
QSVD: Efficient Low-rank Approximation for Unified
Query-Key-Value Weight Compression in
Low-Precision Vision-Language Models

Yutong Wang1∗ Haiyu Wang1∗ Sai Qian Zhang1,2
1Tandon School of Engineering, New York University

2Courant Institute of Mathematical Sciences, New York University
{yw6594, hw3689, sai.zhang}@nyu.edu

Abstract

Vision-Language Models (VLMs) are integral to tasks such as image captioning
and visual question answering, but their high computational cost, driven by large
memory footprints and processing time, limits their scalability and real-time ap-
plicability. In this work, we propose leveraging Singular-Value Decomposition
(SVD) over the joint query (Q), key (K), and value (V) weight matrices to reduce
KV cache size and computational overhead. We in addition introduce an efficient
rank allocation strategy that dynamically adjusts the SVD rank based on its impact
on VLM accuracy, achieving a significant reduction in both memory usage and
computational cost. Finally, we extend this approach by applying quantization
to both VLM weights and activations, resulting in a highly efficient VLM. Our
method outperforms previous approaches that rely solely on quantization or SVD
by achieving more than 10% accuracy improvement while consuming less hardware
cost, making it better for real-time deployment on resource-constrained devices.We
open source our code at https://github.com/SAI-Lab-NYU/QSVD.

1 Introduction

Vision-Language Models (VLMs) are crucial for advancing artificial intelligence by bridging the gap
between visual perception and natural language understanding. By enabling machines to interpret and
generate both visual and textual information, VLMs open up a wide range of applications, such as
image captioning [62, 17, 8, 11], visual question answering [7, 3, 47], and content-based search [22,
43]. These models are vital for tasks where visual context is needed to fully understand textual queries
or vice versa, such as healthcare [34, 3, 18], education [60], and interactive entertainment [44, 26].

Despite their strong performance, Vision-Language Models (VLMs) incur substantial computational
costs due to the intensive processing required to integrate high-dimensional visual and textual data.
Additionally, their autoregressive token generation places significant pressure on memory bandwidth,
becoming a major bottleneck for inference speed. To enable practical deployment in latency-sensitive
and resource-constrained environments, it is essential to reduce both the computational overhead and
the size of the Key-Value (KV) cache, without compromising model accuracy.

To address this issue, particularly the high memory usage introduced by Multi-Head Attention
(MHA), several variants have been proposed, such as Grouped-Query Attention [1] and Multi-Query
Attention [42, 1], which aim to reduce the number of KV projections while maintaining performance.
A recent proposal, Multi-Head Latent Attention (MLA) in the DeepSeek-v3 model [31], offers a novel
approach to improving VLM efficiency. It significantly reduces the KV cache size by compressing
the KV cache into a latent vector, thereby enhancing inference efficiency.

∗Authors contributed equally; the order of authorship was assigned randomly.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/SAI-Lab-NYU/QSVD

Q: What is the
brand of the car

Q: What is the
customer review

…

Im
age

Te
xt

Visual encoderEmbedding
Projection

Language model

Step 1:
Joint SVD over QKV Weight

✕=
ri

ri

Step 2: Adaptive rank
allocation for SVD

Loss

Calibration
dataset…

Token Concatenation

Step 3:
Post-training Quantization

QSVD

Outlier smoothing

Quantization

Im
ageTe

xt “Describe
the image”

Visual
Encoder

Embedding
Projection

Language
model

“An image of two
golden retrievers”

(b)(a)

Figure 1: (a) An example on vision-language model. (b) An overview of QSVD.

Building on the insights from MLA, this work proposes the application of Singular-Value Decompo-
sition (SVD), which has proven effective in reducing both KV cache size and computational cost in
prior research [51, 59, 52, 28, 25, 5, 49], to the joint weight matrices of the query, key, and value. This
approach significantly reduces the KV cache size by storing only the latent vectors instead of separate
key and value vectors. Additionally, we introduce a novel rank allocation scheme, which investigates
the importance of each singular value in relation to VLM accuracy. This results in a minimal SVD
rank with the minimal impact on the model accuracy. Finally, we extend this approach by applying
quantization to both VLM weights and activations. The proposed framework, termed QSVD, results
in an extremely efficient VLM that outperforms previous methods that relied solely on quantization
or SVD. Specifically, our contribution can be summarized as follows:

• QSVD proposes applying singular value decomposition to the combined weight matrices of
the query, key, and value projections. This technique substantially reduces the size of the KV
cache, computational overhead, and weight storage, resulting in significant improvements in
hardware efficiency.

• To improve the accuracy of SVD-based compression in VLMs, QSVD proposes a novel
importance scoring method that quantifies each singular value’s contribution to overall model
performance, allowing for rank-based truncation that minimizes accuracy degradation.

• Quantization is applied alongside SVD decomposition to both the weights and activations of
the VLM. We propose an efficient method to eliminate outliers under the SVD framework,
enabling low-precision operation that reduces the memory footprint of both the KV cache
and model weights, while incurring minimal impact on accuracy2.

2 Background and Related Work

2.1 Vision Language Model

Vision-Language Models (VLMs) [24, 23, 33, 4, 13, 48] extend the capabilities of Large Language
Models (LLMs) by incorporating visual inputs alongside text, enabling tasks such as visual question
answering (VQA) and image captioning. Models such as BLIP and InstructBLIP [24, 23] employ
data filtering and visual instruction tuning to better align model outputs with human preferences in
zero-shot settings. A commonly used architecture, illustrated in Figure 1 (a), processes input images
through a visual encoder to produce visual tokens, which are then concatenated with text tokens and
passed to a language model for response generation. This concatenation-based design is adopted by
widely used models including the LLaVA series [33], SmolVLM [39], PaLI-Gemma [4], and Qwen-
VL [48]. Although VLMs demonstrate impressive capabilities, their large size presents challenges in
terms of computational efficiency and deployment, particularly on resource-constrained devices. This
has led to the development of lightweight alternatives. TinyGPT-V [58] and TinyLLaVA [61] explore
efficient designs at smaller scales, while SmolVLM [39] introduces a family of compact models
(500M and 2B parameters) that maintain strong performance with much reduced hardware cost.

2All experiments and data processing were conducted at New York University.

2

2.2 Singular Value Decomposition for Large Models

Singular Value Decomposition (SVD) [19] is a widely used matrix factorization technique that
decomposes a matrix W ∈ Rm×n into three components: W = UΣV T , where U and V are
orthogonal matrices containing the left and right singular vectors of W , and Σ is a diagonal matrix
of non-negative singular values arranged in descending order. By retaining only the top r singular
values and corresponding vectors, we obtain a rank-r approximation:

W ≈ UrΣrV
T
r (1)

with Ur ∈ Rm×r, Σr ∈ Rr×r, and Vr ∈ Rn×r. Equivalently, the approximation can be expressed
as W ≈ AB by defining A = UrΣ

1
2
r and B = Σ

1
2
r V T

r . Such low-rank factorizations preserve the
most salient structure of W while reducing its dimensionality, enabling matrix compression and
accelerating downstream computations.

SVD has been extensively studied as a compression method for LLMs [51, 59, 52, 28, 25, 5, 49]. Early
efforts [40] directly applies standard SVD to weight matrices but encountered significant compression
errors. To address this, FWSVD [16] prioritizes parameters based on Fisher information [37], while
ASVD [59] incorporates activation outliers into the factorization. SVD-LLM [52] further reduces
compression loss by explicitly minimizing the contribution of each truncated singular value. Most
of these methods focus on compressing model weights. In contrast, Palu [6] and [57] have shifted
attention to compressing the KV-Cache, leveraging SVD and low-rank projections to reduce memory
footprint. Recent advances include AdaSVD [28], which adaptively compensates for truncation errors
and dynamically allocates compression rates according to layer importance, and SVD-LLM V2 [51],
which further optimizes singular value truncation via theoretical loss estimation.

Recently, DeepSeek introduces Multi-Head Latent Attention [31], a novel mechanism that integrates
low-rank projections directly into the attention computation. Instead of computing attention over the
full key and value matrices, this approach projects them into a lower-dimensional latent space using
learned projection matrices, effectively reducing the computational and memory costs of multi-head
attention without significantly impacting model performance. This latent factorization can be viewed
as an implicit low-rank approximation applied dynamically during inference, offering complementary
benefits to static weight compression methods such as SVD.

2.3 Quantization for Large Models

Post-training quantization (PTQ) has become one of the most used approaches for enabling efficient
inference of large models [38, 54, 2, 29, 12, 41, 30, 56, 45, 53, 20, 9]. For example, AffineQuant [38]
replaces the traditional scaling factor with a learned affine transformation to better align weight with
the quantization grid.

Another line of work focuses on smoothing outliers in activation distributions, which have shown that
activations in LLMs contain severe outliers at the per-channel level [2, 9, 29, 35, 30, 54], resulting in
substantial quantization errors during activation quantization. To address this issue, SmoothQuant [54]
reduces activation outliers by shifting part of the activation outliers into the weights, promoting more
balanced quantization. Building upon these ideas, techniques like QuaRot [2], DuQuant [29], and
SpinQuant [35] incorporate orthogonal transformations to further enhance quantization performance.
These transformations maintain computational invariance by preserving the model’s output while
effectively suppressing outliers. Specifically, let W and X represent the weight and activation
matrices, respectively, where X exhibits channelwise outliers, and let Y = XW denote the output.
To eliminate outliers in X , an orthogonal matrix H is introduced, satisfying H⊤H = HH⊤ = I .
This transformation yields an equivalent formulation Y = XW = X ′W ′, where W ′ = H⊤W
and X ′ = XH . To minimize runtime overhead, W ′ = H⊤W can be precomputed offline, and
X ′ = XH can be efficiently integrated into the weight matrices of the previous layer, incurring
no additional computational cost. The resulting transformed activation X ′ exhibits a smoother
distribution with significantly fewer outliers, thus lowering the quantization errors. In parallel,
methods such as GPTQ [12], OmniQuant [41], and AWQ [30] focus on optimizing scaling factors
and channel-wise equalization during the calibration process.

