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ABSTRACT

Temporal action segmentation aims to classify the action category of each frame
in untrimmed videos, primarily using RGB video and skeleton data. Most exist-
ing methods adopt a two-stage process: feature extraction and temporal modeling.
However, we observe significant limitations in their spatio-temporal modeling: (i)
Existing temporal modeling modules conduct frame-level and action-level inter-
actions at a fixed temporal resolution, which over-smooths temporal features and
leads to blurred action boundaries; (ii) Skeleton-based methods generally adopt
temporal modeling modules originally designed for RGB video data, causing a
misalignment between extracted features and temporal modeling modules. In this
paper, we propose a novel Interaction-based framework for Action segmentation
(InterAct) to address these issues. Firstly, we propose multi-scale frame-action
interaction (MFAI) to facilitate frame-action interactions across varying temporal
scales. This enhances the model’s ability to capture complex temporal dynam-
ics, producing more expressive temporal representations and alleviating the over-
smoothing issue. Meanwhile, recognizing the complementary nature of different
spatial modalities, we propose decoupled spatial modality interaction (DSMI). It
decouples the modeling of spatial modalities and applies a deep fusion strategy
to interactively integrate multi-scale spatial features. This results in more dis-
criminative spatial features that are better aligned with the temporal modeling
modules. Extensive experiments on six large-scale benchmarks demonstrate that
InterAct significantly outperforms state-of-the-art methods on both RGB-based
and skeleton-based datasets across diverse scenarios.

1 INTRODUCTION

Understanding human actions in videos is critical for various real-world applications, including
surveillance (Luo et al., 2019), assistive rehabilitation (Filtjens et al., 2020), interactive robotics
(Kenney et al., 2009), and virtual reality (Sudha et al., 2017). These applications require the analysis
of long, untrimmed videos, which has motivated extensive research into the task of temporal action
segmentation (TAS) (Farha & Gall, 2019; Li et al., 2021b; Ishikawa et al., 2021; Liu et al., 2022;
Behrmann et al., 2022; Li et al., 2023a; Liu et al., 2023). The goal of TAS is to classify each video
frame and segment videos into distinct, non-overlapping action segments.

Recent frame-action interaction strategies (Lu & Elhamifar, 2024) have achieved significant progress
in this task. However, we observe that these methods tend to over-smooth temporal features, which
in turn blur the boundaries between different action categories. Specifically, recognizing complex
action sequences requires the integration of both long-term and short-term information to extract
discriminative temporal features (Gao et al., 2021). Nevertheless, these methods rely solely on
frame-action modeling at a fixed temporal resolution, as shown in Figure 1(a). This makes it
difficult to capture temporal dependencies across varying time scales, resulting in over-smoothed
temporal representations that blur action boundaries. Moreover, the iterative refinement process
based on the fixed temporal resolution further amplifies this smoothing effect.

In the task of TAS, two primary types of data are commonly used: RGB video data (Kuehne et al.,
2014) and skeleton data (Liu et al., 2017). However, existing skeleton-based methods (Filtjens et al.,
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Figure 1: Comparison of existing methods and our proposed InterAct in TAS. (a) We introduce
multi-scale frame-action modeling to enhance the interaction of temporal information, addressing
the issues of over-smoothing features and boundary blurring caused by existing fixed-resolution
modeling methods. (b) We apply a deep fusion strategy to decouple the modeling of spatial modali-
ties and interactively integrate spatial information, overcoming the misalignment between extracted
features and temporal modeling modules in existing skeleton-based methods.

2022; Xu et al., 2023; Tian et al., 2023) generally adopt modules originally designed for RGB video
data during temporal modeling. This practice overlooks the differences in feature extraction be-
tween RGB video data and skeleton data. As a result, there is poor alignment between extracted
features and temporal modeling modules. Specifically, RGB-based methods typically extract I3D
features using pre-trained models (Carreira & Zisserman, 2017). These features are highly discrim-
inative and effectively support temporal modeling. The design of temporal modeling modules in
these methods heavily relies on these discriminative features. In contrast, as shown in Figure 1(b),
previous skeleton-based methods (Filtjens et al., 2022; Xu et al., 2023; Li et al., 2023b) commonly
adopt an early fusion strategy during feature extraction. Data from different spatial modalities are
fused at the input stage before spatial modeling. This limits the model’s ability to capture complex
spatial dependencies, resulting in less discriminative spatial features. Consequently, these features
misalign with the temporal modeling modules and result in classification errors.

To address the limitations mentioned above, we propose a novel Interaction-based framework for
Action segmentation (InterAct). It comprises two core components: Multi-scale Frame-Action In-
teraction (MFAI) and Decoupled Spatial Modality Interaction (DSMI). Specifically, to avoid the
effect of over-smoothing caused by iterative frame-action interaction at a fixed temporal resolution,
MFAI introduces multiple temporal resolutions. By using various temporal scales ranging from
coarse to fine granularity, MFAI performs temporal modeling simultaneously at both the frame and
action levels. This facilitates interactions between the two, exploiting their complementary infor-
mation to refine temporal representations. Particularly, frame-action interactions across different
temporal scales focus on distinct temporal semantics. By enabling information transfer across these
scales, MFAI learns more effective interaction patterns. As such, our InterAct can more compre-
hensively capture complex temporal dynamics in long action sequences. For skeleton data, inspired
by the complementary nature of different spatial modalities, DSMI employs a deep fusion strategy.
Initially, decoupled multi-scale spatial modeling is applied to data from different spatial modalities.
The extracted multi-scale features are then fused interactively. By adopting DSMI, the more dis-
criminative spatial features extracted can better capture the complex spatial relationships between
joints, thereby aligning more effectively with the temporal modeling module.

