
Under review as a conference paper at ICLR 2023

PROGRESSIVE KNOWLEDGE DISTILLATION:
BUILDING ENSEMBLES FOR EFFICIENT INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of progressive distillation: Given a large, pre-trained teacher
model g, we seek to decompose the model into an ensemble of smaller, low-
inference cost student models fi. The resulting ensemble allows for flexibly tuning
accuracy vs. inference cost, which can be useful for a multitude of applications
in efficient inference. Our method, B-DISTIL, uses an algorithmic procedure that
uses function composition over intermediate activations to construct expressive
ensembles with similar performance as g, but with much smaller student models.
We demonstrate the effectiveness of B-DISTIL by decomposing pretrained models
across a variety of image, speech, and sensor datasets. Our method comes with
strong theoretical guarantees in terms of convergence as well as generalization.

1 INTRODUCTION

Knowledge distillation aims to transfer the knowledge of a large model into a smaller one (Buciluǎ
et al., 2006; Hinton et al., 2015). While this technique is commonly used for model compression, one
downside is that the procedure is fairly rigid—resulting in a single compressed model of a fixed size.
In this work, we instead consider the problem of progressive distillation: approximating a large model
via an ensemble of smaller, low-latency models. The resulting decomposition is useful for a number
of applications in efficient inference. For example, components of the ensemble can be selectively
combined to flexibly meet accuracy/latency constraints (Li et al., 2019; Yang & Fan, 2021), can enable
efficient parallel inference execution schemes, and can facilitate early-exit (Bolukbasi et al., 2017;
Dennis et al., 2018) or anytime inference (Ruiz & Verbeek, 2021; Huang et al., 2017a) applications,
which are scenarios where inference may be interrupted due to variable resource availability.

More specifically, we seek to distill a large pre-trained model, g, onto an ensemble comprised of
low-parameter count, low-latency models, fi. We additionally aim for the resulting ensemble to form
a decomposition, such that evaluating the first model produces a coarse estimate of the prediction
(e.g., covering common cases), and evaluating additional models improves on this estimate (see
Figure 1). There are major advantages to such an ensemble for on-device inference: 1) inference cost
vs. accuracy trade-offs can be controlled on-demand at execution time, 2) the ensemble can either be
executed in parallel or in sequence, or possibly a mix of both, and 3) we can improve upon coarse
initial predictions without re-evaluation in response to resource availability.

While traditional distillation methods are effective when transferring information to a single model of
similar capacity, it has been shown that performance can degrade significantly when reducing the
capacity of the student model (Mirzadeh et al., 2020; Gao et al., 2021). Moreover, distillation of a
deep network onto a weighted sum of shallow networks rarely performs better than distillation onto
a single model (Cho & Hariharan, 2019; Allen-Zhu & Li, 2020). Our method exploits connections
to minimax optimization and online learning (Schapire & Freund, 2013) to allow models in our
ensemble to compose and reuse intermediate activation outputs of other models during inference. As
long as these composition functions are resource efficient, we can increase base class capacity at
roughly the same inference cost as a single model. Moreover, we show that our procedure retains the
theoretical guarantees of these methods (Schapire & Freund, 2013). Concretely,

• We formulate progressive distillation as a two player zero-sum game, derive a weak learning
condition for distillation and present our algorithm, B-DISTIL, to approximately solve this game.
To make the search for weak learners in low parameter count models feasible, we explicitly solve

1

Under review as a conference paper at ICLR 2023

. . .

Teacher Model

Progressive
Distillation

+ + +

Student Models

. . .+

Figure 1: In progressive distillation, a large teacher model is distilled onto low inference cost models.
The more student models we evaluate, the closer the ensemble’s decision boundary is to that of the
teacher model. Models in ensemble are allowed to depend on previously computed features.

a log-barrier based relaxation of our weak learning condition. Moreover, by allowing models to
reuse computation from select intermediate layers of previously evaluated models of the ensemble,
we are able to increase the model’s capacity without significant increase in inference cost.

• We empirically evaluate our algorithm on synthetic as well as real-world classification tasks from
vision, speech and sensor data with models suitable for the respective domains. We show that
our ensemble behaves like a decomposition, allowing a run-time trade-off between accuracy and
computation, while remaining competitive to the teacher model.