In the realm of VLMs, quantization presents unique challenges due to the integration of visual
and textual modalities. QSLAW [55] introduces a quantization-aware scale learning method with
a multimodal warmup strategy that progressively incorporates linguistic and multimodal samples

3

Wk WvWq

≈
r

✕

E

3E

Wd
qkvE r

3E

Wu
q Wu

k Wu
v

≈
r

✕WdE r
3E

Wu
r

r ✕Σ
Wq Wd

q≈ Wu
q

r

E ✕r
E

Wk Wd
k≈ Wu

k

r

E ✕r
E

Wv Wd
v≈ Wu

v

r

E ✕r
E

Wk WvWq

≈
r

✕

E
3E

Wd
qkvE

≈ ✕ r
3E

Wu
r

r ✕Σ

Wd
q≈ u

q

r
E ✕r

E

Wd
k≈ u

k

r
E ✕r

E

Wd
v≈ u

v

r
E ✕r

E

Total MACs: 6LrE
Total weight parameters: 6rE
Total KV cache size: 2rL

Total MACs: 3LE2

Total weight parameters: 3E2

Total KV cache size: 2LE

(a) (b) (c)

=✕

r

Wd
qkvE

r

L Cqkv

=
r

Wd
kE

r

L Ck

=
r

Wd
vE L Cv

X

E

L

E

E

✕

E

E

= L Ck

= L Cv

E

(d) (e) (f)

Wconcat

Wq

Wk

Wk

Wq

Wk

Wv

Wq

Wk

Wv

W

W

W

Wd
r

E

r
3E

Wu
q

u
k

u
vW W

Wk

Wv

E X

E

L ✕ X

E

L

Figure 2: Efficiency analysis of different SVD schemes. (a)(b) are original Q/K/V matrix applied
SVD. (c)(d)(e)(f) are proposed concatenated QKV SVD and their corresponding computing process.

to stabilize training. It also emphasizes group-wise scaling to better handle activation outliers. Q-
VLM [46] addresses cross-layer dependency in quantization by leveraging activation entropy as a
proxy to guide block partitioning. It formulates a quantization strategy that balances discretization
error and search cost, and further optimizes the visual encoder to disentangle cross-layer interactions,
enabling more efficient calibration. MBQ [27] proposes a modality-balanced quantization approach
that accounts for the distinct gradient distributions of visual and textual tokens during calibration.
It applies a modality-aware loss to improve the accuracy of scaling factor estimation. However, to
the best of our knowledge, no prior work has combined quantization with SVD for efficient VLM
processing in the manner proposed by QSVD.

3 Methodology

An overview of QSVD is shown in Figure 1 (b), comprising three key components: joint SVD over
the combined QKV weights (Section 3.1), adaptive singular value truncation (Section 3.2), and PTQ
over low-rank VLMs (Section 3.3).

3.1 Singular-Value Decomposition over Joint QKV Weights

We introduce an efficient SVD-based approach to reduce computation within the multi-head self-
attention block, as illustrated in Figure 2, where each subfigure denotes: (a) Original QKV matrix in
a vision-language model (VLM) without SVD. (b) Applying SVD separately to the weight matrices
of Q, K, and V, where each of Wq, Wk, and Wv is factorized into a down- and up-projection pair.
(c) Our proposed approach: concatenating QKV weights before applying SVD. (d) Standard KV
computation during prefilling: the input X is multiplied by Wk and Wv, and the resulting Ck and
Cv are stored in memory. (e)Computation with per-matrix SVD: during prefilling, X must be read
from memory and multiplied with the down-projection matrices W d

k and W d
v to generate low-rank

representation of K and V (f) Storage and computation in QSVD: since Wq, Wk, and Wv share a
common down-projection matrix W d

qkv, X is multiplied by W d
qkv once to produce the intermediate

Cqkv, which is stored and later used to reconstruct the KV vectors. Let α, η, and γ denote the
weight parameter size, KV cache size, and the computational cost in FLOPs of QKV multiplication,
respectively. In the original design, assuming a single-head attention module for simplicity, the
combined weight matrices Wq, Wk, and Wv collectively contain a total of αfp = 3E2 parameters,
where E represents the embedding dimension (Figure 2 (a)). The corresponding KV cache requires
a memory footprint of ηfp = 2LE, where L is the input sequence length (Figure 2 (d)). The total
computational cost in FLOPs for generating the key, query, and value vectors is γfp = 3LE2, where
three matrix multiplications are required, each with a size of (L× E) and (E × E).

QSVD adopts a more efficient strategy that reduces the number of weight parameters, KV cache size,
and overall computational cost. Specifically, the weight matrices WQ, WK , and WV , each of size
E × E, are concatenated into a single matrix Wconcat ∈ RE×3E . A low-rank SVD is then applied to
this combined matrix to achieve compression.

[Wq, Wk, Wv] = Wconcat ≈ W d
r × Σr ×Wu

r (2)

W d
qkv = W d

r Σ
β
r , W

u
qkv = [Wu

q , W
u
k , W

u
v] = Σ1−β

r Wu
r (3)

[Wq, Wk, Wv] = W d
qkv × [Wu

q , W
u
k , W

u
v] (4)

where W d
qkv ∈ RE×r, Wu

q , Wu
k , Wu

v ∈ Rr×E , and β satisfies 0 ≤ β ≤ 1. After decomposition,
the QKV components share a common down-projection matrix W d

qkv, while each maintains its

4

own distinct up-projection matrix. This results in a total weight size of αqsvd = 4rE (Figure 2
(c)). The computational cost for generating the query, key, and value vectors is γqsvd = 4LrE,
which arises from two steps: first, multiplying the input X with W d

qkv to generate Cqkv, and then
performing a second multiplication with the concatenated matrices [Wu

q ,W
u
k ,W

u
v]. During inference,

the intermediate products Cqkv between the input and the down-projection matrix W d
qkv are buffered

to compute the KV vectors, yielding a total buffer size of ηqsvd = rL (Figure 2 (f)), and the KV
vectors can be easily recomputed as:

K = CqkvW
u
k , V = CqkvW

u
v (5)

In comparison, our method achieves reduced weight size and computational cost when 4rE < 3E2

and 4LrE < 3LE2, which holds when r < 0.75E. This condition is easily satisfied with negligible
accuracy loss, as demonstrated by the evaluation results in Section 4. Furthermore, our method
consistently reduces the buffered size for the intermediate data, since rE is always smaller than
2E2 given that r < E. During decoding, the cached intermediate representation Cqkv is used to
reconstruct the key and value matrices via Wu

k and Wu
v , which are then combined with the current

query (sequence length l=1) to compute the attention outputs.

Previous methods [59, 52] apply SVD individually to the weight matrices, as illustrated in Figure 2(b),
resulting in a total of αind = 6rE parameters. During inference, the intermediate products Ck and
Cv, which is computed from the input X and the down-projection matrices W d

k and W d
v , must be

buffered, leading to a total buffer size of ηind = 2rL (Figure 2(e)). The computational cost for
generating the query, key, and value vectors is γind = 6LrE, and the buffer size for Ck and Cv is
consistently larger than that required to store the unified Cqkv in our method. Finally, our method
always achieves a lower weight size, computational cost and intermediate storage.

3.2 Cross-layer Rank Allocation for Low-rank SVD

Performing SVD on the joint QKV weights can lead to hardware efficiency gains in both computation
and storage, provided that the rank r of W d

qkv is sufficiently reduced without compromising the
final accuracy performance. A key challenge, therefore, is determining how to truncate the singular
values across all self-attention blocks in the VLM. While prior work has used Fisher information [37]
to assess the importance of individual weight matrix or a group of singular values [6, 16], QSVD
proposes a more effective method that evaluates the importance of each singular value in a way that
minimizes degradation in model accuracy.

Given the SVD of a weight matrix W = UΣV T , it can also be expressed as a summation: W =∑n
i=1 uiσiv

T
i , where σi is the i-th singular value, and ui, vi are the corresponding left and right

singular vectors. Truncating a singular value by setting σi = 0 effectively removes its associated
single-rank component from the matrix, resulting in a modified representation W ′

σi
of W , we have:

∆Wσi = W −W ′
σi

= uiσiv
T
i (6)

The truncation of σi will affect the final output of the VLM and lead to an increase in the training
loss Lt. The corresponding change in training loss can be estimated through first-order expansion:

Lt(W
′
σi
) = Lt(W −∆Wσi) ≈ Lt(W)−

∑
j,k

∆Wσi [j, k] ·
∂Lt

∂W [j, k]
(7)

where Lt(W
′
σi
) denotes the training loss after the weight matrix is modified to W ′

σi
, Wσi [j, k]

represents the (j, k)-th element of the matrix Wσi
. Let GW represent the gradient of the loss with

respect to the original weight matrix W , the changes on the training loss can be expressed as follows:

∆Lσi = Lt(W)− Lt(W
′
σi
) ≈

∑
j,k

∆Wσi [j, k] ·GW [j, k] = ⟨∆Wσi , GW ⟩F (8)

where ⟨·, ·⟩F denotes the Frobenius inner product over matrix elements. This formulation enables
estimation of each singular value’s contribution (e.g., σi) to the change in training loss, providing a
principled basis for rank selection by measuring the sensitivity of the loss function to each truncated
component across all layers, which can be used to evaluate the importance for each singular value.
Specifically, by evaluating ∆Lσi

across multiple calibration samples and computing its squared
expectation, we derive the Importance Score Îσi

for each singular value σi, which serves as an

5

empirical approximation of the diagonal Fisher information:

Îσi = Ex∼D

[(
∆L(n)

σi

)2
]
≈ 1

N

N∑
n=1

∑
j,k

∆Wσi [j, k] ·G
(n)
W [j, k]

2

(9)

where D denotes the calibration dataset, n indexes individual samples, and N is the total number of
samples in D. However, computing the importance score as defined in Equation 9 poses a significant
memory burden, primarily due to the need to construct and store ∆Wσi

[j, k] for all singular values.
Since each ∆Wσi

is a full E × E matrix and there are E such singular values from the joint SVD,
the total memory cost scales as O(E3) per layer, making naive computation impractical for large
models. To address this, the importance score Îσi

can alternatively be computed as follows:

Îσi =
1

N

N∑
n=1

σ2
i

[
UTG

(n)
W V

]2
(i,i)

(10)

where U and V are the left and right singular vectors from the SVD, σi is the i-th singular value. The
notation (i, i) refers to the i-th diagonal element of the transformed gradient matrix UTG

(n)
W V . The

proof is given in Appendix A.1. This form eliminates the need to compute and store ∆Wσi
for each

singular value, requiring only O(E2) memory instead of O(E3) per layer.

