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Abstract
Modeling complex rigid motion across large spatiotempo-
ral spans remains an unresolved challenge in dynamic re-
construction. Existing paradigms are mainly confined to
short-term, small-scale deformation and offer limited con-
sideration for physical consistency. This study proposes
PMGS, focusing on reconstructing Projectile Motion via
3D Gaussian Splatting. The workflow comprises two stages:
1) Target Modeling: achieving object-centralized reconstruc-
tion through dynamic scene decomposition and an improved
point density control; 2) Motion Recovery: restoring full mo-
tion sequences by learning per-frame SE-3 poses. We intro-
duce an acceleration consistency constraint to bridge Newto-
nian mechanics and pose estimation, and design a dynamic
simulated annealing strategy that adaptively schedules learn-
ing rates based on motion states. Furthermore, we devise a
Kalman fusion scheme to optimize error accumulation from
multi-source observations to mitigate disturbances. Experi-
ments show PMGS’s superior performance in reconstructing
high-speed nonlinear rigid motion compared to mainstream
dynamic methods.

Code — https://github.com/X-Probiotics/PMGS

Introduction
Dynamic reconstruction has become an engine driving mod-
ern film animation, game interaction, and virtual reality.
The rise of neural rendering has pushed reconstruction fi-
delity to unprecedented heights, enabling the depiction of
highly challenging deformations, such as subtle tremors in
biological tissues (Huang et al. 2024b). Meanwhile, break-
throughs in generative methods (Ren et al. 2023; Chu, Ke,
and Fragkiadaki 2024) have achieved controllable synthesis
of dynamic scenes with diverse artistic styles, vastly expand-
ing the boundary of imagination in visual expression.

However, when returning to a task governed by the es-
sential laws of the physical world—the reconstruction
of complex rigid motions over large spatiotemporal
spans—there lies a challenging issue that remains insuffi-
ciently explored.

*These authors contributed equally.
†Corresponding author.
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Figure 1: Left: Current paradigms focus on small-scale de-
formation reconstruction. Right: PMGS explores complex
rigid motion modeling across large spatiotemporal spans.

Most existing modeling paradigms are designed for small
range non-rigid motion over short time spans (Pumarola
et al. 2021; Li et al. 2022; Yang et al. 2024; Wu et al.
2024). These approaches rely on deformation fields with
complex temporal regularization to achieve spatiotempo-
ral alignment. However, discrete sampling struggles to cap-
ture large nonlinear motion (e.g., accelerated rotation), of-
ten resulting in noticeable artifacts and trajectory fragmen-
tation when modeling high-speed rigid motion (Wu et al.
2024). Additionally, current 4D datasets exhibit similar lim-
itations: in most scenarios, moving objects occupy only a
small portion of the scene and exhibit minimal movement.
Consequently, many methods prioritize optimizing appear-
ance similarity metrics rather than addressing the core chal-
lenge of accurate motion recovery.

The absence of physical consistency poses another major
challenge. Many works focus on optimizing appearance sim-
ilarity while neglecting the pervasive physical constraints
in the real world. However, when modeling complex mo-
tion across large spatiotemporal spans, relying solely on
photometric supervision fails to constrain the vast 3D solu-
tion space effectively. For NeRF-based methods (Song et al.
2023; Li et al. 2022; Park et al. 2021), the inherent char-
acteristics of implicit representations encode motion cues
within black-box network weights, making physical inter-
actions difficult to model and unintuitive. The introduction
of 3D Gaussian Splatting (3DGS) (Kerbl et al. 2023) has
partially addressed this by combining explicit point-based
representations with neural rendering, thereby providing a
structured carrier for scene understanding. Consequently,
some GS-based approaches (Huang et al. 2024b; Fu et al.
2024; Meyer et al. 2024) incorporate off-the-shelf models to



enhance physical realism. We argue that this model-stacking
strategy introduces compounded uncertainties by layering
new approximations over existing ones. More critically, it
bypasses the exploration of fundamental physical princi-
ples, ultimately reducing the reconstruction task to uninter-
pretable compensatory computations.

