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Abstract
Strong Lottery Tickets are subnetworks within a randomly weighted network uncovered by a
binary mask called supermask. They offer a promising approach to model compression by
eliminating the need to store weights since their effective subnetwork can be regenerated
from a fixed random seed and the supermask. However, extending this approach to large
language models (LLMs) is non-trivial due to limited scalability and inefficient training
dynamics of existing SLT methods. To address these challenges, we propose Adaptive
Supermask (Ada-Sup), a scalable and efficient method for discovering high-quality multi-bit
supermasks through an innovative quantization-based approach. Building on this method,
we introduce TicketLLM, a low-bit and sparse Transformer-based LLM architecture powered
by Ada-Sup. Experimental results show that Ada-Sup can discover high-quality supermasks
with significantly reduced training costs compared to previous methods in both binary and
multi-bit settings. Furthermore, TicketLLM outperforms BitNet b1.58 on a 1.3B parameter
model with the same memory per connection, achieving 0.08 lower perplexity while operating
at a higher sparsity level (50% vs. 33%). These results highlight the potential of supermask-
based methods as a promising approach for building lightweight LLMs. Code will be made
available upon acceptance.

1 Introduction
As the number of parameters in Transformer-based large language models (LLMs) grows, model compression
techniques such as pruning and quantization have become critical for efficient deployment. To achieve a
better balance between compression ratio and model performance, optimization methods that incorporate
compression directly into model training have gained increasing interest (Wang et al., 2023; Ma et al., 2024;
Fang et al., 2024; Liu et al., 2025). In particular, BitNet papers (Wang et al., 2023; Ma et al., 2024) analyze
scaling behavior of low-bit LLMs trained from scratch, uncovers novel efficiency characteristics, revealing
scaling laws that offer advantages over LLMs with higher precision. Unlike conventional quantization or
pruning methods that are applied to pre-trained models, these works investigate training directly with low-bit
weights. As a result, the primary research focus has shifted toward discovering low-bit representations that
are highly compatible with the pre-training. However, existing approaches have primarily focused on
quantization and sparsity to achieve efficient low-bit representations, leaving other promising approaches
underexplored.

The Strong Lottery Tickets (SLTs) (Zhou et al., 2019; Ramanujan et al., 2020) and their follow-up study (Hirose
et al., 2022) have introduced a novel compression paradigm that incorporates randomness while preserving
the advantages of conventional pruning and quantization. The core insight of SLTs is that effective sparse
neural networks can be discovered within a randomly weighted neural network using connectivity masks called
supermasks. Since random numbers can be generated with a random number generator from a pre-defined seed
on the fly, such randomness in SLT can eliminate the need for memory access for weights. Furthermore, SLTs
offer similar benefits to pruning and quantization through a fundamentally different mechanism: identifying
the sparse subnetwork and storing only a binary supermask and a seed. This novel paradigm has sparked
considerable interest and found applications in diverse domains, including Graph Neural Networks (Huang
et al., 2022), Folded Networks (García-Arias et al., 2023), one-layer Transformers (Shen et al., 2021), and
large-scale vision applications (Okoshi et al., 2022).

Despite its potential, the impact of SLTs on the scaling behavior of Transformers remains largely unexplored,
primarily due to the lack of suitable optimization algorithms. Specifically, there are two major challenges in
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Table 1: Comparison of TicketLLM with other reproduced LLMs with 1.3B parameters. All models are trained
with approximately 400B tokens with the same dataset sampled from FineWeb-Edu Penedo et al. (2024).
LLaMA* is configured LLaMA architecture by replacing linear projection layers with low-bit representations
with RMSNorm.

Name TicketLLM BitNet b1.58 LLaMA
General Characteristics
Base Arch. LLaMA* LLaMA* LLaMA
Weight Distribution {-3, -2, ..., 3} {-1, 0, +1} bf16
Compression Approach SLT Quantization N/A
Training Method Ada-Sup QAT N/A
Parameters
Random Weights {-1, +1} N/A N/A
Trained Weights N/A {-1, 0, +1} bf16
Supermask 2-bit ({0,1,2,3}) N/A N/A
Memory and Sparsity
Memory per Connection 2-bit 2-bit 16-bit
Sparsity (%) ≈ 50 ≈ 30 N/A
Performance
C4 PPL (1.3B) 13.54 13.62 11.68

applying SLTs to LLMs: (1) ensuring scalability to complex tasks and (2) reducing the training overhead
associated with supermask optimization. Multicoated Supermasks (M-Sup) (Okoshi et al., 2022) address the
scalability issue by introducing a multivalued mask, accumulating multiple supermasks with different sparsity
to represent the importance scale of random weights. However, it still suffers from training inefficiencies,
mainly due to overhead for supermask generation that maps importance score parameters assigned to each
connection into supermask.

To tackle these challenges, we propose Adaptive Supermasks (Ada-Sup), a scalable and efficient supermask
optimization method based on a quantization-based approach applied to score parameters. As the bit
precision of quantization can be flexibly adjusted to balance model efficiency and performance, quantization
enables multivalued mask extension without introducing additional training complexity. This approach is
also computationally efficient as quantization mostly consists of element-wise operations such as scaling,
clipping, and rounding. We then introduce TicketLLMs, a family of Transformer-based models optimized
with Ada-Sup, to evaluate how the proposed method scales in large language models. TicketLLMs are
designed based on the LLaMA-based architecture with the additional normalization layers for inputs of linear
projections as proposed by Ma et al. (2024). We configure four model variants ranging from 110M to 1.3B
parameters, trained on up to 416B tokens.

First, we compare Ada-Sup with existing supermask optimization methods for Transformer architectures.
Subsequently, we evaluate TicketLLMs across various amounts of training tokens and parameters to assess
their scalability and compare them with BitNet b1.58, a state-of-the-art ternary LLM trained from scratch.
Our experimental findings are summarized as follows:

• Compared with other supermask optimization methods, Ada-Sup achieves comparable performance
with lower training costs in binary and multi-valued supermask settings.