• We provide theoretical guarantees for our algorithm in terms of in-sample convergence and
generalization performance. Our framework is not architecture or task specific and can recover
existing ensemble models used in efficient inference, and we believe puts forth a general lens to
view previous work and also to develop new, principled approaches for efficient inference.

2 BACKGROUND AND RELATED WORK

Knowledge distillation. Machine learning inference is often resource-constrained in practice due to
requirements around metrics such as memory, energy, cost, or latency. This has spurred the develop-
ment of numerous techniques for model compression. A particularly popular approach is knowledge
distillation, which considers transferring the knowledge of a larger model (or model ensemble) to a
smaller one (Buciluǎ et al., 2006; Hinton et al., 2015). Despite its popularity, performing compression
via distillation has several known pitfalls. Most notably, many have documented that distillation may
not perform well when there is a capacity gap between the teacher and student, i.e., the teacher is
significantly larger than the student (Mirzadeh et al., 2020; Gao et al., 2021; Cho & Hariharan, 2019;
Allen-Zhu & Li, 2020). When performing distillation onto a weighted combination of ensembles, it
has been observed that adding additional models into the ensemble does not dramatically improve
performance over that of a single distilled model (Allen-Zhu & Li, 2020). There is also a lack of
theoretical work characterizing when and why distillation is effective for compression Gou et al.
(2021). Our work aims to address many of these pitfalls by developing a principled approach for
progressively distilling a large model onto an ensemble of smaller, low-capacity ones.

Early exits and anytime inference. Numerous applications stand to benefit from the output of
progressive distillation, which allows for flexibly tuning accuracy vs. inference cost and executing
inference in parallel. Enabling trade-offs between accuracy and inference cost is particularly useful
for applications that use early exit or anytime inference schemes. In on-device continuous (online)
inference settings, early exit models aim to evaluate common cases quickly in order to improve
energy efficiency and prolong battery life (Dennis et al., 2018; Bolukbasi et al., 2017). For instance,
a battery powered device continuously listening for voice commands can use early exit methods to
improve battery efficiency by classifying non-command speech quickly. Many methods that produce
early exit models are also applicable to anytime inference (Huang et al., 2017a; Ruiz & Verbeek,
2021). In anytime inference, the aim is to produce a prediction even when inference is interrupted,
say due to resource contention or a scheduler decision. Unlike early exit methods where the classifier
chooses when to exit early, anytime inference methods have no control over when they are interrupted.
We explore the effectiveness of using our method, B-DISTIL, for such applications in Section 5.

2

Under review as a conference paper at ICLR 2023

Two-player games, online optimization and boosting. The importance of equilibrium of two
player zero-sum games has been recognized since the foundational work of von Neumann and
Morgenstern (von Neumann & Morgenstern, 1944). Their connections to convex programming duality
have lead to many developments in algorithm design, theoretical computer science and machine
learning (Lugosi & Cesa-Bianchi, 2006; Goodfellow et al., 2014). One astounding application is by
Schapire (1990) and Freund (1990) who showed that weak learners can be aggregated to produce
strong learners. This has led to many practical boosting based learning algorithms and software such
as AdaBoost (Freund & Schapire, 1997), gradient boosting (Mason et al., 1999), and XGboost (Chen
& Guestrin, 2016). An application of boosting that is similar to our setup is by Trevisan et al. (2009).
They show that given a target bounded function g, and class of approximating functions F , one
can approximate g arbitrarily well with respect to F using ideas from online learning and boosting.
Although boosting has led to many theoretical and practical advances, these efforts have only recently
seen success in deep learning applications. In particular, Suggala et al. (2020) propose a generalized
boosting framework to extend boosting to deep networks using function compositions in feature
space. The intermediate connections we (Section 3) is an extension of their approach.