To tackle these issues, we selected a representative task
for focused solutions: Projectile motion. As a fundamental
concept in mechanics, it describes an object launched with
an initial velocity, following parabolic motion under grav-
ity. The study extends from free-fall to complex situations
with self-rotation. This phenomenon is not only ubiquitous
in the real world (e.g., falling objects from heights, throwing
events in sports, military ballistic trajectories), but also en-
compasses the typical challenges of rigid motion, including
variable speed, large span, and compound motion (transla-
tion and rotation). Consequently, this archetypal paradigm
can be generalized to any dynamic scenario within constant
force fields in nature, demonstrating universal applicability.

In this paper, we focus on the modeling of complex
rigid motions with large spatiotemporal spans, and propose
PMGS, a framework that reconstructs Projectile Motion
via 3D Gaussian Splatting. By leveraging temporal continu-
ity in video sequences and explicit Gaussian representation,
we estimate per-frame SE(3) affine transformation through-
out the motion which is fundamentally unattainable with
NeRF-based methods. Guided by first principles of physics,
we introduce an acceleration constraint for motion recov-
ery. Additionally, to alleviate issues of learning oscillations
and trajectory fractures caused by fixed training paradigms,
we develop a Dynamic Simulated Annealing (DSA) strategy
that adaptively schedules the training process based on real-
time velocity and displacement variations. Departing from
conventional methods that treat physical constraints merely
as regularization components, we propose a Kalman filter-
based optimal estimation scheme to fuse cross-modal obser-
vations, thereby minimizing potential disturbances.

Overall, our main contributions can be outlined as:
• We propose PMGS, a framework integrating target mod-

eling and motion recovery to reconstruct projectile mo-
tion. Particularly, we contribute a dataset designed for
complex rigid motion modeling at large spatiotemporal
scales—an area notably underserved by existing datasets.

• We introduce an acceleration consistency constraint con-
necting Newtonian mechanics to pose estimation. Our
DSA strategy dynamically adapts training via velocity-
displacement motion states, addressing fixed paradigms’
nonlinear motion limitations.

• We design a Kalman fusion scheme to dynamically opti-
mize multi-source observations with adaptive weighting,
minimizing error accumulation caused by real-world dis-
turbances or training oscillations.

Related Work
Dynamic Neural Rendering. Current dynamic neural
rendering includes: (1) Point deformation fields (Pumarola
et al. 2021) map sampled points at each timestep to a static
canonical space. (2) Time-aware Volume Rendering (Li et al.

2022; Song et al. 2023) employs factorized voxels to inde-
pendently compute features for each point. (3) The Gaus-
sian deformation field (Yang et al. 2024; Zhu et al. 2024a;
He et al. 2024) transforms 3D Gaussians to their target po-
sition at specific timesteps. The critical issues lie in that the
deformation field struggles to model large inter-frame dis-
placements that commonly occur in real-world scenarios,
which can be further validated by experiments on Panop-
tic Studio dataset (Joo et al. 2015) conducted by 4DGS (Wu
et al. 2024). Moreover, due to the lack of physical consis-
tency constraints, the network tends to focus on fitting ap-
pearance similarity while neglecting structural accuracy at
the geometric level. As a typical example, when there are
large areas of nearly uniform color, Gaussian bodies will
float chaotically within regions of similar color (Luiten et al.
2024).

Enhancing GS with Physical Assistance. Introducing
physical assistance to enhance 3DGS has been widely ap-
plied. (Fu et al. 2024; Huang et al. 2024b; Zhu et al. 2024b)
utilize off-the-shelf monocular depth estimation models
(Ranftl, Bochkovskiy, and Koltun 2021) for scene initializa-
tion or sparse reconstruction. (Zhong et al. 2024) devised a
Spring-Mass model to simulate the elastic objects’ falling
and collision. (Meyer et al. 2024) is designed for 3D dataset
generation which integrates the PyBullet engine to emulate
the placement of objects and their dynamic processes. (Chu,
Ke, and Fragkiadaki 2024; Xiong et al. 2024) enhances pose
estimation by ensuring scale consistency and local rigid-
ity. Essentially, current approaches use rough approxima-
tions from external physics models to fix ill-posed inverse
problems in vision systems. Nevertheless, pre-trained en-
gines lose confidence sharply in unusual scenarios, and their
black-box makes errors untraceable.