Our main contributions are summarized as follows:

• For temporal modeling, we propose MFAI, which integrates multiple temporal resolutions
for frame-action modeling, thereby enhancing temporal interactions. This module effec-
tively captures complex temporal dependencies in long action sequences and performs well
on both RGB video data and skeleton data.
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• For skeleton data, we further propose a feature enhancement module DSMI. This module
employs decoupled multi-scale spatial modeling for different spatial modalities. Through
interactive fusion, the extracted spatial features become more discriminative and better
aligned with the temporal modeling module.

• Extensive experimental results demonstrate that our proposed InterAct significantly outper-
forms existing state-of-the-art methods on both RGB-based and skeleton-based datasets.

2 RELATED WORKS

2.1 RGB-BASED TEMPORAL ACTION SEGMENTATION

Most temporal action segmentation works follow a similar two-stage process: feature extraction and
temporal modeling. In RGB-based TAS, the first stage typically uses pre-trained model (Carreira
& Zisserman, 2017) to extract I3D features from each video frame. Most research focuses on the
design of the temporal modeling in the second stage. Existing temporal modeling methods can
be categorized into three main types: frame-based methods, two-stage methods, and frame-action
interaction methods. Frame-based methods model temporal dependencies between frames using
temporal convolutional networks (Lea et al., 2017; Farha & Gall, 2019; Li et al., 2021b; Wang
et al., 2020; Ishikawa et al., 2021; Singhania et al., 2023) or transformers (Yi et al., 2021; Bahrami
et al., 2023). Although these approaches enhance temporal modeling through innovations such as
multi-layer dilated convolutions (Farha & Gall, 2019; Li et al., 2020) and windowed attention (Yi
et al., 2021), they still struggle to capture long-range dependencies. Recently, diffusion models (Liu
et al., 2023) have also been applied to action segmentation, but leads to higher training and inference
complexity. To better model long-range dependencies, the two-stage methods (Ahn & Lee, 2021;
Behrmann et al., 2022; Jiang et al., 2023; Gan et al., 2024) recognize the significance of action-
level modeling. These methods first learn initial frame features and predictions, then construct
action features based on them and further refine the predictions. However, they fail to leverage
the complementary information between the frame-level and action-level features. To address this
limitation, frame-action interaction methods (Lu & Elhamifar, 2024) conduct temporal modeling
at both the frame-level and action-level, enabling bidirectional information transfer between them.
Nevertheless, these methods apply iterative frame-action modeling at a fixed temporal resolution,
which over-smooths temporal features and limits the temporal modeling capability. To avoid over-
smoothing temporal features, we propose multi-scale frame-action interaction (MFAI). It performs
temporal modeling at both the frame and action level across multiple temporal resolutions. By
facilitating the interactions of diverse temporal semantics, it generates more comprehensive temporal
representations, thereby improving the model’s capacity to capture complex temporal dynamics.

2.2 SKELETON-BASED TEMPORAL ACTION SEGMENTATION

In skeleton-based TAS, most works generally adopt frame-based methods from RGB-based ap-
proaches for temporal modeling. The primary focus is on designing feature extraction methods. Ex-
isting skeleton-based feature extraction methods can be divided into two categories: cascaded spatio-
temporal modeling and decoupled spatio-temporal modeling. Cascaded spatio-temporal modeling
methods conduct single or multiple cascaded spatio-temporal interactions to extract features. Early
approaches, based on Farha & Gall (2019), replaced the initial stage of temporal convolutions with
spatio-temporal graph convolutions (Filtjens et al., 2022) or spatio-temporal attention modules (Tian
et al., 2023) to improve the ability to capture spatio-temporal features. To further refine spatial se-
mantics, Liu et al. (2022) introduced spatial focus attention, while Tan et al. (2023) proposed a multi-
branch transfer fusion module to model spatial dependencies. Similarly, Li et al. (2023a) enhanced
spatio-temporal modeling by introducing an involving distinguished temporal graph convolution
network. However, these cascaded spatio-temporal interactions tend to over-smooth the extracted
features and fail to capture complex spatio-temporal information effectively. To mitigate this limita-
tion, Li et al. (2023b) proposed a decoupled spatio-temporal modeling method. This method adopts
unified spatial modeling to extract spatial sub-features, which then interact with temporal features,
thereby avoiding cascaded spatio-temporal interactions. However, these methods commonly adopt
an early fusion strategy, where data from different spatial modalities are combined at the input stage
before spatial modeling. This diminishes the discriminative capacity of the extracted spatial features
and hinders their alignment with the temporal modeling module. Indeed, different spatial modalities
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Figure 2: Framework of the proposed InterAct. First, a frame-level encoder is used to extract fea-
tures. For RGB video data, we employ I3D, while for skeleton data, we use DSMI (illustrated in
(b)) to capture discriminative spatial features. Then, MFAI (illustrated in (a)) models temporal de-
pendencies. Finally, predictions are generated using the output head (illustrated in (c)).

contain rich complementary information. Motivated by this, we propose decoupled spatial modality
interaction (DSMI), which applies a deep fusion strategy to decouple the modeling of different spa-
tial modalities and integrate multi-scale spatial features interactively. As such, the extracted spatial
features become more discriminative, providing better support for temporal modeling.