• Among the methods that leverage unstructured sparsity in low-bit representations, allocating addi-
tional bits to the supermask is more effective than using them for sign representation.

• As summarized in Table 1, experiments on the 1.3B parameters show that our proposal improves
perplexity by 0.08 even with higher sparsity compared with BitNet b1.58, using 2-bits per connection.

This paper is the first work to comprehensively analyze the scaling behavior of SLT in LLMs, opening new
possibilities for efficient Transformer architectures.

2 Strong Lottery Ticket
2.1 Formulation of SLT
As shown in Figure 1, SLT consists of random weights and a supermask. During inference, a sparse subnetwork
is computed with the element-wise product of the random weights and the supermask. Given an input row
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Figure 1: Structure of Strong Lottery Ticket (SLT). Since random weights are sampled from Signed Kaiming
Constant, the distribution of subnetwork becomes ternary values.

vector x ∈ R1×Cin , an output row vector y ∈ R1×Cout , and random weights Wrand ∈ ACin×Cout , where A is
an arbitrary distribution, a linear projection of SLT with a batch size of 1 is defined as follows:

y = x (Wrand ⊙ M) , (1)

where M ∈ {0, 1}Cin×Cout is a supermask that uncovers the subnetwork of random weights.

The choice of the random weight distribution A plays a critical role in SLT. Ramanujan et al. (2020) explored
two variants of distributions: Kaiming Normal N (0, σ) and Signed Kaiming Constant (SKC), a binary
distribution over {−σ, σ}, where σ is the standard deviation of the Kaiming Normal distribution. Among
them, the SKC not only offers better performance but also improves computational efficiency by leveraging
efficient operations enabled by its binary representation. Following this observation, we adopt the binary
distribution in this work.

Another important aspect of SLT is discovering an effective supermask. Since the supermask takes only
binary values (0 or 1), its optimization is known as NP-hard. Most prior work introduces score parameters
S ∈ RCin×Cout

≥0 to make the optimization tractable. These scores are then mapped to the supermask.
Accordingly, Eq. 3 can be rewritten using a mapping function F : RCin×Cout → {0, 1}Cin×Cout as:

y = x (Wrand ⊙ F(S)) . (2)

Various strategies have been proposed to find better functions F . Below, we briefly describe three representative
approaches: EdgePopup, ProbMask, and FixedTh. EdgePopup (Ramanujan et al., 2020) is the first to
establish a practical framework for finding SLTs. It maps the top-k% of scores to 1 while mapping other
scores to 0. Thus, function F can be rewritten with the hyperparameter for supermask density k as F(S; k).
ProbMask (Zhou et al., 2021) introduces Gambel-Softmax mapping to improve the model performance in
highly sparse regions. FixedTh (Koster et al., 2022) compares scores to a threshold hyperparameter τ to
calculate supermask, setting Mi,j = 1 if Si,j ≥ τ , and 0 otherwise. While FixedTh introduces sign flipping
in addition to supermask training, experiments in this paper turned it off to leverage random weights for
storage savings. These methods update scores by approximating gradient of F such as straight-through
estimators (Bengio et al., 2013) during training.

Okoshi et al. (2022) have proposed Multicoated Supermask (M-Sup), which expands EdgePopup to represent
varying levels of importance using multivalued mask. This method expands to multivalued mask by stacking
supermasks with different sparsity, represented as:

y = x
(

Wrand ⊙
N∑

i=1
F(S; ki)

)
, (3)

where k1, . . . , kN are density hyperparameters corresponding to each supermask. Since different supermasks
share the same score parameters, the (i + 1)-th supermask becomes a subset of the i-th supermask. This
method has successfully scaled to complex computer vision tasks.

2.2 Model Compression View of SLT
The unique property of SLTs, where only connectivity is learned, offers an attractive paradigm for model
compression, particularly in resource-constrained environments. This subsection briefly discusses SLT from
the perspective of model compression.
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Figure 2: Overhead of supermask optimization from score parameters for each method. We include three
baselines: EP (Ramanujan et al., 2020), ProbMask (Zhou et al., 2021), and FixedTh (Koster et al., 2022), in
addition to our proposa (AS). We set the same input and output dimensions with all methods with a batch
size of 2048. Execution time is measured over 100 iterations using an NVIDIA GeForce RTX 3090.

SLTs can be interpreted as a special case of a concurrent blend of pruning and quantization. Specifically, SLTs
sparsify the model by uncovering the subnetwork through the supermask, which determines the connectivity
of random weights. This sparsity has a similar granularity to the unstructured sparsity in conventional
pruning methods. Unlike conventional quantization, SLT achieves low-bit storage and computation through a
fundamentally different mechanism. Storage efficiency is obtained by leveraging a binary supermask and
an appropriate architectural support for inference-time random weight generation, such as the one found
in Hirose et al. (2022), eliminating the need for explicit weight storage. Low-bit computation is enabled by
sampling random weights from a binary distribution, which empirically yields optimal performance in SLT
training (Ramanujan et al., 2020). Consequently, SLT can effectively represent a ternary weighted model at
the memory requirements of only the binary supermask.

In the case of a multivalued mask extension, SLT-based models retain the benefits of sparse and low-bit
representations while gaining additional model expressiveness. Due to the randomness of SLT-based models,
an (n + 1)-bit symmetric quantized representation can be encoded using only n bits in a multimask, resulting
in improved storage efficiency, especially for extremely low-bit representations.

2.3 Limitations of Existing SLT Frameworks

While SLT-based models are promising candidates for efficient neural networks, existing frameworks face
critical scalability and training efficiency challenges when applied to LLMs. Conventional SLT frameworks
typically focus on optimizing a single binary supermask, which restricts the search space to binary connectivity
patterns. This limited expressiveness often leads to performance degradation on complex tasks, as Okoshi
et al. (2022) observed. Increasing the number of supermasks is a natural way to enhance model capacity, but
implementing such modifications is non-trivial.