Method
PMGS takes a monocular video as input to reconstruct the
target and achieve full-sequence projectile motion recov-
ery. For modeling appearance and geometry, we equivalently
convert dynamic scenes into static through motion decompo-
sition, and combine with the improved point density control
strategy to enhance the geometric accuracy. During motion
recovery, we leverage video temporal continuity and the ex-
plicit Gaussian representation to estimate per-frame SE(3)
transformations. To ensure physically consistent pose learn-
ing, we introduce an acceleration consistency constraint that
establishes direct connections between pose estimation and
Newtonian dynamics priors. Finally, we design a Kalman fu-
sion strategy to optimize the error accumulation from multi-
modal observation sources.

Target Modeling
To model the target’s appearance and geometry, we reformu-
late the dynamic scene as a static object-centralized scene.

Centralization. We firstly use the pre-trained SAM (Kir-
illov et al. 2023) to separate the background and the dynamic
target. Then, by establishing object-centralized normalized
coordinates (Chu, Ke, and Fragkiadaki 2024), we decom-
pose the complex projectile motion: the object’s autorotation



Figure 2: Overview of PMGS. We first segment the target, then decompose the motion through centralization to transform the
dynamic scene into a static one. For modeling, we learn a set of Gaussian kernels and align them at the original scale with a
set of learnable affine transformations. In motion recovery, we estimate the target’s SE(3) transformation frame by frame, and
comprehensively improve tracking accuracy by integrating physics-enhanced strategies.

is disentangled into pseudo multi-view observations, while
translational displacements are eliminated.

Reconstruction. Following the 3DGS (Kerbl et al. 2023),
we use a set of Gaussian kernels to explicitly reconstruct the
appearance and geometry of the object.

Notably, geometric quality directly affects motion recov-
ery. Therefore, the structural flaws of Gaussian representa-
tion cannot be ignored: (1) Oversize Gaussians. They fre-
quently occur at boundaries to incorrectly fit the viewpoint
variations, inducing jagged edges and spiky artifacts. (2)
Discretized Gaussians. They appear distant from the tar-
get, distorting centroid computation and introducing system-
atic errors in motion estimation. To address these, we pro-
pose an improved point density control strategy: (1) Axial
constraint: Hard pruning of Gaussians with excessive ax-
ial lengths; (2) Outlier removal: Gaussians whose distance
to their nearest neighbors exceeds the average value are re-
moved. This can be mathematically expressed as:

Gpruned =

{
gi ∈ G

∣∣∣∣∣ max
(
eig(Σi)

)
≤ τL ∩

min
gj∈G

∥µi − µj∥2 ≤ τD ·Davg

}
(1)

where Σi and µi represent the covariance matrix and posi-
tion of a Gaussian gi respectively. For axial constraint, Gaus-
sians with length of principal axis max

(
eig(Σi)

)
> τL are

discarded, where τL is a predefined threshold controlling
shape anisotropy. Besides, an outlier is defined as a Gaus-
sian whose minimum distance to others is much larger than
the average distance Davg = 1

|G|2
∑

m,n ∥µm−µn∥2, where
τD is a distance-based filtering factor.

During the optimization, the loss LGS is used to quantify
the difference between the real image Î and rendered image
I:

LGS = (1− λ)∥Î − I∥1 + λLD−SSIM (2)

Up to this point, we obtain a Gaussian field G0 at the cen-
tralized scale.