The overall SVD procedure is as follows. Starting with the original model, we first concatenate
the QKV weight matrices and apply joint SVD, following the method outlined in Section 3.1. We
adopt the activation-aware SVD technique from ASVD [59] to extract the singular values across all
layers. For each singular value, we then compute its corresponding importance score based on the
calibration dataset, as defined in Equation 10. After computing the importance scores, we perform
cross-layer ranking by globally sorting all singular values based on their scores. We retain only the
top k singular values with the highest importance scores, where k termed rank budget. All remaining
singular values are truncated. This global ranking strategy ensures that the most critical components
are preserved regardless of the layer they originate from, allowing for an optimal allocation of rank
capacity throughout the VLM. For QSVD, we apply the rank selection mechanism to the self-attention
layers throughout the entire VLM.

3.3 Post-Training Quantization Scheme for Low-Rank VLMs

To
ke

n l
en

gth

Channel

To
ke

n l
en

gth

Channel

To
ke

n l
en

gth

Channel

To
ke

n l
en

gth

(a) (b) (c)

Inner viewFront view

Eye-tracking
camera

Passthrough
camera

Turning head

V
F

1
V

F 2

Gaze saccade
fixation

saccade

Gaze

fixation

fixation

(b) (d)(a)

Outer
camera

Eye-tracking
cameras

(c)

Figure 3: Input activation distribution within VLM.
Only partial channel are shown.

Building on the efficient low-rank SVD ap-
proach described in Section 3.1 and Sec-
tion 3.2, this section presents an efficient
quantization scheme applied to the result-
ing low-rank VLMs for further hardware
efficiency enhancement. To analyze the
outlier distribution in the VLM, we profile
the input activation distribution of LLaVA-
v1.5 13B [33]. Specifically, we examine
the input activations X across the self-
attention modules and feed-forward mod-
ules within the language model of the
VLM, as illustrated in Figure 3 (a) and (b), respectively. Our analysis reveals prominent chan-
nelwise outliers in X across all three components, which poses the great challenge when quantizing
these VLM activations for low-precision operations.

To address this issue, we adopt the rotational method introduced in [2?] and outlined in Section 2.3
to smooth channelwise outliers. However, since the self-attention architecture of the VLM has been
modified by the application of SVD, we develop an efficient quantization approach that accounts
for this change. Let X denote the input to the weight matrices, and the output be expressed as
Y = XW d

qkvW
u
qkv = CqkvW

u
qkv, where W d

qkv = W d
r Σ

β
r and Wu

qkv = Σ1−β
r Wu

r , as notated in
Equation 3. The distribution of Cqkv, which is buffered for KV vector recomputation, is shown
in Figure 3 (c). We observe that Cqkv exhibits channelwise outliers, rendering it unsuitable for
low-precision quantization. To eliminate the channelwise outliers in both X and the compressed
representation Cqkv, we introduce orthogonal matrices H1 and H2. The self-attention computation
together with its quantized counterpart are then reformulated as follows:

Y = (XH⊤
1)(H1W

d
qkvH

⊤
2)(H2W

u
qkv) Y ′ = Q(Cqkv)Q(H2W

u
qkv) (11)

6

Table 1: Accuracy evaluation of different methods. For ASVD and SVDLLM, their R1, R2 are
shared. Detailed results can be found in Appendix A.2.

Method ScienceQA-IMG ↑ VizWiz ↑
Acc. Hw cost Acc. Hw cost Acc. Hw cost Acc. Hw cost Acc. Hw cost Acc. Hw cost

Sm
ol

V
L

M
2B

ASVD 53.84% R1 : 100%
R2 : 50.0%

7.88% R1 : 90.0%
R2 : 42.5%

0.69% R1 : 80.0%
R2 : 35.0%

0.10% R1 : 70.0%
R2 : 27.5%

6.68% R1 : 100%
R2 : 50.0%

0.00% R1 : 80.0%
R2 : 35.0%SVDLLM 65.89% 34.61% 9.07% 3.02% 14.86% 0.13%

QSVD-noQ 83.78% R1 :100%
R2 :37.5% 81.70% R1 :90.0%

R2 :33.75% 79.57% R1 :80.0%
R2 :30.0% 77.64% R1 :70.0%

R2 :26.25% 40.67% R1 :100%
R2 :37.5% 40.67% R1 :80.0%

R2 :30.0%
FP16 Accuracy: 84.53% Accuracy: 37.07%

L
L

aV
A

-N
ex

t
7B

ASVD 50.72% R1 : 63.3%
R2 : 22.5%

47.15% R1 : 60.0%
R2 : 20.0%

40.26% R1 : 56.7%
R2 : 17.5%

25.73% R1 : 53.3%
R2 : 15.0%

47.78% R1 : 63.3%
R2 : 22.5%

39.41% R1 : 56.7%
R2 : 17.5%SVDLLM 65.94% 66.14% 64.90% 62.87% 48.01% 47.74%

QSVD-noQ 69.91% R1 :60.0%
R2 :22.5% 68.22% R1 :53.3%

R2 :20.0% 67.03% R1 :46.7%
R2 :17.5% 65.15% R1 :40.0%

R2 :15.0% 54.38% R1 :60.0%
R2 :22.5% 51.42% R1 :46.7%

R2 :17.5%
FP16 Accuracy: 69.51% Accuracy: 54.46%

L
L

aV
A

-v
1.

5
13

B

ASVD 64.70% R1 : 63.3%
R2 : 22.5%

56.92% R1 : 60.0%
R2 : 20.0%

46.50% R1 : 56.7%
R2 : 17.5%

42.79% R1 : 53.3%
R2 : 15.0%

44.48% R1 : 63.3%
R2 : 22.5%

40.01% R1 : 56.7%
R2 : 17.5%SVDLLM 71.44% 71.44% 71.29% 70.50% 51.03% 49.37%

QSVD-noQ 71.79% R1 :60.0%
R2 :22.5% 71.74% R1 :53.3%

R2 :20.0% 71.74% R1 :46.7%
R2 :17.5% 70.80% R1 :40.0%

R2 :15.0% 56.15% R1 :60.0%
R2 :22.5% 55.79% R1 :46.7%

R2 :17.5%
FP16 Accuracy: 71.78% Accuracy: 53.63%

where Cqkv can be approximately computed using the quantized input and weight as:

Cqkv ≈ Q(XH⊤
1)Q(H1W

d
qkvH

⊤
2) (12)

The computations presented in Equation 11 and Equation 12 support low-precision execution while
reducing the size of both the weight parameters and the intermediate results Cqkv , thereby lowering
the overall memory footprint and reduce the processing latency.

Although the introduction of H1 and H2 helps mitigate outliers in X and Cqkv, respectively, we
observe that these transformations do not fully eliminate the severe outliers, particularly those present
in Cqkv. To analyze this issue, we examine the distribution of W d

qkv, which directly influences the
distribution of Cqkv . We observe that W d

qkv = W d
r Σ

β
r is strongly affected by the parameter β. Since

Σr is a diagonal matrix whose entries are singular values that can vary significantly in magnitude,
raising them to the power β can amplify the disparity. This, in turn, exacerbates the presence of
outliers in Cqkv , as shown by the following derivation:

Cqkv = XW d
qkv = XW d

r Σ
β
r = XW d

r diag(σ
β
1 , σ

β
2 , ..., σ

β
r) = [σβ

1 (XW d
r)1, ..., σ

β
r (XW d

r)r] (13)

where (XW d
r)i denotes the i-th column of XW d

r , which can significantly influence the channelwise
outlier distribution in Cqkv . To address this, we propose learning an optimal value for β by optimizing
it over the calibration dataset D, namely:

min
β

∑
d∈D

||Yd − Y ′
d ||2 (14)

where Yd and Y ′
d denote the self-attention block outputs with and without quantization for the d-th

sample in the calibration dataset D, respectively. The parameter β is optimized individually for each
layer within the VLM. Finally, we apply the quantization operations to both the visual encoder and
all layers of the language model, resulting in an end-to-end efficient VLM computation.

4 Evaluation Results

We evaluate QSVD on five VLMs: LLaVA-v1.5 7B [33], LLaVA-v1.5 13B, LLaVA-Next 7B, LLaVA-
Next 13B, and SmolVLM-Instruct [39]. To determine the optimal rank allocation and β parameters,
we use 256 samples from the ScienceQA training dataset [36], following the procedures outlined
in Section 3.2 and Section 3.3. For evaluation, we adopt three widely used benchmark datasets,
ScienceQA [36], VizWiz [15], and SEED-Bench-IMG [21], in line with prior work such as LLaVA.
We compare QSVD against baseline methods by implementing them on the aforementioned VLM
models, the baselines include the SVD approaches (ASVD [59], SVD-LLM [52]) and quantization
approach (QuaRot [2], DuQuant [29], QVLM [46]). Specifically, for ASVD and SVD-LLM, we
follow their official implementations by applying SVD separately to the Key and Value matrices, while
avoiding decomposition of the Query matrices to prevent performance degradation. Additionally,
SVD is not applied to other linear layers within the VLM. All methods are evaluated using the
same calibration samples and random seeds to ensure fairness, and we report their best performance.
For QuaRot and DuQuant, we apply them to the various VLMs by strictly following the detailed
procedures provided in their respective code repositories.

7

Table 2: Quantization evaluation across different models and datasets. R1 is omitted since they are
similar for different methods. Detailed results can be found in Appendix A.2.

Model Bit Duquant [29] QVLM [46] QASVD Ours
R2 SciQA↑ VizWiz↑ SEED↑ R2 SciQA↑ VizWiz↑ SEED↑ R2 SciQA↑ VizWiz↑ SEED↑ R2 SciQA↑ VizWiz↑ SEED↑

L
L

aV
A

-v
1.

5
7B

FP16 100% 68.01% 50.03% 60.18% 100% 68.01% 50.03% 60.18% 100% 68.01% 50.03% 60.18% 100% 68.01% 50.03% 60.18%
W8A8 50% 66.53% 49.86% 58.62% 50% 64.65% 50.64% 51.82% 50% 52.95% 48.31% 53.92% 18.75% 67.57% 54.06% 60.20%
W8A4 25% 57.36% 50.07% 54.11% 25% 55.24% 48.33% 50.13% 25% 41.92% 47.85% 41.26% 9.38% 65.61% 52.18% 58.49%
W4A4 25% 52.56% 48.77% 49.50% 25% 51.12% 47.38% 34.00% 25% 12.61% 1.23% 10.48% 9.38% 55.16% 52.05% 52.69%

L
L

aV
A

-v
1.

