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ABSTRACT

This paper examines the exploration–exploitation trade-off in reinforcement learn-
ing with verifiable rewards (RLVR), a framework for improving the reasoning of
Large Language Models (LLMs). Recent studies suggest that RLVR can elicit
strong mathematical reasoning in LLMs through two seemingly paradoxical mech-
anisms: spurious rewards, which suppress exploitation by rewarding outcomes
unrelated to the ground truth, and entropy minimization, which suppresses ex-
ploration by pushing the model toward more confident and deterministic outputs,
highlighting a puzzling dynamic: both discouraging exploitation and discouraging
exploration improve reasoning performance, yet the underlying principles that
reconcile these effects remain poorly understood. We focus on two fundamental
questions: (i) how policy entropy relates to performance, and (ii) whether spu-
rious rewards yield gains, potentially through the interplay of clipping bias and
model contamination. Our results show that clipping bias under spurious rewards
reduces policy entropy, leading to more confident and deterministic outputs, while
entropy minimization alone is insufficient for improvement. We further propose a
reward-misalignment model explaining why spurious rewards can enhance perfor-
mance beyond contaminated settings. Our findings clarify the mechanisms behind
spurious-reward benefits and provide principles for more effective RLVR training.

1 INTRODUCTION

The recent emergence of Large AI Reasoning Models (e.g., Kimi-K2, OpenAI-o1, and DeepSeek-
R1 (Kimi, 2025; Jaech et al., 2024; Guo et al., 2025b)) has been driven by reinforcement learning with
verifiable rewards (RLVR). In RLVR, a verifier compares the model’s rollout against a deterministic
ground-truth solution, especially in mathematics and other STEM domains, providing outcome
rewards. This verifiability has enabled models to achieve competitive and human-level performance
on challenging benchmarks, such as the International Mathematical Olympiad (Huang & Yang, 2025).
Among RLVR methods, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has become
particularly popular due to its computational simplicity and memory efficiency.

In traditional reinforcement learning, the exploration–exploitation trade-off is framed within a
Markov decision process with per-step or shaped rewards. Exploration is typically promoted through
stochastic policies or explicit bonus terms for underexplored actions (e.g., entropy regularization),
while exploitation reinforces high-return actions via accurate value estimation. RLVR for LLMs
departs from this paradigm in three respects: (i) rewards are outcome-level, extremely sparse, and
verifiable only at the end of long rollouts, rendering all intermediate token-level actions reward-
equivalent; (ii) exploration unfolds in sequence space and is governed by decoding temperature
rather than state-local bonuses; and (iii) policy updates rely on ratio clipping with group-normalized
advantages, making them more sensitive to importance ratios and relative ranks than to absolute
reward values.

These properties give RLVR a distinctive exploration–exploitation regime. In classical RL, spurious
rewards, which are misaligned with the true outcome reward (e.g., random noise), would be expected
to hinder exploitation by injecting randomness that encourages suboptimal actions. Yet in RLVR,
they have been observed to improve performance in Qwen-Math models (Shao et al., 2025), a
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phenomenon attributed to upper-clipping bias that disproportionately amplifies high-prior responses,
consistent with contamination effects reported on MATH500 (Wu et al., 2025). Conversely, entropy
minimization, which reduces policy entropy to yield more deterministic, high-confidence rollouts, has
been widely adopted in RLVR and empirically linked to consistent gains (Cui et al., 2025; Fu et al.,
2025; Zhang et al., 2025b; Zhao et al., 2025b). Notably, Agarwal et al. (2025) and Gao et al. (2025)
directly optimize entropy as an objective and report substantial improvements even without verifiable
feedback. These findings point to an RLVR-specific paradox: discouraging exploitation through
spurious rewards and discouraging exploration through entropy minimization can both enhance
validation accuracy, underscoring learning dynamics that depart from classical RL intuitions.

In this paper, we investigate how clipping, policy entropy, and spurious (random) rewards jointly shape
model performance in RLVR. We show, both theoretically and empirically, that under random rewards,
which discourage exploitation, clipping bias alone provides no meaningful learning signal and cannot
directly improve performance. Instead, we establish a direct connection between clipping and policy
entropy: clipping reduces entropy and drives the policy toward more deterministic, higher-confidence
outputs, thereby inducing an entropy-minimization effect. Importantly, reduced entropy by itself does
not guarantee performance gains. To clarify when spurious rewards can be beneficial, we introduce a
simple reward-misalignment model. Our analysis overturns the prevailing view that improvements
under spurious rewards are limited to potentially contaminated Qwen-Math models; similar gains
also arise in the Llama and QwQ families, revealing a more nuanced exploration–exploitation
dynamic that cannot be explained by contamination alone.

Contributions. We focus on two fundamental questions: (i) how policy entropy relates to perfor-
mance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping
bias and model contamination. Our contributions can be summarized as follows:

1. We advance the theoretical foundations of RLVR by deriving explicit bounds on clipping
bias and showing, under spurious rewards, this bias does not constitute a meaningful learning
signal. To capture its effect more precisely, we introduce a novel one-step policy-entropy
shift formulation, which establishes a deterministic link between clipping and policy entropy:
clipping systematically reduces entropy and drives the policy toward more deterministic,
higher-confidence rollouts.

2. We conduct extensive experiments across multiple model families (Qwen-Math, Llama,
QwQ) and sizes (7B, 8B, 32B), including both base and distilled variants. These results
reconcile conflicting reports in the literature, demonstrating that performance improvements
under spurious rewards are robust and not tied to any single model or dataset.

3. We show that these gains cannot be attributed to clipping bias or to causal effects of policy
entropy, thereby overturning the prevailing view that improvements under spurious rewards
are confined to potentially contaminated Qwen-Math models. Instead, our findings reveal
a broader and more nuanced exploration–exploitation dynamic unique to RLVR.

2 PRELIMINARIES AND TECHNICAL BACKGROUND

2.1 GROUP RELATIVE POLICY OPTIMIZATION

RLVR assigns a binary outcome-based reward r(x,y) to a sampled response y from prompt x by
comparing it against the ground-truth answer y⋆. To learn an optimized policy via these reward,
policy gradient methods (Williams, 1992; Sutton & Barto, 1998) aim to maximize

J(θ) = Ex∼ρ,y∼πθ(·|x)[r(x,y)],

where ρ is the prompt distribution and πθ denotes the LLM policy. The parameter update at each
iteration is θ ← θ + η∇θJ(θ). In practice, the trajectories are generated by an older policy πθold , but
we wish to estimate the gradient at current policy πθ. By using the importance sampling technique
with per-token ratio rt(θ) =

πθ(yt|ht)
πold(yt|ht)

, it can be rewritten as

J(θ) = Ex∼ρ,y∼πθold (·|x)

 |y|∑
t=1

rt(θ)r(ht,yt)

 ,
2
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where yt is the t-th token of y, which has |y| tokens in total, and ht := {x,y<t} with h1 = x.
Importance sampling might suffer from large variance when πθ drifts from πθold . To stabilize training,
we optimize the clipped surrogate objective as follows,

J(θ) = Ex∼ρ,y∼πθold (·|x)

 |y|∑
t=1

min {rt(θ)r(ht,yt),clip(rt(θ), 1− ϵ, 1 + ϵ)r(ht,yt)}

 .
In this context, GRPO (Shao et al., 2024) and its variants (Chen et al., 2025c; Yu et al., 2025; Liu
et al., 2025b; Chu et al., 2025; Zhang et al., 2025a) estimate policy gradients using groups of samples.
For each prompt x, GRPO draws a set {y(i)}Gi=1 from πθold . We denote y

(i)
t as the t-th token of i-th

sample y(i) and h
(i)
t := {x,y(i)

<t} and optimize the clipped objective as follows,

J(θ) = Ex∼ρ,{y(i)}G
i=1∼πθold (·|x)

 1
G

G∑
i=1

|y(i)|∑
t=1

min
{
r
(i)
t (θ)Ai,clip(r

(i)
t (θ), 1− ϵ, 1 + ϵ)Ai

} ,
where r(i)t (θ) =

πθ(y
(i)
t |h(i)

t )

πold(y
(i)
t |h(i)

t )
, ϵ ∈ (0, 1) is a hyper-parameter and the advantage Ai := A(x,y(i)) is

computed from the group rewards as follows,

A(x,y(i)) = r(x,y(i))−mean({r(x,y(1)),...,r(x,y(G))})
std({r(x,y(1)),...,r(x,y(G))}) , (1)

with r(x,y(i)) = 1 if y(i) matches the ground-truth final answer and r(x,y(i)) = 0 otherwise.
Remark 2.1. Under the GRPO update, the token-level advantage equals the response-level advantage
Ai and is independent of token index t.

Policy update. Following (Cui et al., 2025; Liu, 2025), we use the softmax policy update framework,
and one typical iteration amounts to one-step exponentiation update with G rollouts {y(i)}Gi=1 as
follows,

πθ(a | h) =
πθold (a|h) exp(ηÃ(h,a))∑

a′∈V πθold (a
′|h) exp(ηÃ(h,a′))

∝ πθold(a | h) exp(ηÃ(h, a)), (2)

where η > 0 is the step size and the advantage of an arbitrary token a ∈ V is given by

Ã(h, a) = 1
G

G∑
i=1

|y(i)|∑
t=1

(
1{h(i)

t =h,y
(i)
t =a}

πold(a|h)

)
Ai. (3)

For the ease of presentation, we abbreviated πθ and πθold as πnew and πold in the subsequent analysis.
Building upon Eq. (2), we derive the following reparameterization for token-level importance ratio,
with its proof presented in Appendix C.1.

Lemma 2.2. Suppose that Ea[Ã(h, a)] = 0, Vara[Ã(h, a)] = 1 and η is sufficiently small, the
following statement holds true,

log (πnew(a | h)) = log (πold(a | h)) + ηÃ(h, a)− η2

2 +O(η3).
Under the standardized history h (see Remark C.1 for details), we have

r(h, a) = exp
(
ηÃ(h, a)− η2

2 +O(η3)
)
. (4)

2.2 SPURIOUS REWARD FOR RLVR

Spurious reward arises whenever the feedback signal is misaligned with the ground truth reward. A
random reward is a canonical example of such misalignment. In the context of RLVR, we formalize
this notion as follows,
Definition 2.3 (Random reward). We consider the binary reward r(x,y(i)) in Eq. (1). A random
reward is a feedback signal independent of (x,y(i)) and follows that r(x,y(i)) ∼ Bernoulli( 12 ), i.e.,
Pr(r(x,y(i)) = 1) = Pr(r(x,y(i)) = 0) = 1

2 .

Based on Definition 2.3, we obtain the following lemma for the GRPO advantage mechanism. These
properties form the foundation for our subsequent analysis. The proofs are deferred to Appendix C.2.

3
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Lemma 2.4. Fixing a group size G ≥ 2 and denoting ri := r(x,y(i)) and Ai := A(x,y(i)) where

{ri}Gi=1 are a group of random rewards, we define r = 1
G

∑G
i=1 ri, Sr =

√
1
G

∑G
j=1(ri − r)2, and

Ai =
ri−r
Sr

. Then, the following statements hold: (i) Ai is symmetrically distributed around 0 and
thus E[A2k−1

i ] = 0 for all k ∈ N+; (ii) |Ai| ≤
√
G− 1; (iii) E[A2k

i ] ≥ 1− 21−G for all k ∈ N+.

We examine several empirical findings related to random rewards. Notably, Shao et al. (2025) report
striking performance gains on MATH500 for the Qwen-Math family when models are fine-tuned
using the random reward defined in Definition 2.3. However, similarly large improvements are not
observed for several other model families. Wu et al. (2025) likewise find substantial contamination in
Qwen-Math on the MATH500 validation benchmark, hypothesizing that the apparent gains under
random reward largely stem from reinforcing memorized or contaminated trajectories. In particular,
Shao et al. (2025) attribute these gains to the PPO-style upper-clipping bias, formalized as follows,

Remark 2.5 (Upper-clipping bias). The upper clipping enforces r(i)t (θ) =
πnew(y

(i)
t |h(i)

t )

πold(y
(i)
t |h(i)

t )
≤ 1+ ϵ and

implies that πnew(y
(i)
t | h

(i)
t ) ≤ (1 + ϵ)πold(y

(i)
t | h

(i)
t ). Equivalently, we have

∆max(y
(i)
t ) = πnew(y

(i)
t | h

(i)
t )− πold(y

(i)
t | h

(i)
t ) ≤ ϵπold(y

(i)
t | h

(i)
t ).

If πold(y
(i)
t | h

(i)
t ) ≥ πold(y

(i)
t′ | h

(i)
t′ ) and the upper clipping are active for both tokens, we have

∆max(y
(i)
t ) ≥ ∆max(y

(i)
t′ ).