Registration. Finally, we register the static Gaussian
G0 at the centralized scale to the original dynamic scene,

Figure 3: DSA strategy. Right: An object accelerates in a
constant gravity field, with different velocities v and dis-
placements s corresponding to each timestamp. Left: Red
curve represents the initial learning rate. Blue points show
the final learning rate after exponential decay.

thus facilitating subsequent motion recovery. This can be
achieved via a set of learnable affine transformations Treg =
[r, t, s]. Then the aligned Gaussian field G1 can be repre-
sented as Treg ⊙ G0. In addition to LGS , we further apply
VGG loss LV GG and grid-based total variation loss LTV

(Zhong et al. 2024; Wu et al. 2024) to achieve a better aware-
ness of accurate registration. The total loss can be formu-
lated as:

LAlign = λ1LGS + λ2LV GG + λ3LTV (3)

The optimization target is to minimize LAlign between
the rendered image of G1 and the first frame Î0 of original
dynamic scene:

Treg = argmin
Treg

LAlign(R(Treg ⊙G0), Î0) (4)

Finally, we obtain this set of Gaussians G1, which can
well represent the appearance and geometry of the object.

Physics-Enhanced Motion Recovery
During the dynamic phase, we estimate 6DoF pose changes
of the object in total (n + 1) frames, which correspond to a
sequence of temporal SE-3 transformations Tn = [rn, tn].



We introduce an acceleration consistency constraint to es-
tablish a direct connection between pose learning and physi-
cal priors. Additionally, we incorporate optical flow smooth-
ing and a DSA training strategy to improve training stability.

Acceleration consistency constraint. The object moves
in a constant force field, therefore its acceleration remains
constant. Based on this, we first calculate the object’s center
of mass σ. Since the Gaussians have been processed isotrop-
ically, the spatial coordinates of σ can be computed as:

σ =

∑N
i=1 R

3
iµi∑N

i=1 R
3
i

(5)

where N represents the total number of Gaussian kernels, R
is the radius of each kernel, and µi = [xi, yi, zi] denotes the
spatial position of the kernel. In turn, the acceleration of the
object at the current moment t can be calculated as:

at =
[σ(t+∆t) − σt]− [σt − σ(t−∆t)]

(∆t)2
(6)

where ∆t denotes the time interval between two adjacent
frames. Subsequently, the acceleration at can be decom-
posed into components parallel and orthogonal to the gravity
direction g:

at∥ = (at · g)g,
at⊥ = at − (at · g)g

(7)

According to Newtonian dynamics, there should be a con-
stant acceleration along the gravity direction, while the com-
ponents orthogonal to it should remain zero:

LAcc = ∥at∥ + (a
(t+∆t)
⊥ − at⊥)∥22 (8)

Building upon Eq.8, we are able to effectively regularize
the learning of translation components across consecutive
frames, even under scale ambiguity, thereby ensuring the
physical consistency of motion recovery without requiring
absolute values such as gravitational acceleration.

Optical flow smoothing. We introduce optical flow
smoothing computed based on (Teed and Deng 2020) for
emphasizing attention to motion variations in long-term
tracking. In addition to evaluating the similarity between the
real optical flow F̂ and rendered F , we compute the gradi-
ents of the horizontal and vertical components of the opti-
cal flow field, applying a smoothness penalty with different
weights for corresponding regions:

LSmooth = λ1[
1

N

N∑
i=1

(∆Fi,x · exp(−∆Ii,x
10

)+

∆Fi,y · exp(−
∆Ii,y
10

))] + λ2∥F̂ − F∥1

(9)

where ∆F and ∆I denote the gradients of the optical flow
field and the rendered image respectively.

Dynamic simulated annealing. As shown in Figure 3, a
fixed lrinit struggles to adapt to varying object’s velocities:
excessively large lrinit induces training oscillations during
low-speed phases, whereas small lrinit hinders convergence

when tracking high-speed targets. To address this velocity-
displacement coupling effect, we dynamically schedule the
lrinit according to real-time displacement.

Specifically, for a moving object with an initial velocity
v0 and constant acceleration a, the displacement during the
interval from timestamp t to (t+∆t) can be derived as:

∆st = (a∆t)t+ [
1

2
a(∆t)2 + v0∆t] (10)

As the initial velocity v0, acceleration a and the time interval
∆t are constant values, Eq.10 establishes the linear correla-
tion between object’s displacement ∆s and timestamp t, i.e.,
∆s ∝ t. This temporal-displacement relationship therefore
requires proportional scaling of the lrinit with displacement.
Therefore, we implement scheduling where the learned dis-
placement from the preceding timestep governs the subse-
quent lrinit, as visualized in Figure 3.