5
13

B

FP16 100% 71.78% 53.63% 62.53% 100% 71.78% 53.63% 62.53% 100% 71.78% 53.63% 62.53% 100% 71.78% 53.63% 62.53%
W8A8 50% 69.66% 50.73% 62.70% 50% 70.65% 50.32% 62.36% 50% 70.25% 54.93% 61.84% 18.75% 72.12% 55.42% 62.91%
W8A4 25% 67.22% 53.07% 61.43% 25% 66.46% 49.03% 59.22% 25% 65.34% 52.61% 59.30% 9.38% 70.12% 53.20% 62.95%
W4A4 25% 65.80% 49.37% 59.28% 25% 64.86% 48.57% 41.07% 25% 20.35% 37.5% 20.96% 9.38% 65.82% 56.82% 61.79%

L
L

aV
A

-N
ex

t
7B

FP16 100% 69.60% 54.46% 69.02% 100% 69.60% 54.46% 69.02% 100% 69.60% 54.46% 69.02% 100% 69.60% 54.46% 69.02%
W8A8 50% 66.34% 52.05% 67.91% 50% 64.70% 47.55% 66.82% 50% 64.94% 47.3% 66.87% 18.75% 69.09% 53.42% 68.92%
W8A4 25% 66.34% 50.26% 63.64% 25% 60.60% 48.55% 50.38% 25% 43.37% 48.65% 49.63% 9.38% 66.10% 53.72% 65.63%
W4A4 25% 58.37% 52.00% 62.95% 25% 55.30% 48.58% 45.24% 25% 19.17% 3.30% 13.68% 9.38% 59.67% 52.00% 62.08%

L
L

aV
A

-N
ex

t
13

B

FP16 100% 73.23% 57.72% 71.30% 100% 73.23% 57.72% 71.30% 100% 73.23% 57.72% 71.30% 100% 73.23% 57.72% 71.30%
W8A8 50% 61.13% 54.38% 70.07% 50% 69.86% 49.89% 69.28% 50% 71.52% 55.13% 67.87% 18.75% 72.38% 58.33% 71.23%
W8A4 25% 70.20% 52.43% 66.15% 25% 65.28% 48.98% 65.39% 25% 64.85% 53.13% 66.54% 9.38% 70.43% 58.52% 69.21%
W4A4 25% 58.16% 53.26% 63.15% 25% 57.33% 52.23% 60.55% 25% 12.85% 4.44% 14.64% 9.38% 63.61% 54.27% 65.34%

Sm
ol

V
L

M
2B FP16 100% 84.68% 37.07% 68.18% 100% 84.68% 37.07% 68.18% 100% 84.68% 37.07% 68.18% 100% 84.68% 37.07% 68.18%

W8A8 50% 57.80% 35.52% 62.65% 50% 55.30% 33.14% 55.73% 50% 11.94% 0.00% 9.13% 18.75% 76.20% 37.82% 66.49%
W8A4 25% 55.92% 34.09% 45.82% 25% 53.52% 30.43% 42.24% 25% 3.92% 0.00% 1.23% 9.38% 62.35% 36.91% 55.35%

Given that QSVD performs joint SVD with quantization, we first evaluate its SVD-only performance
in by comparing it with ASVD and SVD-LLM under equivalent hardware costs, including inter-
mediate data storage for KV recomputation, weight size, and VLM computational cost in FLOPs.
Specifically, we express it in terms of the ratio between ours and the FP16 without compression. We
denote the SVD-only approach depicted in Section 4.1 as QSVD-noQ. We then apply the quantization
techniques introduced in Section 3.3 to the SVD-compressed VLM and compare the results with
advanced quantization methods such as DuQuant [29] and QVLM [46], as well as quantized version
of ASVD (QASVD). For QASVD, we apply QuaRot [2] to the SVD-truncated VLMs obtained from
ASVD. The corresponding results are presented in Section 4.2.

We evaluate all performance results on NVIDIA RTX A6000 GPUs using VLMEvalKit [10], and we
report results under three weight-activation quantization configurations: W8A8 (8-bit weights and
8-bit activations), W8A4, and W4A4. For activation quantization, we apply per-token symmetric
quantization. For weight quantization, we use round-to-nearest (RTN) with per-channel symmetric
quantization and a learnable clipping ratio, determined via linear search to minimize squared error,
following [2]. We present ablation studies in Section 4.3 and evaluate the latency improvements of
QSVD on GPU in Section 4.4. Additional results are included in Appendix A.2.

4.1 Accuracy Evaluation on QSVD-noQ

We begin by evaluating the QSVD-noQ performance in FP16 under four different rank budgets
k. To ensure a fair comparison, we adjust the rank configurations of all methods such that our
approach consistently maintains the lowest hardware cost in terms of intermediate data storage (η),
weight size (α), and computational overhead (γ), as mentioned in Section 3.1. Importantly, as noted
in Section 3.1, the relative ratios among the weight sizes αfp, αqsvd, and αind are identical to the
ratios among the computational costs γfp, γqsvd, and γind. This equivalence allows us to report a
single normalized metric to represent both weight parameter reduction and computational efficiency.
Therefore we have R1 and R2, defined as:

R1 =
αi

αfp
=

γi
γfp

R2 =
ηi
ηfp

(15)

where i can either be "qsvd" or "ind". The evaluation results are presented in Table 1. Our method
outperforms ASVD and SVD-LLM in accuracy while incurring minimal or comparable hardware
cost. On LLaVA-v1.5 13B, QSVD-noQ results in less than a 1% drop in ScienceQA-IMG accuracy
compared to the original FP16 baseline, and notably even surpasses the FP16 performance on VizWiz.
For instance, with R1 = 46.7% and R2 = 17.5%, QSVD-noQ achieves an accuracy of 55.79%,
exceeding the FP16 counterpart by more than 2%. This may be due to the low-rank approximation
effectively mitigating hallucinations [32] in the VLM; however, further investigation is needed to
confirm this hypothesis. Moreover, our approach consistently achieves higher accuracy than ASVD
and SVD-LLM under reduced parameter and cache ratios (R1 and R2), with the performance gap

8

widening as these ratios decrease. For instance, in the SmolVLM setting, our method attains over
70% accuracy on ScienceQA-IMG, while both ASVD and SVD-LLM fail to operate effectively.

4.2 Accuracy Evaluation of QSVD

The low-rank SVD components are subsequently quantized using the techniques described in Sec-
tion 3.3. We compare QSVD with DuQuant [29] and QVLM [46], as well as QASVD, which
integrate QuaRot’s quantization approach with the low-rank SVD outputs from ASVD, respectively.
Quantization is applied consistently across the entire VLM, including both feed-forward and self-
attention layers in the language model and visual encoder. Evaluations are conducted on three
benchmark datasets: ScienceQA, VizWiz, and SEEDBench. All methods maintain a similar R1 of
approximately 50%, while R2, which has a greater impact on inference latency and cache size, varies
across approaches. Notably, QSVD consistently achieves a lower R2 compared to all other baselines.

As shown in Table 2, under the W8A8 setting, QSVD consistently outperforms other baselines in
most scenarios. On large-scale models like LLaVA-1.5 13B, it reaches accuracy comparable to the
FP16 baseline while reducing QKV weights and compute by 50%, and cutting intermediate data
size to just 18.75%. Under the more aggressive W8A4 setting, QSVD surpasses all baselines and
approaches FP16-level performance using as little as 9.38% of the original KV cache. Finally, Table 2
shows the quantization results under the W4A4 setting. Under this configuration, QASVD fail to
operate properly (yielding zero accuracy). Despite the challenging conditions, QSVD consistently
delivers the highest performance among all models while maintaining the lowest hardware cost in
terms of R1 and R2.

4.3 Ablation Study

Table 3: Accuracy performance under
varying rank allocation strategies.

Method ScienceQA-IMG ↑

L
L

aV
A

-v
1.

5-
13

B FP16 71.78%
R1

R2

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

UR 71.84% 70.40% 70.40% 67.72%
FIB 70.60% 70.60% 70.15% 69.96%

QSVD-noQ 71.79% 71.74% 71.74% 70.80%

Effectiveness of Cross-layer Rank Allocation Scheme
To evaluate the effectiveness of our cross-layer rank al-
location strategy (Section 3.2), we compare it with two
baseline methods. The first, referred to as the Uniform-
rank (UR) scheme, applies SVD to the joint QKV weights
using the same rank across all VLM blocks. The second,
denoted as the Fisher Information-Based (FIB) scheme,
also applies SVD to the joint QKV weights but distributes
ranks across layers based on Fisher information. This
approach has been adopted in prior work for SVD-based
compression in LLMs [5]. All methods operate under the
same hardware budget, defined by R1 and R2. As shown in Table 3, under aggressive compression,
QSVD-noQ consistently outperforms both baselines and maintains accuracy close to the FP16 model.

Table 4: Impact of β learning.

Model 0.0 QSVD 0.4 0.8

v1.5-7b 54.53% 55.16% 54.83% 6.09%
Next-7b 58.80% 59.67% 56.56% 15.12%

Impact of Learning β As described in Equation 14,
we train β to suppress outliers in the intermediate result
Cqkv. Table 4 presents the impact of the learnable β on
VLM accuracy under W4A4 setting over LLaVA 7Bs on
Science QA. We compare QSVD with baseline methods
using a fixed β across the entire VLM. QSVD consistently
achieves the highest accuracy, outperforming all fixed-β
baselines, highlighting the importance of learning β for effective low-bit quantization.

Table 5: Evaluation results on HRBench-4K.

Method HRBench-4K ↑
Acc. Hw cost Acc. Hw cost Acc. Hw cost

L
L

aV
A

-N
ex

t
13

B

ASVD 44.38% R1 :63.3%
R2 :22.5% 44.12% R1 :60.0%

R2 :20.0% 43.12% R1 :56.7%
R2 :17.5%

QSVD-noQ 44.88% R1 :60.0%
R2 :22.5% 44.12% R1 :53.3%

R2 :20.0% 43.88% R1 :46.7%
R2 :17.5%

FP16 Accuracy: 45.63%

L
L

aV
A

-v
1.