3 PROBLEM FORMULATION AND ALGORITHM

We start by formulating our distillation task as a two player zero-sum game and introduce the
framework of stochastic minimax optimization. Consider a class of hypotheses F , a class of
probability distributions P and a loss function L that is convex in its first argument. We consider
two players whose pure strategy sets are F and P respectively, with loss (and reward) of the players
given by F (f, p) = Ex∼p[L(f, x)]. This naturally leads to the definition of the minimax value of the
game given by

max
p∈P

min
f∈F

F (f, p) . (1)

Note that this game is convex in the hypothesis player (min-player) and concave in the distribution
player (max-player) and thus amenable to algorithmic approaches. An algorithm is said to (ap-
proximately) solve the above minimax problem if it produces a distribution over hypotheses and a
distribution that achieve the value in Equation (1). In order for the problem to be well-defined, we
need to specify the access the algorithm has to the F and P . One general notion is to allow access to
a weak gradient vector h such that, when queried at distribution µ ∈ P and for β > 0,

⟨h,∇fF (f, p)⟩ ≥ β, (2)

The advantage of this lens is that many algorithms can be seen as implementing solutions to such
minimax optimization problems. See Appendix A for a more involved discussion.

Although, eq. (2) is a seemingly easier notion than the full optimization, we emphasize that in many
problems of interest even this is challenging. In fact, in the multilabel setting that we focus on, one of
the main algorithmic challenges is to construct an algorithm that reliable and efficiently finds these
weak gradients. Our method FIND-WL provides a way to do this successfully as demonstrated in our
experimental setup, across a variety of datasets.

For the setting of our interest, we will restrict our attention the case where P is the set of all
distributions over a sample set drawn from a fixed distribution p and, differ the details of the general
framework to the Appendix. As in traditional distillation we will work with the output of g, often
referred to as logits. Our goal is to produce an ensemble of predictors from the set of hypothesis
classes {Fm} to approximate g ‘well’. We will do this by searching for weak learners with respect to
the target g in the class Fm. Whenever this search fails we restart the search, now allowing models in
Fm to reuse features computed by previous models.

To cast our progressive distillation problem as a two player game, we start with a predictor (a model
or an ensemble) g : X → RL already provided to us along with a non empty set of low inference
cost1 hypothesis class {Fm}Mm=1. We assume that {Fm} is in increasing order of inference cost. The
loss function of interest then is 1

2

∑
i,j (f(xi)− g(xi))

2
j which is the total squared error between the

1Users can define ‘inference cost’ in terms of memory requirements or compute requirements based on their
use-case. We only assume {Fi} is ordered on this metric.

3

Under review as a conference paper at ICLR 2023

two predictors. Given a training set {xi}, we think of the role of the max player in eq. (1) to produce
distributions over the training set and the role of the min player to produce a hypothesis that minimizes
the loss on this distribution. In this setting, note that P =

{
p ∈ RN×L : pi,j ≥ 0 ∀j

∑
i pi,j = 1

}
is the product of simplices in N × L dimensions, and

(∇fF (f, p))j =
∑
i

pi,j (f(xi)− g(xi))j . (3)

Algorithm 1 B-DISTIL: Main algorithm

Require: Target g, rounds T , data {(xi, yi)}Ni=1, learn-
ing rate η, model classes {Fm}Mm=1

1: K+
t (i, j),K−

t (i, j)← 1
2N , 1

2N ∀(i, j)
2: F, r, t← ∅, 1, 1
3: while r < R and t < T do
4: ft = FIND-WL(K+

t ,K−
t ,Fr)

5: if ft is NONE then
6: r ← r + 1
7: continue
8: end if
9: With l := ft − g, update K+

t ,K−
t . ∀(i, j)

K+
t+1(i, j)← K+

t (i, j) exp(−η · l(xi)j) (4)

K−
t+1(i, j)← K−

t (i, j) exp(η · l(xi)j) (5)

10: Normalize K+
t ,K−

t .
11: F, t← F ∪ {ft}, t+ 1
12: end while
13: return 1

|F |
∑|F |

i=1 fi

Algorithm 2 FIND-WL

Require: Probability matrices K+,K−,
model classF parameterized by θ ∈ Θ,
hyper-parameters for SGD

1: Obtain {Fr}R1 by expanding F (sec-
tion 3.2).

