 67.34 ± 1.45
7-layer MLP 69.29 ± 1.43 67.64 ± 1.47
9-layer MLP 69.21 ± 1.48 67.81 ± 1.47

1-layer Conv1D 66.06 ± 1.71 63.20 ± 1.30
3-layer Conv1D 68.82 ± 1.62 66.88 ± 1.52
5-layer Conv1D 69.09 ± 1.51 67.42 ± 1.45
7-layer Conv1D 68.87 ± 1.53 67.77 ± 1.41
9-layer Conv1D 68.68 ± 1.46 67.89 ± 1.47

A.4 ABLATION ANALYSIS

A.4.1 NEURAL VARIFOLDS WITH DIFFERENT NUMBER OF NEURAL NETWORK LAYERS

This section shows the shape classification results based on different number of neural network lay-
ers. In this experiment, we randomly choose 5 samples per class on the training set of ModelNet40

14



Under review as a conference paper at ICLR 2024

and evaluate on its validation set. As shown in Section 4, we iterate the experiments 20 times with
different random seeds. The key concept of the PointNet (Qi et al., 2017a) is the permutation invari-
ant convolution operations on point clouds. For example, MLP or Conv1D with 1 width convolution
window is permutation invariance. In this experiment, we choose different number of either MLP
or Conv1D layers, and check how it performs on the ModelNet40 dataset. As shown in Table 6,
the classification accuracy of PointNet-NTK1 with Conv1D operation is lower in comparison with
the ones with MLP layers. In particular, 5-layer and 7-layer MLPs show similar performance with
the PointNet-NTK1 architecture, i.e., 69.29% classification accuracy. In order to reduce the com-
putational cost, we recommend fixing the number of layers in PointNet-NTK1 to 5. In the case of
PointNet-NTK2, its performance increases as more layers are being added for it with both MLP and
Conv1D operations. Furthermore, PointNet-NTK2 with Conv1D operation shows slightly higher
classification accuracy in comparison with the ones with MLP layers. The percentage of the per-
formance improvement becomes lower as the number of layers increases. In particular, 9-layer
MLP versus 7-layer MLP for PointNet-NTK2 only brings 0.2% improvement; therefore, it is com-
putationally inefficient to increase the number of layers anymore. Although PointNet-NTK2 with
9-layer Conv1D achieves 0.08% higher accuracy than the one with 9-layer MLP, PointNet-NTK2
with 9-layer MLP rather than Conv1D is used for the rest of the experiments in order to make the
architecture consistent with the PointNet-NTK1.

A.4.2 SHAPE CLASSIFICATION WITH DIFFERENT NEURAL NETWORK WIDTH

In this section, we analyse how the neural network width can impact on shape classification using
the 9-layer MLP-based PointNet-NTK2 by varying the width settings from 128, 512, 1024 and 2048
to infinite-width configurations. We trained the model on 5 randomly sampled point clouds per class
from the ModelNet10 training set. The evaluation was carried out on the ModelNet10 validation
set. This process was repeated five times with different random seeds, and the average shape clas-
sification accuracy was computed. Notably, PointNet-NTK1 was excluded from this experiment
due to the absence of a finite-width neural network layer corresponding to the elementwise prod-
uct between two neural tangent kernels of infinite-width neural networks. The results presented in
Table 7 demonstrate that the analytical NTK (infinite-width NTK) outperforms the empirical NTK
computed from the corresponding finite-width neural network with a fixed width size. Furthermore,
computing empirical neural tangent kernels with respect to different length of parameters is known
to be expensive as the empirical NTK is expressed as the outer product of the Jacobians of the output
of the neural network with respect to the parameters. The details of the computational complexity
and potential acceleration have been studied in Novak et al. (2022). However, if the finite-width neu-
ral networks are trained with the standard way instead of using empirical NTKs on a large dataset
(e.g. CIFAR-10), then finite-wdith neural networks can outperform the neural tangent regime with
performance significant margins (Lee et al., 2020; Arora et al., 2019a). In other words, there is still
a large gap understanding regarding training dynamics between the finite-width neural networks and
their empirical neural kernel representations.

Table 7: Shape classification performance of 9-layer PointNet-NTK2 with different neural network
width.

Width for each layer PointNet-NTK2 (5-sample)
128-width 78.74 ± 3.30
512-width 80.08 ± 3.02

1024-width 79.97 ± 3.24
2048-width 80.46 ± 3.13

infinite-width 81.74 ± 3.16

A.4.3 SHAPE MATCHING WITH DIFFERENT NUMBER OF NEURAL NETWORK LAYERS

In this section, the behavior of the NTK pseudo-metrics with respect to different number of layers is
evaluated. Note that the neural network width is not considered in this scenario as all pseudo-metrics
are computed analytically (i.e., infinite-width). In this study, simple shape matching networks were
trained solely by NTK psuedo-metrics with different number of layers. Table 8 shows that the shape
matching network trained with the 5-layer NTK1 metric achieved the best score with respect to
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Table 8: Ablation analysis for shape matching with respect to different number of neural network
layers within NTK psueo-metrics. The number inside of the brackets (·) indicates the number of
layers used for computing the NTK pseudo-metrics.