5
13

B

ASVD 39.12% R1 :63.3%
R2 :22.5% 38.62% R1 :60.0%

R2 :20.0% 36.62% R1 :56.7%
R2 :17.5%

QSVD-noQ 39.88% R1 :60.0%
R2 :22.5% 38.75% R1 :53.3%

R2 :20.0% 39.00% R1 :46.7%
R2 :17.5%

FP16 Accuracy: 39.12%

Long Sequence Scenarios To further
evaluate the adaptability of our QSVD
method under long sequence conditions,
we conduct experiments on the HRBench-
4K dataset [50], which consists of 4K-
resolution images. We follow the same
evaluation setup as mentioned above and
use VLMEvalKit [10] to report the “Aver-
age All” accuracy metric. Both LLaVA-
Next 13B and LLaVA-v1.5 13B are evalu-

9

Table 6: Accuracy evaluation results (↑) on HallusionBench under different compressed parameter
size ratios (R1). FP16 indicates uncompressed original models.

R1
LLaVA-v1.5 13B LLaVA-Next 13B

aAcc fAcc qAcc Overall aAcc fAcc qAcc Overall

90% 49.63% 21.10% 17.58% 29.44% 57.73% 26.01% 26.59% 36.78%
80% 48.90% 20.52% 16.92% 28.78% 58.25% 26.01% 26.81% 37.03%
70% 50.26% 22.83% 17.80% 30.30% 58.46% 26.88% 27.25% 37.53%
FP16 44.69% 19.36% 16.04% 26.70% 56.78% 26.01% 25.27% 36.02%

ated under our QSVD-noQ configuration and compared against ASVD and FP16 baselines. The
results are summarized in Table 5.

As shown in Table 5, QSVD-noQ consistently outperforms ASVD in all evaluation settings. Moreover,
the relative performance trends on HRBench-4K closely mirror those observed on ScienceQA-IMG
and VizWiz, indicating that our rank allocation strategy generalizes effectively to long sequence
scenarios resulting from high-resolution visual inputs.

Impact of QSVD on Hallucination We further evaluate the impact of QSVD on VLM hallucination
using HallusionBench [14], following the same evaluation setup as mentioned above. Metrics include
aAcc, fAcc, and qAcc from HallusionBench and their overall average score. As shown in Table 6, both
LLaVA-v1.5 13B and LLaVA-Next 13B exhibit noticeable improvements in groundedness metrics
after QSVD-noQ. For LLaVA-Next 13B, the overall score increases from 36.02 to a peak of 37.53
at R1 = 70%. Similarly, LLaVA-v1.5 13B improves from 26.70 to 30.30 at R1 = 70%, marking a
clear reduction in hallucination. These findings confirm that QSVD-noQ not only reduces model and
cache size but also acts as an effective regularizer against hallucinations. This effect explains why, on
certain benchmark datasets such as VizWiz, the QSVD-compressed models occasionally outperform
their original FP16 counterparts in terms of end-task accuracy.

4.4 Latency Evaluation on VLM

0

5

10

15

FP16 noQ-40% noQ-30%
70% 50%INT8

12.7× 13.1×
9.7×

1× 1.7× 2.1×S
pe

ed
up

Figure 4: Normalized speedup
of QSVD-noQ and QSVD
W8A8 on low-end GPU.

QSVD leverages both SVD and quantization to jointly compress
model weights and KV cache, making it well-suited for deployment
on memory-constrained hardware. We evaluate inference latency of
the layer-wise LLaVA-v1.5 7B on an NVIDIA RTX 4070 GPU with
12GB memory. The batch size is set to 1 and the token length to 4K.
As shown in Figure 4 , under FP16 precision, due to limited GPU
memory, both the FP16 baseline and QSVD-noQ require partial
offloading to CPU memory. However, QSVD-noQ with 40% and
30% (denoted as noQ-40% and noQ-30%) rank retention benefits
from reduced data movement enabled by effective SVD compression,
achieving up to a 2.1× speedup over the baseline. Furthermore,
QSVD with W8A8 quantization, under 70% and 50% rank retention,
completely avoids offloading and achieves a significant speedup of up to 13.1×.

5 Conclusion and Limitation

In this work, we proposed QSVD, a unified framework that applies joint singular value decomposition
and quantization to compress VLMs efficiently. By decomposing the combined QKV weight
matrices and introducing an adaptive cross-layer rank allocation strategy, QSVD significantly reduces
computational cost, KV cache size, and model storage with minimal impact on accuracy. Although
quantization is applied to all layers of the VLM, compression is mainly focused on the QKV
weights in self-attention layers. Future work will explore joint optimization across all model blocks.
Additionally, improving VLM efficiency may also make powerful models more accessible, which
raises concerns about potential misuse in areas such as surveillance, misinformation, and privacy
violations. Further investigation is needed to address these risks.

10

References
[1] Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit

Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245, 2023.

[2] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin Jaggi,
Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms.
Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

[3] Yakoub Bazi, Mohamad Mahmoud Al Rahhal, Laila Bashmal, and Mansour Zuair. Vision–language model
for visual question answering in medical imagery. Bioengineering, 10(3):380, 2023.

[4] Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al. Paligemma:
A versatile 3b vlm for transfer. CoRR, 2024.

[5] Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-Chi
Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Kv-cache compression with
low-rank projection. In The Thirteenth International Conference on Learning Representations.

[6] Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-Chi
Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing kv-cache with
low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

[7] Christel Chappuis, Valérie Zermatten, Sylvain Lobry, Bertrand Le Saux, and Devis Tuia. Prompt-rsvqa:
Prompting visual context to a language model for remote sensing visual question answering. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 1372–1381, 2022.

[8] Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient adaptation
of pretrained language models for image captioning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 18030–18040, 2022.

[9] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multipli-
cation for transformers at scale. Advances in neural information processing systems, 35:30318–30332,
2022.

[10] Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality
models. In Proceedings of the 32nd ACM International Conference on Multimedia, pages 11198–11201,
2024.

[11] Maksim Dzabraev, Alexander Kunitsyn, and Andrei Ivaniuta. Vlrm: Vision-language models act as reward
models for image captioning. arXiv preprint arXiv:2404.01911, 2024.

[12] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[13] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

[14] Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen,
Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for entangled language
hallucination and visual illusion in large vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14375–14385, 2024.

[15] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P
Bigham. Vizwiz grand challenge: Answering visual questions from blind people. CVPR, 2018.

[16] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

[17] Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang, Zicheng Liu, Yumao Lu, and Lijuan Wang.
Scaling up vision-language pre-training for image captioning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 17980–17989, 2022.

[18] Jia Ji, Yongshuai Hou, Xinyu Chen, Youcheng Pan, and Yang Xiang. Vision-language model for generating
textual descriptions from clinical images: Model development and validation study. JMIR Formative
Research, 8:e32690, 2024.

11

[19] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences,
374(2065):20150202, 2016.

[20] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W Mahoney,
and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint arXiv:2306.07629, 2023.

[21] Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan. Seed-bench:
Benchmarking multimodal large language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13299–13308, 2024.

[22] Chuanhao Li, Zhen Li, Chenchen Jing, Shuo Liu, Wenqi Shao, Yuwei Wu, Ping Luo, Yu Qiao, and
Kaipeng Zhang. Searchlvlms: A plug-and-play framework for augmenting large vision-language models
by searching up-to-date internet knowledge. arXiv preprint arXiv:2405.14554, 2024.

[23] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. In International conference on machine learning,
pages 19730–19742. PMLR, 2023.

[24] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In International conference on machine learning,
pages 12888–12900. PMLR, 2022.

[25] Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
Jun-Yan Zhu, and Song Han. Svdqunat: Absorbing outliers by low-rank components for 4-bit diffusion
models. arXiv preprint arXiv:2411.05007, 2024.

[26] Muyao Li, Zihao Wang, Kaichen He, Xiaojian Ma, and Yitao Liang. Jarvis-vla: Post-training large-scale
vision language models to play visual games with keyboards and mouse. arXiv preprint arXiv:2503.16365,
2025.

[27] Shiyao Li, Yingchun Hu, Xuefei Ning, Xihui Liu, Ke Hong, Xiaotao Jia, Xiuhong Li, Yaqi Yan, Pei Ran,
Guohao Dai, et al. Mbq: Modality-balanced quantization for large vision-language models. arXiv preprint
arXiv:2412.19509, 2024.

[28] Zhiteng Li, Mingyuan Xia, Jingyuan Zhang, Zheng Hui, Linghe Kong, Yulun Zhang, and Xiaokang
Yang. Adasvd: Adaptive singular value decomposition for large language models. arXiv preprint
arXiv:2502.01403, 2025.

[29] Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quantized llms.
Advances in Neural Information Processing Systems, 37:87766–87800, 2024.

[30] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine Learning and Systems, 6:87–100, 2024.

[31] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437,
2024.

[32] Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li,
and Wei Peng. A survey on hallucination in large vision-language models. arXiv preprint arXiv:2402.00253,
2024.

[33] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural
information processing systems, 36:34892–34916, 2023.

[34] Junling Liu, Ziming Wang, Qichen Ye, Dading Chong, Peilin Zhou, and Yining Hua. Qilin-med-vl:
Towards chinese large vision-language model for general healthcare. arXiv preprint arXiv:2310.17956,
2023.

[35] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krishnamoorthi,
Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization with learned
rotations. arXiv preprint arXiv:2405.16406, 2024.

[36] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question
answering. In The 36th Conference on Neural Information Processing Systems (NeurIPS), 2022.

12

[37] Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmakers. A
tutorial on fisher information. Journal of Mathematical Psychology, 80:40–55, 2017.

[38] Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao, and
Rongrong Ji. Affinequant: Affine transformation quantization for large language models. arXiv preprint
arXiv:2403.12544, 2024.

[39] Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Zakka,
Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, et al. Smolvlm: Redefining small and efficient
multimodal models. arXiv preprint arXiv:2504.05299, 2025.

[40] Matan Ben Noach and Yoav Goldberg. Compressing pre-trained language models by matrix decomposition.
In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics and the 10th International Joint Conference on Natural Language Processing, pages 884–889,
2020.

[41] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language
models. arXiv preprint arXiv:2308.13137, 2023.

[42] Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

[43] Zelong Sun, Dong Jing, Guoxing Yang, Nanyi Fei, and Zhiwu Lu. Leveraging large vision-language model
as user intent-aware encoder for composed image retrieval. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pages 7149–7157, 2025.

[44] Mohammad Reza Taesiri and Cor-Paul Bezemer. Videogamebunny: Towards vision assistants for video
games. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages
1403–1413. IEEE, 2025.

