000 ESDMOTION: SD MAP ORIENTED MOTION PREDIC-001 tion Enhanced by End-to-end Learning 002 003

Anonymous authors

Paper under double-blind review

ABSTRACT

Motion prediction is a crucial task in autonomous driving. Existing motion prediction models rely on high-definition (HD) maps to provide environmental context for agents. However, offline HD maps require extensive manual annotation, making them costly and unscalable. Online mapping-based methods still require HD map annotation to train the online mapping module, which is costly as well and 015 may also suffer from the issue of out-of-distribution map elements. In this work, 016 we explore conducting motion prediction with standard-definition (SD) maps as substitution, which are more readily available and offer broader coverage. One crucial challenge is that SD maps have low resolution and poor alignment accuracy. Directly replacing HD maps with SD maps leads to a significant drop in performance. We introduce end-to-end learning and specially tailored modules for SD maps to solve the problems. Specifically, we propose ESDMotion, the first end-to-end motion prediction framework that uses SD maps without any HD map supervision. We integrate BEV features obtained from raw sensor data into existing motion prediction models, with tailored designs for anchor-based and anchor-free models respectively. We find that the coarse and misaligned SD maps bring challenges to feature fusion of anchor-free model and on anchor generation of anchor-based model. Thus, we design two novel modules named Enhanced Road Observation and Pseudo Lane Expansion to address these issues. Benefiting from the end-to-end structure and new modules, ESDMotion outperforms the state-of-the-art online mapping-based motion prediction methods by 13.4% in motion prediction performance and narrows the performance gap between HD and SD maps by 73%. We will open source our code and checkpoints.

032 033 034

004

010 011

012

013

014

017

018

019

020

021

022

024

025

026

027

028

029

031

INTRODUCTION 1

The autonomous driving system is composed of multiple modules, including perception, motion 037 prediction, and planning. The motion prediction module forecasts the future states of agents based 038 on their historical data and environmental context, providing critical insights for planning and control. In providing environmental context for motion prediction models, High-Definition (HD) maps play a crucial role. These maps offer detailed and precise road geometry information, such as lane 040 dividers, centerlines, pedestrian crossings, and stop lines, and are widely employed in motion pre-041 diction models (Gu et al., 2021; Shi et al., 2022; Zhou et al., 2022). 042

043 However, obtaining HD maps is costly. As in Fig. 1 (a), Creating HD maps requires extensive data 044 collection and manual annotation, with updates required every 2-3 months (Li et al., 2022a). It constrains the applicability of methods that rely on HD maps. To reduce dependence on HD maps, as in Fig. 1 (b), online mapping models (Liao et al., 2023a; Li et al., 2024b; Yuan et al., 2024) are 046 developed. These models predict HD map elements around the vehicle using sensor data in real time, 047 providing input for downstream modules. Nevertheless, the training of these supervised models still 048 depends on ground-truth annotations, facing the challenge of annotation and generalization. 049

By comparison, standard-definition (SD) maps, like those provided by Google Maps and Baidu 051 Maps, are available at low cost and cover a wide range of areas (Jiang et al., 2024). Commonly used in human driving, SD maps provide information on road direction and intersection structures, and 052 assist in route planning and driving maneuvers like turning. However, compared with HD maps, SD maps have two major weaknesses: (1) Low Resolution. SD maps only indicate the general

Figure 1: **Comparison of Different Map Usage Approaches for Motion Prediction.** (a) Offline mapping methods require extensive annotations, making them costly and unscalable. (b) Online mapping methods use the output of map estimation models as input for motion prediction or employ an end-to-end approach. These methods still need some HD map annotations for supervised training. (c) We use SD maps as the only map information in an end-to-end framework and achieve performance close to HD maps.

direction of roads without providing lane-level details. A road may be represented by just one or
 two polylines in SD maps. (2) Poor Alignment. Due to localization errors, the polylines in SD
 maps may not align with the center of the roads, and could even be outside the roads. Our initial
 experiments show that directly substituting SD maps for HD maps in motion prediction tasks
 results in a significant drop in performance.

The development of end-to-end autonomous driving architectures (Hu et al., 2023; Jiang et al., 2023)
 presents an attractive way to capture task-specific information directly from raw sensor data. These
 features encompass environmental information around the agent, serving a similar function to maps,
 thereby reducing reliance on map precision. During the process, SD maps could serve as a rough
 guide for the feature aggregation, providing an understanding of the road's general layout, which
 could potentially achieve performance comparable to using HD maps with detailed road information.