3 METHOD

In this section, we present the details of the proposed interaction-based framework, InterAct, for
temporal action segmentation (TAS). In Sec. 3.1, we first introduce the tasks of RGB-based TAS
and skeleton-based TAS, along with the pipeline of InterAct. Then, the decoupled spatial modality
interaction (DSMI) and the multi-scale frame-action interaction (MFAI) are proposed in Sec. 3.2
and Sec. 3.3, respectively. Finally, we provide details of the loss functions in Sec. 3.4.

3.1 PROBLEM STATEMENT AND PIPELINE

Given a video with T frames, our goal is to identify the category for each frame Y = [y1, . . . , yT ] ∈
[1, . . . , A]T , where A is the total number of action classes. To achieve better segmentation perfor-
mance, we propose a framework named InterAct, as shown in Figure. 2. In TAS, two primary types
of data are commonly used: RGB video data and skeleton data. Due to the distinct characteristics
of these data types, we employ separate frame-level encoders for feature extraction. For RGB video
sequences VRGB ∈ RT×H×W , following the previous (Farha & Gall, 2019; Liu et al., 2023), we
extract I3D (Carreira & Zisserman, 2017) features XI3D ∈ RT×C , where H , W and C represent the
height, width and feature dimension, respectively. For skeleton sequences Vskeleton ∈ RT×Cin×V ,
we use the proposed DSMI as the frame-level encoder to extract more discriminative spatial fea-
tures, denoted as Xskeleton ∈ RT×C , where Cin is the input feature dimension. Next, we apply
MFAI to both XI3D and Xskeleton for multi-scale frame-action interaction and temporal modeling.
Additionally, following Ishikawa et al. (2021), we introduce a boundary query to help the learning
of action boundaries, which effectively reduces over-segmentation errors.

3.2 DECOUPLED SPATIAL MODALITY INTERACTION

As mentioned before, previous skeleton-based methods (Filtjens et al., 2022; Xu et al., 2023; Tian
et al., 2023) suffers from misalignment between the extracted features and the temporal modeling
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module. To address this issue, we propose a decoupled spatial modality interaction module (DSMI)
to strengthen compatibility between them, as shown in Figure 2(b).

Specifically, we explore three distinct spatial modalities: absolute coordinates, relative coordinates,
and motion, with the latter two derived from the absolute coordinates. The absolute coordinates rep-
resent the positional information of the human body, while the relative coordinates describe changes
in joint positions relative to the body’s center. The motion modality, on the other hand, captures the
movement of joints across consecutive frames.

Multi-scale Spatial Modeling. We first apply multi-scale spatial modeling (Li et al., 2023b) to thor-
oughly exploit the spatial information embedded in these modalities. Taking the skeleton sequence
of the absolute coordinate modality Vabs ∈ RT×Cin×V as an example, we define a k-adjacency
matrix A(k) ∈ RV×V to represent the physical connections between body joints:

A
(k)
i,j =


1, if d(αi, αj) = k,

1, if i = j,

0, otherwise,
(1)

where d(αi, αj) denotes the shortest distance between joint αi and αj . The dependencies between
joints at distance k can be captured via matrix multiplication VabsA

(k). Additionally, a learnable
adjacency matrix B(k) ∈ RV×V is introduced to adaptively learn the spatial dependencies between
joints. By leveraging both adjacency matrices, the multi-scale spatial features of the absolute coor-
dinate modality Sabs ∈ RT×C×V are aggregated as:

Sabs = MLP(WVabs([(Â
(1) +B(1)) ∥ · · · ∥ (Â(K) +B(K))])), (2)

where ∥ denotes the concatenation operation, W is a weight tensor, K is a model hyperparameter
that controls the farthest distance, and Â(k) is the normalized adjacency matrix (Yan et al., 2018; Liu
et al., 2020). The MLP (multi-layer perceptron) adjusts the feature dimensions. Similarly, we extract
multi-scale spatial features for other modalities, i.e., Srel ∈ RT×C×V and Smotion ∈ RT×C×V .

Spatial Modality Interactive Fusion. We then leverage a deep fusion strategy to capture the com-
plementary relationships between different spatial modalities, facilitating the fusion of multi-scale
features. Using the multi-scale features of the input modality Sabs as the reference, we model the
correlations between it and other modalities sequentially. This progressive integration yields the
final spatial feature Xskeleton ∈ RT×C . The process can be formally described as follows:

X̂skeleton = MLP(SAttn([Sabs ∥ Srel])),

Xskeleton = MLP(SAttn([X̂skeleton ∥ Smotion])),
(3)

where SAttn denotes the self-attention layer. Through this interactive fusion, DSMI is able to extract
more discriminative spatial features to better support temporal modeling.