[45] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even better
llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint arXiv:2402.04396,
2024.

[46] Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Q-vlm: Post-training
quantization for large vision-language models. arXiv preprint arXiv:2410.08119, 2024.

[47] Guankun Wang, Long Bai, Wan Jun Nah, Jie Wang, Zhaoxi Zhang, Zhen Chen, Jinlin Wu, Mobarakol
Islam, Hongbin Liu, and Hongliang Ren. Surgical-lvlm: Learning to adapt large vision-language model
for grounded visual question answering in robotic surgery. arXiv preprint arXiv:2405.10948, 2024.

[48] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191, 2024.

[49] Qinsi Wang, Jinghan Ke, Masayoshi Tomizuka, Yiran Chen, Kurt Keutzer, and Chenfeng Xu. Dobi-svd:
Differentiable svd for llm compression and some new perspectives. arXiv preprint arXiv:2502.02723,
2025.

[50] Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, Wei Yu, and Dacheng
Tao. Divide, conquer and combine: A training-free framework for high-resolution image perception in
multimodal large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 7907–7915, 2025.

[51] Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing singular
value truncation for large language model compression. arXiv preprint arXiv:2503.12340, 2025.

[52] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value decompo-
sition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

[53] Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers, 2023.

[54] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR, 2023.

[55] Jingjing Xie, Yuxin Zhang, Mingbao Lin, Liujuan Cao, and Rongrong Ji. Advancing multimodal large
language models with quantization-aware scale learning for efficient adaptation. In Proceedings of the
32nd ACM International Conference on Multimedia, pages 10582–10591, 2024.

13

[56] Ke Yi, Zengke Liu, jianwei zhang, Chengyuan Li, Tong Zhang, Junyang Lin, and Jingren Zhou. Rotated
runtime smooth: Training-free activation smoother for accurate INT4 inference. In The Thirteenth
International Conference on Learning Representations, 2025.

[57] Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm. arXiv
preprint arXiv:2406.07056, 2024.

[58] Zhengqing Yuan, Zhaoxu Li, Weiran Huang, Yanfang Ye, and Lichao Sun. Tinygpt-v: Efficient multimodal
large language model via small backbones. arXiv preprint arXiv:2312.16862, 2023.

[59] Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-aware
singular value decomposition for compressing large language models. arXiv preprint arXiv:2312.05821,
2023.

[60] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

[61] Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava: A
framework of small-scale large multimodal models. arXiv preprint arXiv:2402.14289, 2024.

[62] Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason Corso, and Jianfeng Gao. Unified vision-
language pre-training for image captioning and vqa. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 13041–13049, 2020.

14

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, our abstract and introduction accurately reflect the main contributions and
scope of the paper. We clearly state that the work proposes a novel application of Singular
Value Decomposition (SVD) to the joint QKV matrices in Vision-Language Models (VLMs),
with the goal of reducing KV cache size and computational overhead. This aligns with
the technical content, which introduces a dynamic SVD rank allocation strategy to balance
memory and accuracy. Furthermore, the abstract discusses the extension of this approach
through quantization of both weights and activations, which is supported by experimental
results in the paper showing better or comparable performance against previous methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in the last section of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

15

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We will inlcude full derivation of our importance score in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper discloses sufficient information to reproduce its main results. It
clearly describes the methods for joint QKV SVD, rank allocation, and quantization, with
supporting equations and implementation details. The evaluation setup, including models,
datasets, and calibration procedures, is well-documented.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

16

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit the code as the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include necessary experiments specifications in supplementary materials

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we report the average results over 5 random seeds in all our quanization
part. And for calculation of our reported accuracy we follow the opensource VLM evaluation
framework.

Guidelines:

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the details are provided in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and acknowledge the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We mentioned it in the last section of the paper.

18

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not involve the release of data or models that carry a high risk
of misuse, and therefore no specific safeguards are necessary in this context.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code, data, models utilized in this paper are cited and credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new models and assets.

Guidelines

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper do not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects

Guidelines: The paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not use large language models (LLMs) as an important,
original, or non-standard component of the core methodology. LLMs were only used
minimally for editing or polishing writing and did not influence the research’s scientific
content, methodology, or conclusions.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Technical Appendices and Supplementary Material

Outline of Appendices

A.1: Detailed derivation for Importance Score in Sec. 3.2.

A.2: Additional experimental results.

A.3: Case study for QSVD

A.1 Importance Score derivation

Proof. Recall that the singular value decomposition (SVD) of W is given by:

W = UΣV T =

r∑
i=1

σiuiv
T
i

where ui and vi are the i-th left and right singular vectors, and σi is the i-th singular value.

When truncating σi, the change in W is:

∆Wσi
= σiuiv

T
i

Then, the inner product between ∆Wi and the gradient G(n)
W is:∑

j,k

∆Wσi
(j, k) ·G(n)

W (j, k) = ⟨∆Wσi
, G

(n)
W ⟩F

where ⟨·, ·⟩F denotes the Frobenius inner product.

Substitute ∆Wσi
= σiuiv

T
i :

⟨∆Wσi
, G

(n)
W ⟩F = ⟨σiuiv

T
i , G

(n)
W ⟩F = σi⟨uiv

T
i , G

(n)
W ⟩F

Using the property of the Frobenius inner product:

⟨A, B⟩F = tr(ATB)

we have:

σi⟨uiv
T
i , G

(n)
W ⟩F = σi tr((uiv

T
i)

TG
(n)
W) = σi tr(viuT

i G
(n)
W)

By cyclic property of trace:

σi tr(viuT
i G

(n)
W) = σi tr(uT

i G
(n)
W vi)

Since uT
i G

(n)
W vi is a scalar:

σi tr(uT
i G

(n)
W vi) = σi(u

T
i G

(n)
W vi)

Note that:

UTG
(n)
W V ∈ Rr×r

and the (i, i)-th diagonal entry is:

22

[UTG
(n)
W V](i,i) = uT

i G
(n)
W vi

Therefore:

∑
j,k

∆Wσi
(j, k) ·G(n)

W (j, k) = σi[U
TG

(n)
W V](i,i)

∑
j,k

∆Wσi
(j, k) ·GW (j, k) = ⟨∆Wσi

, GW ⟩F = σi[U
TGWV](i,i)

Finally, the importance score Îσi
can be computed as follows:

Îσi =
1

N

N∑
n=1

σ2
i

[
UTG

(n)
W V

]2
(i,i)

If a whitening transformation such as ASVD or SVD-LLM is applied prior to SVD, that is,
UΣV T = SVD(WS) where S denotes the whitening matrix, the corresponding importance score
can be reformulated as:

Îσi =
1

N

N∑
n=1

σ2
i

[
UTG

(n)
W S−TV

]2
(i,i)

where the term S−T converts the gradient from the original weight space to the whitened space in
which the SVD is performed.

A.2 Full table for experiments

Here we include more detailed experiments table for QSVD method. We evaluate all performance
reuslts on NVIDIA RTX A6000 GPUs, we report results under QSVD-noQ and under three weight-
activation quantization configurations: W8A8 (8-bit weights and 8-bit activations), W8A4, and W4A4.
For activation quantization, we apply per-token symmetric quantization. For weight quantization, we
use round-to-nearest (RTN) with per-channel symmetric quantization and a learnable clipping ratio,
determined via linear search to minimize squared error, following [2]. For QSVD baseline, we add
QuaRot without SVD as an baseline, also for ours method, we use activation clip ratio of 0.85 for vit
model and 0.9 for language model, under this setting, we have updated some QSVD accuracy results
higher than main paper report.

QSVD-noQ results. Table 7 presents detailed results of QSVD-noQ on SmolVLM [39], LLaVA-
v1.5 [33] series, and LLaVA-Next series, along with the corresponding preserved ratios. QSVD-noQ
consistently outperforms ASVD and SVD-LLM in accuracy under reduced parameter and cache ratios
(R1 and R2), with the performance gap widening as the compression becomes more aggressive. For
instance, in the SmolVLM setting, our method maintains over 70% accuracy on ScienceQA-IMG [36],
while both ASVD [59] and SVD-LLM [51] fail to function effectively.

QSVD Results. We evaluate our proposed QSVD quantization strategy on LLaVA v1.5 and Next
series: 7B, 13B, across three benchmarks: ScienceQA, VizWiz, and SEEDBench. Table 8 summarizes
performance under two low-bit settings, W8A8 and W8A4.

Under the W8A8 setting, QSVD matches or exceeds prior methods such as Duquant [29], QVLM [46],
and QASVD, while reducing the KV cache and intermediate data sizes by up to 50%. Compared to
QSVDLLM, our approach avoids the need for manually re-optimizing decomposed matrices while
still achieving superior performance.

In the more challenging W8A4 configuration, QSVD continues to deliver robust outputs, reaching
levels comparable to the FP16 baseline using just 9.38% of the original KV cache. This demonstrates
the scalability of our quantization design under aggressive memory constraints.

23

Method ScienceQA-IMG ↑ VizWiz ↑

Sm
ol

V
L

M
-2

B

FP16 84.53% 37.07%
R1

R2

100%
50.0%

90.0%
42.5%

80.0%
35.0%

70.0%
27.5%

100%
50.0%

90.0%
42.5%

80.0%
35.0%

70.0%
27.5%

ASVD 53.84% 7.88% 0.69% 0.10% 6.68% 0.00% 0.00% 0.00%
SVDLLM 65.89% 34.61% 9.07% 3.02% 14.86% 1.62% 0.13% 0.00%

R1

R2

100%
37.5%

90.0%
33.75%

80.0%
30.0%

70.0%
26.25%

100%
37.5%

90.0%
33.75%

80.0%
30.0%

70.0%
26.25%

QSVD-noQ 83.78% 81.70% 79.57% 77.64% 40.67% 39.88% 40.67% 43.84%

L
L

aV
A

-v
1.

5
7B

FP16 68.01% 50.03%
R1

R2

63.3%
22.5%

60.0%
20.0%

56.7%
17.5%

53.3%
15.0%

63.3%
22.5%

60.0%
20.0%

56.7%
17.5%

53.3%
15.0%

ASVD 22.36% 19.09% 15.22% 10.81% 47.70% 39.02% 10.10% 8.87%
SVDLLM 55.23% 55.03% 49.23% 51.17% 50.10% 50.71% 50.47% 49.99%

R1

R2

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

QSVD-noQ 66.12% 65.64% 64.06% 61.68% 53.84% 54.19% 53.88% 52.40%

L
L

aV
A

-v
1.

