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Abstract

The generative large language models (LLMs)
are increasingly used for data augmentation
tasks, where text samples are paraphrased (or
generated anew) and then used for downstream
model fine-tuning. This is useful, especially
for low-resource settings. For better augmen-
tations, LLMs are prompted with examples
(few-shot scenarios). Yet, the samples are
mostly selected randomly, and a comprehen-
sive overview of the effects of other (more “in-
formed”) sample selection strategies is lack-
ing. In this work, we compare sample selec-
tion strategies existing in the few-shot learning
literature and investigate their effects in LLM-
based textual augmentation in a low-resource
setting. We evaluate this on in-distribution and
out-of-distribution model performance. Results
indicate that while some “informed” selection
strategies increase the performance of models,
especially for out-of-distribution data, it hap-
pens only seldom and with marginal perfor-
mance increases. Unless further advances are
made, a default of random sample selection
remains a good option for augmentation practi-
tioners.

1 Introduction

The emergence of recent large language models
(LLMs) such as GPT-4, Gemini, Llama, and their
wide availability prompted their use in augmen-
tation of textual datasets (Ubani et al., 2023; Dai
et al., 2023; Piedboeuf and Langlais, 2023; Cegin
et al., 2023, 2024a). LLM augmentation has been
used in various domains such as sentiment analy-
sis (Onan, 2023; Piedboeuf and Langlais, 2023),
intent classification (Cegin et al., 2023), news clas-
sification (Piedboeuf and Langlais, 2023; Cegin
et al., 2024a), and health symptoms detection (Dai
et al., 2023). These augmentations are often per-
formed in a low-resource setting with a limited
number of seed samples. In most LLM-based aug-
mentation scenarios, the dataset size is increased

through paraphrasing of original samples or gen-
eration of completely new samples that adhere to
a specified label. This can be done without any
samples provided (zero-shot). Alternatively, one
can include already existing samples as part of the
prompt to better instruct the LLM (few-shot). The
augmented datasets are then used for training down-
stream models, which are usually much smaller
than the prompted LLMs, and thus cheaper and
more suitable for production environments.

Recent studies report better performance for few-
shot LLM-based augmentation, as compared with
zero-shot approaches (Cegin et al., 2024a; Pied-
boeuf and Langlais, 2024). At the same time, most
existing few-shot augmentation studies select the
samples randomly, and the potential of using more
informed selection strategies (existing elsewhere
in few-shot learning literature) is under-explored.
Furthermore, augmentation studies focus only on
paraphrasing and are evaluated on in-distribution
data.

In few-shot learning, the informed sample se-
lection strategies aim to select the most relevant
samples that would lead to better outputs. The
samples can be selected based on their similarity,
diversity, informativeness, or quality (Li and Qiu,
2023; Zhang et al., 2022; Chang and Jia, 2023;
Pecher et al., 2024b). Through these methods,
LLMs can potentially produce better augmenta-
tions in return for the additional computation costs
of the informed sample selection. Literature shows
that the choice of samples for few-shot learning sig-
nificantly influences its outcomes (i.e., sensitivity
of sample selection) (Pecher et al., 2024a; Zhang
et al., 2022; Koksal et al., 2023; Agrawal et al.,
2023). For example, recent studies have investi-
gated the effects of such sample selection strategies
for in-context learning (Zhang et al., 2022; Li and
Qiu, 2023) or LLM alignment (Zhou et al., 2024).
However, for augmentation scenarios, an investiga-
tion of sample selection strategies effects is lacking.



The goal of this paper is to compare existing
sample selection strategies in few-shot text aug-
mentation for a low-resource setting. This compari-
son is measured by the performance of downstream
models trained on the augmented data. We investi-
gate the typical paraphrasing scenario, but also less
covered generation of new samples. Along with
more frequent in-distribution evaluation, we also
evaluate out-of-distribution data. We run our exper-
iments for various LLMs and tasks. We identify the
best-performing sample selection strategy in each
scenario (parameter combination) and compare it
against two baselines: (1) the zero-shot augmenta-
tion and (2) the few-shot augmentation with ran-
dom sample selection. We formulate the following
research questions:

RQ1: Considering downstream model perfor-
mance, which sample selection strategy per-
forms the best most consistently? (when
considering both in-distribution and out-of-
distribution setups).

RQ2: Considering downstream model perfor-
mance, when and how often do the best-
performing sample selection strategies out-

perform the baseline strategies?

We compared 8 different sample selection strate-
gies (see 3.1) against 2 baseline strategies (zero-
shot/no-samples strategy and random samples strat-
egy) on 3 different LLMs (Llama-3.1, Mistral-v(0.3,
and Gemma-2). We experimented with 8 different
datasets (with tasks of sentiment analysis, news
classification, question topic classification, para-
phrase detection, and natural language inference)
with both in-distribution and out-of-distribution
splits on RoBERTa as our downstream model. We
used a low-resource setting, using only 20 sam-
ples per label. Furthermore, we also investigated
the composition of the examples from the point of
labels (whether it is more beneficial to include sam-
ples only from the target label being augmented
or also from other labels). We investigated two
augmentation techniques: paraphrasing of existing
samples and generation of completely new sam-
ples. We repeated the whole process 3 times with
different random seeds, ensuring the robustness of
our results.