The above interpretation indicates that upper clipping permits larger absolute increases for tokens that
already have relatively high probability, whereas low-probability tokens reach the clipping threshold
much earlier. This asymmetry can preferentially amplify high-prior responses, potentially exploiting
latent knowledge rather than fostering new reasoning ability.

However, Oertell et al. (2025) challenge this interpretation, arguing that the reported gains arise from
algorithmic heuristics and evaluation artifacts; in their experiments, random-reward fine-tuning does
not consistently improve reasoning and can even degrade it. These conflicting findings highlight how
little is currently understood about RLVR learning dynamics and motivate two central questions: (i)
Can random rewards improve model performance, and under what conditions? (ii) Does clipping
bias provide a meaningful learning signal, and if not, what role does it actually play? Following prior
work, our empirical analysis also focuses primarily on MATH500. We further discuss the broader
implications of random-reward training for general reinforcement-learning settings in Appendix B.1.

2.3 LLM POLICY ENTROPY

Policy entropyH(πθ) quantifies the diversity of a policy’s action distribution. A high-entropy policy
allocates probability more evenly across actions, producing a wider variety of sampled responses,
whereas a low-entropy policy concentrates probability on a small subset of actions, resulting in more
deterministic behavior.
Definition 2.6 (Policy entropy). For any given policy πθ, its entropy over a rollout trajectory space
y ∈ Y given prompt x can be defined as follows:

H(πθ) = −Ey∼πθ(·|x)[log(πθ(y | x))] = −
∑
y∈Y

πθ(y | x) log(πθ(y | x)).

Recent works in RLVR has begun to examine how policy entropy influences model performance.
A common perspective emphasizes avoiding “entropy collapse” to prevent premature convergence
to a low-diversity, suboptimal policy (Yu et al., 2025). At the token level, Wang et al. (2025b)
similarly highlight the importance of minority high-entropy tokens for effective reasoning. Yet
several studies report the opposite pattern: reducing entropy can be beneficial. Agarwal et al. (2025)
explicitly optimize an entropy-minimization objective and observe performance improvements,
and Cui et al. (2025) even propose a monotonic relationship in which lower entropy yields better
performance. These conflicting findings raise a second fundamental question: (iii) Is there a direct
causal relationship between policy entropy and policy performance?

Beyond empirical observations, Cui et al. (2025) provide a theoretical analysis by deriving the
following estimate of the one-step change in policy entropy:

H(πnew)−H(πold) ≈ −Covy∼πθ(·|x)(log(πold(y | x)), A(x,y)). (5)

4
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Intuitively, if the reward is positively correlated with the rollout probability, meaning high-probability
responses tend to receive reward 1 while low-probability responses receive reward 0, the policy
becomes more peaked, leading to a decrease in entropy. Conversely, if low-probability responses
receive reward 1 and high-probability responses receive reward 0, the policy is pushed toward a flatter
distribution, increasing its entropy. However, we emphasize that the approximation in Eq. (5) does
not apply for analyzing RLVR with random rewards.
Remark 2.7. Under random rewards, because A(x,y) is independent of πold(y | x) and has zero
mean, substituting into Eq. (5) yields H(πnew)−H(πold) = 0 (see Appendix C.3 for details). This
implies that policy entropy should remain constant throughout training. However, this prediction
contradicts our empirical observations, which exhibit a clear interaction between clipping and
entropy dynamics. The discrepancy arises because Eq. (5) (i) retains only first-order terms in the
policy expansion, ignoring higher-order contributions, and most importantly and (ii) assumes an
unclipped formulation. Our theoretical results in § 4.1 provide a more complete picture of how
clipping interacts with and modulates policy entropy.

3 CLIPPING AND MODEL PERFORMANCE

In this section, we provide a rigorous analysis of the upper-clipping bias demonstrated in Remark 2.5.
Indeed, we derive explicit bounds on the magnitude of the clipping bias and describe its effect on the
learning signal. We further validate our theoretical findings with extensive empirical experiments.

3.1 THEORETICAL RESULTS

We begin by decomposing the upper-clipping surrogate into two components: the raw term Nt,
corresponding to the unclipped surrogate, and the clipping-correction term N clip

t .
Definition 3.1. Suppose a rollout y of length L is sampled from a prompt x and the clip ratio is
ϵ ∈ (0, 1). For simplicity, we denote the token-level ratio r(ht,yt) as rt. Then, we define the clipped
token-level ratio as r̄t = clip(rt, 1− ϵ, 1 + ϵ) = max{min{rt, 1 + ϵ}, 1− ϵ}, the raw surrogate as
Nt = rtA(x,y) and the clipping-correction surrogate as N clip

t = r̄tA(x,y). The corresponding total
clipping correction Ctot is defined as

Ctot =

L∑
t=1

(N clip
t −Nt) =

L∑
t=1

(r̄t − rt)A(x,y).

For simplicity, we omit the superscript i since it can be applied to any sample of the response group.
The following theorem provides an upper bound on E[|Ctot|]; its proof is deferred to Appendix C.5.
Theorem 3.2. Let a prompt x have a response group of size G, where each rollout has length L,
and let the clip ratio be ϵ > 0. For any rollout y, we write A := A(x,y), and define the upper-clip
activation indicator as It = 1{rt>1+ϵ} satisfying E[It] = p, and the per-token clipping deviation
Dt = (r̄t − rt)It such that Ctot =

∑L
t=1DtA. Then, for all learning rates η > 0, we have

E[|Ctot|] ≤M
√
2pLRmax

η ϕ(Rmax
η ) +ML(Rmax

η − 1)min
{√

p,
ϕ(Rmax

η )

ϕ(1+ϵ)

}
, (6)

where Rmax
η = e2Mη , M =

√
G− 1 and ϕ(u) = u log(u)− u+1. For sufficiently small η, we have

E[|Ctot|] = O(η
√
L+min{η√pL, η3L}), with the growth rate of O(η√p) under constant rollout

length L.
Remark 3.3. Theorem 3.2 shows that the upper bound on the total clipping-correction term depends
on the (empirical) expected token-level activation rate p: larger p would bring more clipping
correction. p varies across model families but can be directly monitored during training. This
motivates a general, model-agnostic framework for analyzing clipping effects – one that applies
uniformly across architectures by expressing all bounds in terms of the observable activation rate p.

To quantify the effect of clipping, we establish the following bound relating the magnitude of the raw
surrogate sum to the total clipping correction. For the proof, please refer to Appendix C.6.
Theorem 3.4 (Law of clipping). Under the same settings as Theorem 3.2, we define the raw surrogate
sum Nraw =

∑L
t=1 rtA. For sufficiently small η, we have E[|Nraw|] ≥ ηLE[A2] +Ω(η3L). Then, the

5
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lower bound on the expected ratio between the magnitude of the raw surrogate |Nraw| and that of
clipping bias |Ctot| is given by

E[|Nraw|]
E[|Ctot|] ≥

(1−21−G)η

L−1/2M
√

2pRmax
η ϕ(Rmax

η )+M(Rmax
η −1)min

{
√
p,

ϕ(Rmax
η )

ϕ(1+ϵ)

} .
In addition, under practical hyperparameter settings, we have E[|Nraw|]≫ E[|Ctot|]. A quantitative
evaluation using the parameters from our actual training setup is given in Corollary 3.6.

3.2 MODEL-SPECIFIC EVALUATION

Following the hyperparameter configuration of Shao et al. (2025), we train Qwen2.5-Math-7B
on the DeepScaleR dataset (Luo et al., 2025) using random rewards drawn from Bernoulli( 12 ). The
training setup uses a batch size of 128, group size of 16, decoding temperature 1.0, clipping ratio 0.2,
learning rate 5× 10−7, and KL coefficient 0.

We run multiple consecutive experiments with and without clipping using the verl framework
(Sheng et al., 2025). The resulting training trajectories on the MATH500 validation set, together
with the clipping activation fraction over training, are shown in Figure 1. We adopt the default
training prompt from verl, which instructs the model to enclose its final answer in a box for verifier
validation (see Appendix B.1 for further discussion). Notably, for Qwen2.5-Math-7B, the clipping
activation rate is substantially lower than what is typically observed in other base models:
Remark 3.5. Empirically, the clipping activation ratio is usually below 1% for general GRPO
training. For specific Qwen2.5-Math-7B training, the clipping activation ratio never exceeds
0.2%, with expected activation probability E[It] ≈ 0.001.
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Figure 1: Independent trials over Qwen2.5-Math-7B on the MATH500 validation set. For per-
formance validation subpanels (Left & Middle), each color represents a different run; the bold line
shows the smoothed trajectory, and the faint line of the same color shows the corresponding raw
individual run. All later figures follow the same plotting convention. Unclipped training (Left);
clipped training (Middle); and clipping activation ratio during training (Right).

As shown in Figure 1, enabling clipping can lead to a decline in validation performance, whereas
disabling clipping often results in improvement. These findings suggest that upper clipping bias is not
the mechanism driving the observed gains under random rewards. To illustrate this point, we provide
a numerical instantiation of Theorem 3.4 using the training hyperparameters of Qwen-Math:

Corollary 3.6. Suppose that we have η = 5× 10−7, ϵ = 0.2, p = 0.001, G = 16, M =
√
G− 1,

Rmax
η ≈ 1 + 3.87 × 10−6, and ϕ(Rmax

η ) ≈ 7.5 × 10−12. Then, with rollout length L = 4096, the
off-diagonal term becomes negligible compared to the diagonal term. Theorem 3.4 guarantees

E[|Nraw|]
E[|Ctot|] ≥

(1−21−G)η(1−η2)

L−1/2M
√

2pRmax
η ϕ(Rmax

η )+M(Rmax
η −1)min

{
√
p,

ϕ(Rmax
η )

ϕ(1+ϵ)

} ≈ 67.45.

This confirms that E[|Nraw|]≫ E[|Ctot|] in magnitude for hyperparameters used in practice.

Significance of the result. As a consequence of Corollary 3.6, the upper-clipping bias fails to pro-
vide meaningful learning signal towards the gradient, even under contaminated model and benchmark.
This conclusion is supported by both our empirical observations and our theoretical characteriza-
tion. We present further ablation analysis over clipping threshold and group size in Appendix A.2.
Nonetheless, even though clipping does not directly correlated to performance, § 4 shows that it still
has a causal effect on policy entropy under random rewards, shaping the structure of the outcomes
without enhancing learning.
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4 CLIPPING AND POLICY ENTROPY

In this section, we provide two theoretical results describing policy entropy under unclipped and
clipped training (§ 4.1). As discussed in § 2.3, the approximation in Eq. (5) from Cui et al. (2025)
becomes inaccurate when clipping or random rewards are present. Our analysis incorporates both
clipping and initial policy skewness, yielding a more precise characterization of entropy dynamics.
In § 4.2, we validate these results through extensive experiments and targeted case studies. In § 4.3,
we interpret clipping as a mechanism that implicitly reduces entropy and caution – supported by
empirical evidence – against conflating entropy reduction with improved performance.

4.1 ONE-STEP POLICY ENTROPY CHANGE UNDER RANDOM REWARDS

We analyze entropy dynamics under clipped and unclipped training in Theorems 4.1 and 4.3, and
hope these results motivate new ways to modulate entropy using spurious-reward setups alongside
explicit entropy regularization. We first present the clipped-training dynamics in Theorem 4.1, with
the proof deferred to Appendix C.7.
Theorem 4.1. Let the policy be πold, the clip ratio be ϵ > 0 and the step size be η > 0. For
simplicity, we denote clip(·, 1−ϵ, 1+ϵ) as Clipε(·) and define clipped-advantage reparameterization
A⋆(h, a) =

Clipε(r(h,a))−1
η . Then, the one-step update admits the exact log form as follows,

log(πnew(a | h)) = log(πold(a | h)) + log(1 + ηA⋆(h, a))− log(1 + ηµ⋆),

µ⋆ = Ea∼πold(·|h)[A⋆(h, a)].

For sufficiently small η > 0, we have
E[H(πnew)−H(πold)] = − 1

2η
2E[Vara∼πold(·|h)(A⋆(h, a))] +O(η

3) < 0.

Remark 4.2. As shown in Figure 2 (Middle), our experiments confirm that policy entropy consistently
decreases over time under random rewards. In contrast, disabling clipping leads to entropy increasing
during training (Figure 2, Left). Existing approaches to counter early-stage entropy collapse rely on
regularization techniques that merely slow the decay (Wang et al., 2025a; Yao et al., 2025; Zheng
et al., 2025; Cheng et al., 2025). Our finding that one can actively increase policy entropy—while
also improving validation performance—suggests a complementary strategy: using spurious-reward
setups to more effectively preserve and modulate entropy. This highlights a promising direction for
combining true and spurious rewards to better balance exploration and exploitation in RLVR.