M-Sup has successfully increased the model capacity of SLT-based models by expanding EdgePopup to
represent multivalued masks. Such extension necessitates extra sparsity hyperparameters, increasing the
complexity of training. Although the paper reduces increased hyperparameters with two strategies, the
accurate one relies on the pre-trained scores of the binary supermask, which is impractical in LLMs since
multiple pre-training is required for one model.

Another challenge lies in the computational overhead associated with supermask generation. As shown
in Figure 2, computing supermask during training introduces non-negligible overhead. Specifically, EdgePopup
incurs between 30.6% and 85.0% of the total linear projection time, the primary computation in LLMs, for
supermask computation. While FixedTh offers a highly efficient supermask optimization due to its simplicity,
it still encounters similar limitations to M-Sup when extending it to multivalued mask.
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Figure 3: Overview of supermask generation methods. Supermask is generally optimized using score parameter
assigned to each connectivity (left). M-Sup (Okoshi et al., 2022), a fundamental approach for multivalued
mask, calculates supermask by selecting top-k% of score parameters, resulting in significant training overhead
(center). Ada-Sup, in contrast, reduces computational overhead through score quantization-based approach
(right).

These observations highlight a gap in existing SLT-based methods: achieving both model scalability and
training efficiency remains challenging. To address this difficulty, we propose Adaptive Supermask (Ada-Sup),
a novel supermask optimization framework that improves both scalability and efficiency through quantized
score-based mask generation.

3 Adaptive Supermask and Its Application to LLMs
3.1 Adaptive Supermask
As discussed in the previous section, extending SLT frameworks for large language models must reduce
supermask generation overhead while ensuring scalability without additional complexity for multivalued
mask. Adaptive Supermasks (Ada-Sup) tackle these challenges with a quantization-based approach for score
parameters.

The brief overview of our proposal is described in Figure 3. As discussed in Sec. 2.1, supermask is optimized
by updating score parameters. Given score parameters S ∈ R+

Cin×Cout , Ada-Sup calculates supermask by
quantizing score parameters, as

F(S) = γ⌈clip(S/γ, 0, 1)⌋. (4)

Here, γ is a scaling factor that determines the clip range of scores, and ⌈·⌋ is the round function. The
clip(x, a, b) function clamps all elements to the range [a, b]. Please note that the supermask in Ada-Sup
uses a scaled binary mask M ∈ {0, γ}, which is different from the original supermask by introducing the
quantization scaling factor.

Ada-Sup can extend to a multivalued mask with n-bits representation by replacing the upper bound of the
clip function with 2n − 1 without additional operations:

F(S)multi = γ⌈clip(S/γ, 0, 2n − 1)⌋. (5)

In the backward pass, we use the straight through estimators (Bengio et al., 2013) to compute the derivative
of F concerning the score S, as in previous methods.

Weight quantization often determines the scaling factor γ based on the distribution of weights. Following
BitNet b1.58 (Ma et al., 2024), we compute γ as the mean of the absolute values of the parameters. Since
score parameters are always non-negative, we can directly use their mean without taking absolute values:

γ = 1
MN

∑
i,j

|Sij | = 1
MN

∑
i,j

Sij . (6)
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3.2 Weight Initialization
In order to find accurate SLTs, the distribution of random weights is crucial. Previous research (Ramanujan
et al., 2020; Okoshi et al., 2022) has demonstrated that the Signed Kaiming Constant (SKC), which
samples from {−σ, σ}, yields the best performance (σ is the standard deviation of the Kaiming Normal
distribution (Han et al., 2015)). However, since the supermasks are already scaled in our method, as shown in
Eq. 4, multiplying γ with σKN introduces a redundant operation. Therefore, we adopt a binary distribution
{−1, +1} for random weights.

3.3 Overall Architecture of TicketLLM
This section presents overall architecture of TicketLLM, which is designed to showcase the effectiveness of
Ada-Sup on LLMs. We follow the LLaMA (Touvron et al., 2023) to design the Transformer, including rotary
positional embedding (RoPE) (Su et al., 2024) and gated linear unit (GLU) (Shazeer, 2020). The basic block
of LLaMA consists of a multi-head attention (MHA) block and a feed-forward network (FFN) block with a
residual connection. Different from the LLaMA architectures, we eliminate the pre-normalization layer for
MHA and FFN since we introduce the RMSNorm to the input of the linear projection layer following Ma
et al. (2024). Thus, the output of a Transformer block is calculated as follows:

Xmid = Xin + MHA(Xin),
Xout = Xmid + FFN(Xmid).

Here, Xin, Xmid, Xout ∈ RT ×d denote input sequence, output sequence of the MHA, and output sequence of
FFN, respectively, where T is the sequence length and d is the model dimension.

TicketLLM replaces all linear projections in both MHA and FFN with Ada-Sup lin-
ear (ASL). Thus, given an input sequence Xin, the MHA layer can be represented as:

MHA(Xin) = ϕ

(
ASLQ(Xin) (ASLK(Xin))T

√
d

)
ASLV(Xin),

where ϕ is a softmax function, and ASLQ, ASLK, and ASLV are query, key, and value projections by Ada-Sup,
respectively. Note that we omit the RoPE and assume the single-head attention for simplicity.

Based on the LLaMA architectures, we apply the FFN with GLU. Thus, Xout = FFN(Xin) is calculated
using the following two steps:

Xmid2 = ASL1(Xmid) ⊙ σ(ASL2(Xmid))
Xout = ASL3(Xmid2),

where σ represents the sigmoid function. As an exception, we do not apply Ada-Sup to the weights shared
between the token embedding and the final linear projection.