3.3 MULTI-SCALE FRAME-ACTION INTERACTION

It is critical to capture rich temporal dependencies in long action sequences. However, we observe
that existing frame-action interaction strategies tend to over-smooth temporal features, limiting their
temporal modeling capabilities. To solve this problem, we propose a multi-scale frame-action inter-
action module (MFAI) that utilizes multiple temporal resolutions to enhance temporal interactions,
as shown in Figure 2(a). The module consists of a multi-scale feature extractor and frame-action
interactions at different temporal resolutions. Next, we describe each component in detail.

Multi-scale Feature Extractor. Following Singhania et al. (2023), we adopt an encoder-decoder
architecture to capture frame-level information at different temporal scales. Let X ∈ RT×C denote
the input features, where T is the number of frames and C is the input feature dimensions. The en-
coder consists of six layers, denoted as {Φ(u)

en : u ≤ 6}. The output of the u-th layer has dimensions
RT (u)×D, where T (u) is the temporal dimension at layer u and D is the feature dimensions. Each en-
coder layer applies a 1D depthwise convolution to halve the temporal dimension, i.e., T (u) = ⌈ T

2u ⌉,
followed by an asformer layer (Yi et al., 2021) to capture contextual information at the correspond-
ing temporal scale. The decoder mirrors the encoder’s structure, also comprising six layers, denoted
as {Φ(u)

de : u ≤ 6}. Each decoder layer includes an up-sampling unit and a convolution block with
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the output having dimensions RT (6−u)×D. For each u, the up-sampling unit linearly interpolates
inputs to double the temporal length, and the output is fused with encoder Φ(6−u)

en ’s output via skip
connections. This fusion effectively integrates global and local information across multiple scales.

We utilize the outputs from the last H layers of the decoder X̂ = [X̂0, . . . , X̂H ] to construct and
refine action-level features during the frame-action interaction step, where X̂u ∈ RT (H−u)×D. The
final output X̂H is then passed through an action block (Li et al., 2023b) and a boundary block (Li
et al., 2021b), generating the initial frame-level features F 0 = [F 0

a , F
0
b ]. Here, F 0

a ∈ RT×D denotes
the frame-level action features, and F 0

b ∈ RT×D denotes the frame-level boundary features.

Frame-Action Interaction. We progressively model frame-action interactions across multiple tem-
poral scales, enhancing information transfer between frame-level and action-level features, as well
as across different time scales. This allows the model to effectively integrate low-level detail from
frame-level features with high-level dependencies from action-level features. Let Q0 = [Q0

a, Q
0
b]

denote the initial action-level features, where Q0
a ∈ RA×D and Q0

b ∈ R1×D are action query and
boundary query, respectively. Both are randomly initialized. The frame-action modeling at each
temporal scale involves two steps: Query Update and Frame Update. The inputs to the first frame-
action modeling stage are (F 0, Q0, X̂0), and its outputs are the refined features (F 1, Q1).

In the Query Update step, the initial action-level features Q0 and the coarse-grained decoder output
X̂0 are used to update the action-level features via the Query Update Block (QBlock). Each QBlock
employs a transformer with self-attention to capture dependencies between action and boundary
queries. Then, guided by the decoder output, we further refine the action-level features using a
frame-to-action cross-attention layer, where Q0 serves as Query and X̂0 as Key and Value:

Q1 = QBlock(Q0, X̂0),

= MLP(CAttn(SAttn(Q0
a, Q

0
b), X̂0)).

(4)

Here, SAttn and CAttn denote the self-attention and cross-attention layers, respectively. MLP is
used to adjust the feature dimensions. The updated action-level features are more sensitive to both
action categories and boundary information.

In the Frame Update step, based on the updated action-level features Q1 and the initial frame-
level features F 0, frame-level features are refined through the Frame Update Block (FBlock).
Each FBlock refines both frame-level action and boundary features using an action-to-frame cross-
attention layer. In this step, F 0

a and F 0
b are treated as Query, while Q1 serves as Key and Value:

F 1 = [F 1
a , F

1
b ] = FBlock(F 0, Q1),

= [CAttn(F 0
a , Q

1),CAttn(F 0
b , Q

1)].
(5)

Lastly, we pass the updated features (Q1, F 1) and the finer-grained decoder output X̂1 to the next
frame-action modeling stage. This process is repeated iteratively until we obtain (QH , FH) from
the final stage, where H is the total number of stages.

Generating Predictions. As shown in Figure 2(c), we use the output (Qr, F r) from each time scale
r to predict the probability for the action category and action boundary of each frame. Specifically,
the action probability P r

a ∈ RA×T is obtained by computing the dot product between the action
query Qr

a and the frame-level action features F r
a . The boundary probability P r

b ∈ R1×T is obtained
in a similar way. During inference, based on the final probabilities PH

a and PH
b , we apply the label

smoothing strategy (Ishikawa et al., 2021) to generate the final predictions.