In the following theorem, we identify the conditions that permit entropy growth, and we present the
full proof in Appendix C.8.1.
Theorem 4.3. Using the same notation as in Theorem 4.1 but with the one-step unclipped GRPO
update, we have

E[H(πnew)−H(πold)] = − (1−21−G)Φ(πold)
G η2 +O(η3),

where Φ is a third-order polynomial functional measuring the skewness of the policy πold (see
Theorem C.6).
Remark 4.4. Theorem 4.3 shows that the one-step entropy change under unclipped training depends
critically on the initial policy distribution; indeed, more skewed policies can exhibit entropy increases
during training. As a concrete example, we consider a two-armed policy πold = (β, 1− β) for some
β ∈ (0, 1). In this case, one can compute

Φ(π) = 2β2(1− β)2(2− log2( β
1−β )).

In addition, Φ(π) ≥ 0 if and only if β ∈ [(1 + e
√
2)−1, (1 − e−

√
2)−1] ≈ [0.196, 0.804]. Thus,

entropy decreases in expectation when β ∈ [0.196, 0.804] (a less skewed policy) and increases when
β > 0.804 or β < 0.196 (a more skewed policy). Figure 9 illustrates this behavior: for a less-skewed
initialization (Figure 9, Left), spurious rewards do not increase entropy under unclipped training,
whereas with a sufficiently skewed initialization (Figure 9, Right), entropy increases over training.
This is also consistent with the entropy growth observed in our experiments (Figure 2, Left).

Actual policy Φ(π) evaluation. Apart from the two-armed example in Remark 4.4, we further
evaluate Φ(π) for the actual Qwen-Math-7B policy in Figure 8, which helps readers better perceive
the policy skewness and its corresponding Φ(π) associated with entropy increases during training.
For detailed setup and results, please refer to Appendix A.3.
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Figure 2: Policy entropy evolution of Qwen2.5-Math-7B under random-reward training, with
results for unclipped training (Left) and clipped training (Middle); Unclipped training with
R1-Distill-Llama-8B, an example that leads to the gradient explosion (Right).

4.2 EMPIRICAL EVALUATION

Figure 2 (Left & Middle) shows that, under random rewards, disabling clipping can cause policy
entropy to increase over training, reflecting progressively greater exploration. In contrast, enabling
clipping constrains this behavior and leads to a monotonic decrease in entropy. This pattern highlights
that clipping functions primarily as a form of regularization: by capping per-token likelihood ratios, it
effectively reduces the update step size and prevents the policy from drifting too far from its previous
distribution. Beyond its regularization effect, clipping also fulfills its original purpose of preventing
gradient explosion, thereby adding further training stability.

When gradient magnitudes grow large, clipping protects the optimization process by preventing
abrupt, destabilizing updates. Without clipping, this safeguard disappears: the optimizer may take
oversized steps that inject excessive exploration and destabilize training. Thus, clipping does not
introduce additional learning signals; its primary function is to maintain optimization stability by
enforcing a local trust region. Models with sufficiently large single-step gradient norms can collapse
entirely. A failure case is shown in Figure 2 (Right): training R1-Distill-Llama-8B without
clipping initially raises the MATH500 validation accuracy from 65.6% to 76.6% within 100 steps,
but around step 150 the gradients explode, causing a sharp drop in performance. For comparison, the
clipped-training counterpart for R1-Distill-Llama-8B is shown in Figure 4 (Middle).

4.3 POLICY ENTROPY AND MODEL PERFORMANCE
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Figure 3: Results on AIME training set on QwQ-32B (Left), R1-Distill-Llama-8B (Middle-
L), Qwen2.5-Math-7B (Middle-R). With one specific example that shows entropy minimization
would lead to sub-optimal policy under noisier and more difficult training environment (Right).

Figure 2 shows that both higher and lower entropy can achieve improved performance. In practice,
higher entropy reflects stronger exploration: the policy is flatter and thus more capable of discovering
new trajectories. Lower entropy corresponds to greater confidence, with the policy becoming more
concentrated on a small set of trajectories; in RLVR, such concentration may also correlate with
better performance. However, this connection is not guaranteed: convergence to a highly skewed,
low-entropy policy does not necessarily improve accuracy, as demonstrated in Figure 3 (Right).
This suggests that methods explicitly minimizing policy entropy should be applied with caution.
Additional evidence from unclipped training under the same setup is provided in Appendix A.3.

Under random rewards, clipping acts as an implicit entropy minimization mechanism, pushing
the policy toward a more peaked distribution that concentrates probability mass on a small set of
trajectories. Whether this effect is beneficial depends on the model’s initial policy distribution and
the difficulty of the training data. For a strong model on a relatively easy dataset, the policy is
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already concentrated on correct trajectories; additional concentration can be sufficient and may appear
advantageous. We provide a simple theoretical explanation of this phenomenon in § 5.

However, as the training data becomes more difficult, the policy may place most of its probability
mass on incorrect trajectories. This produces the noisy rollouts and unstable updates, often driving
the model toward an incorrect low-entropy solution. To illustrate, for Qwen2.5-Math-7B, we
replace the milder DeepScaleR curriculum with the harder AIME Past series. As shown in
Figure 3 (Middle-R), after 20 training epochs (with the same hyperparameters as in Figure 2), the
trajectory resembles a random walk with little meaningful improvement in validation accuracy. In
contrast, the stronger QwQ-32B and R1-Distill-Llama-8B model (rollout length 8192, with
all other settings identical to the 7B configuration) trained on the same AIME dataset exhibits steady
early-epoch gains (Figure 3, Left & Middle-L). These results indicate that the effectiveness of entropy
minimization is regime-dependent: for strong models on easier data, it can further concentrate mass
on correct trajectories, whereas for weaker models or harder data, it may reinforce incorrect modes
and stall, or even degrade performance. Thus, entropy minimization mechanisms (including clipping
under random rewards) should be viewed as regularization rather than universally beneficial learning
signals.

5 REWARD MISALIGNMENT: WHO CAN BENEFIT FROM RANDOM REWARDS?

From empirical observations in this and prior work, we note two consistent patterns under random-
reward training. First, in line with Shao et al. (2025), weaker models tend to improve less—and
importantly, model strength is dataset-dependent: a model that performs well on an easier benchmark
may struggle on a harder one. Second, as baseline accuracy increases (e.g., approaching 70%),
training dynamics become noticeably smoother, whereas models starting around 50% accuracy
exhibit substantially more oscillation. To explain when and why a model may improve under random
rewards, we analyze the phenomenon through the lens of reward misalignment. As a warm-up, we
introduce a simple probabilistic model that captures this mechanism in the binary outcome-reward
(ORM) setting, converting the observed behavior into a tractable misalignment analysis.

For a prompt x, draw G rollouts {y(1), . . . ,y(G)} from current policy πθ. Partition the indices into
correct and incorrect sets C, I ⊆ {1, . . . , G} with |C| = nc, |I| = ni, and nc + ni = G. We analyze
two label errors: (i) False positives (FP): rj = 1 for j ∈ I (an incorrect rollout is rewarded); (ii) False
negatives (FN): rk = 0 for k ∈ C (a correct rollout is not rewarded). Specifically, we aim to explain:
(i) why validation curves fluctuate less when accuracy is high but become noticeably unstable when
accuracy is low, and (ii) why stronger models are more likely to improve under random rewards. Our
starting point is to formalize reward misalignment: the loss of advantage mass that should have been
assigned to correct rollouts but is instead diverted due to random reward mislabeling.
Definition 5.1 (Correct-response advantage loss). Let {rj}Gj=1 be i.i.d. with rj ∼ Bernoulli( 12 )
for all j, independent of correctness. We define the event counts f :=

∑
j∈I 1{rj = 1} and

g :=
∑
k∈C 1{rk = 0}, and let T :=

∑G
j=1 rj = f + (nc − g) be the total number of +1 rewards.

We write r̄ := T
G for the group-averaged reward. The class-wise centered reward sum over C is

ΣC(f, g) :=
∑
k∈C(rk−r̄) = (nc−g)− ncT

G . As an “ideal” reference with no mislabels (f = g = 0),
we have Σideal

C =
∑
k∈C(1−

nc

G ) = nc(1− nc

G ). Finally, we define the damage (advantage loss) as

∆(f, g) := Σideal
C − ΣC(f, g). (7)

Proposition 5.2. For any nc, ni ≥ 1 and G = nc + ni, let f ∼ Binomial(ni, 12 ), g ∼
Binomial(nc, 12 ) be independent, and ∆ := ∆(f, g) be defined in Eq. (7). Under i.i.d. Bernoulli( 12 )
rewards, we have

E[∆] = nc(G−nc)
G , Var(∆) = nc(G−nc)

4G . (8)

The expected damage decreases as the number of correct rollouts nc increases, and its variance
likewise shrinks with nc, explaining why the stronger models exhibit more stable validation curves.
The largest fluctuations occur near the symmetric regime nc ≈ ni. This is consistent with our
empirical results in Figure 1. We further refine this characterization by decomposing the damage into
conditional means in Theorem 5.3. The proof of Proposition 5.2 is provided in Appendix C.9, and
the proof of Theorem 5.3 is given in Appendix C.10.
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Figure 4: Results of Qwen2.5-Math-1.5B under clipped training (Left); results of R1-Distill-
Llama-8B under clipped training (Middle); percentage improvement (averaged over six independent
runs) for different models under the same training and validation setup (Right).

Theorem 5.3. Let f ∼ Binomial(ni, 12 ) and g ∼ Binomial(nc, 12 ) be independent, and let ∆ be
defined in Eq. (7). For policy with more correct rollouts (nc > ni), we have

E[∆1{f>g}] ≤ E[∆1{g>f}].

As nc increases on [G2 , G], we have E[∆1{f>g}] constitutes a strictly smaller fraction of E[∆].

Theorem 5.3 refines Proposition 5.2. As the overall damage E[∆] decreases with nc, the composition
of that (shrinking) damage shifts: for stronger models (those with nc > ni), FN-dominated regions
(g > f ) contribute a larger share than FP-dominated regions (f > g), and the FP-dominated portion
decreases monotonically. Practically, this means that training stronger models on datasets where
nc > ni incurs less total misalignment damage—particularly fewer FP misallocations—and is
therefore more likely to yield improvements under random rewards. This effect persists even beyond
contaminated-reward settings. We further corroborate this trend through experiments on a stronger
distilled Llama model and a weaker Qwen-Math model, with results shown in Figure 4.

As reported by Shao et al. (2025), base Llama models reliably degrade during random-reward
training across trials. Under the reward-misalignment perspective, stronger models should benefit
more and are thus more likely to improve. We test this by evaluating a stronger distilled Llama
variant, whose base and teacher models both exhibit contamination on MATH500. As shown in
Figure 4 (Middle), using a rollout length of 8192 tokens and matching all other hyperparameters to the
Qwen-Math configuration, we observe improvements comparable to those in Figure 2. In contrast,
the weaker and potentially contaminated Qwen-Math model (Figure 4, Left) fails to achieve similar
gains. These results indicate that validation-set contamination does not account for the improvements
under random rewards, nor is the effect specific to Qwen-Math. Figure 4 (Right) summarizes the
percentage improvements across the model results in Figure 1 (Left) and Figure 4 (Left and Middle).

6 CONCLUSION

We now return to the three central questions proposed in § 2:

• (i) Can random rewards improve model performance, and under what conditions?
• (ii) Does clipping bias provide a meaningful learning signal, and if not, what role does it

actually play?
• (iii) Is there a direct causal relationship between policy entropy and policy performance?

First, random rewards can improve model performance, and according to our reward-misalignment
analysis in § 5, the stronger the model is, the more likely it is to benefit from random-reward
training; weaker models, in contrast, exhibit instability when trained on harder datasets. Second,
clipping bias does not provide a genuine learning signal (§ 3.1); its true role lies in regulating
policy entropy under spurious training signals (§ 4.1). Finally, as demonstrated in § 4.2 and § 4.3,
lower entropy does not deterministically lead to better performance: decreases in entropy can
coincide with performance degradation, while increases in entropy can coincide with performance
improvements. Therefore, there is no direct, causal relationship between policy entropy and model
performance. Taken together, we hope our theoretical and empirical analyses clarify the dynamics
between exploration and exploitation within RLVR and provide a principled foundation for future
works to better understand the RLVR learning dynamics.
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A FURTHER EMPIRICAL RESULTS

A.1 EXPERIMENT OVERVIEW

We begin by providing a high-level overview of our experimental design, followed by a comprehensive
summary of all results in the main body text and appendix. Our experiments are organized around
two goals: (i) understanding the interaction between clipping, policy entropy, and model performance
under spurious rewards, and (ii) validating whether the benefits of spurious rewards extend beyond
Qwen-Math to a broader class of model families.