The most prominent findings are: 1) None of
the existing sample selection strategies is consis-
tently better than the baseline in the majority of
cases for in-distribution, 2) Selecting examples at

random yields the best performance in the majority
of cases and does not require additional overhead,
3) For out-of-distribution, the synthetic samples
dissimilarity selection strategy yields the highest
performance more often than the baseline strate-
gies. It can be considered for uses where overhead
selection costs are not an issue.

2 Related Work: LLM-based Text
Augmentation

Soon after their advent, new LLMs, such as GPT-
4 or Llama, started to be used as data augmen-
tation tools, leveraging their ability to produce a
diversity of texts. The LLM-based augmentation is
typically done through paraphrasing (Cegin et al.,
2024a; Dai et al., 2023; Sen et al., 2023). Less
often, LLMs are used to create semantically new
samples adhering to a given label (Ubani et al.,
2023). LLM-based augmentation has been used
for a variety of augmentation tasks such as auto-
mated scoring (Fang et al., 2023), low-resource
language generation (Ghosh et al., 2023), intent
classification (Sahu et al., 2022), sentiment anal-
ysis (Piedboeuf and Langlais, 2023; Ubani et al.,
2023; Onan, 2023; Yoo et al., 2021), hate speech de-
tection (Sen et al., 2023), news classification (Pied-
boeuf and Langlais, 2023), content recommenda-
tion (Liu et al., 2024), and health symptoms classi-
fications (Dai et al., 2023).

Recent studies have also used few-shot learn-
ing as part of the augmentation by supplying the
LLM with various examples from the dataset in the
prompts. It has been leveraged for named entity
recognition (Ye et al., 2024), classification perfor-
mance (Cegin et al., 2024a) or text summariza-
tion (Sahu and Laradji, 2024). While the perfor-
mance of the few-shot approaches in augmentation
seems to outperform zero-shot ones (where no ex-
amples are used) (Piedboeuf and Langlais, 2024),
the effects of various sample selection strategies
are under-explored, as many studies simply select
the samples randomly. Only one study explored
other strategies (Cegin et al., 2024a), which used a
human-inspired sample selection strategy.

While sample selection strategies have found
their usage in various in-context learning tasks (sig-
nificantly altering the performance of LLMs) and
while some studies already hint at increased per-
formance of few-shot augmentation over zero-shot
augmentation (Cegin et al., 2024a; Piedboeuf and
Langlais, 2024), an investigation of various sample



selection strategies for LLM-based augmentation
methods is completely lacking.

3 Study Design

To assess which sample selection strategies work
best for LLM-based data augmentation, we per-
formed a comparative study in a low-resource set-
ting. The same basic scenario was used in each
case: given a dataset, 20 seed samples were se-
lected from each label. For each seed sample, a
given LLM “augmented” the samples 5 times. This
was repeated for each sample selection strategy and
type of augmentation technique used (paraphrasing
or creating completely new samples). Next, a down-
stream model was fine-tuned on both sub-sampled
data and augmented samples and then evaluated
on in-distribution and out-of-distribution data. For
in-distribution data, we used the original test splits
of each dataset, while for the out-of-distribution
data, we used test splits from a different dataset
with the same task (e.g. Yelp dataset test split was
used as out-of-distribution data when evaluating
performance on the Tweet Eval dataset for senti-
ment analysis).

This scenario was repeated for all sample selec-
tion strategies and baselines for a variety of pa-
rameters (see below). Then, the performance of
the models (measured by F1-macro) was compared
for each sample selection strategy to answer the
RQI1. This was followed by comparing the best-
performing sample selection strategies against the
best-performing baseline strategy of either zero-
shot (no examples provided) or randomly selected
examples to answer RQ2. We publish all of our
results, the code, and the data used !.

We used a broad range of study parameters to en-
sure the robustness of our results by using both the
baseline strategies and the sample selection strate-
gies in a variety of cases. We include the different
augmentation techniques and example composi-
tions in terms of labels to capture a wide variety of
cases. The whole process was repeated 3 times, and
different seed samples were selected. The study
had the following parameters:

» 8 sample selection strategies (Forgetting with
2 variations, Cartography with 3 variations,
Cosine similarity/dissimilarity and Synthetic
samples dissimilarity) with 2 baseline strate-
gies (zero-shot with no examples provided
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and random few-shot with examples selected
randomly),

* 3 LLMs used as augmenters (LLama-3.1-8B,
Gemma-2-9B and Mistral-v(.3-7B),

* 8 datasets used (MNLI, QQP, Yelp, Tweet sen-
timent evaluation, AG News, News Topic, Ya-
hoo, Trec),

* 2 types of composition of examples used (ex-
amples used only from the target label or ex-
amples selected from all labels in the dataset),

* 2 augmentation techniques (either paraphras-
ing of existing samples or generation of new
label adhering samples),

This resulted in 1,300 combinations for which
downstream models were trained and evaluated
repeatedly.

3.1 Sample Selection Strategies

We used the best-performing sample selection
strategies identified by previous studies on sam-
ple selection in in-context learning (Pecher et al.,
2024b; Li and Qiu, 2023; Chang and Jia, 2023;
Toneva et al., 2018; Zhang and Plank, 2021). We
used 5-shots per label for each of the sample selec-
tion strategies.

First, we used the Similarity and Dissimilarity
selections that are currently the most popular se-
lection strategies for in-context learning (An et al.,
2023; Liu et al., 2022; Chang and Jia, 2023). To se-
lect the samples, we calculated the cosine similarity
between the feature representation of the samples
and then selected either the most similar or the
most dissimilar ones. In the case of paraphrasing,
we calculated the similarity of the sample we were
augmenting. In the case of generation, we first
randomly select one sample and then calculate the
similarity of this sample.