5-
13

B

FP16 71.78% 53.63%
R1

R2

63.3%
22.5%

60.0%
20.0%

56.7%
17.5%

53.3%
15.0%

63.3%
22.5%

60.0%
20.0%

56.7%
17.5%

53.3%
15.0%

ASVD 64.70% 56.92% 46.50% 42.79% 44.48% 40.63% 40.01% 37.87%
SVDLLM 71.44% 71.44% 71.29% 70.50% 51.03% 51.15% 49.37% 46.49%

R1

R2

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

QSVD-noQ 71.79% 71.74% 71.74% 70.80% 56.15% 56.05% 55.79% 54.04%

L
L

aV
A

-N
ex

t7
B

FP16 69.51% 54.46%
R1

R2

63.3%
22.5%

60.0%
20.0%

56.7%
17.5%

53.3%
15.0%

63.3%
22.5%

60.0%
20.0%

56.7%
17.5%

53.3%
15.0%

ASVD 50.72% 47.15% 40.26% 25.73% 47.78% 47.3% 39.41% 6.69%
SVDLLM 65.94% 66.14% 64.90% 62.87% 48.01% 48.41% 47.74% 47.73%

R1

R2

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

QSVD-noQ 69.91% 68.22% 67.03% 65.15% 54.38% 52.31% 51.42% 49.86%

L
L

aV
A

-N
ex

t-
13

B

FP16 73.23% 57.72%
R1

R2

63.3%
22.5%

60.0%
20.0%

56.7%
17.5%

53.3%
15.0%

63.3%
22.5%

60.0%
20.0%

56.7%
17.5%

53.3%
15.0%

ASVD 69.71% 68.86% 67.43% 64.01% 55.42% 54.97% 54.50% 52.95%
SVDLLM 70.30% 69.71% 69.56% 68.52% 53.08% 52.54% 52.52% 51.77%

R1

R2

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

60.0%
22.5%

53.3%
20.0%

46.7%
17.5%

40.0%
15.0%

QSVD-noQ 72.63% 72.29% 72.34% 71.64% 55.48% 55.14% 54.99% 55.77%

Table 7: Accuracy on ScienceQA-IMG and VizWiz datasets. The R1, R2 denotes the proportion of
preserved QKV parameters and the corresponding cache ratio.

For completeness, Appendix Tables 8 and 9 report full results across all model variants and bitwidth
configurations. Notably, our method consistently ranks highest or near-highest across settings, while
maintaining favorable compression ratios of 50%/18.75% in W8A8 and 50%/9.38% in W8A4.
These results highlight the ability of QSVD to balance compression and output quality across a
diverse range of architectures and tasks.

24

Method W8A8
R1/R2

W8A4
R1/R2

SciQA↑ VizWiz↑ SEED↑ SciQA↑ VizWiz↑ SEED↑

L
L

aV
A

-1
.5

-7
B FP16 68.01% 50.03% 60.18% 100%/100% 68.01% 50.03% 60.18% 100%/100%

QuaRot 67.90% 49.95% 60.11% 50%/50% 63.19% 49.82% 58.18% 50%/25%
Duquant 66.53% 49.86% 58.62% 50.52%/50% 57.36% 50.07% 54.11% 50.52%/25%
QVLM 64.65% 50.64% 51.82% 50%/50% 55.24% 48.33% 50.13% 50%/25%
QASVD 52.95% 48.31% 53.92% 50%/50% 41.92% 47.85% 41.26% 50%/25%
QSVDLLM 66.14% 51.93% 56.47% 50%/50% 30.38% 45.00% 37.00% 50%/25%
QSVD 67.57% 54.06% 60.20% 50%/18.75% 65.61% 52.18% 58.49% 50%/9.38%

L
L

aV
A

-1
.5

-1
3B

FP16 71.80% 53.63% 62.54% 100%/100% 71.80% 53.63% 62.54% 100%/100%
QuaRot 71.64% 53.64% 62.57% 50%/50% 68.02% 54.57% 58.53% 50%/25%
Duquant 69.66% 50.73% 62.70% 51.67%/50% 67.22% 53.07% 61.43% 51.67%/25%
QVLM 70.65% 50.32% 62.36% 50%/50% 66.46% 49.03% 59.22% 50%/25%
QASVD 70.25% 54.93% 61.84% 50%/50% 65.34% 52.61% 59.30% 50%/25%
QSVDLLM 70.65% 56.32% 62.35% 50%/50% 60.20% 50.52% 55.03% 50%/25%
QSVD 72.12% 55.42% 62.91% 50%/18.75% 70.12% 53.20% 62.95% 50%/9.38%

L
L

aV
A

-N
ex

t-
7B

FP16 69.60% 54.46% 69.02% 100%/100% 69.60% 54.46% 69.02% 100%/100%
QuaRot 69.19% 52.86% 65.60% 50%/50% 64.53% 51.27% 65.08% 50%/25%
Duquant 66.34% 52.05% 67.91% 50.52%/50% 66.34% 50.26% 63.64% 50.52%/25%
QVLM 64.70% 47.55% 66.82% 50%/50% 60.60% 48.55% 50.38% 50%/25%
QASVD 64.94% 47.30% 66.87% 50%/50% 43.37% 48.65% 49.63% 50%/25%
QSVDLLM 64.70% 47.55% 66.83% 50%/50% 33.83% 46.05% 39.08% 50%/25%
QSVD 69.09% 53.42% 68.92% 50%/18.75% 66.10% 53.72% 65.63% 50%/9.38%

L
L

aV
A

-N
ex

t-
13

B FP16 73.23% 57.72% 71.30% 100%/100% 73.23% 57.72% 71.30% 100%/100%
QuaRot 72.04% 58.03% 67.29% 50%/50% 66.98% 55.56% 70.15% 50%/25%
Duquant 61.13% 54.38% 70.07% 51.67%/50% 70.20% 52.43% 66.15% 51.67%/25%
QVLM 69.86% 49.89% 69.28% 50%/50% 65.28% 48.98% 65.39% 50%/25%
QASVD 71.52% 55.13% 67.87% 50%/50% 64.85% 53.13% 66.54% 50%/25%
QSVDLLM 69.85% 49.89% 69.27% 50%/50% 61.25% 45.05% 65.03% 50%/25%
QSVD 72.38% 58.33% 71.23% 50%/18.75% 70.43% 58.52% 69.21% 50%/9.38%

Table 8: Quantization results on W8A8 and W8A4.

LLaVA-V1.5 Series LLaVA-Next Series
Bit Method ScienceQA ↑ SEED ↑ VizWiz ↑ ScienceQA ↑ SEED ↑ VizWiz ↑ R1/R2

7B

– FP16 68.01% 60.18% 50.03% 69.60% 69.02% 54.46% 100% / 100%
W4A4 QuaRot 49.08% 50.54% 49.96% 55.57% 59.81% 55.25% 25% / 25%
W4A4 Duquant 52.56% 49.51% 48.77% 58.36% 62.95% 52.00% 27.08% / 25%
W4A4 QVLM 51.12% 34.00% 47.38% 55.30% 45.24% 48.58% 25% / 25%
W4A4 QASVD 12.61% 10.48% 1.23% 19.17% 13.68% 3.30% 25% / 25%
W4A4 QSVDLLM 6.18% 5.53% 0.00% 10.13% 8.64% 2.55% 25% / 25%
W4A4 QSVD 55.16% 52.70% 52.05% 59.67% 62.97% 52.00% 25% / 9.38%

13
B

– FP16 71.80% 62.54% 53.63% 73.23% 71.30% 57.72% 100% / 100%
W4A4 QuaRot 62.74% 60.14% 55.62% 57.47% 62.95% 50.13% 25% / 25%
W4A4 Duquant 65.80% 59.28% 49.37% 58.16% 63.15% 53.26% 26.67% / 25%
W4A4 QVLM 64.86% 41.07% 48.57% 57.33% 60.55% 52.23% 25% / 25%
W4A4 QASVD 20.35% 37.5% 20.96% 12.85% 14.64% 4.44% 25% / 25%
W4A4 QSVDLLM 10.53% 7.65% 1.01% 15.57% 10.89% 2.22% 25% / 25%
W4A4 QSVD 65.82% 61.79% 56.82% 63.61% 65.34% 54.27% 25% / 9.38%

Table 9: Quantization results on W4A4.

25

A.3 Case study for QSVD

For case study, we randomly selected examples from the ScienceQA [36] test set, which demonstrate
our method’s superior performance over QVLM and QASVD baselines.

• As shown in Case 2 and 6, where the FP16 model fails to produce the correct answers,
QSVD exhibits more consistent responses between W8A8 and W4A4 settings, and does not
contradict the FP16 outputs.

• QSVD also demonstrates surprisingly better performance under low-bit settings in Case 1
and 7, where the FP16 model answers incorrectly but QSVD at W4A4 produces the correct
response. This may be attributed to the quantization process reducing model noise, as
discussed in Dobi-SVD [49], and may partially explain why QSVD sometimes surpasses
FP16 accuracy, as observed in Appendix A.2.

• In Case 3, 4, 5, and 8, QSVD successfully answers questions that FP16 answers correctly
but where other baselines fail under W4A4, highlighting its robustness under extreme
quantization.

• Furthermore, in Case 4, 5, and 7, other baselines output random tokens or repeat content
under 4-bit settings, while QSVD maintains coherent and relevant responses.

26

Case 1: LLaVA-v1.5-7b

Question: The diagrams below show two pure samples of gas in identical closed, rigid containers.
Each colored ball represents one gas particle. Both samples have the same number of particles.
Compare the average kinetic energies of the particles in each sample. Which sample has the
higher temperature?
A. sample B
B. neither; the samples have the same temperature
C. sample A

FP16 Response: 1. Compare the average kinetic energies of the particles in each sample. Sample
A: The average kinetic energy of the particles in Sample A is 1800000000000000000000000000
[truncated]

QVLM W8A8 Response: The image shows two jars filled with green balls, which represent the
particles in the gas. The jars are filled with the same number of particles, and the balls are of
the same color. The image also provides information about the average kinetic energy of the
particles in each jar.
To determine which jar has the higher temperature, we need to compare the average kinetic
energy of the particles in each jar. If the particles in jar A have a higher average kinetic energy,
then jar A has a higher temperature. If the particles in jar B have a higher average kinetic energy,
then jar B has a higher temperature.
However, the image does not provide enough information to determine the average kinetic energy
of the particles in each jar. Therefore, we cannot confidently determine which jar has the higher
temperature.
QASVD W8A8 Response: 1. The diagrams below show two pure samples of gas in identical
closed, rigid containers. Each colored ball represents one gas particle. Both samples have the
same number of particles. 2. Compare the average kinetic energies of the particles in each
sample. Which sample has the higher temperature? A. sample B B. neither; the samples have
the same temperature C. sample A

QSVD W8A8 Response: 1. The diagrams below show two pure samples of gas in identical
closed, rigid containers. Each colored ball represents one gas particle. Both samples have the
same number of particles. 2. Compare the average kinetic energies of the particles in each
sample. Which sample has the higher temperature?
A. sample B B. neither; the samples have the same temperature C. sample A
QSVD W4A4 Response: A. sample B

Note that QASVD and QVLM W4A4 output nothing or random number.