Experiments design. For goal (i), we fix the model to Qwen-Math-7B to ensure a consistent
setup for studying the interactions between clipping, policy entropy, and model performance. This
choice is guided both by prior empirical findings on random rewards and by a practical necessity:
Qwen-Math-7B has a moderate parameter count and a shorter context window (4K, i.e., the model
can generate at most 4K tokens per response), which makes training more stable and less susceptible
to uncontrollable factors such as gradient explosion. This stability is important because clipping is
often introduced precisely to prevent gradient explosion in larger models with longer rollout chains.
As we show in Figure 2 (Right) and discuss in § 4.2, removing clipping for a stronger model with
longer chain-of-thought rollouts can lead to training collapse, which introduces confounding effects
and makes it harder to isolate the “pure” dynamics between clipping, entropy, and performance.
Note that one original motivation for carrying over PPO-style clipping into GRPO was to ensure the
stability of training the DeepSeek-R1-671B model. For goal (ii), we additionally include two
non-contaminated model families, Llama and QwQ, for which there is no evidence of contamination
reported in the community, to demonstrate that the benefits and effects of spurious rewards extend
beyond Qwen-Math to more general RLVR learning dynamics.

Review of experiment results. In § 3.2, we study the relationship between clipping and model
performance by ablating training runs with and without clipping. In § 4.2, we empirically verify
our theoretical results on the connection between clipping and policy entropy. For consistency, all
of these experiments are conducted with Qwen-Math-7B over DeepScaleR training set with mild
difficulty.

In § 4.3 and Appendix A.3, we then investigate the relationship between entropy and performance
on the harder AIME training set by presenting both clipped and unclipped training. These results
show that policy entropy does not have a direct causal relationship with performance, and that models
benefit less from random rewards when their initial performance is degraded by increasing dataset
difficulty. This contrasts with stronger Llama and QwQ models, which still benefit from random
rewards even on the hard AIME training set. Finally, in § 5, we provide additional experiments
spanning weak to strong models, demonstrating that stronger models have a higher probability of
benefiting from random-reward training. In Appendix A.2, we present the ablations studies over
clipping threshold ε and GRPO group size G. We further provide the policy skewness visualization
case studies in Figure 8, at the end of Appendix A.3.

A.2 ABLATION ANALYSIS

In this section, we present two ablation analysis over clipping ratio threshold ε and group size G.
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Figure 5: We present the ablation over the clipping ratio threshold used in Figure 1. All experiments
in this figure follow the same setup as Figure 1, varying only the clipping ratio threshold ε, with six
independent runs for each setting: trials with clipping ratio ε = 0.1 (Left); trials with clipping ratio
ε = 0.15 (Middle); and the ratio of clipping activations across ε ∈ {0.2, 0.15, 0.1} (Right).
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Ablation over clipping ratio threshold ε. We present a further ablation on the choice of ε. Recall
that Figure 1 reports results for ε = 0.2 and the unclipped case (i.e., ε =∞), showing that relaxing
the clipping threshold does not harm model performance. However, these experiments do not
yet establish robustness under stricter clipping. To address this, we present additional results for
ε ∈ {0.15, 0.1} to demonstrate its robustness.

Shown in Figure 5, by varying the clipping ratio threshold, there is not a clear distinction from the
result in Figure 1, where (i) unsuccessful trials that fail to improve still presents, which is explained
by the probabilistic model from reward misalignment perspective; (ii) for improved trials, the final
convergence is all around 70% accuracy on the validation set.

Recall from the analysis in § 4.1 that clipping mainly affects the policy entropy. Among the improved
trials, runs with clipping activated typically exhibit smaller variance in final performance across seeds.
This reduction in variance is consistent with the lower entropy driving the policy to become more
deterministic by the end of training, leading to more consistent convergence across trials. Therefore,
we believe our results should be robust given variations in clipping ratio threshold ε.
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Figure 6: Ablation with reduced
group size.

Ablation over group size G. Group size also plays a key role
in random-reward training. With a larger group (e.g., G = 16),
binary rewards tend to be more balanced. In contrast, with
smaller groups, extreme cases of reward alignment (e.g., assign-
ing 0 to all correct rollouts within a group, or 1 to all incorrect
rollouts) occur with higher probability. In short, reducing the
group size increases instability from a reward-misalignment
perspective. We present ablation results for G = 8 in Fig-
ure 6. Although most trials still improve by the end of training,
the smaller group size leads to greater instability and variance
during training.

A.3 ADDITIONAL EXPERIMENTS

Unclipped training on the hard dataset. In Figure 3, we present the clipped training results of
Qwen2.5-Math-7B on the AIME dataset, where clipping drives entropy decrease (Theorem 4.1).
We show that even though entropy decreases, performance also degrades. Thus, lower entropy is
not monotonically or directly aligned with better model performance. However, this still leaves an
empirical gap: what happens to performance in the regime where entropy increases (Theorem 4.3
and Remark 4.4) under random rewards?
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Figure 7: Unclipped Qwen2.5-Math-7B training on the hard AIME dataset: independent runs
following from the setup in Figure 3 (Left); corresponding policy entropy dynamics during unclipped
training (Middle); joint evolution of model performance and policy entropy for an example trial
(Right).

We therefore conduct additional experiments and report the results in Figure 7, which illustrate the
learning dynamics of unclipped training on this harder dataset. Across independent runs in Figure 7
(Left), we observe qualitatively similar behavior to clipped training in Figure 3 (Middle): some trials
improve, some degrade, and overall behavior appears stochastic. In Figure 7 (Middle), we further
confirm the theoretical result that policy entropy increase would happen under unclipped training.
Among the trials with improvement, Figure 7 (Right) highlights a specific example where the model
improves even as its entropy increases. Taken together, these results answer the open question:
there is no simple, direct causal relationship between policy entropy and model performance. Both
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the unclipped and clipped experiments further support the conclusion of our reward-misalignment
probabilistic model: as the model’s initial performance on a dataset becomes weaker, it is less likely
to benefit from random rewards.

Policy skewness Φ(π). We empirically evaluate the skewness discussed in Remark 4.4 on the actual
Qwen-Math-7B policy. Recall that, under unclipped training, the entropy after one update can
increase only if Φ(π) < 0. We also note that the policy induces different action distributions π(a | x)
for different input questions x. To estimate the skewness of these distributions across questions, we
sample the first 500 questions from the DeepScaleR training set (Luo et al., 2025). For each question
x, we draw 64 responses y from the policy as actions and use them to estimate Φ

(
π(· | x)

)
, with the

same sampling and decoding hyperparameters as in § 3.2.
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Figure 8: Visualization of policy action distributions over 12 prompt xi. Each subplot displays the
sorted log-probability of π(y | xi) for 64 sampled responses from each prompt xi. Columns 1–2
(blue) correspond to prompts xi with Φ

(
π(· | xi)

)
> 0, while Columns 3–4 (orange) correspond to

prompts with Φ
(
π(· | xi)

)
< 0. As discussed in Remark 4.4, the entropy increase under unclipped

training can occur only for the skewed one shown in Columns 3–4.

We visualize several prompts xi and their corresponding values of Φ
(
π(· | xi)

)
in Figure 8 to provide

a clearer understanding of the skewness of Qwen-Math-7B over the training set. Among the 500
sampled questions, 358 of xi satisfy Φ

(
π(· | xi)

)
< 0, which contribute to the observed entropy

increase.

B RELATED WORKS

We provide a technical review to explain the difference across experiment setup and insight from the
recent advancements in RLVR for LLM post training.

B.1 SPURIOUS REWARD FOR REINFORCEMENT LEARNING

Spurious reward in general reinforcement learning. In this section, we provide broader context
on how previous work in reinforcement learning for classic settings (non-LLM) used spurious
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rewards to facilitate the training process. First, spurious reward signals are closely tied to issues of
generalization in RL, shown in (Zhang et al., 2018; Koch et al., 2021; Langosco Di Langosco et al.,
2022; Weng, 2024). While the above works showed intentional uses of such rewards, spurious signals
can also arise unintentionally, leading to reward misspecification and the phenomenon of reward
hacking (Pan et al., 2022; Weng, 2024), but note that such spurious-based reward hacking is shown in
LLM RLHF learning as well (Tien et al., 2023).

On the other hand, the design of deliberated misaligned reward shaping can be traced back to potential-
based reward shaping (PBRS) Ng et al. (1999). The key is to inject additional reward signals in
principled ways (like PBRS) or with careful tuning so that the intended behavior is still optimal. After
that, Random Network Distillation (RND) introduced by Burda et al. (2019) became a state-of-the-art
exploration method, being extended in its follow-up work (Mahankali et al., 2022; Ma et al., 2025).
Pathak et al. (2017); Zhang et al. (2021); Wang et al. (2023); Li et al. (2023) also proposes spurious
rewards that encourage the agent or model to traverse state-space in ways that eventually uncover
actual rewards. Spurious reward is also largely applied to directly improve agent exploration. One
prominent theoretical idea is Posterior Sampling for Reinforcement Learning (PSRL) (Osband et al.,
2013). Xu et al. (2025); Chen et al. (2024b) also extends the similar heuristic-driven search into
broader areas to encourage exploration.

Spurious reward for RLVR. In this section, we zoom into recent works on spurious rewards
for RLVR. Beyond the headline empirical findings, the experimental setups in prior work differ
in important ways. In Shao et al. (2025)’s released code, the prompt does not include the usual
Qwen-style instruction to place the final answer in a box; as they note, Qwen-Math is sensitive to
prompt formatting, and the prompt composition will largely affect its baseline performance. In our
experiments, we instead follow verl (Sheng et al., 2025)’s default Qwen prompt, which explicitly
asks the model to place the final answer in a boxed expression. This aligns with the RLVR verifier in
verl, which extracts the boxed answer for scoring and reward provision. Aside from the prompt, we
match Shao et al. (2025) on all RLVR hyperparameters.

By contrast, Oertell et al. (2025) use a different configuration: (i) a rollout-length cap of 1024
tokens (well below Qwen-Math’s 4096-token context window), (ii) a different training set (MATH
(Hendrycks et al., 2021) rather than DeepScaleR (Luo et al., 2025)), (iii) a substantially smaller
learning rate (1×10−7 versus 5×10−7 in Shao et al. (2025)), and (iv) a reduced batch size (64 versus
128 in Shao et al. (2025)). The smaller learning rate changes the effective step size and can materially
alter policy updates; the smaller batch size yields noisier estimates of the underlying random reward
provision distribution. Given these differences, the reported experiment results in these two works
are not directly comparable at least from empirical level.

Training set contamination. We provide additional background on potential contamination in
Qwen2.5-Math models. According to existing evidence (Wu et al., 2025), Qwen-Math contam-
ination has only been observed on validation sets (e.g., MATH500). Beyond community reports,
the official Qwen2.5-Math technical report (Yang et al., 2024, Table 1) also acknowledges the
possibility of contamination due to the closeness between the training and validation splits of MATH
dataset (Hendrycks et al., 2021). Their training data consists of two parts: (i) CoT data synthesis,
which they state includes only GSM8K, MATH, and NuminaMath (Yang et al., 2024, § 3.1.1), and
(ii) a tool-integrated reasoning dataset, which includes GSM8K, MATH, CollegeMath, NuminaMath,
MuggleMath, and DotaMath (Yang et al., 2024, § 3.1.2). In contrast, the training set used in our
experiments, DeepScaleR, according to Luo et al. (2025), consists only of selected questions from
AMC, AIME, Omni-Math, and Still. Thus, there is no overlap between our training set and the
datasets used to train Qwen2.5-Math, and we believe there is no contamination in our training
data.

B.2 LLM POST-TRAINING

LLM entropy. Agarwal et al. (2025) show that simply minimizing token-level entropy can sub-
stantially enhance an LLM’s reasoning ability without verifiable, labeled feedback. They argue that
entropy reduction makes models more confident in their highest-probability answers, thereby unlock-
ing latent reasoning capability. We note that this mechanism closely resembles clipped training under
random rewards, where updates primarily modulate entropy rather than exploit informative reward
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signals. However, we show that entropy minimization alone can drive the policy to a low-entropy
yet suboptimal solution; thus, entropy should be treated as a stabilizing regularizer, and it should be
cautious when using as the substitute for genuine RLVR learning signal.

Similarly entropy-minimizing idea has also in relate to model confidence, Prabhudesai et al. (2025)
connect lower policy entropy to higher model confidence and use the model’s own low-entropy (high-
confidence) rollouts as a reward signal, reporting notable gains across multiple benchmarks and base
model families. More surprisingly, Gao et al. (2025) demonstrate that even a single unlabeled example
can boost a model’s reasoning via entropy minimization. In a similar vein, Entropy-Minimized Policy
Optimization (Zhang et al., 2025b) and Zhao et al. (2025b) improve performance in an unsupervised
setting by increasing the model’s self-confidence. Relatedly, van Niekerk et al. (2025) construct
ranked preference datasets from the model’s own confidence over answers and obtain comparable
improvements without human feedback or external verification, suggesting that self-confidence can
serve as a weak training signal.