Second, we used the Synthetic samples dissim-
ilarity sample selection (Cegin et al., 2024a). To
select the samples, we first use the LLM to gen-
erate a set of synthetic samples and then use the
dissimilarity selection to select the set of examples
from this set. This is different from the Dissimilar-
ity above, as this method uses synthetic data, while
the original uses data from the dataset itself.

Third, we used the Forgetting strategy that se-
lects the samples based on how often they are for-
gotten (Toneva et al., 2018). To select the samples,
we first trained the model on the underlying task for
a fraction of the overall epochs and observed the
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Figure 1: Overview of our methodology. For each dataset, we randomly sample 20 samples per label, which are
then used to collect up to 5 augmented samples per seed sample. These seeds are used for fine-tuning with the
augmented samples to evaluate each sample selection strategy. This entire process is repeated 3 times with different
random seeds. Similar sample selection strategies have the same color.

training dynamics. For each sample, we calculated
how often the prediction of the model was incor-
rect after it had already been correct in the previous
epoch. Afterward, these forgetting events are used
to select the samples. We explored two different
settings in our experiments and chose samples ac-
cordingly: 1) Forgetting most, where we selected
the samples that were the most often forgotten; and
2) Forgetting least, where we selected the samples
that were forgotten the least number of times.

Finally, we used the Cartography sample selec-
tion that measures how easy or hard it is to learn
the different samples (Swayamdipta et al., 2020;
Zhang and Plank, 2021). This ease of learning is
determined by training the model on the underlying
task for a fraction of the overall epochs and looking
at the average confidence/probability of the correct
predictions and the variance of this confidence. The
samples with high confidence and low variance are
considered to be the easy to learn samples. At
the same time, the samples with small confidence
and small to medium variance are considered the
hard to learn ones. The remaining samples are con-
sidered to be ambiguous (medium confidence or
samples with high variance). We explored three
different settings in our experiments. We chose
the samples accordingly: 1) Easy samples, where
we sorted the samples based on confidence and
choose the top 5 samples with highest confidence;
2) Hard samples, where we sorted the samples
based on confidence and choose the bottom 5 sam-
ples (i.e., the lowest confidence samples); 3) Easy
+ Ambiguous, where we first calculated average
confidence, selected the samples whose confidence
is higher than the average, and then randomly sam-
pled from them.

3.2 Datasets

For a diverse evaluation, we selected 8 datasets
representing tasks of sentiment analysis, news
classification, question topic classification, para-
phrase detection, and natural language inference.
We used the News Category (Misra, 2022; Misra
and Grover, 2021) and AG news (Zhang et al.,
2015a) for news classification, Yahoo (Zhang et al.,
2015b) and Trec (Li and Roth, 2002) for ques-
tion topic classification, MNLI dataset (Williams
et al., 2018) for natural language inference, Quora
Question Pairs Dataset (QQP) for paraphrase de-
tection (Wang et al., 2017) and TweetEval (Rosen-
thal et al., 2017) and Yelp (Zhang et al., 2015a)
for sentiment classification. All datasets were in
English. For in-distribution evaluation of models,
we used the test split of each dataset. For out-of-
distribution evaluation for each dataset, we used
the test split of the dataset that is within the same
domain, e.g., we used the test split from Yelp for
TweetEval and vice versa (with the exception of
MNLI, which has its own out-of-distribution test
split and QQP, for which we used the PAWS (Zhang
et al., 2019) dataset as out-of-distribution). While
still of the same task, we considered these splits out-
of-distribution due to them being collected from
other domains or sources (e.g. sentiment analy-
sis of Yelp reviews for models trained on tweets).
We only generated or paraphrased hypotheses for
MNLI, given the premise from the dataset. We
also only generated or paraphrased one paraphrase
for QQP and left the others intact. Details about
labels used and preprocessing can be found in Ap-
pendix C.

3.3 Evaluation Process

We randomly selected 20 samples per label from
each dataset and repeated this three times with dif-



ferent random seeds. We chose 20 samples per la-
bel as this number of seed samples per label should
yield the highest effect for augmentation (Cegin
et al., 2024b). We then augmented the entire se-
lected subset of the dataset for each combination
of augmentation technique (paraphrasing or gen-
eration), sample selection strategy (including base-
lines), augmenting LLM, and composition of the ex-
amples from the point of labels. We instructed the
LLM to collect 5 new samples per seed sample for
each combination of parameters. Prompt templates,
specific versions of LLMs used, and parameters
used for the LLMs can be found in Appendix D.
We did not check the validity of the collected sam-
ples, as previous works have already shown that
the validity of LLM augmentation methods is quite
high (Cegin et al., 2023, 2024a).

We used RoBERTa-base for fine-tuning and used
the version of the model from Huggingface. The
best working hyperparameters were found via hy-
perparameter search, and these can be found in Ap-
pendix B. We trained each model 10 times per each
random seed and augmentation parameter combi-
nation. The models were trained separately on
the data collected from Llama-3.1, Gemma-2, and
Mistral. Finally, we computed the F1-macro of
all fine-tuned models to allow the comparison of
sample selection strategies between themselves and
against the baseline strategies.

4 Study Results

Our study has multiple parameter dimensions,
which yielded more than 1,300 combinations. We
aggregated the results for each of the used LLMs.
During our analysis, we did not identify any LLM
bias towards one of the sample selection strategies,
as the 3 used LLMs performed similarly.