4 Evaluation
4.1 Experimental Setup
Transformer models are trained on randomly sampled subsets from FineWeb-Edu (Penedo et al., 2024) and
evaluated on C4 validation dataset (Raffel et al., 2020). Both datasets are tokenized using the LLaMA2
tokenizer (Touvron et al., 2023), whose vocabulary size is 32K. In order to ensure consistent training, tokens
are concatenated into sequences of length 2048, where shorter sequences are combined, and longer sequences
are truncated.

We vary model parameters from 0.05B to 1.3B by increasing the number of layers and hidden dimensions
while keeping the head dimension constant. Table 4 provides the detailed model configurations. We increase
the number of training tokens for pre-training following a ratio of tokens per model parameters (TPP).
Models are optimized with decoupled weight decay (AdamW) (Loshchilov & Hutter, 2019), setting β1 = 0.95,
β2 = 0.99, and a weight decay of 0.1. The maximum learning rate is scaled down with increasing parameters,
according to Kaplan et al. (2020). It linearly decays to zero after the learning rate warms up in the first 1%
of the total number of iterations. Although cosine decay is commonly used for pre-training, we adopt linear
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Figure 4: Comparison of Ada-Sup with other supermask methods, including EdgePopup and FixedTh. To
determine the γ in Eq. 4, we use the mean of scores for Ada-Sup. We also include the conventional weight
learning with BF16 (LLaMA) as a reference. We vary the number of parameters from 0.05B to 0.7B with a
fixed TPP of 20.

decay scheduling following the recent findings (Defazio et al., 2024; Anonymous, 2025). The batch size is 512,
with gradient accumulation employed for larger models. Gradient clipping with 1.0 is also applied to stabilize
training. All hyperparameters are summarized in Table 5.

In addition to cross-entropy loss, we evaluate perplexity and downstream accuracy for some experiments
to provide a more comprehensive analysis of model performance in practical situations. Downstream
tasks includes 0-shot performance on ARC-easy, ARC-challenge (Yadav et al., 2019), HellaSwarg (Zellers
et al., 2019), BoolQ (Clark et al., 2019), Open-bookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
WinoGrande (Sakaguchi et al., 2021), COPA (Roemmele et al., 2011), MMLU (Hendrycks et al., 2021), and
LAMBADA (Paperno et al., 2016). Validation is performed once the training is completed using the latest
checkpoint. All training and evaluation experiments are conducted using the LLM Foundry (MosaicML,
2023).

4.2 Comparison of Supermask Methods

This section compares Ada-Sup with other supermask methods, including EdgePopup and FixedTh. We omit
ProbMask from the comparison due to its substantial overhead in supermask computation. We also include
reproduced LLaMA models as a baseline. Following Ramanujan et al. (2020) and Koster et al. (2022), we set
the sparsity to 50% for EdgePopup and use a fixed threshold of 0.01 for FixedTh, respectively. We evaluate
transformer models ranging from 0.05B to 0.7B parameters trained with a fixed TPP of 20. Evaluation is
performed using cross-entropy loss on the C4 validation dataset.

Figure 4 (a) shows that Ada-Sup consistently outperforms other baselines except for LLaMA models across
all parameters in the binary supermask setting. Specifically, Ada-Sup reduces the loss by 0.05 compared to
FixedTh and by 0.17 compared to EdgePopup on average, demonstrating that Ada-Sup discovers superior
supermasks compared to other methods.

Figure 4 (b) compares Ada-Sup against M-Sup with different supermask bits. M-Sup is a multivalued mask
optimization method where each supermask is optimized using EdgePopup. To align overall training iterations
with our method, sparsities for each supermask in M-Sup are determined using a uniform setting. As shown
in the figure, both methods achieve comparable performance. For example, Ada-Sup achieves an evaluation
loss of 2.95 compared to 2.92 from EdgePopup for 2-bit supermasks, while for 3-bit supermasks, the losses
are 2.94 and 3.00, respectively. Despite comparable performance, Ada-Sup shows superior training efficiency.
On 700M-parameter models trained with 20 TPPs, Ada-Sup takes a training time of approximately 40 H100
GPU hours for both 2-bit and 3-bit supermasks, while M-Sup with EdgePopup takes around 80 H100 GPU
hours.
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Figure 5: Model performance scaling regarding training tokens for different numerical representations with
0.1B parameters.

These results highlight that Ada-Sup not only matches performance in both the binary and multivalued mask
settings but also significantly reduces the computational cost in multivalued mask methods, making it a more
practical and scalable solution for applying supermask-based training to LLMs.

4.3 Analysis of Scaling Laws
Dataset Scaling
This section explores how increasing the number of training tokens affects model performance across different
low-bit sparse representations. To analyze this dataset scaling, we compare the loss on the C4 validation
dataset across a wide range of TPPs, from 20 to 1280, under a fixed model size of 0.1B parameters. We include
BitNet b1.58 (Ma et al., 2024) as a strong low-bit sparse baseline, which adopts ternary representations as
weights. We also reproduce BF16 LLaMA-based models as the dense baselines. Results are summarized
in Figure 5. While TicketLLM with a 1-bit supermask represents the binary supermask setting, the 2-bit and
3-bit variants employ the multivalued mask extension.

We observe three key findings from Figure 5 (a). (1) When comparing TicketLLM models with different
supermask bits, increasing supermask consistently improves performance. However, the performance gain
from 2-bits to 3-bits is relatively small compared to the improvement from 1-bit to 2-bits. Thus, TicketLLM
with 2-bit is the best choice, considering the model size increase from 2-bit to 3-bit. Based on this observation,
we use 2-bit TicketLLMs in the following experiments.

(2) TicketLLM not only outperforms ternary quantization but also shows better scaling trends regarding
the dataset size under the same 2-bit model. While BitNet-b1.58 does not improve its performance beyond
TPP=160, TicketLLM continues to benefit from the increased dataset. This result comes from the extended
search space of TicketLLM, which fully leverages 2-bit representation and expanded numerical representation.