Cui et al. (2025) claim a simple but insightful empirical relation between policy entropyH and model
performance R, with fitting coefficient a and b,

R = −a exp
(
H
)
+ b, a > 0,

estimated from extensive experiments. This fit suggests that performance increases monotonically
as entropy decreases, but also plateaus once entropy collapses early. Intuitively, as the model
overreinforces certain token sequences, its output distribution becomes overconfident and loses
exploratory capacity, creating a performance ceiling.

Still, multiple works propose different perspectives to avoid earlier-stage entropy collapse. Shen
(2025) examines why standard entropy regularization often provides little benefit in RLVR training
of LLMs, attributing it to the extremely large response space of LLMs and the sparsity of optimal
outputs, and proposes an adaptive entropy control technique that uses a clamped entropy bonus
with an automatically tuned coefficient. Song et al. (2025) shows that GRPO-style ORM yields
strong accuracy gains but induces a systematic drop in output entropy and diversity, evident in lower
pass@n scores compared to the base model. To counter this, a outcome-based exploration that
introduces entropy-promoting bonuses at the level of final outcomes is proposed. Similarly, previous
works (Wang et al., 2025a; Yao et al., 2025; Zheng et al., 2025; Cheng et al., 2025) also applied
different techniques to control the entropy during RLVR training.

Reinforcement learning for LLM. Proximal Policy Optimization (Schulman et al., 2017) has
emerged as the foundation for using reward-based policy updates to enhance LLM capabilities and
serves as a key component of RLHF. However, due to the computational and memory inefficiency
of loading four models, many lightweight and adapted policy gradient update methods have been
proposed (Li et al., 2024; Ahmadian et al., 2024; Shao et al., 2024; Guo et al., 2025a). Along with the
development of verifiable reward methods (Cobbe et al., 2021; Uesato et al., 2022; Zelikman et al.,
2022; Singh et al., 2023; Hosseini et al., 2024; Lightman et al., 2024; Wang et al., 2024; Setlur et al.,
2025; Zhang et al., 2025c), reinforcement learning has greatly facilitated the reasoning capabilities of
LLMs, especially in solving mathematical problems.

Apart from training methods, recent works have also advanced post-processing and collaborative
approaches to improve reasoning effectiveness. Kay et al. (2025); Zhao et al. (2025a) propose
consensus- and answer-aggregation-based methods to reinforce results under multi-model frameworks.
Chen et al. (2025a) introduce a novel self-questioning framework, while Park et al. (2025) present a
practical framework for advancing online multi-agent collaborative reinforcement learning.

Further offline practices. Direct alignment approaches such as DPO (Rafailov et al., 2023) provide
a simple, stable offline alternative to online RLHF. Numerous variants extend DPO with different
objectives, including ranking formulations beyond pairwise comparisons (Dong et al., 2023; Yuan
et al., 2023; Song et al., 2024; Chen et al., 2024a; Liu et al., 2025a) and lightweight methods that
remove the reference model (Hong et al., 2024; Meng et al., 2024). Because DPO avoids training
a reward model, the limited supply of human labels becomes a key bottleneck; to address this,
subsequent work augments preference data using an SFT policy (Zhao et al., 2023) or a refined
SFT policy with rejection sampling (Liu et al., 2024a). The DPO loss has also been generalized
to token-level MDPs with deterministic transitions—covering standard LLM fine-tuning (Rafailov
et al., 2024)—and to broader RL settings (Azar et al., 2024). Complementary work elicits human
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feedback online to mitigate distribution shift and over-parameterization Dong et al. (2024); Xiong
et al. (2024), improving performance on complex reasoning tasks (Pang et al., 2024). A parallel line
studies unintentional alignment and proposes remedies (Pal et al., 2024; Tajwar et al., 2024; Liu et al.,
2024b; Xiao et al., 2024; Yuan et al., 2025; Razin et al., 2025; Chen et al., 2025b); for example, Razin
et al. (2025) introduce the CHES similarity to filter near-duplicate preference pairs, and Chen et al.
(2025b) leverage comparison oracles (ComPO), showing that combining them with DPO alleviates
unintentional alignment in practice. Attributed to Gradient Descent-Ascent (GDA) scheme (Lin et al.,
2025), many recent works over Nash Learning from Human Feedback (NLHF) (Munos et al., 2024)
arises along with RLHF.

C PROOFS AND TECHNICAL DETAILS

Setup. We model the next-token policy with a softmax at each history. Let V be the vocabulary and
ht = (x,y<t) be the token history. For each prompt x ∈ X and response a = (a1, . . . , aL) ∈ VL,
where at ∈ V ,

πθ(a | x) =
L∏
t=1

πθt(at | ht), πθt(at | ht) =
exp(θt,ht,at)∑
a′∈V exp(θt,ht,a′)

,

where θ = (θT1 , . . . , θ
T
L)

T, and θt ∈ R|X ||V|t for all t = 1, . . . , L.

Given trajectories drawn from πold, define the per-token ratio r(i)t (θ) =
πθ(y

(i)
t |h(i)

t )

πold(y
(i)
t |h(i)

t )
. For a group

{y(i)}Gi=1 ∼ πold(· | x) and outcome-reward advantages Ai, the empirical per-history advantage used
in the policy-space update is

Ã(h, a) =
1

G

G∑
i=1

L∑
t=1

1{h(i)
t = h,y

(i)
t = a}

πold(a | h)
Ai,

where we assume a common length L for simplicity.

Recall that we optimize the clipped surrogate with per-token ratios; as in Williams (1992) and Li
et al. (2024), we do not add a separate length normalizer:

J(θ) = Ex∼ρ, {y(i)}G
i=1∼πθold (·|x)

[
1

G

G∑
i=1

L∑
t=1

min
{
r
(i)
t (θ)Ai, clip

{
r
(i)
t (θ), 1− ϵ, 1 + ϵ

}
Ai

}]
.

Without clipping, the surrogate reduces to

J(θ) = Ex∼ρ, {y(i)}G
i=1∼πθold (·|x)

[
1

G

G∑
i=1

L∑
t=1

r
(i)
t (θ)Ai

]
.

Optimizing the unclipped surrogate together with a forward-KL to πold yields the closed-form
token-level update

πθ(a | h) =
πθold(a | h) exp

(
η Ã(h, a)

)∑
a′∈V πθold(a

′ | h) exp
(
η Ã(h, a′)

) , (9)

which we then evaluate at the realized pairs (a,h) = (y
(i)
t ,h

(i)
t ) in training. Such update is equivalent

to natural policy gradient (NPG) step under softmax tabular parametrization (Agarwal et al., 2021) or
mirror descent with KL divergence.

C.1 LEMMA 2.2

Lemma 2.2 - general version (restated). For small step size η, the following token-level logarithm
update can be derived,

log πnew(a | h) = log πold(a | h) + η
(
Ã(h, a)− µ(h)

)
− 1

2 σ
2(h) η2 +O(η3),

which further gives to the reparameterization of importance ratio:

r(h, a) = exp
(
η(Ã(h, a)− µ(h))− 1

2σ
2(h)η2 +O(η3)

)
.
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Proof. Fix a history h. The update rule Eq. (2) gives

πnew(a | h) =
πold(a | h) eη Ã(h,a)

Zh(η)
,

where the normalization coefficient is given by

Zh(η) := Ea∼πold(·|h)
[
eη Ã(h,a)

]
=
∑
a∈V

πold(a | h)eη Ã(h,a).

Taking logarithms yields

log πnew(a | h) = log πold(a | h) + η Ã(h, a)− ψh(η), ψh(η) := logZh(η). (10)

The function ψh is the cumulant generating function of Ã(h, ·) under πold(· | h), hence admits the
expansion, for small η,

ψh(η) = µ(h) η + 1
2 σ

2(h) η2 +O(η3),
where

µ(h) = Ea∼πold(·|h)[Ã(h, a)] =
∑
a∈V

πold(a | h)Ã(h, a),

σ2(h) = Vara∼πold(·|h)[Ã(h, a)] =
∑
a∈V

πold(a | h)(Ã(h, a)− µ(h))2.

Substituting back into Eq. (10) yields

log πnew(a | h) = log πold(a | h) + η
(
Ã(h, a)− µ(h)

)
− 1

2 σ
2(h) η2 +O(η3).

Combining log πold(a | h) with log πnew(a | h) then yields

r(h, a) = exp
(
η(Ã(h, a)− µ(h))− 1

2σ
2(h)η2 +O(η3)

)
.

Remark C.1. The above result is a general version of Lemma 2.2. If we center and standardize the
score at each history so that µ(h) = 0 and σ2(h) = 1, then ψh(η) =

1
2η

2 + O(η3). Substituting
this into Eq. (10) gives

log πnew(a | h) = log πold(a | h) + η Ã(h, a)− 1
2η

2 +O(η3).

Combining log πold(a | h) with log πnew(a | h) then yields Eq. (4).

C.2 LEMMA 2.4

In this subsection, we study the distribution of GRPO advantage and its basic statistics. Recall the
definition of GRPO advantage in Eq. (1), we notice that Ai is not well-defined if all G samples in a
group receive the same reward because the standard deviation in the denominator is 0. In practice,
these two cases lead to zero gradient update. Based on this, we set Ai = 0 if all samples receive the
same reward, which occurs with probability 21−G.

Lemma 2.4 (restated). Fix a group size G ≥ 2 and denote ri := r(x,y(i)) and Ai := A(x,y(i)),

respectively, where (r1, . . . , rG)
i.i.d.∼ Bernoulli

(
1
2

)
. Define sample reward mean r := 1

G

∑G
i=1 ri,

sample reward variance Sr :=
√

1
G

∑G
j=1(ri − r)2, and sample advantage Ai := (ri − r)/Sr.

Then, the following properties hold. (i) Symmetry: Ai is symmetrically distributed around 0, hence
E[A 2k−1

i ] = 0 for all k ∈ N+; (ii) Boundedness: |Ai| ≤
√
G− 1; (iii) Even moments: for all

k ∈ N+, E
[
A 2k
i

]
≥ 1− 21−G.

Proof. We prove three statements one by one as follows.
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(i) Let τ : {0, 1}G → {0, 1}G be τ(r1, . . . , rG) = (1− r1, . . . , 1− rG). If r̄ = 1
G

∑
j rj and

(r′1, . . . , r
′
G) = τ(r1, . . . , rG), then r̄′ = 1− r̄ and

r′j − r̄′ = (1− rj)− (1− r̄) = −(rj − r̄).

Hence Sr′ = Sr and A′
i = −Ai. Since (r1, . . . , rG) is i.i.d. Bernoulli( 12 ), its law is

invariant under τ . Thus, we know (r′1, . . . , r
′
G)

d
= (r1, . . . , rG) and A′

i
d
= Ai. Combining

the above two facts, we obtain Ai
d
= −Ai and thus E[A2k−1

i ] = 0.

(ii) Write xj := rj − r̄ so that
∑G
j=1 xj = 0 and S2

r = 1
G

∑G
j=1 x

2
j . Since

∑
j ̸=i xj = −xi,

Cauchy-Schwarz gives

(G− 1)
∑
j ̸=i

x2j ≥

∑
j ̸=i

xj

2

= x2i .

Therefore

GS2
r =

G∑
j=1

x2j ≥ x2i +
1

G− 1
x2i =

G

G− 1
x2i ,

and hence |Ai| = |xi|/Sr ≤
√
G− 1.

(iii) Let K :=
∑G
j=1 rj ∼ Binomial(G, 12 ) and p := K/G. On {1 ≤ K ≤ G− 1} we have

Sr =

√
K(G−K)

G
, Ai =


√

1−p
p , Ri = 1,

−
√

p
1−p , Ri = 0.

Hence for m ∈ N+,

E
[
A2m
i | K

]
= p

(
1− p
p

)m
+ (1− p)

(
p

1− p

)m
=: fm(p).

Write x := p
1−p > 0 so fm(p) = xm+x−(m−1)

1+x . Define hm(x) := xm + x−(m−1) − x− 1.
Then

h′′m(x) = m(m− 1)xm−2 +m(m− 1)x−(m+1) ≥ 0, x > 0,

and hm(1) = h′m(1) = 0. By convexity, hm(x) ≥ 0 for all x > 0, hence fm(p) ≥ 1 for all
p ∈ (0, 1). Taking expectations and using construction Ai = 0 on {K ∈ {0, G}} yields

E[A2m
i ] =

G−1∑
k=1

(
G

k

)
2−Gfm

(
k

G

)
≥
G−1∑
k=1

(
G

k

)
2−G = 1− 21−G.