Metric NTK1 (1) NTK1 (5) NTK1 (9)
CD 2.82E-1 2.67E-1 2.99E-1
EMD 2.43E5 2.09E5 2.46E5
CT 2.19E3 2.17E3 2.17E3
NTK1 7.74E3 4.93E3 4.90E3
NTK2 2.56E3 1.54E3 1.92E3
Metric NTK2 (1) NTK2 (5) NTK2 (9)
CD 2.59E-1 2.61E-1 2.64E-1
EMD 2.14E5 2.32E5 1.93E5
CT 2.15E3 2.17E3 2.15E3
NTK1 9.57E3 8.70E3 9.98E3
NTK2 1.28E3 1.41E3 1.53E3

Table 9: ShapeNet 3D mesh reconstruction with 1024 points (mean/median values ×1E3).

Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 0.936 1.499 3.134 5.363 2.492 3.635 2.536 4.109 2.134 3.660 2.264 1.674 1.339
Neural Splines 11.640 1.905 2.264 2.440 2.983 4.770 1.418 3.437 0.439 1.924 3.936 9.026 2.255
NKSR 1.898 3.506 6.224 2.286 3.584 46.997 9.229 4.138 0.665 2.029 3.213 2.243 1.285
PointNet-NTK1 1.584 1.742 2.274 2.494 2.655 5.337 1.465 3.947 0.456 1.870 2.029 12.138 1.341

CD
(median)

SIREN 0.756 1.272 2.466 2.305 1.281 1.385 1.156 3.411 0.487 1.706 1.601 1.390 1.040
Neural Splines 8.171 1.562 1.830 2.058 2.152 1.548 0.698 3.071 0.359 1.657 1.715 1.594 0.879
NKSR 1.900 2.245 1.799 2.190 2.116 1.880 2.347 3.488 0.407 1.697 1.695 1.345 0.956
PointNet-NTK1 0.820 1.701 1.933 1.995 1.522 1.719 0.733 3.045 0.366 1.719 1.643 1.658 1.016

EMD
(mean)

SIREN 2.183 3.679 6.385 10.712 5.932 7.527 12.850 8.714 3.164 7.633 4.992 3.645 3.265
Neural Splines 60.566 6.540 5.338 5.380 15.935 8.882 22.745 6.457 1.878 4.335 11.733 18.019 6.367
NKSR 12.939 11.990 16.684 7.571 21.706 44.190 32.236 12.486 3.613 4.930 14.917 6.609 6.715
PointNet-NTK1 6.704 5.984 5.301 5.907 14.868 11.507 29.595 8.070 1.773 4.596 11.606 24.903 3.841

EMD
(median)

SIREN 1.982 3.211 5.232 4.699 5.678 3.567 2.916 5.548 1.351 3.804 3.122 3.415 2.552
Neural Splines 35.458 4.713 4.745 4.779 11.570 3.915 5.719 4.575 1.334 3.650 5.041 4.828 2.276
NKSR 11.317 6.933 5.035 5.432 9.807 8.597 7.871 8.397 1.765 3.524 8.140 3.400 2.354
PointNet-NTK1 3.716 4.659 5.050 4.598 7.613 4.062 9.168 5.456 1.364 4.105 4.257 4.710 2.209

CD, EMD, CT and NTK2 metrics, while the one with the 9-layer NTK1 metric achieved the best
score with respect to CT and NTK1 metrics. This is in accordance with the ablation analysis for
shape classification, where 5-layer NTK1 achieved the best classification accuracy in the Model-
Net10 dataset. In comparison, NTK2 shows a mixed signal. The shape matching network trained
with the 1-layer NTK2 metric achieved the best outcome with respect to Chamfer, CT and NTK2
metrics, while the one trained with the 9-layer NTK2 achieved the best results with respect to EMD
and CT metrics. The network trained with 5-layer NTK2 showed the best result with respect to
the NTK1 metric. This is not exactly in accordance with respect to shape classification with the
NTK2 metric, where the shape classification accuracy improves as the number of layers increases.
However, training a neural network always involves some non-deterministic nature; therefore, it is
yet difficult to conclude whether the number of neural network layers is important for improving the
shape matching quality or not.