To keep the comparison of various sample selec-
tion strategies simple, we only compare the best-
performing sample selection strategy combination
on the dataset given the augmentation techniques of
either generation or paraphrasing and composition
of labels in terms of labels. We also use the same
setting for the baseline strategies of zero-shot and
random few-shot. We wish to identify strategies
that provide the best performance most consistently
(in most cases) and outperform the baselines the
most. We analyze the different augmentation tech-
niques and composition of labels and how they
influence the model performance in Appendix F.

We distinguish between the best-performing

sample selection strategy for in-distribution data
and out-of-distribution data for each of the datasets.
To identify the best-performing sample selection
strategy (including the baselines) in these cases, we
compute the mean of the model performance across
all of the random seeds and compare these means.
There were a total of 72 cases for 8 datasets, 3 dif-
ferent LLMs, and 3 different random seeds used.
After identifying the best-performing sample selec-
tion strategy, we statistically tested its distribution
of model performance against the best-performing
baseline strategy (either zero-shot or random few-
shot based on their mean) using Mann-Whitney-U
tests with p=0.05 to measure the number of times
the sample selection strategies are statistically sig-
nificantly better than the best baseline strategy.

4.1 Best Performing Sample Selection
Strategies

The number of times where each sample selection
strategy (including baseline strategies) performed
the best for each dataset for in-distribution (ID)
and out-of-distribution (OD) data can be found in
Table 1. The comparison excluding baseline strate-
gies can be found in Appendix E, together with the
performance distributions for each sample selection
strategy and dataset. There is no apparent strat-
egy that performed the best across all datasets
for both in-distribution and out-of-distribution
model performance. However, certain sample se-
lection strategies did perform best overall for given
data distributions - the Cosine similarity strategy
performed the best most often from all sample se-
lection strategies (excluding baseline strategies) for
in-distribution data in 20 out of 72 cases (27.78%)
and the Synthetic samples dissimilarity strategy per-
formed the best most often for out-of-distribution
data in 16 out of 72 cases (22.22%).

Some of the strategies seem to be biased for
certain datasets, performing well in those cases.
For example, the Synthetic samples dissimilarity
strategy is well suited for the MNLI dataset for
both in-distribution and out-of-distribution cases,
while the Cosine similarity strategy works best for
Yahoo dataset for both data and on Trec dataset for
in-distribution data.

Considering the sample selection strategies with-
out the baselines, the Cosine similarity strategy
performs best for in-distribution data in 19 out of
72 cases (26.39%), followed by the Synthetic sam-
ples dissimilarity strategy in 15 out of 72 cases
(20.83%). For out-of-distribution comparison of



DATASET— AGNEWS NTOPIC  YAHOO TREC TEVAL YELP MNLI QQP TOTAL
Strategy ID| OD ||ID|OD | ID|OD || ID|OD || ID |OD || ID | OD || ID |OD || ID | OD || ID | OD
Zero-shot 0 0 0 0 0 1 0 3 0 6 0 0 0 0 0 0 0 10
Random 5 2 4 1 2 0 2 0 2 1 3 0 2 2 0 2 20 8
Cos. sim. 1 0 2 4 5 3 5 0 0 0 3 0 0 0 1 0 17 7
Cos. dissim. 0 0 0 0 2 1 0 2 0 0 0 0 2 2 2 1 6 6
Forget. most 2 0 0 1 0 3 0 0 1 1 0 1 0 0 0 1 3 7
Forget. least 0 1 2 1 0 0 1 0 2 0 0 3 0 0 0 1 5 6
Carto. hard 0 1 0 1 0 1 0 0 1 0 2 3 0 1 0 1 3 8
Carto. e.+amb. 0 0 0 1 0 0 0 0 2 0 1 0 2 0 2 0 7 1
Carto. easy 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 2 3
Synth. dissim. 1 4 1 0 0 0 1 3 0 1 0 2 3 4 3 2 9 16

Table 1: No. cases for each sample selection strategy, including baseline strategies, where each strategy performed
the best for each dataset for in-distribution (ID) and out-of-distribution (OD) data. The last Total column aggregated
all cases for that specific strategy. In total, only the Synthetic samples dissimilarity strategy on out-of-distribution
outperforms the baseline strategies most often, while the random few-shot baseline strategy works best for in-

distribution.

strategies, the best strategy is the Synthetic sam-
ples dissimilarity strategy in 24 out of 72 cases
(33.33%) followed by the Cartography with hard
samples and the Forgetting most strategies in 10
out of 72 cases (14.08%).

We answer the RQ/ as follows: Considering the
sample selection strategies without the baseline
strategies, the most effective sample selection
strategy is Cosine similarity for in-distribution
data and Synthetic samples dissimilarity for out-
of-distribution data. However, we also note that
in certain cases, both of these strategies fail to per-
form as the best strategy even once (TweetEval
for Cosine similarity and News Topic for Synthetic
samples dissimilarity).

4.2 Comparison of Best Sample Selection
Strategies Against Baseline Strategies

We compare the best-identified sample selection
strategies from Section 4.1 against baseline strate-
gies as per Table 1 and also provide aggregated
difference across all cases in mean F1-Macro for
various sample selection strategies against the best-
performing baseline of either random few-shot or
zero-shot in Figure 2.