27

Case 2: LLaVA-v1.5-13b

Question: The diagrams below show two pure samples of gas in identical closed, rigid containers.
Each colored ball represents one gas particle. Both samples have the same number of particles.
Compare the average kinetic energies of the particles in each sample. Which sample has the
higher temperature?
A. sample B
B. neither; the samples have the same temperature
C. sample A

FP16 Response: The average kinetic energy of the particles in sample A is higher than that
of sample B. This is because the particles in sample A are moving faster than those in sample
B. The higher average kinetic energy in sample A indicates that the temperature of the gas in
sample A is higher than that of the gas in sample B.

QVLM W8A8 Response: The average kinetic energy of the particles in each sample can be
determined by calculating the average kinetic energy of each colored ball. The higher the average
kinetic energy, the higher the temperature of the sample.
In the image, there are 28 colored balls in each sample. The average kinetic energy of the
particles in sample A is calculated as follows:
(1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28)
(1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28)
(1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28)
(1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28) (1/28)
(1/28) (1/28) (1/
QASVD W8A8 Response: The average kinetic energy of the particles in sample A is higher
than that of sample B. This means that sample A has a higher temperature than sample B.

QSVD W8A8 Response: The diagrams show two samples of gas, each in a closed, rigid
container. The containers have the same number of colored balls, which represent the gas
particles. The samples have different average kinetic energies, which can be determined by
comparing the average kinetic energy of the particles in each sample.
Sample A has a higher average kinetic energy than Sample B. This is because the balls in Sample
A are moving faster than the balls in Sample B. The average kinetic energy of the particles in
Sample A is higher than that of Sample B, which means that Sample A has a higher temperature.
QSVD W4A4 Response: The average kinetic energy of the particles in sample A is higher than
that of sample B.

Note that QASVD and QVLM W4A4 output nothing or random number.

28

Case 3: LLaVA-v1.5-13b

Question: What is the capital of Louisiana?
A. Atlanta
B. Frankfort
C. New Orleans
D. Baton Rouge

FP16 Response: D. Baton Rouge

QVLM W8A8 Response: C. New Orleans
QVLM W4A4 Response: C. New Orleans
QASVD W8A8 Response: C. New Orleans

QSVD W8A8 Response: D. Baton Rouge
QSVD W4A4 Response: The capital of Louisiana is D. Baton Rouge.

Note that QASVD W4A4 output a random number.

Case 4: LLaVA-v1.5-13b

Question: Figure: Kermadec Arc. The Kermadec Arc is a deep sea ecosystem in the southern
Pacific Ocean. Which better describes the Kermadec Arc ecosystem?
A. It has bright sunlight. It also has organisms that crawl or stick to the ground.
B. It has water at the bottom of the ocean. It also has no sunlight.

FP16 Response: B. It has water at the bottom of the ocean. It also has no sunlight.

QVLM W8A8 Response: B. It has water at the bottom of the ocean. It also has no sunlight..
QVLM W4A4 Response: B. It has water at the bottom of the ocean. It also has no sunlight..
QASVD W8A8 Response: B. It has water at the bottom of the ocean. It also has no sunlight..
QASVD W4A4 Response: The Kermadec Arc is a deep sea ecosystem in the southern Pacific
Ocean. Which better describes the Kermadec Arc ecosystem? B. It has water at the bottom of
the ocean. It also has no sunlight.

QSVD W8A8 Response: B. It has water at the bottom of the ocean. It also has no sunlight.
QSVD W4A4 Response: B. It has water at the bottom of the ocean. It also has no sunlight..

29

Case 5: LLaVA-v1.5-13b

Question: The model below represents silver. Silver is a precious metal that is used to make
many items, such as jewelry and coins. Complete the statement. Silver is ().
A. an elementary substance
B. a compound

FP16 Response: A. an elementary substance

QVLM W8A8 Response: A. an elementary substance
QVLM W4A4 Response: Silver is a precious metal that is used to make many items, such as
jewelry and coins.
QASVD W8A8 Response: A. an elementary substance

QSVD W8A8 Response: A. an elementary substance
QSVD W4A4 Response: A. an elementary substance

Note that QASVD W4A4 output a random number.

30

Case 6: LLaVA-v1.5-13b

Question: The images below show two pairs of magnets. The magnets in different pairs do
not affect each other. All the magnets shown are made of the same material. Think about the
magnetic force between the magnets in each pair. Which of the following statements is true?
A. The magnetic force is stronger in Pair 1.
B. The strength of the magnetic force is the same in both pairs.
C. The magnetic force is stronger in Pair 2.

FP16 Response: 1. The magnetic force is stronger in Pair 1.
In the image, there are two pairs of magnets, each consisting of two magnets. The magnets in
different pairs do not affect each other, and all the magnets are made of the same material. The
statement "The magnetic force is stronger in Pair 1" suggests that the magnetic force between
the magnets in Pair 1 is stronger than the magnetic force between the magnets in Pair 2. This
could be due to various factors such as the orientation, size, or shape of the magnets in each pair.
However, without more information or a clear visual comparison, it is not possible to definitively
determine which pair has a stronger magnetic force.

QVLM W8A8 Response: The magnetic force is stronger in Pair 2.
QVLM W4A4 Response: 1. The magnetic force is stronger in Pair 1.
QASVD W8A8 Response: The magnetic force is stronger in Pair 2.

QSVD W8A8 Response: 1. The magnetic force is stronger in Pair 1.
In the image, there are two pairs of magnets, each consisting of three magnets. The magnets in
each pair are arranged in a straight line, and they are made of the same material. The magnetic
force between the magnets in each pair is determined by their strength, size, and arrangement.
Since the magnets in Pair 1 are larger and more closely spaced, the magnetic force between them
is likely to be stronger than the force between the magnets in Pair 2.
QSVD W4A4 Response: The magnetic force is stronger in Pair 1.

Note that QASVD W4A4 output a random number.

Case 7: LLaVA-v1.5-13b

Question: Which ocean is highlighted?
A. the Indian Ocean
B. the Atlantic Ocean
C. the Pacific Ocean
D. the Southern Ocean

FP16 Response: D. the Southern Ocean

QVLM W8A8 Response: D. the Southern Ocean
QVLM W4A4 Response: the Southern Ocean
QASVD W8A8 Response: C. the Pacific Ocean
QASVD W4A4 Response: 2. C. the Pacific Ocean

QSVD W8A8 Response: D. the Southern Ocean
QSVD W4A4 Response: B. the Atlantic Ocean

31

Case 8: LLaVA-v1.5-13b

Question: This organism is Fromia monilis. It is a member of the animal kingdom. Fromia
monilis is commonly called a tile sea star. Did you notice that this tile sea star is missing one of
its arms? If a tile sea star loses an arm, it can regrow the arm over time. This ability is called
regeneration. Can Fromia monilis cells make their own food?
A. yes
B. no

FP16 Response: 1. Fromia monilis is a type of sea star, also known as a tile sea star. 2. The sea
star is missing one of its arms, which can regrow over time. 3. Fromia monilis cells cannot make
their own food , as they are not capable of photosynthesis.

QVLM W8A8 Response: 1. Fromia monilis is a type of sea star, also known as a tile sea star. 2.
The sea star is missing one of its arms, which can regrow over time. 3. Fromia monilis cells
cannot make their own food, as they are not capable of photosynthesis.
QVLM W4A4 Response: 1. Fromia monilis is a type of sea star that belongs to the animal
kingdom. 2. Fromia monilis is commonly known as a tile sea star. 3. The tile sea star is missing
one of its arms. 4. Fromia monilis can regrow its arms over time, a process called regeneration.
5. Fromia monilis cells can make their own food.
QASVD W8A8 Response: Fromia monilis is a type of sea star, which is an invertebrate.
Invertebrates are animals that do not have a backbone. They are typically found in aquatic
environments, such as oceans and seas.
Sea stars, like Fromia monilis, are known for their ability to regrow lost body parts, such as arms.
This process is called regeneration.
Sea stars are not capable of making their own food, as they are primarily herbivores. They feed
on various types of algae and other plant materials found in their environment.
QASVD W4A4 Response: 1. A. Yes

QSVD W8A8 Response: 1. Fromia monilis is a type of sea star, also known as a tile sea star. 2.
The sea star is missing one of its arms, which can regrow over time. 3. Fromia monilis cells
cannot make their own food, as they are not capable of photosynthesis.
QSVD W4A4 Response: Fromia monilis is a type of sea star that is commonly found in the
ocean. It is a member of the animal kingdom, and it is commonly known as a tile sea star.
Fromia monilis has the ability to regenerate lost body parts, such as an arm. This ability is called
regeneration.In terms of whether Fromia monilis cells can make their own food, the answer is
no. Fromia monilis is a carnivorous organism, which means it relies on other organisms for food.
It feeds on small marine animals such as crabs, clams, and other invertebrates.

32

	Introduction
	Background and Related Work
	Vision Language Model
	Singular Value Decomposition for Large Models
	Quantization for Large Models

	Methodology
	Singular-Value Decomposition over Joint QKV Weights
	Cross-layer Rank Allocation for Low-rank SVD
	Post-Training Quantization Scheme for Low-Rank VLMs

	Evaluation Results
	Accuracy Evaluation on QSVD-noQ
	Accuracy Evaluation of QSVD
	Ablation Study
	Latency Evaluation on VLM

	Conclusion and Limitation
	Technical Appendices and Supplementary Material
	Importance Score derivation
	Full table for experiments
	Case study for QSVD