As the iteration progresses, the Gaussians gradually ap-
proach the target spatial position. Correspondingly, the
learning rate needs to be reduced so that the step gradually
shrinks for finetuning. We utilize the commonly used ex-
ponential decay to achieve this. In addition, for timestamps
with large displacements, we appropriately extend the num-
ber of iterations to better find the optimal solution.

In summary, we follow the DSA strategy for frame-by-
frame tracking of the pose Tn during motion recovery, and
the total optimization is to minimize a composite of losses:

Tn = argmin
Tn

(λ1LGS(R(Tn ⊙Gn), În+1)+

λ2LAcc + λ3LSmooth(F (Tn ⊙Gn), F̂n+1)
(11)

Cross-Modal Kalman Fusion
During the aforementioned stage, there exist different
sources of cross-modal observations. Some works (Guo
et al. 2024) also incorporate optical flow or other priors as
auxiliary inputs. However, they often fail to account for in-
accurate optical flow estimations caused by motion-blurred
and texture-degraded regions. This oversight, in turn, intro-
duces negative effects during optimization. Differently, we
design a data fusion strategy based on Kalman filter (Welch,
Bishop et al. 1995) to dynamically balance the weights of
observation sources, suppress cumulative error, and update
the optimal estimate in real-time.
Step1-Definition: The basic elements in Kalman fusion
namely the system prediction model and observations.
When applied to our motion recovery process, these com-
ponents correspond to the following:

• System model: Displacement prediction based on the ac-
celeration consistency constraint (Eq.8).

• Observation 1: The displacement calculated via back-
projection from the inter-frame optical flow field ztflow.

• Observation 2: The displacement of the current frame ac-
tually learned by the network ztlearn.

Step2-Prediction: In the prediction step, we use the system
dynamic model and previous state estimation to predict the
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Figure 4: Qualitative comparison on both synthetic and real datasets. PMGS generalizes well across different scenarios and
accurately reconstructs full-sequence motion. The displayed results are uniformly sampled, for complete and coherent motion
recovery, please refer to the video on the project page.

current state, which can be formulated as:

Xt|t−1 =

[
∆st|t−1

vt|t−1

]
= FXt−1|t−1 + Bat + wt,

F =

[
1 ∆t
0 1

]
,B =

[
1
2 (∆t)2

∆t

]
,Q =

[
σ2
∆s 0
0 σ2

v

] (12)

where Xt|t−1 is the prediction based on the optimal estimate
at the previous timestamp, F is the state transition matrix, B
is the control input matrix, and at is the control input calcu-
lated from Eq.6, which approximates to at−1 as the system
model defined. The prediction covariance can then be calcu-
lated as:

Pt|t−1 = FPt−1|t−1FT + Q (13)

where Pt−1|t−1 is the posterior covariance of the previous
state.
Step3-Correction: In the update step, we use observations
(optical flow and learned displacement) to correct the pre-
dicted state. These two measurements provide direct obser-
vations of displacement, but each carries distinct noise: (1)
ztflow is computed from optical flow (Eq.9), representing ap-
parent motion-based displacement observation, with noise
denoted as σ2

flow. (2) ztlearn derives from the optimization

Datasets Source Type Phy. Mono.
LaSOT (Fan et al. 2019) Real Rigid × ×
D-NeRF (Pumarola et al. 2021) Syn. Def. × ✓
HyperNeRF (Park et al. 2021) Real Def. × ✓
Neural3D (Li et al. 2022) Syn. Def. × ×
PEGASUS (Meyer et al. 2024) Syn. Rigid PyBullet ✓
SpringGS (Zhong et al. 2024) 6S + 3R Def. Hooke’s Law ×
PMGS 6S + 3R Rigid Newton’s Law ✓