3.4 LOSS FUNCTION

We optimize the action probability P r
a using both frame-level and action-level losses, following Gan

et al. (2024). Specifically, we apply focal loss (Ross & Dollár, 2017) for frame-level classification
and dice loss (Milletari et al., 2016) at the action-level to better capture the temporal distribution
of each action category. For a video with N action categories, we first generate the temporal mask
label M = [M1, . . . ,MN ] ∈ RN×T based on the label Y , where Mi is defined as:

Mi = [m1, . . . ,mT ],mt =

{
1, if yt = i,

0, else.
(6)
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Here, yt represents the label of the t-th frame. We then extract the corresponding N classes from
P r
a , denoted as P r

a (M) ∈ RN×T . Overall, the loss function for action probability is formulated as:

La =

H∑
r=1

[λfocalLfocal(Y, P
r
a ) + λdiceLdice(M,P r

a (M))], (7)

where λfocal and λdice are the weights for the focal loss and dice loss, respectively. For boundary
probability P r

b , we use a binary logistic regression loss Lb at each stage as follow:

Lb =

H∑
r=1

1

T

T∑
t=1

[g(Yb(t)) · logP r
b (t) + (1− g(Yb(t)) · log (1− P r

b (t)], (8)

where Yb(t) is the ground truth that takes the value of 1 at action boundaries, and g(·) denotes a
Gaussian filter used to smooth boundaries. In summary, the action probabilities and the boundary
probabilities are jointly trained with the following loss function:

L = La + γLb (9)
where γ is a hyperparameter that balances the contributions of the two losses.

4 EXPERIMENT

4.1 DATASET

We evaluate the proposed InterAct for action segmentation on six challenging datasets covering
various test scenarios. These include daily cooking activities (e.g., Breakfast (Kuehne et al., 2014)
and 50Salads (Stein & McKenna, 2013)), competitive sports (e.g., MCFS-22 (Liu et al., 2021) and
MCFS-130 (Liu et al., 2021)), daily activities (e.g., PKU-MMD (Liu et al., 2017)), and typical
warehousing activities (e.g., LARa (Niemann et al., 2020)).

Breakfast consists of 1712 third-person view videos with 48 distinct actions related to breakfast
preparation. 50Salads includes 50 videos in which 25 participants prepare two types of mixed sal-
ads. It contains 17 action classes recorded from a top-down view. MCFS-22 is a high-quality action
segmentation dataset with 271 long sequences of skeleton-based actions, totaling over 1.73 million
frames. The actions are categorized into 22 classes. MCFS-130 features more fine-grained actions
in both spatial and temporal dimensions compared to MCFS-22, covering 130 action categories. It
provides two types of data: RGB video data and skeleton data. PKU-MMD is a large-scale human
action understanding dataset. It contains 1009 long continuous sequences of 52 distinct actions,
recorded from three camera views with 13 subjects. Following Li et al. (2023b), we use two evalua-
tion protocols: cross-subject (X-sub) and cross-view (X-view). LARa is a continuous action dataset
involving 14 participants performing typical warehousing activities. It consist of 377 long videos
covering 8 action classes, captured in 3 different real-world warehousing scenarios.

4.2 EVALUATION METRICS

Following previous works, we report three evaluation metrics, i.e., frame-wise accuracy (Acc), seg-
mental edit score (Edit), and segmental F1 scores with overlapping thresholds of 10%, 25% and
50%, denoted as F1@{10, 25, 50}. We perform 4-fold cross-validation on Breakfast, 5-fold cross-
validation on 50Salads, MCFS-22, and MCFS-130. For PKU-MMD (X-sub), PKU-MMD (X-view),
and LARa, we use single validation for evaluation.

4.3 IMPLEMENTATION DETAILS

For DSMI, we set K = 13 following Li et al. (2023b). For MFAI, the number of stages for frame-
action modeling H is set to 3 (we discuss the impact of the number of H in the Appendix). The loss
function parameters are configured as λfocal = λdice = γ = 1. We use AdamW optimizer and a
cosine learning rate schedule for training on all datasets. The initial learning rate is 5e-4 for PKU-
MMD and 1e-4 for other datasets. For Breakfast and PKU-MMD, we train for 66 epochs, using
batch sizes of 1 and 4, respectively. For MCFS-22 and MCFS-130, we train for 132 epochs, using
a batch size of 1. For 50Salads, we train for 212 epoch, using a batch size of 1. All experiments in
the comparison study use the above setting and are conducted on a single RTX 4090 GPU.
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Table 1: Comparison with the state-of-the-art on Breakfast, 50Salads and MCFS-130 (RGB). The
underlined results represent the reproduced results.

Method Breakfast 50Salads MCFS-130 (RGB)
F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc

MS-TCN 52.6 48.1 37.9 61.7 66.3 76.3 74.0 64.5 67.9 80.7 36.6 30.5 20.0 36.3 58.0
BCN 68.7 65.5 55.0 66.2 70.4 82.3 81.3 74.0 74.3 84.4 - - - - -

C2F-TCN 72.2 68.7 57.6 69.6 76.0 84.3 81.8 72.6 76.4 84.9 - - - - -
ASRF 74.3 68.9 56.1 72.4 67.6 84.9 83.5 77.3 79.3 84.5 45.4 40.1 27.9 47.1 55.0
ETSN 74.0 69.0 56.2 70.3 67.8 85.2 83.9 75.4 78.8 82.0 38.7 33.0 21.1 47.0 58.1

ASFormer 76.0 70.6 57.4 75.0 73.5 85.1 83.4 76.0 79.6 85.6 37.5 32.6 22.5 36.1 57.6
UVAST 76.9 71.5 58.0 77.1 69.7 89.1 87.6 81.7 83.9 87.4 - - - - -

RTK 76.9 72.4 60.5 76.1 73.3 87.4 86.1 79.5 81.4 85.9 - - - - -
LTContext 77.6 72.6 60.1 77.0 74.2 89.4 87.7 82.0 83.2 87.7 - - - - -