2: for F ′ ∈ {Fr}Rr=1 do
3: Initialize initial parameter θ0 ∈ F ′.
4: for i ∈ {1, . . . ,max-search} do
5: Randomly initialize fθi .
6: Run SGD to solve Equation 6.
7: if fθi is a weak learner then;
8: return fθi
9: end if

10: end for
11: end for
12: return NONE

Concretely, at each iteration t, the algorithm maintains a matrices K+
t ∈ RN×L and K−

t ∈ RN×L

of probabilities (in our setting, it turns out to be easier to maintain the positive errors and the
negative error separately). Note that, the matrices K+

t and K−
t are such that for all j ∈ [L],∑

i K
+
t (i, j) + K−

t (i, j) = 1. Moreover, for all (i, j) ∈ [N] × [L], 0 ≤ K+
t (i, j),K−

t (i, j) ≤ 1.
The elements K+

t (i, j) and K−
t (i, j) can be thought of as the weight on the residuals ft−1(x)− g(x)

and g(x)− ft−1(x) respectively, up-weighting large deviations from g(x).

In order to make updates to this vector, we need access to a weak gradient similar to h in Equation (2).
We formalize this using Definition 1, which can be seen as a natural extension of the standard weak
learning assumption in the boosting literature to our setting.
Definition 1 (Weak learning condition). Given a dataset {(xi, yi)}Ni=1, a target function g : X → RL

and probability matrices K+
t ,K−

t , a function ft : X → RL is said to satisfy the weak learning
condition with respect to g if for all j,∑

i

K+
t (i, j)(ft(xi)− g(xi))j +

∑
i

K−
t (i, j)(g(xi)− ft(xi))j > 0

With the current probability matrices K−
t ,K+

t , in each round t, B-DISTIL performs two steps; first, it
invokes a subroutine FIND-WL that attempts to find a classifier ft ∈ Fr satisfying the weak learning
condition (Definition 1). If such a predictor is found, we add it to our ensemble and proceed to
the second step – updating the probability matrices K−

t ,K+
t based on errors made by ft. This is

similar in spirit to the boosting algorithms such as AdaBoost (Schapire & Freund, 2013) for binary
classification. If no such predictor can be found, we invoke the subroutine with the next class, Fr+1

and repeat the search till a weak learner is found or we have no more classes to search in.

3.1 FINDING WEAK-LEARNERS

As mentioned earlier, the real difficulty in provably boosting in this setting is in finding a single
learner ft at round t that satisfies our weak learning condition simultaneously for all labels j. Existing

4

Under review as a conference paper at ICLR 2023

boosting methods for classification treat multi-class settings (L > 1) as L instances of the binary
classification problem (one vs all) (Schapire & Freund, 2013). They typically choose L different
weak learners for each instance, which is unsuitable for resource efficient on-device inference. The
difficulty is further increased by the capacity gap between the student and teacher models we consider
for distillation. In our work, we focus on this aspect of the problem. Thus, along with controlling
temperature for distillation, we employ two additional strategies; a) we use a log-barrier regularizer
in the objective FIND-WL solves to promote weak learning and, b) we reuse limited stored activation
outputs of previously evaluated models to increase the expressivity of the current base class.

3.1.1 LOG-BARRIER REGULARIZER

To find a weak learner, the FIND-WL method solves the optimization program in Equation 6 using
stochastic gradient descent.

min
f∈F

∑
i

1

N
Ltask(f(xi), g(xi))−

1

γ

∑
i,j

(
I+ij log

(
1 +

l(xi)j
2B

)
+ (1− I+ij) log

(
1− l(xi)j

2B

))
(6)

Here, we define I+ij := I[K+
t (i, j) > K−

t (i, j)], B ≥ max{∥f(x)∥, ∥g(x)∥} for all x, and l(xi) :=

f(xi) − g(xi). The first term is a task specific loss between f(xi) and g(xi). For our binary
and multi-class experiments, we use the standard binary/multi-class cross-entropy distillation loss
function (Hinton et al., 2015), with temperature smoothening. To see the intuition behind the second
term, first assume the following is true for all (i, j).