For m = 1 we have f1(p) ≡ 1, so equality holds. This completes the proof.

C.3 DETAIL FOR EQ. (5) UNDER RANDOM REWARD

We demonstrate below why Eq. (5) fails under random reward, which comes from the independence
between advantage A(x,y) and policy πold(y | x) under random reward:

Covy∼πold(·|x)
(
log πold(y | x), A(x,y)

)
=Ey

[
log πold(y | x)A(x,y)

]
− Ey

[
log πold(y | x)

]
Ey[A(x,y)]︸ ︷︷ ︸

=0

=Ey

[
log πold(y | x)

]
Ey[A(x,y)]︸ ︷︷ ︸

=0

= 0.
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Algorithm 1 Iterative Group Relative Policy Optimization

Require: initial policy model πθinit
; reward models rφ; task prompts D; hyperparameters ε, β, µ

1: πθ ← πθinit

2: for iteration = 1, . . . , I do ▷ Outer loop: for KL penalty calculation
3: πref ← πθ
4: for step = 1, . . . ,M do ▷ Middle loop: for macro-batch sampling
5: Sample a batch Db from D
6: Update the old policy model πθold ← πθ
7: Sample G outputs {oi}Gi=1 ∼ πθold(· | q) for each question q ∈ Db
8: Compute rewards {ri}Gi=1 for each sampled output oi by running rφ
9: Compute Âi,t for the t-th token of oi via group-relative advantage estimation

10: for GRPO iteration = 1, . . . , µ do ▷ Inner loop: policy update via micro-batches
11: Update the policy model πθ by maximizing the GRPO objective
12: end for
13: end for
14: Update rφ through continuous training using a replay mechanism
15: end for
Ensure: πθ

C.4 NPG-UPDATE FOR CLIPPING ANALYSIS

We first provide a review for update rule used to recent GRPO theoretical analysis. Note that NPG-
update Agarwal et al. (2021) has widely used in previous works for GRPO entropy analysis. As the
first work to study the clipping effect in GRPO, we briefly review technical details in GRPO that
motivates our reduction to an NPG-style update for analyzing clipping. Algorithm 1 summarizes the
iterative procedure from Shao et al. (2024). In the outer loop (line 2), a reference policy is set once
per iteration (line 3), and the per-step objective may include a KL penalty that constrains the updated
policy πθ to stay close to πref , thereby controlling step size and preventing excessive drift.

Recent “zero-RL” setups (e.g., DAPO (Yu et al., 2025)), which is also adopted in the empirical
evaluation setup from Shao et al. (2025), set the KL coefficient to zero, effectively removing the
explicit KL term from the objective. Matching this setting, we likewise drop the KL penalty in our
analysis. In this regime, the outer loop would not affect the following analysis.

In the middle loop (line 4), which is for standard GRPO training step, the model samples each
macro-batch from dataset, which is update-style agnostic. The key difference between exact-GRPO-
and NGP-style update happens in the inner loop (line 10). First, µ is a constant hyperparameter
for the number of actual updates per macro batch, used to improve sample efficiency and better
optimize the surrogate while clipping limits drift from πold. Therefore, the statement for GRPO
iteration = 1, . . . , µ performs µ optimizer steps on the same mini-batch to maximize the clipped
GRPO surrogate. At each step, importance ratio r(i)t = πθ(y

(i)
t | x)/πold(y

(i)
t | x) are recomputed

and the loss 1
G

∑
i,tmin{r(i)t Ã, clip(r

(i)
t , 1− ε, 1 + ε)Ã} is backpropagated.

In GRPO, the µ-step inner loop produces a chain of micro-updates whose importance ratios r evolve
across steps, making the expected contribution of clipping analytically intractable unless one specifies
the per-step clip-activation rate (the expected fraction of tokens/micro-batches with r /∈ [1−ε, 1+ε]).
This rate is model- and dataset-dependent and is only available empirically. Conditioning on the
empirically measured activation rate, we collapse the µ clipped micro-steps into a single NPG-update
with actual model-specific token-level expected clipping activation ratio. This surrogate preserves the
first-order effect of clipping and enables tractable bounds for our theoretical results. Comparing to
recent works that directly used NPG for GRPO analysis, our setup for clipping analysis is validly
justified, facilitating the later theoretical derivation and without unjustified oversimplification.

C.5 THEOREM 3.2

Theorem 3.2 (restated). Let G be the number of rollouts in a response group of a prompt x, where
all rollouts have a common length L, and let the clip ratio be ε > 0. For a rollout y in this group with
advantage A := A(x,y), let It := 1{rt>1+ε} be the upper-clip activation indicator with activation
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rate E[It] = p, and define Dt := (r̄t − rt)It, Ctot =
∑L
t=1DtA. Then, for all learning rates η > 0,

E[|Ctot|] ≤M
√
2LRmax

η ϕ(Rmax
η )p+M(Rmax

η − 1)Lmin

{
√
p,
ϕ(Rmax

η )

ϕ(1 + ϵ)

}
,

where Rmax
η := e2Mη , M :=

√
G− 1, and ϕ(u) := u log u− u+ 1. Moreover, for sufficiently small

η used in practical training setup, we have

E[|Ctot|] ≤ O
(
η
√
L+min{η√pL, η3L}

)
. (11)

Proof. First, expanding the second moment E[C2
tot] =

∑
s,t E[DsDtA

2], where Dt := (r̄t − rt)It.
We can then decompose it into diagonal and off-diagonal parts:

E[C2
tot] =

L∑
t=1

E[D2
tA

2] +
∑
s̸=t

E[DsDtA
2]. (13)

Diagonal terms. On the activation event It = 1 we are in the upper-clip regime, so rt ≥ 1 + ε and
Dt = (r̄t − rt)It = −(rt − 1− ε)It, |Dt| ≤ (rt − 1)It.

Because the indicator enforces rt ≥ 1 + ε > 1, we may use the inequality valid for u ≥ 1,
(u− 1)2 ≤ 2uϕ(u), ϕ(u) = u log u− u+ 1,

to obtain
D2
t ≤ (rt − 1)2It ≤ 2rtϕ(rt)It. (14)

By Lemma 2.4, we have |A|2 ≤M2 = G− 1 and rt ≤ Rmax
η = exp{2Mη}. Thus,

E[D2
tA

2] ≤M2E[D2
t ] ≤M2E[2rtϕ(rt)It] ≤ 2M2Rmax

η ϕ(Rmax
η )p,

where the last inequality uses the fact that ϕ is strictly increasing on [1,∞).

Summing over t = 1, . . . , L yields the desired upper bound for the diagonal terms:

E[C2
tot] ≤ 2LM2Rmax

η ϕ(Rmax
η )p+

∑
s̸=t

E[DsDtA
2].

Off-diagonal terms. Let Xt := DtA. Recall that when It = 1, we have |Dt| = (rt − 1− ε) ≤
(rt − 1), and rt ≤ Rmax

η with |A| ≤M =
√
G− 1, hence

|Xt| ≤ |Dt| |A| ≤M(Rmax
η − 1)It.

Therefore ∑
s̸=t

E[|XsXt|] ≤M2(Rmax
η − 1)2

∑
s̸=t

E[IsIt] ≤M2 (Rmax
η − 1)2E[J2] (12)

where J :=
∑L
t=1 It. Since ϕ is strictly increasing on [1,∞) and ϕ(u) ≥ 0 for u ∈ (0,∞) with

equality holds only when u = 1, we have

It = 1{rt>1+ϵ} ≤
ϕ(rt)

ϕ(1 + ϵ)
=⇒ J ≤ 1

ϕ(1 + ϵ)

L∑
t=1

ϕ(rt) ≤
Lϕ(Rmax

η )

ϕ(1 + ϵ)
.

Notice that E[J2] ≤ LE[J ] = L2p and E[J2] ≤ L2ϕ(Rmax
η )/ϕ(1 + ϵ). Thus,∑

s ̸=t

E[|XsXt|] ≤M2(Rmax
η − 1)2L2 min

{
p,
ϕ(Rmax

η )2

ϕ(1 + ϵ)2

}
.

By Cauchy-Schwarz, E[|Ctot|] ≤
√
E[C2

tot]. Using
√
x+ y ≤

√
x+
√
y for any x, y ≥ 0, we have

E[|Ctot|] ≤M
√
2LRmax

η ϕ(Rmax
η )p+M(Rmax

η − 1)Lmin

{
√
p,
ϕ(Rmax

η )

ϕ(1 + ϵ)

}
.

Finally, when η > 0 is small, we can directly see the order of magnitude of the above upper bound by
using Taylor expansion of Rmax

η = 1+ 2Mη+O(η2) and ϕ(Rmax
η ) = 2M2η2 +O(η3). Therefore,

we obtain

E[|Ctot|] ≤M
√
2Lp(2M2η2 +O(η3)) + 2M2Lmin

{
√
pη,

2M2η3 +O(η4)
ϕ(1 + ϵ)

}
.

This shows E[|Ctot|] ≤ O
(
η
√
L+min{η√pL, η3L}

)
.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.6 THEOREM 3.4

Theorem 3.4 (restated). Under the same settings as Theorem 3.2, define the raw surrogate sum
Nraw =

∑L
t=1 rtA. For sufficiently small η,

E[|Nraw|] ≥ η LE[A2] +O(η3L).

Then, the lower bound on the expected ratio between the magnitude of the raw surrogate |Nraw| and
that of clipping bias |Ctot| can be derived as

E
[
|Nraw|

]
E
[
|Ctot|

] ≥ η

L−1/2M
√
2Rmax

η ϕ(Rmax
η )p+M(Rmax

η − 1)min
{√

p,
ϕ(Rmax

η )

ϕ(1+ϵ)

} .
In addition, under practical hyperparameter settings, we have E [|Nraw|]≫ E [|Ctot|]. A quantitative
evaluation using the parameters from our actual training setup is given in Corollary 3.6.

Proof. Following from Lemma 2.2, denote Ãt := Ãt(ht,yt), we have

rt = r(ht,yt) = e

(
ηÃt−

1
2η

2+O(η3)
)
. (13)

Insert Eq. (13) into Nraw =
∑L
t=1 rtA:

E[|Nraw|] ≥

∣∣∣∣∣
L∑
t=1

E
[
Ae

(
ηÃt−

1
2η

2+O(η3)
)]∣∣∣∣∣

=

∣∣∣∣∣
L∑
t=1

E

[
A

(
1 + ηÃt +

η2(Ã2
t − 1)

2
+O(η3)

)]∣∣∣∣∣
=

∣∣∣∣∣
L∑
t=1

(
η E[ÃtA] +

η2

2
E[Ã2

tA]

)
+O(η3)

∣∣∣∣∣
≥ Lη +O(η3)

where the second equality uses E[A2k−1] = 0 for all k ∈ N+ from Lemma 2.4, the third equality
uses E[Ã2

tA] = 0 following from symmetry of Ai. Thus, we have

E[|Nraw|] ≥
∣∣∣∣ηL(|V| − 1)

G
+O(η3L)

∣∣∣∣ ≥ Lη. (14)

for all η > 0 small enough. Therefore, we have the following lower bound

E[|Nraw|]
E[|Ctot|]

≥ η

L−1/2M
√
2Rmax

η ϕ(Rmax
η )p+M(Rmax

η − 1)min
{√

p,
ϕ(Rmax

η )

ϕ(1+ϵ)

} .
If η > 0 is small enough, E[|Nraw|]

E[|Ctot|] ≥ O
(

1
L−1/2+min{√p,η2}

)
. We named this lower bound as the

Law of Clipping between the magnitude of raw and clipped part.

C.7 THEOREM 4.1

To establish the proof for Theorem 4.1, we first introduce the Lemma C.2 for advantage parameteriza-
tion along with its proof:

Lemma C.2. Following the definition and setup in § 2, for convenience, we abbreviate r(a | h) and
Ã(h, a) as r(a) and Ã(a), respectively. Considering the token-level action space V under the past
context h, with policy

∑
a∈V πθ(a | h) = 1, and GRPO-style clipping with ϵ ∈ [0, 1] and a small

step size η > 0, one can obtain the following reparameterization of the importance ratio:

r(a) ≈ 1 + η Ã(a) +O(η2).
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We assume that there exists an advantage mapping Ã : V → R and a constant C <∞ such that

r(a) = 1 + ηÃ(a) + δ(a), |δ(a)| ≤ C η2 for all a ∈ V,
for sufficiently small η. Moreover, let

Clipε(x) := min{max{x, 1− ε}, 1 + ε}, A∗(a) :=
Clipε(r(a))− 1

η
,

where A∗(h, a) is also abbreviated as A∗(a). With an O(η) remainder that is uniform in a, fixing
clipping ratio threshold ε, we then have

A∗(a) = clip(A(a),−ε/η, ε/η) +O(η).