DiffAct 80.3 75.9 64.6 78.4 76.4 90.1 89.2 83.7 85.0 88.9 - - - - -
DSTN 80.4 75.7 64.7 78.0 73.7 - - - - - 53.4 48.8 36.5 57.1 58.8

ASQuery 80.7 76.5 66.5 78.4 77.9 88.6 87.9 83.6 84.0 88.2 52.7 48.6 38.8 49.2 61.1
FACT 81.4 76.5 66.2 79.7 76.2 87.1 85.7 80.3 81.3 86.6 44.0 38.1 31.9 34.8 59.5

InterAct (Ours) 82.3 78.1 68.3 80.2 78.2 90.2 89.5 85.3 85.5 88.9 58.9 55.4 45.9 57.3 62.2

Table 2: Comparison with the state-of-the-art on LARa and PKU-MMD using the benchmark of
X-sub and X-view. The underlined results represent the reproduced results. ∗ indicates the MFAI
module is applied directly for temporal modeling of the input without feature extraction.

Method PKU-MMD (X-sub) PKU-MMD (X-view) LARa
F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc

MS-TCN 63.4 60.2 54.2 66.4 65.5 58.6 53.6 39.4 56.6 58.2 52.4 45.7 39.6 44.2 65.8
FACT 76.0 71.4 56.6 72.1 69.6 71.7 67.0 54.1 68.7 68.1 64.3 60.7 48.3 60.0 69.8

MS-GCN - - 51.6 - 68.5 61.3 56.7 44.1 58.1 65.3 - - 43.6 - 65.6
CTC 69.9 66.4 53.8 - 69.2 - - - - - - - - - -
DeST 74.5 71.0 58.7 69.3 70.3 69.3 65.6 52.0 64.7 67.3 70.3 68.0 57.7 64.2 75.1

InterAct∗ (Ours) 82.8 80.4 69.9 77.1 77.9 76.9 73.8 62.6 70.8 73.5 71.8 69.1 58.2 64.8 74.7
InterAct (Ours) 83.5 81.7 73.0 78.2 79.9 77.5 74.4 64.3 71.3 73.7 72.7 70.1 59.5 65.6 75.9

4.4 COMPARISON WITH THE STATE-OF-THE-ART

To verify the effectiveness of our approach, we compare the proposed InterAct with state-of-the-art
methods on six datasets, including RGB-based datasets (e.g. Breakfast, 50 salads, MCFS-130) and
skeleton-based datasets (e.g. MCFS-22, MCFS-130, PKU-MMD, LARa). The results are presented
in Tables 1, 2, and 3.

Compared with RGB-based Methods. We first compare InterAct against RGB-based methods
(e.g., Farha & Gall (2019); Liu et al. (2023); Lu & Elhamifar (2024)) on RGB-based datasets.
Unlike InterAct, these methods fail to fully leverage the complementary information between frame-
level and action-level features, thus limiting their performance. As shown in Table 1, InterAct
consistently outperforms these methods. For example, on Breakfast in terms of F1@50, InterAct
surpasses the frame-based method DiffAct by 3.7%, the two-stage method ASQuery by 1.8%, and
the frame-action interaction method FACT by 2.1%.

Compared with skeleton-based Methods. We then compare InterAct with skeleton-based methods
(e.g., Filtjens et al. (2022); Li et al. (2023b)) on skeleton-based datasets. Although these methods
incorporate spatio-temporal modeling, their spatial features are not well-aligned with the temporal
module, which hampers their performance. As shown in Table 2 and 3, InterAct consistently
achieves the best performance, especially on F1 scores. For example, in terms of F1@50, InterAct
outperforms the previous SOTA method DeST by 14.3% on PKU-MMD (X-sub), and by 1.3% on
challenging MCFS-130. Notably, even when MFAI is applied directly for temporal modeling of the
input sequence, InterAct achieves state-of-the-art or competitive performance on these datasets.

4.5 ANALYSIS OF DECOUPLED SPATIAL MODALITY INTERACTION

Different strategies of spatial feature extraction. To validate the effectiveness of the proposed
DSMI module, we compare different spatial feature extraction strategies. Using the scenario with-
out spatial modeling as the baseline, we compare the existing strategy (Filtjens et al., 2022; Liu
et al., 2022; Li et al., 2023a) (i.e., Concatenation) with DSMI. As shown in Table 4, 1) Spatial mod-
eling significantly improves performance compared to the baseline, underscoring its importance
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Table 3: Comparison with the state-of-the-art on MCFS-22 and MCFS-130. The underlined results
represent the reproduced results. ∗ indicates the MFAI module is applied directly for temporal
modeling of the input without feature extraction.