(3) When comparing TicketLLM with a LLaMA-based dense model, on the other hand, the loss gap gradually
widens as the number of training tokens increases. This result suggests that improving model capacity to
handle increasing data under low-bit representation remains a key challenge, and addressing this limitation is
a promising direction for future research. These results highlight the effectiveness of our proposal, particularly
in low-bit settings with larger datasets.

However, the trend differs in downstream tasks, as shown in Figure 5 (b), which reports average accuracy
across 10 downstream tasks described in Sec. 4.1. Despite reproduced LLaMA models consistently improving
accuracy with more training data, low-bit models, including TicketLLM and BitNet b1.58 exhibit a weaker
correlation between training tokens and downstream performance. This result indicates a current limitation
of low-bit models in acquiring transferable knowledge from large-scale data. Although the difference in
downstream accuracy between TicketLLM with 2-bit and BitNet b1.58 is smaller than the corresponding loss
difference on the validation set, it still outperforms BitNet b1.58 in larger data where the TPP exceeds 320,
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Figure 6: Scaling trends of reducible loss concerning (a) effective model size and (b) the number of parameters.
Effective model size is calculated as the product of the number of parameters, bits per parameter, and sparsity
ratio (1 - sparsity). Solid lines represent actual evaluation results on C4 validation set, while dashed lines
indicate extrapolated values fitted following the assumption in Gadre et al. (2024). Both TicketLLM and
BitNet b1.58 require 2-bit per parameter.

except at TPP = 1280. These findings reinforce insights from the loss analysis and highlight the challenges in
designing and optimizing low-bit models, particularly for downstream generalization.

Parameter Scaling
This section investigates the scaling behavior of TicketLLMs as the number of parameters increases. We
compare the performance of 2-bit TicketLLM with BitNet b1.58 (2-bit) and LLaMA (16-bit) across a wide
range of model parameters from 0.1B to 1.3B. All models are trained with a fixed TPP of 320. Evaluation is
conducted on C4-validation. Effective model size is calculated as the product of non-zero parameters and bits.

We also fit the scaling curve for all models under the assumption in Gadre et al. (2024). Thus, we estimate
the parameters E, A, and α in the following equation:

L(N) = E + AN−α, (7)

where N denotes the number of parameters and L(N) is the cross-entropy loss on the C4 validation set.
Fitting is performed on models ranging from 0.1B to 1.3B parameters, and the fitted curves are extrapolated
to predict performance at larger parameters. Parameter estimation uses Scipy’s curve fit function (Virtanen
et al., 2020).

Figure 6 presents the results. Solid lines show measured values, while dashed lines denote extrapolated
estimates. As shown in the figure, TicketLLMs follow expected scaling laws, with performance improving as
parameters increase since the estimated loss exhibits a smooth trend. Such behavior aligns with the principle
of scaling laws in Transformer architectures, whose performance scales under fixed TPPs (Hoffmann et al.,
2022; Gadre et al., 2024). Compared with BitNet b1.58, TicketLLMs with 2-bit achieve superior loss for
effective model sizes below 10GB, as shown in Figure 6 (a). While the estimated scaling trends in BitNet
b1.58 are slightly better than TicketLLMs, as shown inFigure 6 (b), improved trade-offs between effective
model size and loss performance take advantage of deployment on edge devices where low-bit representations
are crucial. In addition, the loss gap between LLaMA and TicketLLMs with 2-bit may become close as an
increasing number of parameters, resulting in an almost similar loss on around 100B parameters. These
results indicate the potential of TicketLLMs as efficient language models. Although validation on larger
parameter models is not reported due to resource constraints, we expect similar trends to hold based on the
scaling behavior observed in smaller models.
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Table 2: Perplexity on C4-validation datasets and 0-shot evaluations on 10 downstream tasks. To support a
wide variety of downstream tasks, we choose the 0-shot tasks from Gadre et al. (2024) in addition to reported
tasks in BitNet b1.58 Ma et al. (2024) (denoted as BitNet in this table). All models are trained with 320
TPP. Sps. and PPL denote sparsity and perplexity.

Param. Model #Bit Sps. (%) PPL ↓ ARCe ARCc HS OQ BQ PQ WGe COPA MMLU LLAMB Avg. (%) ↑
0.1B LLaMA 16 0 20.92 41.33 26.11 32.16 31.60 59.39 62.57 50.36 52.00 23.17 28.29 40.70
0.1B BitNet 2 32 28.35 39.94 21.76 29.17 30.20 54.25 58.22 51.30 45.00 23.29 21.99 37.51
0.1B TicketLLM 2 48 26.44 37.96 23.72 28.92 30.40 60.46 60.12 50.04 55.00 23.20 21.11 39.19
0.3B LLaMA 16 0 16.14 50.29 29.61 42.53 36.20 53.43 67.14 51.93 59.00 23.17 38.09 45.34
0.3B BitNet 2 32 20.22 44.40 26.88 36.01 31.20 59.45 64.36 53.28 58.00 23.38 30.18 42.51
0.3B TicketLLM 2 48 19.43 43.73 25.85 36.14 34.00 58.04 63.17 50.04 58.00 23.29 30.22 42.65
0.7B LLaMA 16 0 12.84 57.95 34.39 53.81 38.40 61.13 71.27 57.85 66.00 24.37 46.90 51.81
0.7B BitNet 2 32 15.35 52.78 30.63 47.44 34.40 60.49 68.39 55.96 62.00 23.31 39.84 47.42
0.7B TicketLLM 2 50 15.06 49.41 29.01 45.23 34.40 56.82 67.85 54.62 64.00 23.25 37.90 46.05
1.3B LLaMA 16 0 11.68 62.92 37.29 59.87 40.20 62.26 73.01 59.67 69.00 24.18 51.52 53.99
1.3B BitNet 2 33 13.62 55.39 32.68 54.51 38.40 59.24 70.35 57.30 66.00 23.80 41.78 49.75
1.3B TicketLLM 2 50 13.54 54.29 33.02 52.03 36.40 59.76 70.35 54.93 66.00 23.64 42.89 49.53

4.4 Downstream Evaluations
This section evaluates perplexity on the C4 validation set and 0-shot accuracy across ten downstream tasks
over varying model parameters. We use the same models as in the previous section. Table 2 summarizes the
results for models ranging from 0.1B to 1.3B parameters.