We introduce following Lemmas before establish the proof for Lemma C.2.
Lemma C.3 (Clipping as 1-Lipschitz projection). The map x 7→ Clipε(x) is the metric projection
onto the closed interval [1− ε, 1 + ε]. In particular,∣∣Clipε(x)− Clipε(y)

∣∣ ≤ |x− y| for all x, y ∈ R.

Proof. Clipε(·) is the Euclidean projection onto a convex closed set, hence non-expansive with
Lipschitz constant 1.

Lemma C.4 (Exact centering and scaling identity). For any η > 0 and any y ∈ R,
Clipε(1 + ηy)− 1

η
= clip(y,−ε/η, ε/η) .

Proof. We check the three following cases: (i) y ≤ −ε/η gives Clipε(1 + ηy) = 1 − ε and the
quotient −ε/η; (ii) −ε/η ≤ y ≤ ε/η yields no clipping and the quotient y; (iii) y ≥ ε/η gives +ε/η.
These coincide with the definition of clip(y,−ε/η, ε/η).

In Lemma C.2, we assumed that r(a) = 1 + η Ã(a) + δ(a); we elaborate it in Remark C.5:

Remark C.5. If r(a) = exp{ηÃ(a) + η2R2(a)} with |R2(a)| ≤ C̃ uniformly, then r(a) = 1 +

η Ã(a) + δ(a) with δ(a) = 1
2η

2Ã(a)2 + η2R2(a) +O(η3), so the assumption holds.

Now, we establish the proof for Lemma C.2:

Proof of Lemma C.2. We consider the single-step NPG update in logits-scale. Let the logits under
old policy πθ be w(a) = log πθ(a | h), we have

wθ′(a) = wθ(a) + η Ã(a),

which implies the unclipped policy update:

πθ′(a) ∝ πθ(a)eη Ã(a).

Thus the unclipped ratio is:
r(a) = eη Ã(a).

Using the approximation ex ≈ 1 + x+O(x2):
r(a) ≈ 1 + η Ã(a) +O(η2)

This gives the reparameterization of importance ratio. By Lemma C.3,∣∣rclip(a)− Clipε

(
1 + η Ã(a)

) ∣∣ ≤ |r(a)− (1 + η Ã(a))| = |δ(a)| ≤ Cη2.

Divide both sides by η and subtract 1/η inside the absolute value, we have∣∣∣A∗(a)−
Clipε

(
1 + η Ã(a)

)
− 1

η

∣∣∣ ≤ Cη, for all a.

Following from Lemma C.4, we then have∣∣∣A∗(a)− clip
(
Ã(a),−ε/η, ε/η

) ∣∣∣ ≤ Cη for all a.

This establish the reparameterization of clipped advantage in terms of raw advantage surrogate
Ã(a).
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Proof of Theorem 4.1. Let ζ(a) = log
(
1+ ηA∗(a)

)
and ψ = log(Eπold

[
eζ
]
) = log(1+ ηµ∗), then

the clipped one-step update satisfies πnew(a) = πold(a) e
ζ(a)−ψ . Notice that

πnew(a)− πold(a) =
πold(a)(1 + ηA∗(a))

1 + ηµ∗
− πold(a) = πold(a)

η(A∗(a)− µ∗)

1 + ηµ∗
.

For convenience, we define a matrix J := diag(πold)− πoldπT
old, where we treat the policy πold as a

vector of length equal to the size of action space. Then we have the above relation in compact form

πnew − πold =
η

1 + ηµ∗
JA∗ = ηJA∗ +O(η2).

where we also regard A∗ as a vector of length equal to the size of action space. In addition,

H(πnew) = −
∑
a

πnew(a) log
[
πold(a)e

ζ(a)−ψ
]

= −
∑
a

πnew(a) (log πold(a) + ζ(a)− ψ)

= −⟨πnew, log πold⟩ − ⟨πnew, ζ⟩+ ψ.

Therefore, we have

H(πnew)−H(πold) = −⟨πnew − πold, log πold⟩ − ⟨πnew, ζ⟩+ ψ

= −η⟨JA∗, log πold⟩ −
η2

2
⟨A∗, JA∗⟩+ η2µ∗⟨JA∗, log πold⟩+O(η3).

where we use the Taylor expansion ζ = ηA∗ − η2A2
∗/2 +O(η3) and ψ = ηµ∗ − η2µ2

∗/2 +O(η3).
Therefore, by taking E[·] on both sides, we have

E[H(πnew)−H(πold)] = −
η2

2
E[Varπold

(A∗)] +O(η3),

where we use the fact that E[µ∗⟨JA∗, log πold⟩] = O(η2).

C.8 THEOREM 4.3

C.8.1 ENTROPY ANALYSIS FOR UNCLIPPED TRAINING

Theorem C.6. Following from the definition of token advantage Ã(h, a) in Eq. (3), which is abbrevi-
ated as Ã(a) in the later analysis, for sufficiently small η > 0, we have

H(πnew)−H(πold) = −η Ea∼πold(·|h)
[(
Ã(a)− Ea∼πold(·|h)[Ã(a)]

)
· log πold(a | h)

]
− η2

2

[
Vara∼πold(·|h)

(
Ã(a)

)
+Cov

(
(Ã(a)− Ea∼πold(·|h)[Ã(a)])

2, log πold(a | h)
)]

+O(η3).

Furthermore, define sk :=
∑
a πold(a | h)k, hk :=

∑
a πold(a | h)k log πold(a | h), for all k ∈ N+,

and
Φ(π) := (3s3 − s2 − 2s22)h1 + (1 + 2s2)h2 − 3h3 + s2 − 2s3 + s22.

Then we have

E[H(πnew)−H(πold)] = −
(1− 21−G)Φ(πold)

G
η2 +O(η3).

Proof. Abbreviating any policy π(a | h) as π(a), following from Eq. (2), the update rule can be
written as

πnew(a) =
πold(a)e

η Ã(a)

Z(η)
, Z(η) =

∑
a′∈V

πold(a
′)eη Ã(a′).

Let ψ(η) := logZ(η) and u(a) := η Ã(a)− ψ(η). Then πnew(a) = πold(a)e
u(a) and

Eπold
[eu] =

∑
a

πold(a)e
ηÃ(a)−ψ(η) = 1.
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The entropy change can be computed as
∆H := H(πnew)−H(πold) = −Eπold

[eu(log πold + u)] + Eπold
[log πold].

Using Taylor expansion of cumulant generating function logEπ[eηÃ] in respect to the distribution of
Ã under policy π, we have

ψ(η) = ηEπ[Ã] +
η2

2
Varπ(Ã) +O(η3).

u(a) = η(Ã(a)− Eπ[Ã])−
η2

2
Varπ(Ã) +O(η3).

Also using eu = 1 + u+ u2/2 +O(u3), we have

eu(a) = 1 + η(Ã(a)− Eπ[Ã])−
η2

2
Varπ(Ã) +

η2

2
(Ã(a)− Eπ[Ã])2 +O(η3),

u(a)eu(a) = η (Ã(a)− Eπ[Ã])−
η2

2
Varπ(Ã) + η2(Ã(a)− Eπ[Ã])2 +O(η3).

Combining the above expansion, we have

∆H = −η Eπold
[(Ã− Eπold

[Ã]) log πold]−
η2

2
Eπold

[(Ã− Eπold
[Ã])2 log πold]

− η2

2
Varπold

(Ã)
(
1− E[log πold]

)
+O(η3)

= −η Eπold
[(Ã− Eπold

[Ã]) log πold]−
η2

2

[
Varπold

(Ã) + Covπold
((Ã− Eπold

[Ã])2, log πold)
]
+O(η3).

Notice that E
[
Eπold

[(Ã−Eπold
[Ã]) log πold]

]
= Eπold

[(E[Ã]−Eπold
[E[Ã]]) log πold] = 0. We then

compute E[Varπold
(Ã)]. Consider

Varπold
(Ã) =

∑
a

πold(a)Ã(a)
2 −

(∑
a

πold(a)Ã(a)

)2

=
∑
a

πold(a)

(
1

G

G∑
i=1

Ai1{yi=a}

)2

−

(∑
a

πold(a)
1

G

G∑
i=1

Ai1{yi=a}

)2

=
1

G2

∑
i,j

AiAj
∑
a

πold(a)1{yi=a}1{yj=a} −
1

G2

∑
i,j

AiAjπold(yi)πold(yj).

Fixed rollout ym, we abbreviate its token ymi as yi. By independence of Ai and yi, we have

E[Varπold
(Ã)] =

1

G2

G∑
i=1

E[A2
i ]

(
E

[∑
a

πold(a)1{yi=a}

]
− E

[
πold(yi)

2
])

+
1

G2

∑
i ̸=j

E[AiAj ]

(
E

[∑
a

πold(a)1{yi=yj=a}

]
− E2[πold(yi)]

)

=
1

G2

G∑
i=1

E[A2
i ]

(∑
a

πold(a)
2 −

∑
a

πold(a)
3

)

+
1

G2

∑
i ̸=j

E[AiAj ]

∑
a

πold(a)
3 −

(∑
a

πold(a)
2

)2
 .

Notice that by construction,
∑G
i=1Ai = 0, so we have

∑G
i=1A

2
i = −

∑
i̸=j AiAj . Furthermore,

E[A2
i ] = 1− 21−G by Lemma 2.4, thus,

E[Varπold
(Ã)] =

1− 21−G

G

∑
a

πold(a)
2 − 2

∑
a

πold(a)
3 +

(∑
a

πold(a)
2

)2


=
1− 21−G

G
(s2 − 2s3 + s22).
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We next compute E[Covπold
((Ã− Eπold

[Ã])2, log πold)]. Similarly, consider

Covπold
((Ã− Eπold

[Ã])2, log πold) =
∑
a

πold(a) log πold(a)Ã(a)
2

− 2Eπold
[Ã]
∑
a

πold(a) log πold(a)Ã(a)

+ E2
πold

[Ã]
∑
a

πold(a) log πold(a)

− Varπold
(Ã)

∑
a

πold(a) log πold(a).

Taking E[·] on both sides, similarly, we have

E
[
Covπold

((Ã− Eπold
[Ã])2, log πold)

]
=

1− 21−G

G
[(3s3 − s2 − 2s22)H1 + (1 + 2s2)H2 − 3H3].

In conclusion,

E[H(πnew)−H(πold)] = −
(1− 21−G)Φ(πold)

G
η2 +O(η3).

We provide an numerical example to better illustrate the above theoretical result in Figure 9.

For the two-armed example demonstrated in Remark 4.4, we provide further numerical validation
under unclipped GRPO training. Shown in Figure 9, the policy entropy growth pattern only occurs
at the relatively skewed policy initialization. This further highlights the applicability of injecting
spurious reward without clipping into GRPO training to protect entropy, typically when the entropy
already collapsed or degraded to a relatively skewed distribution.
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Figure 9: Simulation of policy entropy evolution over unclipped GRPO training. Each panel includes
the result with 10 independent trails. Flat (relatively less-skewed) policy π initialization (Left);
Skewed policy π initialization (Right).

C.9 PROPOSITION 5.2

Proof. Since f ∼ Binom(ni,
1
2 ) and g ∼ Binom(nc,

1
2 ), we have E[f ] = ni/2 and E[g] = nc/2.

Plugging these into Eq. (7) yields the expectation:

E[∆] =
nc
G

ni
2

+
ni
G

nc
2

=
nc(G− nc)

G
.

For the variance notice that Var(Binom(n, 12 )) = n/4 and use independence of f and g:

Var(∆) =
(nc
G

)2
Var(f) +

(ni
G

)2
Var(g)

=
(nc
G

)2 ni
4

+
(ni
G

)2 nc
4

=
ncni
4G2

(nc + ni) =
nc(G− nc)

4G
.

This completes the proof.
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C.10 THEOREM 5.3

We first provide a conceptual analysis to under the counterintuitive results in Theorem 5.3.

C.10.1 CONCEPTUAL PROOF THROUGH PROBABILISTIC METHOD

Write X := f and Y := #{+1 in C}. Then Y ∼ Binom(nc,
1
2 ), g = nc − Y , and

∆ =
nc
G
X +

ni
G
g =

nc
G
X +

ni
G
(nc − Y ) =

ninc
G

+
nc
G
X − ni

G
Y. (15)

Let Z := X + Y be the total number of +1’s over all G items; then Z ∼ Binom(G, 12 ). Note that

{f > g} ⇐⇒ {X > (nc − Y )} ⇐⇒ {Z > nc}, (16)
{g > f} ⇐⇒ {Z < nc}. (17)

We now compute E[∆ | Z]. Condition on Z = z. Given Z = z, exactly z of the G positions carry a
+1; by exchangeability, for each j ∈ C we have

Pr(position j is + 1 | Z = z) =
z

G
.