(K+
t (i, j)−K−

t (i, j))(f(xi)− g(xi))j > 0. (7)

Summing over all data points xi, we can see that this is sufficient for f to be a weak learner with
respect to g; for all j, ∑

i

(K+
t (i, j)−K−

t (i, j))(f(xi)− g(xi)) > 0 (8)∑
i

K+
t (i, j)(ft(xi)− g(xi))j +

∑
i

K−
t (i, j)(g(xi)− ft(xi))j > 0. (9)

The second term in Equation 6 is solving a soft log-barrier version of the weak learning condition
of Equation 7, that penalizes those (i, j) for which Equation 7 does not hold. By tuning γ we can
increase the relative importance of the regularization objective, encouraging ft to be a weak learner
potentially at the expense of task performance.

3.1.2 INTERMEDIATE LAYER CONNECTIONS

As mentioned in Section 2, distillation onto a linear combination of low capacity student models,
often offers no better performance than that of any single model in the ensemble trained independently.
For boosting, empirically we see that once the first weak learner has been found in some class Fm of
low-capacity deep networks, it is difficult to find a weak learner for the reweighed objective from the
same class Fm. To work around this we let our class of weak learners at around t to include functions
that depend on output of intermediate layers of previous weak learners (Suggala et al., 2020).

As a concrete example, consider a deep fully connected network with U layers, parameterized as
f = Wϕ1:U . Here ϕ1:u can be thought of as a feature transform on x using the first u layers
into Rdu and W ∈ RdU×L is a linear transform. With two layer fully connected base model class
F0 := {W (0)ϕ

(0)
1:2 |W (0) ∈ RL×d2} (dropping subscript m for simplicity), define

Fr = {W (r)ϕ
(r)
1:2(id + ϕ

(r−1)
1:2)} and F ′

r = {W (r)ϕ
(r)
2 (id + ϕ

(r)
1 + ϕ

(r−1)
1)}

with id(x) := x. It can be seen that {Fr} and {F ′
r} define a variant of residual connection based

networks (Huang et al., 2017b). It can be shown that classes of function {Fr} (and {F ′
r}) increase in

capacity with r. Moreover, when evaluating sequentially the inference cost of a model from Fr is
roughly equal to that of F , since each subsequent evaluation reuses stored activations from previous
evaluations. For this reason the parameter count of each Fr remains the same as that of the base class.

5

Under review as a conference paper at ICLR 2023

We informally refer to the process of constructing {Fr} given a choice of base class F0, the parameter
R and the connection type as expanding F0. In our experiments, we consider four connection
functions: dense connections (He et al., 2016), residual-connections (Huang et al., 2017b), LSTM
gated-connections (Hochreiter & Schmidhuber, 1997) and GRU (Cho et al., 2014) gated connections
and other accumulation operations, and consider R as a hyper-parameter.

Note that while intermediate connections help with capacity, they often reduce parallelizability. For
instance, weak learners from F ′ defined here depend on the output of a (fixed) learner from Fr−1, and
thus can only finish its inference after the previous models is evaluated. As a practical consequence
dependencies on activation outputs of later layers are preferred, as this allows us more freedom in
choosing execution schemes (see Appendix C).

4 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis and justification for our method. We first prove in
sample convergence guarantees; we will show that the ensemble output produced by algorithm 1
converges to g at (1/

√
T) rate, provided that the procedure FIND-WL succeeds at every time t.

Theorem 1. Suppose the class F satisfies that for all f ∈ F , ∥f − g∥∞ ≤ G∞. Let F = {ft} be
the ensemble after T rounds of Algorithm 1, with the final output Ft =

1
T

∑T
t=1 ft. If ft satisfies

eq. (7) for all t ≤ T then for T ≥ ln 2N and η = 1
G∞

√
ln 2N
T , we have for all j

∥Ft,j − gj∥∞ ≤ G∞

√
ln 2N

T
(10)

where Ft,j and gj are the jth coordinates of the functions Ft and g respectively.

We differ the details of the proof to the Appendix B. The main idea behind the proof is to bound the
rate of convergence of the algorithm towards the minimax solution. This proceeds by maintaining a
potential function and keeping track of its progress through the algorithm. The bounds and techniques
here are general in the sense that for various objectives and loss functions appropriate designed weak
learners give similar rates of convergence to the minimax solution. Furthermore, a stronger version
that shows exponential rates can be shown by additionally assuming an edge for the weak learner.

In addition to the claim above about the in sample risk, we also show that the algorithm has a strong
out of sample guarantee. We show this by bounding the generalization error of the algorithm in terms
of the generalization error of the class F . In the following theorem, we restrict to the case of binary
classification for simplicity but general result follow along similar lines.