For in-distribution model performance, we iden-
tified as the best-performing sample selection strat-
egy the Cosine similarity performing best in 17
out of 72 cases (23.61%). The best-performing
baseline on in-distribution data is random few-shot,
which achieved the best performance in 20 out of
72 cases (27.78%), an increase of 3 cases com-
pared to the Cosine similarity strategy. Out of the
17 cases where the Cosine similarity performed
best, it was statistically significantly better than the

best baseline strategy in 10 cases. The random few-
shot baseline also achieved the best performance
in a variety of cases across all the datasets, which
the Cosine similarity strategy did not and was out-
performed by the Cosine similarity strategy on the
Yahoo, QQP and Trec datasets.

For out-distribution model performance, we
identified as the best-performing sample selection
strategy the Synthetic samples dissimilarity per-
forming best in 16 out of 72 cases (22.22%). The
best-performing baseline on in-distribution data is
zero-shot, which achieved the best performance
in 10 out of 72 cases (13.88%), performing worse
than the Synthetic samples dissimilarity strategy
in 6 cases. Out of the 14 cases where the Syn-
thetic samples dissimilarity performed best, it was
statistically significantly better than the best base-
line strategy in 6 cases. While the Synthetic sam-
ples dissimilarity works well only on some datasets
(achieving no best cases for NewsTopic and Yahoo
datasets), the same can be said about both the base-
lines: zero-shot strategy achieves no best cases on
5 datasets and random few-shot achieves no best
cases on 3 datasets.

All of the sample selection strategies fail to
make a consistent impact on model performance
over the baselines, as can be seen in Figure 2.
While there are cases where increases are appar-
ent in both in-distribution and out-of-distribution
performance (on the MNLI dataset), the sample
selection strategies fail to outperform consistently
the best baseline of either zero-shot with no exam-
ples or randomly selected samples for few-shot, as
the increase in performance on one random seed
with specific seed samples is mitigated by losses of
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Figure 2: Aggregated difference across all LLMs and random seeds in mean F1-Macro for models trained on various
sample selection strategies against the best-performing baseline of either random few-shot or zero-shot. While some
strategies perform well in certain cases, as per Table 1, they fail to make a positive impact on model performance

against baseline strategies in general.

performance on another random seed with different
seed samples.

We answer the RQ?2 as follows: When compar-
ing in-distribution performance, the best base-
line of random few-shot strategy performs bet-
ter than the best sample selection strategy of
Cosine similarity in 4 more cases. Additionally,

the random few-shot strategy works well across
all datasets for in-distribution model performance.
When comparing out-of-distribution model perfor-
mance, the best sample selection strategy of Syn-
thetic samples dissimilarity performs better than
the best baseline of zero-shot in 4 more cases. Nei-
ther the baselines nor the Synthetic samples dis-



similarity strategy performs well on all datasets.

5 Discussion

The results of our experiments lead to the following
observations: First, the Cosine similarity strategy
was best among the “informed” sample selection
strategies for in-distribution model performance.
The inclusion of similar samples in the prompts as
examples apparently forces the LLM to produce
samples similar to that of the target dataset (more
than in other methods), thus resulting in increased
performance for in-distribution evaluation.

Second, the Synthetic samples dissimilarity strat-
egy was best among sample selection strategies for
out-of-distribution model performance. The strat-
egy used in (Cegin et al., 2024a) was inspired by
crowdsourcing methods (Larson et al., 2020) that
focused specifically on collecting data for better
out-of-distribution performance. This method ap-
pears to force LLMs to create more diverse samples
by leveraging outlier synthetic data as examples,
making the downstream models more robust to out-
of-distribution data.

Third, for in-distribution, the baseline random
selection comes out best more than any “informed”
strategy. Not only does the random few-shot strat-
egy perform better more often, but it does so
across multiple datasets, while the Cosine simi-
larity strategy fails to perform best even once for
some datasets. This hinders the applicability of
this method, where it is clearly outperformed in
some cases by baseline strategies or other sample
selection strategies, as it does not always guarantee
good performance for in-distribution data.

Fourth, the Synthetic samples dissimilarity strat-
egy outperforms the baseline strategies for out-
distribution performance, but it does not do so
across all datasets. However, neither the random
few-selection strategy nor the zero-shot approach
performs well on all datasets. This implies that in-
creasing performance across all out-of-distribution
cases is a difficult problem that neither of the sam-
ple selection strategies can overcome.

Fifth, as seen in Figure 2, the aggregated increase
of model performance when using sample selec-
tion strategies is small or negative, indicating that
sample selection strategies do not work well for all
random seeds. Given the increased costs of using
sample selection strategies, this result favors the
baseline strategies for text augmentation in general.

Sixth, comparing the baseline strategies between

themselves, the random few-shot selection per-
forms the best on in-distribution model perfor-
mance, while the zero-shot strategy performs well
only on out-of-distribution model performance.
This might be due to the LLMs getting biased to-
wards the examples provided and thus being more
likely to produce augmentations that follow the dis-
tribution of the seed samples more closely, result-
ing in increased in-distribution model performance
for the random selection. For zero-shot, the LLMs
generate more generic samples that provide a better
boost for out-of-distribution model performance.

To summarise, while the Synthetic samples dis-
similarity strategy outperforms the baseline strate-
gies for out-of-distribution model performance, the
baseline strategies outperform all of the sample
selection strategies for in-distribution model per-
formance. However, any increase for both in-
distribution or out-of-distribution model perfor-
mance is marginal and brings with it increased
costs for collecting augmentation by using sample
selection strategies. While there are cases where
sample selection strategies work best, they do
not do so consistently. This underlines the need
for better sample selection strategies for LLM-
based text augmentation.