Table 1: Datasets comparison (Phy.-Whether physical prior
is introduced; Mono.-Whether monocular; Syn.-Synthetic;
Def.-Deformable).

process (Eq. 11), based on Gaussian rendering and loss func-
tions, with noise denoted as σ2

learn. Thus, we define the ob-
servation equation as follows:

zt =
[
ztflow
ztlearn

]
= HXt|t + vk,

H =

[
1 0
1 0

]
,R =

[
σ2
flow 0
0 σ2

learn

] (14)

where H is the observation matrix, R = E[vkvTk ] is the co-
variance of noise vk.
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PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
2DGS 24.82 0.895 0.153 17.42 0.714 0.325 15.97 0.847 0.195 17.99 0.792 0.218 15.19 0.758 0.275 21.56 0.830 0.185
In-Splat 25.44 0.900 0.139 17.58 0.724 0.300 17.03 0.852 0.175 18.10 0.797 0.221 16.10 0.761 0.255 24.21 0.877 0.165
CFGS* 21.82 0.873 0.231 13.70 0.675 0.259 14.47 0.845 0.284 18.00 0.788 0.307 11.93 0.739 0.317 21.37 0.822 0.196
4DGS 20.52 0.907 0.112 22.60 0.829 0.082 20.25 0.859 0.154 23.92 0.947 0.063 17.91 0.934 0.182 Failed Failed Failed
Mo-GS 22.64 0.876 0.166 19.14 0.857 0.156 15.39 0.823 0.217 22.70 0.854 0.119 16.99 0.902 0.115 17.37 0.855 0.151
Dy-GS 36.32 0.971 0.064 26.37 0.906 0.032 28.44 0.939 0.026 31.81 0.942 0.050 25.36 0.897 0.018 Failed Failed Failed
PMGS 33.58 0.967 0.011 28.87 0.915 0.025 26.50 0.940 0.014 34.38 0.959 0.014 25.01 0.924 0.020 33.72 0.954 0.012

Table 2: Comparison of video reconstruction (Synthetic data).

Box Shark Bear

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
2DGS 19.72 0.973 0.172 11.57 0.794 0.101 11.78 0.823 0.201
In-Splat 20.48 0.977 0.152 12.88 0.810 0.097 11.79 0.823 0.090
CFGS* 17.19 0.946 0.162 11.32 0.742 0.271 11.54 0.772 0.212
4DGS 20.19 0.874 0.131 15.32 0.709 0.302 Failed Failed Failed
Mo-GS 15.92 0.512 0.464 10.38 0.654 0.353 13.99 0.887 0.231
Dy-GS 18.97 0.704 0.152 24.92 0.952 0.085 Failed Failed Failed
PMGS 30.45 0.974 0.019 25.07 0.952 0.094 26.64 0.959 0.059

Table 3: Comparison of video reconstruction (Real data).

Step4-Update: Based on the above content, we update the
Kalman gain Kt:

Kt = Pt|t−1HT (HPt|t−1HT + R)−1 (15)

Finally, we can obtain the optimal estimated value at the cur-
rent timestamp:

Xt|t = Xt|t−1 + Kt(zt − HXt|t−1) (16)

Throughout the fusion process, we fully integrate the
physical model, optical flow observations, and network out-
puts. The Kalman gain is used to automatically adjust the
weights, thereby minimizing the error accumulation across
multi-modal observation sources.

Experiments
Experimental Settings
Datasets. We constructed both synthetic and real-world
datasets. For synthetic data, we collected 6 models from
public 3D communities (Blender Foundation 2018), then
set up a constant gravity field in Blender. The objects were
launched with a randomly set initial velocity and accompa-
nied by autorotation. A fixed camera was used to capture the
dynamic scene at 120 FPS, rendering 120 images at a reso-
lution of 1024x1024. For the real-world dataset, we threw 3
different objects and captured the scene using a fixed cam-
era, with an exposure time of 1/2500s, a frame rate of 60
FPS, and a resolution of 4128×2752. During training, the
images were resized to below 1600 pixels. Due to the frame
rate limitations of the imaging device and the real-world pro-
jectile objects do not undergo sufficiently complete rotations
(i.e., failing to exhibit a full 360° surface), we captured three
projectile sequences for each model from the same view-
point. Samples were then randomly selected from these se-
quences to perform modeling.