Let CT denote the class of functions of the form H(x) = sign(1
T

∑T
i=1 ht(x)), where ht are functions

in class F . Then we have the following generalization guarantee:
Theorem 2 (Excess Risk). Suppose data D contains of N iid samples from distribution D. Suppose
that the function g has ϵ margin on data D with probability µ, that is Prx∼D [|g(x)| < ϵ] < µ.
Further, suppose that the class CT has VC dimension d. Then, for T ≥ 4G2

∞ ln 2N/ϵ2, with
probability 1− δ over the samples, the output FT of algorithm 1 satisfies

err(FT) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ ϕ

Note that the above theorem can easily be adapted to the case of margins and VC dimension of
the class CT being replaced with the corresponding fat shattering dimensions. Furthermore, in the
setting of stochastic minimax optimization, one can get population bounds directly by thinking of
sample losses and gradients as stochastic gradients to the population objective. This is for example
the view taken by Suggala et al. (2020). In our work, we separate the population and sample bounds
to simplify the presentation and the proofs.
Remark 2.1. We further emphasize that though the exact bound that appear in Theorem 1 and
Theorem 2 depend on our particular algorithm, the forms and the general flavor of the guarantees of
the theorems are general amongst algorithms solving stochastic minimax problems. For example, the
theorems of Suggala et al. (2020) can be captured by our framework.

6

Under review as a conference paper at ICLR 2023

5 EMPIRICAL EVALUATION

In this section, we evaluate B-DISTIL on both real world and simulated datasets, and over a variety
of architecture types. We consider four real world datasets across three domains—vision, speech
and sensor-data—as well as two simulated datasets. This allows us to evaluate our method on five
of architecture types: fully connected networks, convolutional networks, residual networks, densely
connected networks and recurrent networks.

5.1 DATASET INFORMATION

For experiments with simulated data, we construct two datasets. The first dataset, referred to as
ellipsoid is a binary classification data set. Here the classification labels for each data point x ∈ R32 is
determined by the value of xTAx for a random positive semidefinite matrix A. The second simulated
dataset, cube, is for multiclass classification with 4 classes. Here labels are determined by distance to
16 randomly selected vertices from {−1, 1}32 in R32, randomly partitioned into 4 classes.

We use four real world data sets for our experiments. Our image classification experiments use the
CIFAR-10 and CIFAR-100 datasets. For spoken-audio classification tasks we use the Google-13
speech commands dataset. We use the daily sports activities (DSA) dataset for experiments with
sensor data. Detailed information of all datasets used, including source, size and processing steps,
along with synthetic data generation steps can be found in Appendix C.

5.2 MODEL ARCHITECTURE DETAILS

Teacher models. We use deep fully connected (FC) networks for classification on Ellipsoid and
convolutional networks for Cube. For image classification on CIFAR-10 dataset we use publicly
available, pretrained ResNet models. We train reference DenseNet models for the CIFAR-100 dataset
based on publicly available training recipes. As both spoken audio data (Google-13) and sensor-data
(DSA-19) are time series classification problems, we use recurrent neural networks (RNNs) for these
experiments. We train LSTM (Hochreiter & Schmidhuber, 1997) based architecture on Google-13
and a GRU (Cho et al., 2014) based architecture on DSA-19. Except for the pretrained ResNet models,
all other teacher models are selected based on performance on validation data.

Student models. For all distillation tasks, for simplicity we design the student base model class
from the same architecture type as the teacher model, but starting with significantly fewer parameters
and resource requirements. We train for at most T = 7 rounds, keeping η = 1 in all our experiments.
Whenever FIND-WL fails to find a weak learner, we expand the base class F using the connection
specified as a hyperparameter. Since we need only at-most T = 7 weak learners, we can pick
small values of R (say, 2). The details of the intermediate connections used for each data-set and
hyperparameters such as γ, hyper-parameters for SGD can be found in Appendix C and D.