TicketLLM outperforms BitNet b1.58 across all model sizes, demonstrating both lower perplexity and higher
sparsity. While BitNet b1.58 shows superior performance on certain downstream tasks and parameter settings,
TicketLLM remains competitive, achieving comparable or even better results in most cases. These findings
indicate that TicketLLM is a promising approach to building efficient large language models (LLMs).

Although TicketLLM performs better than BitNet b1.58, it still underperforms LLaMA models in both
perplexity and downstream accuracy. Nevertheless, we observe distinct trends in performance scaling across
perplexity and downstream tasks. The performance gap between TicketLLM and LLaMA on perplexity narrows
as the number of parameters increases, suggesting improved text generation quality at larger parameters.
In contrast, the performance gap on downstream tasks widens with increasing parameters, implying that
TicketLLM may have limitations in transferring pretraining knowledge to downstream generalization.

Similar trends can be observed in BitNet b1.58, suggesting that this discrepancies between perplexity and
downstream task performance may be a common limitation of low-bit or sparse model architectures. These
results highlight the need for further development of scalable training strategies to achieve strong performance
on both perplexity and downstream tasks while maintaining model efficiency.

5 Discussion
5.1 Advantages of TicketLLM over Quantized Models
In the previous section, we compared TicketLLM with BitNet b1.58 and dense baselines, and all models are
trained from scratch on the same number of training tokens. While its training tokens are limited compared
to state-of-the-art open-source LLMs, it has been observed that pre-training with low-bit representations
from scratch can outperform quantized models where post-training quantization (PTQ) or quantization-aware
training (QAT) methods are applied to open-source LLMs. These observations indicates that TicketLLM has
the potential to achieve competitive performance with various quantization methods applied to open-source
models, even with its current training limitations. This section explores this possibility by comparing
TicketLLM with quantized models obtained by applying PTQ or QAT method to MobileLLM (Liu et al.,
2024b), an open-source LLM designed for edge deployment. The model architectures of MobileLLM and
TicketLLM differ due to their distinct design objectives: MobileLLM modifies LLaMA architectures for edge
deployment, while TicketLLM follows BitNet’s architectural scaling approach. To enable fair comparison
across different architectures, we focus on performance comparisons across models with closely matched
parameter counts. All models in PTQ and QAT are quantized into 2-bit to align the storage of 2-bit
TicketLLMs. All results of other quantization methods are cited from Liu et al. (2025). Table 3 summarizes
the results. This table includes both PTQ methods such as RTN (Li et al., 2020), GPTQ (Frantar et al.,
2022), AWQ (Lin et al., 2024), OmniQuant (Shao et al., 2023), and SpinQuant (Liu et al., 2024a), and QAT
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methods like LLM-QAT (Liu et al., 2017) and ParetoQ (Liu et al., 2025). Since previous methods did not
evaluate on COPA, MMLU, and LLAMBDA, we omit these results from this table.

Compared with PTQ methods, Ada-Sup in TicketLLM demonstrates superior performance under 2-bit storage
per parameter despite being trained with 2.4× to 31× fewer tokens than the base MobileLLM. These results
reflect the inherent difficulty of applying PTQ in such extremely low-bit representations, where significant
accuracy degradation is often observed. In contrast, TicketLLM, which involves parameter learning with
low-bit representations take advantage of such constraints. These findings are consistent with the observations
made in BitNet papers (Wang et al., 2023; Ma et al., 2024), emphasizing the importance of training under
low-bit precision.

Compared with QAT approaches that allow parameter updating, TicketLLM achieves competitive performance
on downstream tasks. Specifically, TicketLLM outperforms LLM-QAT by 1.5% to 9.4% in average downstream
accuracy. Although ParetoQ, which utilizes sophisticated low-bit representation, demonstrates higher accuracy
across all parameters, it sacrifices model sparsity due to the symmetric 2-bit quantization. This feature
potentially limits its deployment efficiency, particularly on domain-specific hardware implementation for
sparse low-bit models.

5.2 Further Research Directions

While our experimental results demonstrate the effectiveness of TicketLLM in achieving competitive perfor-
mance with low-bit and sparse representation, several promising research directions remain to fully realize
its potential. In this section, we outline two key research directions that could significantly advance the
field: (1) algorithm-hardware co-design to exploit the efficiency benefits of TicketLLM, and (2) methods for
effectively integrating knowledge from existing pre-trained models to reduce training costs while maintaining
performance.

Algorithm and Hardware Co-design for TicketLLMs
To realize the practical advantages of TicketLLM, hardware integration is essential for three key reasons. First,
TicketLLM relies on an SLT-based structure, which leverages random weights for model compression. These
features are known to be well-suited for specialized hardware integration to improve their efficiency (Hirose
et al., 2022; Yan et al., 2025). Hardware support for random number generators enables random weights to be
reconstructed on the fly, contributing to reduction of both capacity and bandwidth of weight memory. Second,
TicketLLMs exhibit unstructured sparsity, which is better suited for domain-specific hardware implementations
than for general-purpose processors such as GPUs, TPUs, or CPUs (Parashar et al., 2017; Gondimalla et al.,
2019). Such unstructured sparsity can be exploited by some hardware mechanisms such as fine-grained
scheduling and unnecessary operation skipping. Third, the basic operations in TicketLLM are mixed-precision
matrix multiplications, multiplying lower-precision weights with higher-precision activations. Such operation
cannot be fully leveraged in current GPUs due to its reliance on dequantization-based approaches (Mo et al.,
2025). Through integration with custom hardware implementations, TicketLLMs can efficiently process
mixed-precision computations without the overhead of dequantization, thereby achieving higher throughput
and energy efficiency. These aspects highlight the need for algorithm-hardware co-design, where hardware
architectures directly exploit the model’s characteristics to unlock the full efficiency of TicketLLM.