6 Conclusion

We compared the effects of prominent sample selec-
tion strategies of few-shot learning for LLM-based
text augmentation scenarios in a low-resource set-
ting. We evaluated the downstream model perfor-
mance on in-distribution and out-of-distribution
data. We compared selection strategies against
2 baseline strategies (random few-shot and zero-
shot). This comparison was done using 3 different
LLMs, 8 different datasets, and 2 augmentation
techniques (paraphrases and new samples).

Our comparison indicates that the baseline strate-
gies outperform sample selection strategies for in-
distribution performance. For out-of-distribution
performance, the Synthetic sample dissimilarity
strategy is best in more cases than the base-
line strategies. However, the improvements are
marginal and are not present in all datasets. Given
the increased computations needed to use these
sample selection strategies and their lacklustre per-
formance, the baseline strategies represent a good
default option for few-shot augmentation practition-
ers. The space for better sample selection strategies
for LLM-based text augmentation remains open.



Limitations

We note several limitations to our work.

First, we only used datasets, augmentation meth-
ods, and LLMs for the English language and did
not investigate cases of multi-lingual text augmen-
tation.

Second, we did not use various patterns of
prompts and followed those used in previous stud-
ies (Cegin et al., 2023; Larson et al., 2020). Dif-
ferent prompts could have effects on the quality of
text augmentations, but they would also radically
increase the size of this study, and thus, we decided
to leave this for future work and focused on the
simplest prompts possible.

Third, we did not use newer LLMs for down-
stream model fine-tuning via PEFT methods (e.g.,
fine-tuning of Llama-3 or Mistral using QLoRA).
While such inclusion would strengthen our findings,
we decided not to use these models as evaluation
of these models is very costly and takes a long time
due to their size, which results in them being mostly
used with a small subset of the testing data (Chang
and Jia, 2023; Li and Qiu, 2023; Gao et al., 2021;
Koksal et al., 2023). This, in return, can lead to
unintentionally cherry-picked results. We see the
usage of such fine-tunings as the extension of our
work left for future work.

Fourth, for the LLM augmentation methods,
we used only Llama-3.1-8B, Mistral-v0.3-7B, and
Gemma-2-9B. We did not use larger models (e.g.,
70B versions) as their increased performance in
text augmentation for model accuracy has been
shown (Cegin et al., 2024a) to be not that signif-
icant when compared to variants of LLMs with
fewer parameters, while the inference costs com-
pared to these smaller models are much higher.

Fifth, we used 5-shots on 20 seeds per label se-
lected on each dataset. While a bigger number of
seeds and shots could have been used, we opted for
smaller numbers to keep the study manageable and
the cost of the study low. In addition, a previous
study (Pecher et al., 2024b) found that sample selec-
tion is more impactful when choosing only a small
set of samples, and using more samples does not
necessarily lead to better results due to the limited
context size of the models. Furthermore, obtaining
larger annotated datasets (e.g., hundreds of sam-
ples per class) is not feasible for many domains
in practice. As such, our findings are beneficial
even for these domains. The exploration of an ad-
ditional number of shots and seeds is an interesting

direction that can be explored in the future.

Sixth, we do not know if any of the 6 datasets
used in this study have been used for training the
LLMs we used for data collection and if this had
any effect on our results and findings. As such, we
do not know how much would be the comparison
of established and newer LLM augmentation meth-
ods different on new, unpublished datasets. This
limitation is part of the recognized possible “LLM
validation crisis”, as described by (Li and Flanigan,
2023).

Seventh, we used only one feature representa-
tion model for the sample selection strategies that
required similarity or dissimilarity of samples, and
the usage of different feature representation mod-
els could alter the performance of these sample
selection strategies.
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A Ethical considerations

Based on a thorough ethical assessment performed
on the basis of intra-institutional ethical guidelines
and checklists tailored to the use of data and al-
gorithms, we see no ethical concerns pertaining
directly to the conduct of this research. Although
the production of new data through LLMs bears
several risks, such as the introduction of biases, the
small size of the produced dataset, sufficient for
experimentation, is, at the same time, insufficient
for any major machine learning endeavors where
such biases could be transferred.

We follow the license terms for all the models
and datasets we used (such as the one required for
the use of the Llama-3.1 model) — all models and
datasets allow their use as part of research.

B Model fine-tuning details

We selected the best hyper-parameters after using
a hyper-parameter search. We used the same batch
size across all datasets using 64 batch size, used 2e-
5 learning rate, dropout 0.2, maximum number of
tokens (512) trimmed and padded, and 50 number
of epochs. We used AdamW optimizer in all cases.

C Dataset details

As we did not use all of the dataset labels and sam-
ples in each of the datasets, we list our setup here.
All used datasets are in English language. We ei-
ther aggregated or relabelled the labels we used in
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datasets to ensure that datasets from all tasks of
sentiment analysis, news classification, paraphrase
detection, and question topic classification had the
same labels. This made the out-of-distribution eval-
uation much easier.

We used all the labels for the TweetEval dataset,
and for the Yelp dataset, we aggregated and rela-
belled the one star and two stars labels as negative,
the three stars as neutral and the four stars and five
stars labels as positive.

We used all the labels of the AG News dataset
and for the News Topic dataset we aggregated and
relabelled the WORLD NEWS, POLITICS as U.S.
NEWS as World, SCIENCE, TECH as Science and
Technology and additionally also used samples
with labels Sports and Business.