5.3 EXPERIMENTAL EVALUATION AND RESULTS

First, we present the trade-off between accuracy and inference time offered by B-DISTIL in the context
of anytime inference and early prediction. We compare our models on top-1 classification accuracy
and total floating point operations (FLOPs) required for inference. We use a publicly available
profiler (Rasley et al., 2020) to measure floating point operations. For simplicity of presentation, we
convert these to the corresponding inference times (τ) on a reference accelerator (NVIDIA 3090Ti).

Anytime inference. As discussed previously, in the anytime inference setting a model is required
to produce a prediction even when its execution is interrupted. Standard model architectures can only
output a prediction once the execution is complete and thus are unsuitable for this setting. We instead
compare against the idealized baseline where we assume oracle access to the inference budget ahead
of each execution. Under this assumption, we can train a set of models suitable various inference
time constraints, say by training models at various depths, and pick the one that fits the current
inference budget obtained by querying the oracle. We refer to this baseline as NO-RESHED and
compare B-DISTIL to it on both synthetic and real world datasets in Figure 2. This idealized baseline
establishes an upper bound on the accuracy of B-DISTIL.

7

Under review as a conference paper at ICLR 2023

0.1 0.2 0.3
frac. inference time

80

90

Ac
cu

ra
cy

 (%
)

FC-32,32,64

B DSTILL
NORESHED
RESHED
Teacher

(a) Cube

0.25 0.50 0.75
frac. inference time

80

85

90

FC-16,16,16

(b) Ellipsoid

0.0 0.5 1.0
frac. inference time

70

80

90
ResNet56

(c) CIFAR-10

0.2 0.4 0.6
frac. inference time

50

60

70

Ac
cu

ra
cy

 (%
)

DenseNet121

(d) CIFAR-100

0.0 0.2 0.4 0.6
frac. inference time

60

70

80

90
LSTM128

(e) Google-13

0.2 0.4
frac. inference time

82

84

86
GRU32

(f) DSA-19

Figure 2: Accuracy vs inference-time trade-off. Inference time is reported as fraction of teacher’s
inference time. B-DISTIL performs this trade-off at runtime. The baseline NO-RESHED at inference
time τw (x-axis) is the accuracy of a single model that is allowed |τw−0| time for inference. Similarly
the baseline RESHED at τw is the accuracy of an ensemble of models, where the ensemble is such
that model w requires |τw − τw−1| time to perform its inference. We see that B-DISTIL remains
competitive to the oralce baseline (NO-RESCHED) and outperforms weighted averaging (RESCHED).

Dataset Algorithm Early-prediction Acc
T = 50% T = 75% T = 100%

Acc (%) Frac Acc (%) Frac Acc (%)

Google-13 E-RNN 88.31 0.48 88.42 0.65 92.43
B-DISTIL 87.41 0.49 89.31 0.71 92.25

DSA-19 E-RNN 83.5 0.55 83.6 0.56 86.8
B-DISTIL 82.1 0.53 84.1 0.58 87.2

Table 1: Early prediction performance. Performance of the ensemble produced by B-DISTIL to the
E-RNN algorithm (Dennis et al., 2018). The accuracy and the cummulative fraction of the data early
predicted at 50%, 75% and 100% time steps are shown. At T = 100, frac. evaluated is 1.0. The
ensemble output by B-DISTIL with the early-prediction loss is competitive to the E-RNN algorithm, a
method developed specifically for early prediction of RNNs.

B-DISTIL can improve on its initial prediction whenever inference jobs are allowed to be rescheduled.
To contextualize this possible improvement, we consider the case where the execution is interrupted
and rescheduled (with zero-latency, for simplicity) at times {τ1, τ2, . . . , τW }. We are required to
output a prediction at each τw. Assuming we know these interrupt points in advance, one possible
baseline can be as follows: select models with inference budgets |τ1|, |τ2 − τ1|, . . . , |τw − τw−1|.
Sequentially evaluate them and at at each interrupt τw, output the (possibly weighted) average
prediction of the w models. We call this baseline RESCHED. Since the prediction at τw is a simple
average of models, we expect its performance to serve as a lower-bound for the performance of B-
DISTIL. In the same Figure (Figure 2) we compare B-DISTIL to the RESHED baseline. Note that both
baselines require access to inference budget ahead of time.