Method MCFS-130 (Skeleton) MCFS-22
F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc

MS-TCN 56.4 52.2 42.5 54.5 65.7 74.3 69.7 59.5 74.2 75.6
ASRF 66.7 62.3 51.9 65.6 65.6 83.3 80.1 69.2 77.3 75.5

ASFormer 68.3 64.0 55.1 69.1 67.5 82.8 77.9 66.9 82.3 78.7
FACT 71.4 67.7 57.2 72.6 68.6 79.3 75.1 64.1 80.2 76.6

MS-GCN 52.4 48.8 39.1 52.6 64.9 75.7 70.5 57.9 72.6 75.5
SFA+MS-TCN - - - - - 81.3 77.4 67.0 80.0 80.7

IDT-GCN 70.7 67.3 58.6 70.2 68.6 88.0 84.9 74.9 84.5 79.9
DeST 79.0 75.4 66.0 78.4 73.1 88.1 85.4 76.2 84.9 80.5

InterAct∗ (Ours) 79.1 75.3 66.4 78.3 72.4 88.6 85.0 74.9 87.2 80.7
InterAct (Ours) 80.1 76.4 67.6 78.5 73.4 89.7 86.1 76.5 88.5 81.7

Table 4: Comparison of various spatial feature extraction strategies on the PKU-MMD (X-sub).

Method F1@{10,25,50} Edit Acc

Baseline 82.8 80.4 69.9 77.1 77.9
Concatenation 83.1 81.1 73.0 77.4 79.3

InterAct (Ours) 83.5 81.7 73.0 78.2 79.9

(a) Concatenation (b) DSMI (ours)

Figure 3: The t-SNE visualization of spatial features extracted by existing methods (i.e., Concate-
nation) and DSMI. Different colors indicate the different categories in the MCFS-22. The spatial
features we extract are more discriminative and better align with the temporal modeling module.

in skeleton-based TAS. 2) DSMI consistently outperforms Concatenation for all evaluation met-
rics. This demonstrates its ability to capture complex spatial dependencies by effectively leveraging
complementary information from different spatial modalities.

Qualitative analysis. We further provide qualitative results for a more comprehensive analysis. We
use t-SNE (Van der Maaten & Hinton, 2008) to visualize the spatial features extracted by existing
methods (Li et al., 2023b) and DSMI. As shown in Figure 3, the spatial features produced by DSMI
exhibit significantly better discriminative properties compared to those from existing methods. This
enables better alignment with the temporal module and provides stronger support for temporal mod-
eling. However, since DSMI models spatial dependencies based on skeletal poses from a limited
number of local frames, spatial features of action categories with similar poses may still converge.
In such cases, temporal dependencies between frames are needed for further differentiation.

4.6 ANALYSIS OF MULTI-SCALE FRAME-ACTION TEMPORAL INTERACTION

Different strategies of frame-action interaction. Here, we evaluate the proposed multi-scale
frame-action interaction (MFAI) strategy against the previous method FACT (Lu & Elhamifar, 2024)
to verify its superiority. As shown in Table 1, 2 and 3, MFAI consistently achieves better per-
formance. These results indicate that MFAI predicts more accurate and complete action segments

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Abalation result for the proposed modules on the MCFS-130 dataset (split #1).

Baseline DSMI MFAI F1@{10,25,50} Edit Acc

✓ 77.1 73.5 64.7 76.3 71.5
✓ ✓ 79.2 75.6 66.3 77.5 71.8
✓ ✓ 79.1 75.3 66.4 78.3 72.4
✓ ✓ ✓ 80.2 76.5 67.0 78.4 72.7

(a) FACT (b) MFAI (ours)

Figure 4: Visualization of temporal feature embeddings generated by FACT and MFAI. Different
colors indicate the different categories in the PKU-MMD (X-sub). Compared to FACT, our temporal
features exhibit more distinct category boundaries, mitigating the effects of over-smoothing.

across various scenes. This improvement is attributed to MFAI’s enhanced capacity to capture richer
temporal semantic information within action sequences.

Qualitative analysis. To delve deeper into the differences between FACT and MFAI and their im-
pact on performance, we visualize the embedding distribution of the temporal features generated
by both methods. As shown in Figure 4, FACT’s frame-action interaction strategy results in a
convergence of feature representations between different categories, making action boundaries am-
biguous. This shows that modeling frame-action interactions at a fixed temporal resolution is prone
to the problem of over-smoothing features. In contrast, by incorporating multi-scale frame-action
interaction, our proposed MAFI mitigates this issue and yields more distinct category boundaries.

4.7 ABLATION STUDIES

Effect of each proposed module. To inspect the impact of the proposed spatial module DSMI and
temporal module MFAI, a set of comparative experiments with different module combinations are
conducted in Table 5. In the baseline setting, the model does not employ spatial modeling and relies
solely on frame-level temporal modeling. It is observed that DSMI and MFAI are inherently strong
spatial and temporal feature extractors, respectively. Moreover, these two modules are well-adapted
and complement each other effectively. By combining them, we can achieve the best performance.

5 CONCLUSION

In this paper, we propose a novel framework InterAct for temporal action segmentation (TAS). Un-
like previous frame-action interaction approaches, InterAct incorporates multiple temporal resolu-
tions. It performs frame-action interactions across different temporal scales. This design effectively
captures temporal semantic information and mitigates the over-smoothing issues associated with
fixed resolution modeling. It shows excellent performance on both RGB video data and skeleton
data. Additionally, to address the misalignment between spatial features and temporal modules
in skeleton-based TAS, we decouple different spatial modalities and apply a deep fusion strategy
for adaptive inter-modal interactions. This approach extracts more discriminative spatial features
to better support temporal modeling. Our method outperforms all state-of-the-art RGB-based and
skeleton-based methods on six large-scale benchmark datasets across various scenarios. We believe
that InterAct offers a unique and innovative perspective for addressing the challenges in TAS.
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A APPENDIX

In the Appendix, we have added some experiments and detailed explanations mentioned in the main
text. In section A.1, we discuss the impact of the number of temporal scales. In section A.2, we
provide more detailed experimental results to verify the effectiveness of the proposed multi-scale
frame-action interaction module (MFAI). In section A.3, we list some limitations of our framework
and future development directions.