Another promising direction for hardware-software co-design is the exploration of semi-structured sparsity
for TicketLLM. Semi-structured patterns, such as 2:4 sparsity, are supported by modern hardware (e.g.,
NVIDIA Ampere) and can improve execution efficiency without requiring custom hardware. Since TicketLLM
achieves higher sparsity than BitNet b1.58, introducing such constraints is feasible without sacrificing model
performance. This extension also enables future work on co-optimizing pruning strategies and hardware-aware
model design, which can expand the applicability of TicketLLM.

Integration of Knowledge from Pre-trained Models
While the scaling performance of TicketLLMs in pre-training is promising, leveraging pre-training knowledge
remains an important research direction in real-world scenarios. This importance is supported by Liu et al.
(2025), which demonstrate that integrating fine-tuning with ternary representations can outperform BitNet
b1.58, despite using only 33% as many tokens for fine-tuning as BitNet used for pretraining. Unlike
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Table 3: Performance comparison of TicketLLMs with other quantization methods on MobileLLMs with 2-bit
storage per parameter. All results for MobileLLMs are cited from Liu et al. (2025).

Model Name Method ARCe ARCc BQ PQ HS OBQA WGe Avg. (%) ↑

MobileLLM-125M

FP 56.0 34.5 56.3 65.5 40.1 42.2 51.3 49.4
RTN 26.1 24.1 62.2 50.3 26.6 28.9 49.4 38.2

GPTQ 28.9 26.2 44.2 51.1 28.1 33.2 48.0 37.1
AWQ 25.8 24.2 44.2 50.7 26.2 29.2 51.6 36.0

OmniQ 32.4 22.7 38.1 53.4 28.2 30.9 49.9 36.5
SpinQuant 31.6 23.3 40.3 52.2 28.6 28.9 50.1 36.4
LLM-QAT 34.9 23.3 61.8 53.8 29.1 27.4 51.3 40.2
ParetoQ 50.7 32.7 59.8 63.3 36.3 40.6 52.7 48.0

TicketLLM-0.1B Ada-Sup 38.0 23.7 60.5 60.1 28.9 30.4 50.0 41.7

MobileLLM-350M

FP 65.5 42.3 57.4 71.0 53.3 47.3 58.3 56.4
RTN 25.9 26.5 57.1 41.0 26.6 27.3 50.3 36.4

GPTQ 28.6 21.5 40.5 39.2 26.6 27.3 49.0 33.2
AWQ 27.0 23.7 45.4 49.4 26.4 28.4 50.2 35.8

OmniQ 33.9 29.6 54.9 58.4 31.5 32.0 52.6 41.8
SpinQuant 32.4 30.5 60.0 59.1 29.6 31.9 50.1 41.9
LLM-QAT 40.5 25.0 49.2 56.2 34.2 34.2 52.0 41.6
ParetoQ 59.0 39.3 57.4 71.0 47.2 41.7 58.2 53.4

TicketLLM-0.3B Ada-Sup 43.7 25.9 58.0 63.2 36.1 34.0 50.0 44.4

MobileLLM-600M

FP 68.5 47.6 60.5 72.5 59.5 51.4 61.4 60.2
RTN 25.8 26.2 37.8 37.7 25.9 26.8 50.9 33.0

GPTQ 29.1 25.6 48.2 49.4 27.1 27.6 52.6 37.1
AWQ 26.4 24.5 50.9 50.7 26.0 27.5 52.2 36.9

OmniQ 30.2 25.5 50.7 60.1 28.6 28.6 54.6 39.8
SpinQuant 32.6 24.2 39.0 58.1 29.2 30.6 49.1 37.5
LLM-QAT 42.7 23.9 49.7 62.8 32.6 33.3 52.7 42.5
ParetoQ 68.2 47.4 64.2 73.1 58.1 50.2 62.4 60.5

TicketLLM-0.7B Ada-Sup 49.4 29.0 56.8 67.9 45.2 34.4 54.6 48.2

MobileLLM-1.5B

FP 73.9 51.4 70.0 74.8 66.4 55.1 63.2 65.0
RTN 27.3 26.5 70.4 49.2 26.0 27.4 48.6 39.3

GPTQ 29.8 22.3 45.3 53.3 27.1 27.4 51.4 36.7
AWQ 30.2 26.5 54.0 59.7 28.0 29.6 52.2 40.0

OmniQ 36.5 24.1 59.6 60.1 30.2 32.1 52.4 42.1
SpinQuant 33.3 21.5 45.3 60.5 30.1 31.2 50.3 38.9
LLM-QAT 41.6 25.6 50.6 61.4 31.6 33.3 50.9 42.1
ParetoQ 73.3 47.5 70.1 74.1 64.6 55.9 62.5 64.0

TicketLLM-1.3B Ada-Sup 54.3 33.0 59.8 70.4 52.0 36.4 54.9 51.5

quantization-based approaches, leveraging the pre-trained knowledge in SLT-based models is challenging due
to random weights.

Distillation is a simple solution that leverages pre-trained features in SLT-based models. Hirose et al. (2022)
propose a simple distillation approach that distills pre-trained weights into score distributions, resulting in
improved performance. However, this approach still requires the same training as the original SLT-based
models. Thus, incorporating pre-trained knowledge into SLT-based models to reduce training costs is still an
important direction for future research.