Ground 
Truth

PMGS

Ablation

Model 1 Model 2 Model 3

Figure 5: Ablation results for different comparison models.
PMGS in its complete form exhibits superior stability.

For reconstruction, the training/validation split strictly ad-
heres to 3DGS. As for the motion recovery, we focus on
recovering the full-sequence motion (all frames), thus no
split is required. All competitors follow the aforementioned
dataset division for fair metric calculation.

Furthermore, we conducted a comprehensive comparison
between our proposed dataset and existing 4D datasets, as
detailed in Table 1. PMGS covers both real and synthetic
sources and sets the challenging monocular scenario, focus-
ing on long-duration, large-span complex rigid motions. All
motions strictly adhere to real-world physical laws, which
has not been considered in many synthetic datasets.
Metrics. We evaluate video reconstruction and motion re-
covery separately. For video reconstruction, we use PSNR,
SSIM, and LPIPS (Wang et al. 2004; Zhang et al. 2018). For
motion recovery, we compute the bounding boxes of the
target object in both the real and rendered image, and then
calculate the IoU, absolute trajectory error (ATE) and RMSE
(Yu et al. 2016; Rozumnyi et al. 2023; Fu et al. 2024) to
comprehensively assess the spatial accuracy of tracking and
trajectory. All evaluations are computed after fully removing
backgrounds.
Implementation Details. We conducted experiments in the
PyTorch framework with an Nvidia RTX 4090 GPU. Dur-
ing the centralization phase, we cropped the target from the
original data and placed it at the center of a 512x512 can-
vas. In the motion recovery phase, the initial base learning
rate applied to the frame with the minimal velocity was set
to 1.0e-3, with a base iteration count of 1000. The weights
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IoU↑ ATE↓ RMSE↓ IoU↑ ATE↓ RMSE↓ IoU↑ ATE↓ RMSE↓ IoU↑ ATE↓ RMSE↓ IoU↑ ATE↓ RMSE↓ IoU↑ ATE↓ RMSE↓
CFGS* 0.249 0.550 0.602 0.203 0.129 0.218 0.154 0.533 0.563 0.310 0.358 0.459 0.318 0.574 0.610 0.094 0.562 0.604
4DGS 0.359 0.661 0.703 0.608 0.194 0.248 0.354 0.630 0.661 0.401 0.563 0.621 0.287 0.668 0.687 Failed Failed Failed
Mo-GS 0.288 0.474 0.505 0.541 0.655 0.704 0.423 0.511 0.551 0.501 0.505 0.559 0.549 0.501 0.522 0.249 0.643 0.668
Dy-GS 0.548 0.227 0.269 0.910 0.118 0.156 0.898 0.182 0.226 0.663 0.311 0.363 0.995 0.070 0.090 Failed Failed Failed
PMGS 0.998 0.168 0.254 0.995 0.091 0.130 0.997 0.069 0.080 0.993 0.092 0.152 0.987 0.168 0.214 0.952 0.021 0.148

Table 4: Comparison of motion recovery (Synthetic data).

Box Shark Bear

IoU↑ ATE↓ RMSE↓ IoU↑ ATE↓ RMSE↓ IoU↑ ATE↓ RMSE↓
CFGS* 0.079 0.392 0.425 0.252 0.425 0.458 0.199 0.319 0.364
4DGS 0.144 0.553 0.592 0.141 0.505 0.556 Failed Failed Failed
Mo-GS 0.299 0.267 0.313 0.298 0.557 0.629 0.179 0.526 0.573
Dy-GS 0.262 0.439 0.470 0.679 0.094 0.155 Failed Failed Failed
PMGS 0.940 0.055 0.086 0.876 0.021 0.093 0.969 0.043 0.047

Table 5: Comparison of motion recovery (Real data).