A.1 IMPACT OF THE NUMBER OF H

This hyperparameter controls the number of temporal scales at which frame-action interactions oc-
cur within the MFAI. As shown in Table 6, increasing H from 0 to 3 gradually improves per-
formance. This indicates that incorporating temporal semantic information from multiple scales is
beneficial. However, further increasing H from 3 to 6 leads to a decline in performance. This is
likely due to the excessively large temporal down-sampling rate during initial interactions. This
results in a severe loss of local details and reduces the differences between frames, thus impairing
classification accuracy.
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Table 6: The impact of the number of stages for frame-action modeling (H) on the MCFS-130
dataset (split #1). H = i indicates that frame-action modeling is performed i times, and the
predictions are derived from the action-level features Qi = [Qi

a, Q
i
b] and the frame-level features

F i = [F i
a, F

i
b].

H F1@{10,25,50} Edit Acc

0 78.3 74.4 64.8 76.2 71.5
1 79.4 75.5 66.0 77.8 71.4
2 79.2 75.9 66.4 77.6 71.8
3 80.2 76.5 67.0 78.4 72.7
4 78.6 75.2 65.8 77.8 71.5
5 78.3 75.1 66.5 77.4 71.1
6 78.5 74.7 65.1 76.7 71.1

Table 7: The results of the proposed InterAct at different stages of frame-action modeling on the
MCFS-130 dataset (split #1). Ni = i denotes that the predictions are derived from the action-level
features Qi = [Qi

a, Q
i
b] and the frame-level features F i = [F i

a, F
i
b].

Ni F1@{10,25,50} Edit Acc
0 74.0 69.8 61.8 70.3 68.9
1 79.2 75.4 66.6 77.5 71.7
2 79.3 75.6 66.5 78.0 72.1
3 80.2 76.5 67.0 78.4 72.7

(a) FACT (Ni = 1) (b) FACT (Ni = 2) (c) FACT (Ni = 3)

(d) MFAI (Ni = 1) (e) MFAI (Ni = 2) (f) MFAI (Ni = 3)

Figure 5: Visualization of temporal feature embeddings generated by FACT and MFAI at different
stages. Different colors indicate the different categories in the PKU-MMD (X-sub). FACT relies
solely on iterative frame-action modeling with a fixed temporal resolution, resulting in temporal
features that tend to be smooth. In contrast, with the introduction of multi-scale frame-action mod-
eling, our temporal features exhibit more distinct category boundaries.

A.2 MORE RESULTS COMPARING FRAME-ACTION INTERACTION STRATEGIES

In this section, we present additional quantitative and qualitative experiments on the multi-scale
frame-action interaction (MFAI) for a more comprehensive analysis.

First, we conduct a more detailed analysis of the comparative results in Figure 4 and provide vi-
sualizations of the temporal feature embeddings generated by FACT and MFAI at different stages.
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As shown in Figure 5, the frame-action interaction strategy employed by FACT leads to over-
smoothing temporal features, which blurs the boundaries between various action categories. This
over-smoothing effect intensifies as the model undergoes further iterations. In contrast, by incor-
porating multi-scale temporal semantic information, our proposed MFAI alleviates the issue of
over-smoothing and achieves more separable category boundaries. Notably, after the first refine-
ment stage, the temporal features generated by MFAI are already able to effectively distinguish
different action categories. This is attributed to the successful integration of action-level features
Q1 = [Q1

a, Q
1
b] and frame-level features F 1 = [F 1

a , F
1
b ] during the first refinement stage. Specif-

ically, the action-level features Q1 capture long-range dependencies within the action sequence,
guided by the coarse-grained decoder output X̂0. Simultaneously, the frame-level features F 1, pro-
duced by the multi-scale feature extractor and further refined with the assistance of Q1, enrich the
semantic information of temporal details. As a result, MFAI’s output in the first stage significantly
outperforms that of FACT and continues to improve through subsequent refinement iterations. How-
ever, as observed in the visualizations, the subsequent refinements appear less prominent, primarily
because they focus on the improvement of specific local details.

Similarly, as shown in Table 7, the performance of MFAI steadily improves as frame-action in-
teraction modeling progresses from coarse to fine granularity. This improvement is driven by the
incorporation of more comprehensive temporal semantic information, enabling the model to more
precisely capture and distinguish subtle variations between action categories. This, in turn, enhances
the model’s ability to recognize complex action sequences. However, the performance improve-
ments from later refinement stages manifest less significantly than those achieved during the first
refinement stage.

A.3 LIMITATION AND FUTURE WORK

While InterAct significantly boosts the accuracy of fine-grained action segmentation, it still relies
on costly frame-wise label annotations. To release this limitation, we plan to explore self-supervised
long sequence modeling using methods such as contrastive learning (Li et al., 2021a; Mao et al.,
2022; Zhou et al., 2023) to achieve better pre-trained models.
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