6 Conclusion

This paper introduces Adaptive Supermasks (Ada-Sup), an efficient supermask optimization method that
supports extremely low-bit sparse representations. Experimental results demonstrate that Ada-Sup offers
superior trade-offs between training efficiency and model performance compared to existing SLT methods.
Based on this method, we develop TicketLLM, a Transformer architecture that integrates Ada-Sup to achieve
low-bit compression without training weights. Our evaluation shows that TicketLLM, powered by Ada-Sup,
demonstrates superior scaling trends for dataset size and effective model size, particularly in the sub-10GB
regime that is critical for edge device deployment. These findings underscore the potential of SLTs for
enabling efficient low-bit representations, offering a promising solution for scalable model compression in
LLMs through a concurrent blend of pruning, quantization, and random weights.
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Table 4: Model configuration. We scale the number
of layers and model dimensions while head dimension
keeps constant.

N nlayers nheads dmodel dhead dFFN
0.1B 12 12 768 64 2,048
0.3B 24 16 1,024 64 2,731
0.7B 24 24 1,536 64 4,096
1.3B 24 32 2,048 64 5,460

Table 5: Hyperparameters for training. Batch size
is denoted as BS, while learning rate is described
as LR. Warmup and Steps describe their respective
number of iteration. Tokens means the number of
training tokens.

Model TPP LR BS #Warmup #Steps #Tokens
0.1B 320 6.6e-4 512 334 33,438 32B
0.3B 320 5.0e-4 512 1,022 102,216 56B
0.7B 320 3.9e-4 512 2,224 222,434 223B
1.3B 320 3.1e-4 512 3,886 388,680 408B

A Training configurations

We provide all model configurations in Table 4 and hyperparameters in Table 5.

B Related Works
B.1 Strong Lottery Ticket
Strong Lottery Tickets (SLTs), which are accurate subnetworks within random weights, demonstrated
additional compression opportunities that leverage random weights. After Zhou et al. (2019) have established
the basic concept of SLTs, following research focuses on algorithm improvement to find better subnetworks.
Ramanujan et al. (2020) introduce the EdgePopup algorithm that selects top-k% of score parameters, making
it possible for SLTs to find good subnetwork on practical datasets. Zhou et al. (2021) improve SLT accuracy
in highly sparse regions by introducing ProbMask. Koster et al. (2022) introduce FixedThreshold, which
improves both training efficiency and performance in highly sparse regions. Moreover, other research focuses
on improving SLT model capacity by expanding its concept to multiple random seeds Chijiwa et al. (2021) or
multiple supermask Okoshi et al. (2022), improving model performance, especially on large-scale datasets.
Despite the potential of SLTs, it is difficult to balance training efficiency and scalability, which are crucial for
large-scale pre-training in large language models. Instead, our proposal can balance training efficiency and
scalability by leveraging a quantization-based approach to score parameters.

Another line of research focuses on expanding its application. García-Arias et al. (2023) integrate SLT with
network folding, demonstrating the existence of SLT in folded neural networks. It also shows that network
folding can help identify smaller SLTs for ResNets (He et al., 2016; Zagoruyko & Komodakis, 2016). Huang
et al. (2022) extend SLTs to graph neural networks, claiming that SLTs not only match the performance of
trained models but also alleviate the over-smoothing problem, a major challenge in scaling deeper GNNs (Cai
& Wang, 2020). The following studies focuses on improving the algorithm (Yan et al., 2024) or expanding
GNN architectures (Ito et al., 2025). Shen et al. (2021) are the first to apply SLTs to Transformers. Exploring
single-layer encoder-decoder Transformers reveals that SLTs are also effective in machine translation. Despite
these advancements, a major limitation of existing research is its primary focus on shallow Transformers,
which differ significantly from deeper, decoder-only architectures of large language models (LLMs). Our work
addresses this limitation by extending SLTs to LLMs through Ada-Sup. This novel approach overcomes the
challenges of applying SLTs to large-scale pre-training, bridging the gap between prior research and modern
neural networks.

B.2 Quantization and Pruning
Quantization and pruning are commonly used as model compression methods. Quantization reduces both
computational costs and storage by reducing the precision of parameters. While some research focuses on
quantizing both weights and activations, weight-only quantization remains more actively explored in LLMs,
as increasing parameters are critical for morel serving. Weight-only quantization can be categorized into
post-training quantization (PTQ) and quantization-aware training (QAT), depending on whether fine-tuning
is performed after quantization. PTQ has gained significant attention due to its simplicity and efficiency, and
several research such as GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024) have demonstrated strong
performance on 3-bits or 4-bits quantizations. Recent studies have focused on 2-bit quantization (Shao et al.,
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2023), accepting marginal accuracy degradation as a trade-off. Nevertheless, QAT (Liu et al., 2023; Wang
et al., 2023; Liu et al., 2025) has garnered increasing attention for its ability to support extremely low-bit
quantization (e.g., below 2 bits), which is often difficult to achieve with PTQ alone. Unlike conventional
quantization methods that apply PTQ or QAT to pre-trained LLMs, BitNet (Wang et al., 2023) proposes a
fundamentally different approach by training transformer models from scratch using extremely low-bit (e.g.,
1-bit) weights, offering a novel perspective on low-bit LLMs and scaling behavior.

Pruning improves model efficiency by removing unnecessary weights. Pruning is generally categorized into
unstructured and structured pruning, depending on the granularity of the introduced sparsity. Due to the
efficiency in general-purpose hardware, semi-structured sparsity (Frantar & Alistarh, 2023; Sun et al., 2023;
Fang et al., 2024) is mainly explored in LLMs, even though unstructured sparsity can maximize their efficiency
by integrating custom hardware implementation.

These two compression techniques are not mutually exclusive and can be easily combined in practice. Han et al.
(2016) is a pioneered work combining pruning and quantization, demonstrating there multiple compression
techniques can be easily integrated. Ma et al. (2024) extend the numerical representation of BitNet by shifting
from binary to ternary weights. This research has successfully achieved extremely low-bit representations
whose performance is comparable with dense models by integrating pre-training with low-bit representations.
SLTs follow a similar procedure of concurrent pruning and quantization but also leverage random weights for
additional storage savings.
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