A.4.4 SHAPE RECONSTRUCTION WITH DIFFERENT POINT CLOUD SIZES

In this section, we compare shape reconstruction results with different point cloud sizes, i.e., 512,
1024 and 2048 points. As indicated in Tables 2, 9 and 10, PointNet-NTK1 and neural splines show
that the quality of the reconstructions is degraded as the number of points decreases. For NKSR, its
reconstruction quality becomes worse as the number of point clouds decreases for most categories,
but few categories (i.e., cabinet and vessel) show the opposite trend. In the case of SIREN, the
convergence of the SIREN network plays more important role for the shape reconstruction quality.
For example, the shape reconstruction results by SIREN on the airplane category show that the
shape reconstruction with 1024 points is better than that with 2048 points. This is due to the non-
deterministic nature of DNN libraries, i.e., it is difficult to control the convergence of the SIREN
network with our current experimental setting 104 epochs. Note that the SIREN reconstruction is
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Table 10: ShapeNet 3D mesh reconstruction with 512 points (mean/median values ×1E3).

Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 1.385 1.992 14.975 4.323 2.813 3.094 7.874 5.426 3.731 3.582 10.423 2.524 2.278
Neural Splines 21.410 3.752 2.818 2.985 5.217 5.089 2.050 4.393 0.565 2.228 5.953 8.721 2.699
NKSR 3.974 6.265 3.545 2.594 5.348 NA 9.859 5.259 17.419 2.059 6.636 1.677 1.540
PointNet-NTK1 2.454 2.674 2.565 3.233 3.793 6.087 2.193 4.045 0.550 2.252 2.702 14.349 2.090

CD
(median)

SIREN 0.715 1.678 3.635 3.122 1.914 1.672 1.540 4.707 1.156 2.256 1.746 1.497 1.130
Neural Splines 21.040 2.466 1.935 2.369 3.347 2.058 1.023 3.361 0.385 1.918 2.411 1.717 1.226
NKSR 2.627 3.336 1.894 2.015 3.752 NA 4.427 3.753 0.906 1.833 3.555 1.411 0.856
PointNet-NTK1 1.243 2.246 2.106 2.316 2.473 1.968 1.346 3.330 0.387 1.890 1.963 2.013 1.309

EMD
(mean)

SIREN 3.411 5.833 24.404 9.460 7.366 6.558 26.828 13.584 5.224 6.457 16.578 4.764 4.831
Neural Splines 120.415 11.749 7.478 6.057 26.382 11.486 30.216 8.686 3.048 5.128 25.433 19.087 8.431
NKSR 24.959 21.190 11.433 9.346 30.485 NA 36.050 18.147 13.115 5.226 24.257 4.701 8.605
PointNet-NTK1 13.826 9.217 5.614 11.548 16.465 13.501 35.540 8.334 2.436 6.010 15.663 27.025 5.897

EMD
(median)

SIREN 1.964 5.036 8.656 6.643 5.553 3.650 14.281 14.499 2.296 4.682 3.735 3.779 3.012
Neural Splines 115.527 9.698 4.679 4.863 20.006 4.476 10.834 5.405 1.548 4.234 8.205 4.742 3.147
NKSR 25.234 14.795 4.405 6.669 16.082 NA 10.727 8.655 3.132 4.147 9.839 3.595 2.650
PointNet-NTK1 9.863 6.122 4.758 7.171 6.822 5.076 9.296 5.683 1.626 4.497 7.455 6.658 3.313

NA indicates that the method fails to reconstruct few shapes in the given class.

computationally much more expensive (around 20∼30 minutes) than either the PointNet-NTK1,
neural splines or the NKSR approach (around 1∼5 seconds).

A.5 VISUALISATION OF SHAPENET RECONSTRUCTION RESULTS

In this section, we present additional visualisations of shape reconstruction outcomes obtained
through three baseline methods (i.e., SIREN, neural splines, and NKSR), along with the proposed
NTK1 method, across 13 categories of ShapeNet benchmarks. Five shape reconstruction results are
illustrated for each category. Specifically, Figure 4 showcases examples from the Airplane, Bench,
and Cabinet categories. Figure 5 exhibits five instances of shape reconstruction outcomes for the Car,
Chair, and Display categories. Moving on to Figure 6, it displays examples from the Lamp, Speaker,
and Rifle categories. Similarly, Figure 7 demonstrates five instances of shape reconstruction results
for the Sofa, Table, and Phone categories. Finally, Figure 8 focuses on the shape reconstruction
results for the Vessel category.
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Figure 4: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Airplane, Bench and Cabinet categories.
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Figure 5: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Car, Chair and Display categories.
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Figure 6: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Lamp, Speaker and Rifle categories.
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Figure 7: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Sofa, Table and Phone categories.
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Figure 8: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Vessel category.
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