Video reconstruction Motion recovery
PSNR↑ SSIM↑ LPIPS↓ IoU↑ ATE↓ RMSE↓

CFGS* 16.82 0.799 0.249 0.206 0.426 0.478
Model 1 24.61 0.910 0.089 0.635 0.334 0.791
Model 2 25.63 0.929 0.045 0.886 0.137 0.188
Model 3 28.95 0.940 0.035 0.933 0.098 0.147
Full 29.35 0.949 0.029 0.967 0.080 0.133

Table 6: Ablation study of different models.

for the LGS , LAcc and LSmooth were set to 0.7, 0.2 and 0.1.

Comparison
We select 2DGS (Huang et al. 2024a), InstantSplat (Fan
et al. 2024) as static competitors. Dynamic competitors
include 4DGS (Wu et al. 2024), DynamicGS (Luiten et al.
2024) and MotionGS (Zhu et al. 2024a). Furthermore, we
employ CFGS (Fu et al. 2024) as a baseline by disabling
its depth estimation for reconstruction, and instead inputting
our pre-trained Gaussian model for purely 6DoF pose esti-
mation comparison (symbolized as CFGS*).
Comparison of video reconstruction. We report the quanti-
tative results in Tables 2 and 3. Our algorithm demonstrates
robust performance, as the proposed density control strat-
egy effectively enhances appearance and geometric qual-
ity, thereby providing a solid foundation for dynamic recon-
struction. CFGS underperforms, primarily due to inherent
flaws in depth inference pipelines. For object-specific mod-
eling under non-open scenarios, the monocular observation
system yields an underdetermined solution manifold, where
maintaining 3D consistency over extended spatiotemporal
intervals becomes theoretically unattainable.
Comparison of motion recovery. We uniformly sample
frames from complete sequences and visualize in Figure
4, and the quantitative results are reported in Tables 4
and 5. PMGS performs well in all three tracking metrics,
demonstrating accurate estimation of both translation and

rotation. 4DGS and MotionGS exhibit obvious trajectory
fractures and artifacts—typical limitations of dynamic al-
gorithms when modeling large-scale motions. While Dy-
namicGS demonstrates promising performance, it exhibits
limited generalization capability to certain instances. For
CFGS, even with our well-trained 3D model provided, the
spatial position is incorrectly driven toward infinity under
only photometric supervision to forcibly fit image similar-
ity. These findings collectively reveal the effectiveness of
physics constraints for recovering complex motions across
large spatiotemporal domains.

Ablation Study
We conduct ablation experiments to verify the effectiveness
of different novel modules.
Effectiveness of point density control. As evidenced in Ta-
ble 6, Model 1 exhibits degradation, demonstrating that poor
reconstruction directly compromises tracking accuracy. In-
correct geometry and appearance representations may cause
target mislocalization—especially when floating Gaussian
points distort the calculation of central points and bounding
boxes, thus resulting in cumulative errors over time.
Effectiveness of physical constraints. Model 2 ablates
LAcc and the DSA strategy. As shown in Figure 5, the spatial
position of the object exhibits drift, and errors are observed
in rotational orientation. The removal of DSA significantly
increases the optimization time cost, revealing the necessity
of adaptive adjustment of the learning rate under high-speed
displacement.
Effectiveness of Kalman fusion. The removal reduces com-
putational overhead at the expense of a decrease in stability.
In more challenging scenarios (e.g., under substantial time-
varying force interference), the strategy’s role in ensuring
robustness would be more pronounced.

Conclusion
In this paper, we propose PMGS for reconstructing projec-
tile motion over large spatiotemporal scale from monoc-
ular videos. Through a two-stage pipeline involving dy-
namic scene decomposition modeling and physically en-
hanced motion recovery, we effectively alleviate the issues
of trajectory fragmentation and physical implausibility en-
countered by existing dynamic neural rendering methods
when handling high-speed, non-linear rigid motion. In the
future, we plan to delve into more challenging topics, such
as achieving accurate 3D motion reconstruction under low-
quality imaging or changing force field environments.
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