Early prediction. To evaluate the applicability of our method for early prediction in online time-
series inference, we compare the performance of B-DISTIL to that of E-RNN from Dennis et al. (2018).
Unlike B-DISTIL, which can be applied to generic architectures, E-RNN is a state-of-the-art method
for early prediction that was developed specifically for RNNs. When training, we set the task loss

8

Under review as a conference paper at ICLR 2023

0 2 4
Round (T)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 (%
)

ResNet56
Model
Connections

(a) CIFAR-10

0 2 4
Round (T)

0.0

0.2

0.4

0.6

DenseNet121

(b) SVNH-10

0 2 4
Round (T)

0.0

0.2

0.4

0.6
LSTM128

(c) Google-13

0 1 2 3
Round (T)

0.0

0.2

0.4

GRU32

(d) DSA-19

Figure 3: Overhead of connections. The floating point operations required to evaluate the model
added in round T , compared to that required to evaluate just the connections used by this model, for
each of the real-world dataset. FLOPs are reported as a fraction of teacher model’s FLOPs. We see
that the connections add relatively little overhead.

Ltask in Equation (6) to the early-classification loss used in E-RNN training. We evaluate our method
on the time-series datasets GoogleSpeech and DSA. The performance in terms of time-steps evaluated
is compared in Table 1. B-DISTIL remains competitive to E-RNN algorithm for early-prediction.
Unlike E-RNN, B-DISTIL also offers early prediction for offline evaluation of time-series data —
when all of the data arrives at once. For such cases, a threshold can be tuned similar to E-RNN and
B-DISTIL can evaluate the models in its ensemble in order of increasing inference cost, exiting as
soon as the confidence-score crosses this threshold.

Overhead of connections. Our method uses intermediate connections to improve its performance.
Although these connections are designed to be efficient, they still have an overhead cost over an
averaging based ensemble. The FLOPs required to evaluate intermediate connections corresponding
to the distillation tasks in Figure 2 is shown in Figure 3. Here, we compare the FLOPs required to
evaluate the model that was added in a round T to the FLOPs required evaluate the intermediate
connections used by this model. Note that summing up all the FLOPs up to a round T , in Figure 3
gives the total FLOPs required to for the ensemble constructed at the end of round T . For all our
models, this overhead is negligible when compared to the inference cost of the corresponding model.

To evaluate the benefits offered by the intermediate connections, we can compare the results of B-
DISTIL run with connections and B-DISTIL without connections. The later case can be thought
of as running the AdaBoost algorithm for distillation. Note that this is the same as the RESCHED
baseline (simple averaging). Thus comparing the B-DISTIL plot in Figure 2 to the plot of RESCHED
highlights the benefit of using intermediate connections. As in this work our focus is on finding weak
learners in the presence of capacity gap, and we do not explore additional compression strategies like
quantization, hard thresholding, low-rank projection that can further reduce inference cost.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose B-DISTIL, an algorithm for progressive distillation. B-DISTIL produces
an ensemble of learners that provide efficient inference, with progressively better results as the
ensemble size increases: this allows for a straightforward way to trade off accuracy and compute
at inference time, in cases where inference may be interrupted abruptly, or when variable levels of
accuracy are expected. We experimentally demonstrate the effectiveness of B-DISTIL by decomposing
well established deeper models onto ensembles over a variety of problem domains. The procedure
leverages a stochastic solver combined with log barrier regularization for finding weak learners during
distillation. Further, we circumvent the issue of model capacity by using intermediary connections.

A key insight in this work is that posing distillation as a two player zero-sum game allows us to
abstract away model architecture details into base class construction F . This means that, conditioned
on us finding a ‘weak learner’ from the base class, we retain the guarantees of the traditional boosting
setup. A caveat of this abstraction is that the user must design F . In future work, we would like
to extend these ideas by a running boosting-like procedures on model and hyperparameters taken
together. Similar methods have recently found success in applications such as hyperparameter tuning
for federated learning (Khodak et al., 2021).

9

	Introduction
	Background and Related Work
	Problem Formulation and Algorithm
	Finding Weak-learners
	Log-barrier regularizer
	Intermediate layer connections

	Theoretical Analysis
	Empirical Evaluation
	Dataset Information
	Model Architecture Details
	Experimental Evaluation and Results

	Conclusion and Future Work