For the Yahoo dataset, we used labels Soci-
ety & Culture, Science & Mathematics, Health,
Education & Reference, Sports, Business & Fi-
We used only some labels of the Trec
dataset and mapped them to the Yahoo dataset
labels in the following way by aggregation and
relabelling: on the Society & Culture label
we mapped the HUM:gr, HUM:ind, NUM:date,
HUM:desc, ENTY:religion labels, on the Science
& Mathematics label we mapped the ENTY:animal,
NUM:volsize, ENTY:plant, NUM:temp labels, on
the Health label we mapped the ENTY:body,
ENTY:dismed labels, on the Education & Refer-
ence label we mapped the ABBR:abb, DESC:def,
DESC:desc labels, on the Sports label we mapped
the ENTY:sport label and on the Business & Fi-
nance label we mapped the ENTY:cremat label.

Finally, we used all the labels in the MNLI
dataset and the QQP dataset.

For the out-of-distribution split of the QQP
dataset, we used the PAWS (Zhang et al., 2019)
dataset, more specifically from the labelled_final
subset and test split.

nance.

D Prompts and parameters used for
LLM-based augmentation

For all of the LLMs used during augmentation, we
used the same parameters: maximum number of
new tokens set to 1024, sampling enabled, with fop
p setto 1 and temperature set to 1. We used 4-bit
quantization for faster and cheaper inference on
all LLMs and used instruction-tuned versions for
each of the LLMs. Specifically, we used Mistral-
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v0.3-7B-instruct 2, Llama-3.1-8B-Instruct > and
Gemma-2-9B-Instruct . We collected 1 response
and asked the LLMs to produce 5 augmentations
per seed or label of that seed.

We used different prompts for generating new
samples and paraphrasing existing samples. These
prompts were also varied based on the dataset used.

For paraphrasing with few-shot we used this
prompt: You will be given examples from ’task’
dataset, each labelled with a specific category.
Based on the examples, paraphrase a given text
5 times with the ’label’ category. Output each
paraphrased text in the form of a numbered list
separated by new lines. The text: 'text’. Examples:
examples

For paraphrasing with zero-shot, we used this
prompt: You are given a ’task’ dataset. Paraphrase
a given text 5 times with the ’label’ category. Out-
put each generated text in the form of a numbered
list separated by new lines. The text: ’text’

For few-shot paraphrasing of the question topic
classification datasets we used this prompt: You will
be given examples of questions from ’task’ dataset,
each labelled with a specific topic. Based on the
examples of questions, paraphrase a given ques-
tion 5 times with the ’label’ topic. Output each
paraphrased question in the form of a numbered
list separated by new lines. The question: ’text’
Examples: examples

For paraphrasing with zero-shot of the question
topic classification datasets, we used this prompt:
You are given a ’task’ dataset. Paraphrase a given
question 5 times with the ’label’ category. Output
each generated question in the form of a numbered
list separated by new lines. The question: ’text’

For few-shot paraphrasing of the MNLI dataset,
we used this prompt: You will be given a premise
and hypothesis pair together with their label from
a Natural Language Inference dataset. Based on
the examples, paraphrase 5 times a hypothesis
that ’label’ the given premise. The given premise:
‘premise’. Output each paraphrased hypothesis in
the form of a numbered list separated by new lines.
The hypothesis: ’text’ Examples: examples

For paraphrasing with zero-shot of the MNLI
dataset, we used this prompt: You will be given a
premise from a Natural Language Inference dataset.

Zhttps://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.3

3https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

*https://huggingface.co/google/gemma-2-9b-it



Paraphrase 5 times a hypothesis that ’label’ the
given premise. The given premise: 'premise’. Out-
put each paraphrased hypothesis in the form of a
numbered list separated by new lines. The hypothe-
sis: text’

For few-shot paraphrasing of the QQP dataset,
we used this prompt: You will be given a question
from a Paraphrase Detection dataset. Based on the
examples, paraphrase 5 times a question. Output
each paraphrased question in the form of a num-
bered list separated by new lines. The question:
‘text” Examples: examples

For paraphrasing with zero-shot of the QQP
dataset, we used this prompt: You will be given
a question from a Paraphrase Detection dataset.
Output each paraphrased question in the form of a
numbered list separated by new lines. The question:
‘text’

For generating new samples with few-shot we
used this prompt: You will be given examples from
‘task’ dataset, each labelled with a specific category.
Based on the examples, generate 5 new texts that
fit the ’label’ category. Output each generated
question in the form of a numbered list separated
by new lines. Examples: examples

For generating new samples with zero-shot, we
used this prompt: You are given a ’task’ dataset.
Generate 5 new texts that fit the ’label’ category.
Output each generated question in the form of a
numbered list separated by new lines.

For few-shot generating new samples of the
question topic classification datasets, we used this
prompt: You will be given examples of questions
from the 'task’ dataset, each labeled with a specific
topic. Based on the examples of questions, gener-
ate 5 new questions that fit the ’label’ topic. Output
each generated question in the form of a numbered
list separated by new lines. Examples: examples

For generating new samples with zero-shot of the
question topic classification datasets, we used this
prompt: You are given a ’task’ dataset. Generate 5
new questions that fit the ’label’ category. Output
each generated question in the form of a numbered
list separated by new lines.