Hence
E[Y | Z = z] =

∑
j∈C

Pr(j is + 1 | Z = z) = nc
z

G
,

and similarly

E[X | Z = z] = ni
z

G
.

Taking conditional expectations in Eq. (15) gives

E[∆ | Z = z] =
ninc
G

+
nc
G

E[X | Z = z]− ni
G

E[Y | Z = z]

=
ninc
G

+
nc
G
· niz
G
− ni
G
· ncz
G

=
ninc
G

,

which is constant in z.

Therefore, by the tower property and Eq. (16)–Eq. (17),

µ+ = E[∆ | f > g] = E[E[∆ | Z] | Z > nc] =
ninc
G

,

µ− = E[∆ | g > f ] = E[E[∆ | Z] | Z < nc] =
ninc
G

.

Re-writing it into conditional expectation:

E[∆1{f>g}] = E[∆ | f > g] Pr(f > g), E[∆1{g<f}] = E[∆ | g > f ] Pr(g > f).

Given a strong model that generates more correct rollouts than incorrect ones, i.e., nc > ni, it is
easy to see that Pr(f > g) < Pr(f < g). We provide the proof below. First, consider the following
combinatorial lemma:

Lemma C.7. Fix integers k > ℓ ≥ 0. The map

Ψ(n) =

(
n
k

)(
n
ℓ

) , n ≥ k,

is strictly increasing in n. In particular, if nc > ni ≥ k, then(
ni

k

)(
ni

ℓ

) <

(
nc

k

)(
nc

ℓ

) .
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Proof. Using falling factorials
(
n
m

)
= nm

m! ,

Ψ(n) =
ℓ!

k!

nk

nℓ
=
ℓ!

k!

k−ℓ−1∏
j=0

(n− ℓ− j).

The product has k − ℓ ≥ 1 strictly increasing linear factors in n, hence Psi(n) is strictly increasing
in n.

Therefore, we have

Proposition C.8. Let f ∼ Binom(ni,
1
2 ) and g ∼ Binom(nc,

1
2 ) be independent with nc > ni.

Then
Pr(f > g) < Pr(g > f).

Proof. Write the probabilities in wedge form:

Pr(f > g) = 2−(ni+nc)
∑
k>ℓ

(
ni
k

)(
nc
ℓ

)
, Pr(g > f) = 2−(ni+nc)

∑
ℓ>k

(
ni
k

)(
nc
ℓ

)
.

Pair terms (k, ℓ) with k > ℓ against the swapped pair (ℓ, k) and compare weights

hkℓ :=

(
ni
k

)(
nc
ℓ

)
, hℓk :=

(
ni
ℓ

)(
nc
k

)
.

By Lemma C.7,
hkℓ
hℓk

=

(
ni

k

)
/
(
ni

ℓ

)(
nc

k

)
/
(
nc

ℓ

) < 1, as k > ℓ, nc > ni,

so hkℓ < hℓk for every admissible pair. Summing over all k > ℓ gives Pr(f > g) < Pr(g > f).

This completes the proof for Theorem 5.3. We further present the conditional variance analysis in
Remark C.9 to understand the accuracy oscillation during the training:

Remark C.9 (Conditional variance of damage and slice asymmetry). Let G = nc + ni and let
f ∼ Binom(ni,

1
2 ), g ∼ Binom(nc,

1
2 ) be independent. Write X := f , Y := #{+1 in C} so that

g = nc − Y , and let Z := X + Y ∼ Binom(G, 12 ). For the damage ∆ defined in Eq. (15), we have
the exact identities

E[∆ | Z = z] =
ninc
G

and Var(∆ | Z = z) =
ni(G− ni)
G− 1

· z(G− z)
G2

.

Consequently, with C :=
ni(G− ni)
(G− 1)G2

and h(z) := z(G− z),

Var(∆ | f > g) = C E
[
h(Z) | Z > nc

]
, Var(∆ | g > f) = C E

[
h(Z) | Z < nc

]
.

Moreover, if nc > ni (equivalently nc > G/2), then

Var(∆ | f > g) < Var(∆ | g > f).

Proof. Define X := f (false positives in I), Y := #{+1 in C} so g = nc − Y , and Z := X + Y .
Since f ∼ Binom(ni,

1
2 ) and Y ∼ Binom(nc,

1
2 ) are independent, we have Z ∼ Binom(G, 12 ) with

G = nc + ni.

Conditional on Z = z, the z positive labels are uniformly scattered among G positions. The count X
of positives falling inside the ni indices of I is therefore

X | Z = z ∼ Hypergeometric
(
G, z, ni

)
,

so

E[X | Z = z] =
niz

G
, Var(X | Z = z) = ni

z

G

(
1− z

G

) G− ni
G− 1

.
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Using Eq. (15) and Y = Z −X ,

∆ =
nc
G
X +

ni
G
(nc − Y ) = X − ni

G
Z +

ninc
G

.

Hence, conditioned on Z = z,

E[∆ | Z = z] = E[X | Z = z]− ni
G
z +

ninc
G

=
ninc
G

,

which is constant in z, and

Var(∆ | Z = z) = Var(X | Z = z) =
ni(G− ni)
G− 1

· z(G− z)
G2

.

Let C :=
ni(G− ni)
(G− 1)G2

and h(z) := z(G− z). By total variance on any event A measurable w.r.t. Z

and the constancy of E[∆ | Z],

Var(∆ | A) = E[Var(∆ | Z) | A] = C E[h(Z) | A].

Since {f > g} ⇐⇒ {Z > nc} and {g > f} ⇐⇒ {Z < nc} (Eqs. (16) and (17)), the displayed
slice formulas follow.

The binomial Z ∼ Binom(G, 12 ) is symmetric about G/2, and h(z) = z(G − z) is symmetric
h(G− z) = h(z) and strictly increasing on {0, 1, . . . , ⌊G/2⌋}. Symmetry gives

E[h(Z) | Z > nc] = E[h(Z) | Z < G− nc].

When nc > G/2, we have 0 ≤ G− nc < nc ≤ G and G− nc ≤ G/2. For integers 0 ≤ a < b ≤
⌊G/2⌋ and strictly increasing h on {0, . . . , ⌊G/2⌋},

E[h(Z) | Z < a] < E[h(Z) | Z < b],

which follows from the convex combination decomposition of the latter and monotonicity on [a, b).
Taking a := G− nc and b := nc yields

E[h(Z) | Z > nc] = E[h(Z) | Z < G− nc] < E[h(Z) | Z < nc].

Multiplying by C > 0 proves Var(∆ | f > g) < Var(∆ | g > f). Finally, unconditioning with
E[h(Z)] = G(G− 1)/4 recovers Var(∆) = nc(G−nc)

4G in agreement with Proposition 5.2.

C.10.2 ALGEBRAIC VERIFICATION

Specifically, for the conditional expected damage part, we provide a rigorous algebraic derivation to
verify the equivalence conclusion drawn from Appendix C.10.1.

First note that, writing X := f and Y := nc − g (the number of +1 in C),

∆ =
nc
G
X +

ni
G
g =

nc
G
X +

ni
G
(nc − Y ) =

ninc
G

+
nc
G
X − ni

G
Y.

Define the wedge weights

hkℓ := 2−G
(
ni
k

)(
nc
ℓ

)
(0 ≤ k ≤ ni, 0 ≤ ℓ ≤ nc).

Then

p+ =
∑
k>ℓ

hkℓ, p− =
∑
ℓ>k

hkℓ,

S+ :=
∑
k>ℓ

(nck + niℓ)hkℓ = GE
[
∆1{f>g}

]
,

S− :=
∑
ℓ>k

(nck + niℓ)hkℓ = GE
[
∆1{g>f}

]
.
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Therefore
µ+ =

S+

Gp+
, µ− =

S−

Gp−
.

We claim the following wedge proportionality identities:∑
k>ℓ

(nck + niℓ)

(
ni
k

)(
nc
ℓ

)
= ninc

∑
k>ℓ

(
ni
k

)(
nc
ℓ

)
, (18)

∑
ℓ>k

(nck + niℓ)

(
ni
k

)(
nc
ℓ

)
= ninc

∑
ℓ>k

(
ni
k

)(
nc
ℓ

)
. (19)

Proof of Eq. (18). Set Ak :=
(
ni

k

)
and Bℓ :=

(
nc

ℓ

)
, and write

A≤r :=

r∑
k=0

Ak, B≤r :=

r∑
ℓ=0

Bℓ, B≤−1 := 0.

Two elementary transforms on the strict wedge {k > ℓ} are∑
k>ℓ

AkBℓ =
∑
k≥0

Ak B≤k−1, (20)

∑
k>ℓ

ℓAkBℓ =
∑
ℓ≥1

ℓBℓ
∑
k≥ℓ+1

Ak =
∑
ℓ≥1

ℓBℓ (2
ni −A≤ℓ). (21)

Using k
(
n
k

)
= n

(
n−1
k−1

)
and ℓ

(
n
ℓ

)
= n

(
n−1
ℓ−1

)
, we compute∑

k>ℓ

nc k AkBℓ = ncni
∑
k≥1

(
ni − 1

k − 1

)
B≤k−1, (22)

∑
k>ℓ

ni ℓAkBℓ = ninc
∑
ℓ≥1

(
nc − 1

ℓ− 1

)
(2ni −A≤ℓ). (23)

Summing Eq. (22)–Eq. (23) gives

∑
k>ℓ

(nck + niℓ)AkBℓ = ninc

∑
k≥1

(
ni − 1

k − 1

)
B≤k−1 +

∑
ℓ≥1

(
nc − 1

ℓ− 1

)
(2ni −A≤ℓ)

. (24)

We now show the bracket equals
∑
k≥0AkB≤k−1 (the right-hand side of Eq. (20)). By Pascal’s rule,

Ak =
(
ni−1
k

)
+
(
ni−1
k−1

)
, hence∑

k≥0

AkB≤k−1 =
∑
k≥0

(
ni − 1

k

)
B≤k−1 +

∑
k≥1

(
ni − 1

k − 1

)
B≤k−1. (25)

Thus it suffices to prove∑
k≥0

(
ni − 1

k

)
B≤k−1 =

∑
ℓ≥1

(
nc − 1

ℓ− 1

)
(2ni −A≤ℓ). (26)

Expanding the right-hand side and swapping sums in the double sum,∑
ℓ≥1

(
nc − 1

ℓ− 1

)
(2ni −A≤ℓ) = 2ni

∑
ℓ≥1

(
nc − 1

ℓ− 1

)
−
∑
ℓ≥1

(
nc − 1

ℓ− 1

)∑
k≤ℓ

Ak

= 2ni2nc−1 −
∑
k≥0

Ak
∑

ℓ≥max{1,k}

(
nc − 1

ℓ− 1

)
. (27)

Using the finite-tail identity
∑
ℓ≥r
(
nc−1
ℓ−1

)
= 2nc−1 −

∑r−2
m=0

(
nc−1
m

)
, we get

∑
ℓ≥max{1,k}

(
nc − 1

ℓ− 1

)
= 2nc−1 −

k−2∑
m=0

(
nc − 1

m

)
. (28)
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Insert Eq. (28) into Eq. (27) and simplify:

∑
ℓ≥1

(
nc − 1

ℓ− 1

)
(2ni −A≤ℓ) =

∑
k≥0

Ak

k−2∑
m=0

(
nc − 1

m

)
. (29)

Finally, by another Pascal telescoping,
∑k−2
m=0

(
nc−1
m

)
=

(
nc−1
k−1

)
, so Eq. (29) equals∑

k≥0

(
ni−1
k

)
B≤k−1, proving Eq. (26). Tracing back through Eq. (24)–Eq. (25)–Eq. (20) yields

Eq. (18).

Proof of Eq. (19). The same argument applies on the strict wedge {ℓ > k}, merely interchanging
the roles of (ni, Ak) and (nc, Bℓ). This gives Eq. (19).

This indicates that for a stronger model—one that produces more correct than incorrect rollouts—the
asymmetry between false-positive and false-negative rewards can, by chance, still yield net improve-
ment: because false positives are infrequent, most of the random mass transfer occurs within the
correct set itself, so the advantage largely remains with correct trajectories.

By contrast, weaker models do not benefit from random rewards: when most rollouts are incorrect, the
bulk of the mass transfer occurs within the incorrect set, making the model more likely to reinforce
erroneous trajectories through randomly assigned rewards.

D USAGE OF LARGE LANGUAGE MODELS

We use LLMs to aid and polish the writing. Specifically, we employ them for grammar and style
checking to improve the readability of this work.
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