For few-shot generating new samples of the
MNLI dataset, we used this prompt: You will be
given a premise with a label from a Natural Lan-
guage Inference dataset. Based on the examples,
generate 5 new hypotheses that ’label’ the given
premise. The given premise: ’premise’. Output
each generated hypothesis in the form of a num-
bered list separated by new lines. Examples: exam-
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ples

For generating new samples with zero-shot of
the MNLI dataset, we used this prompt: You will
be given a premise with a label from a Natural
Language Inference dataset. Generate 5 new hy-
potheses that ’label’ the given premise. The given
premise: 'premise’. Output each generated hypoth-
esis in the form of a numbered list separated by
new lines.

For few-shot generating new samples of the QQP
dataset, we used this prompt: You will be given
a question from a Paraphrase Detection dataset.
Based on the examples, generate 5 new questions
which are ’label’ considering the question. The
given question: 'question’. Output each generated
question in the form of a numbered list separated
by new lines. Examples: examples

For generating new samples with zero-shot of
the QQP dataset, we used this prompt: You will
be given a question from a Paraphrase Detection
dataset. Generate 5 new questions which are ’la-
bel’ considering the question. The given question:
‘question’. Output each generated question in the
form of a numbered list separated by new lines.

E Additional Results and Visualisations
for Sample Selection Strategies and
Their Effect on Model Performance

We provide the comparison of all sample selection
strategies between each other without the baselines
in Table 2. Additionally, we also provide boxplot
visualization for the aggregated performance of all
LLMs and random seeds in F1-Macro for mod-
els trained on various sample selection strategies
together with the baselines of either random few-
shot or zero-shot for both in-distribution and out-
of-distribution data in Figures 3 and 4.

F Effects of Composition of Examples
and Augmentation Techniques on
Model Performance

As our study had multiple parameters mentioned
in Section 3, we additionally also report results for
two different parameters used: composition of ex-
amples based on labels (using only examples from
the label under augmentation or using examples
from every label in the dataset) and augmentation
techniques (using either paraphrasing of existing
samples or generation of new samples). We report
results for both parameters in Tables 3 and 4.
Each augmentation technique has the best effect



DATASET— AGNEWS NTOPIC  YAHOO TREC TEVAL YELP MNLI QQP TOTAL

Strategy| ID| OD || ID|OD || ID|OD|ID|OD|ID|OD|ID|OD|ID|OD]|ID|OD]|ID| OD
Cos. sim. 1 0 3| 4 6 | 3 5 0 0 0 3 0 0| 0 1 1 19 8
Cos. dissim. 1 0 1 0 3 1 0] 2 0 0 0| o0 2 2 2 1 9 6
Forget. most 3 0 0 1 0 3 0 0 1 4 0 1 0 0 0 1 4 10
Forget. least 0 2 3 1 0| o0 1 0 3 1 0| 3 0| 0 0 1 7 8
Carto. hard 0 2 0 1 0 1 01| O 1 1 4 | 3 0 1 0 1 5 10
Carto. e+amb. 0 0 0 2 0| 0 0| 0 3 0 1 0 4|0 2 0 10 2
Carto. easy 0 1 0] 0 0| 0 0 1 1 0 1 0 0 0 1 2 3 4
Synth. dissim. 4 4 2 0 0 1 3 6 0 3 0 2 3 6 3 2 15| 24

Table 2: No. cases for each sample selection strategy without baseline strategies where each strategy performed the
best for each dataset for in-distribution (ID) and out-of-distribution (OD) data. The last Total column aggregated all
cases for that specific strategy. The Synthetic samples dissimilarity strategy performs best on out-of-distribution
model performance, while the Cosine similarity strategy performs best on in-distribution model performance.

Type of Augmentation  Best for ID  Best for OD TweetEval dataset, while the other datasets worked
Generation 19 (26.39%) 50 (69.44%) better with only examples from the label under
Paraphrasing 53 (73.61%) 22 (30.56%) augmentation used.

Table 3: No. cases where each type of augmentation
performed the best for in-distribution (ID) and out-of-
distribution (OD) data. The generation augmentation
works best for out-of-distribution data, while the para-
phrasing augmentation works best for in-distribution
data.

Composition of Examples Type  Best for ID  Best for OD

Only From Label Under Aug. 37 (51.39%) 40 (55.56%)
From All Labels 35 (48.61%) 32 (44.44%)

Table 4: No. cases where each type of composition of
examples type performed the best for in-distribution (ID)
and out-of-distribution (OD) data. While the inclusion
of examples from all the labels in the dataset works best,
the increase in no. cases is small.

on model performance for either in-distribution
or out-of-distribution as per Table 3. For out-of-
distribution performance, the generation of new
samples is the most often, while for in-distribution
performance, the paraphrasing of existing sam-
ples works best. Exceptions to this are in the Yelp
dataset, where paraphrasing of existing samples is
best for out-of-distribution performance and gen-
eration of new samples for in-distribution perfor-
mance.

The difference between composition of examples
based on labels is much smaller than for augmenta-
tion techniques, as is shown in Table 4. While the
inclusion of samples from all labels in the dataset is
better more often, the difference is quite small. We
noticed that for out-of-distribution performance,
the inclusion of samples from all labels worked
best on question topic classification datasets and
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Figure 3: Aggregated performance across all LLMs and random seeds in F1-Macro for models trained on various
sample selection strategies together with the baselines of either random few-shot or zero-shot on in-distribution data.
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Figure 4: Aggregated performance across all LLMs and random seeds in F1-Macro for models trained on various
sample selection strategies together with the baselines of either random few-shot or zero-shot on out-of-distribution

data.
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