Based on the motivation, we propose ESDMotion, an end-to-end motion prediction framework that uses SD maps without any HD map input or supervision, as in Fig 1 (c). The framework is compatible with both anchor-based and anchor-free motion prediction models (We use DenseTNT (Gu et al., 2021) and HiVT (Zhou et al., 2022) in this paper). To construct the end-to-end model for SD maps, we extract BEV features from raw data with an encoder, and incorporate several modules, including a BEV-agent encoder, BEV-lane encoder, and Road Observation into base motion prediction models, to efficiently fuse BEV features with agent features and SD map features.

094 We point out two problems caused by the usage of SD maps on anchor-based and anchor-free mod-095 els and design new modules to address them. Anchor-based models like DenseTNT select candidate 096 goal points (anchors) form maps. The low resolution and poor alignment accuracy results in poor distributions of goal points, for example, there may be no goal point around agents. We solve this 098 issue by introducing an anchor generation method called **Pseudo Lane Expansion**, which generates 099 extra pseudo anchors parallelly based on original SD map instances to improve anchor distributions. For anchor-free models such as HiVT, due to sparse and misaligned SD maps, limited or unhelp-100 ful BEV features could be fused with SD map features in our original Road Observation module 101 which uses standard deformable attention. Thus, we modify the multi-head deformable attention by 102 adding reference points and introducing a head weighting mechanism. We propose Enhanced Road 103 Observation to sample a wider range of BEV features around SD instances. 104

Benefit from the end-to-end architecture and modules specially designed for SD maps, our models
 achieves superior accuracy with SD maps as the only map information, surpassing state-of-the-art
 online HD mapping-based motion prediction models (Gu et al., 2024a;b) with a reduction of 13.4%
 (minADE) and 7.8% (minFDE) on anchor-free model. We also pay attention to the performance gap

SD Map

Encoder

Agent-Agent

Interaction

Temporal

Transforme

BEV Encoder

108 109 110

111 112 SD MAP

History Trajectories

115

- 116 117
- 118
- 119
- 120 121

122

123

124

125

126

127

128

BEV Feature Muti-view Images Road Observation Enhanced Road Observation Agent Feature imited range a 🖌 **,**۷ Ű Attention k.v Lane-BEV Fused Feature SD Instance Weights ____ SD Instance Feature

SD Map Feature

Agents Feature

<u>ann</u>

Agent-Lane

Interaction

BEV-Agent

Encoder

Enhanced

Road

Observation

Features

Lane-BEV

Feature

Figure 2: **HiVT-based Model**. Upper: Overall structure. The modules colored in orange are proposed by us. The inputs are first processed through the original encoding modules of the HiVT model and a BEV encoder to extract features. These features are then passed through the BEV-Agent encoder and (Enhanced) Road Observation we designed to obtain aggregated features for each agent. Global Interaction enables information exchange between agent features, and the decoder predicts future trajectories. Lower: Road Observation VS. Enhanced Road Observation. Due to the low resolution of SD maps, the coverage of Road Observation using standard deformable attention is limited. Enhanced Road Observation, by extending reference points along parallel lines, allows sampling of BEV features over a larger area.

Global

Interaction

BEV-Agent

Encoder

Decoder

Agent Feature

Fused Feature

q٧

Attention

Future

Trajectories

129 130

135

136

137

138

139 140

141

142 143

144 145

146 147

148

149

150

151

between SD maps and HD maps. For our HiVT-based model, the performance gap between using
SD and HD maps is reduced by 73% (minADE) and 44% (minFDE) compared to the original HiVT
model. For DenseTNT-based model, the reductions are 77% and 84%. We further analyze how the
base model and end-to-end architecture influence this gap. Our contributions are threefold:

- We propose an SD map oriented end-to-end motion prediction framework, achieving superior accuracy compared to online HD map based motion prediction models.
 - We introduce a BEV-SDmap interactor called Enhanced Road Observation, and a goal point generation method Pseudo Lane Expansion to improve performance with SD map.
 - We analyze the factors affecting the performance gap between SD and HD maps, including the type of base model and the application of end-to-end architecture.

Due to limited space, we discuss more details of **Related Works** in appendix A.

2 Method

In this section, we first introduce the structure of ESDMotion for anchor-free and anchor-based models in Sec. 2.1.1 and modules we merge into base models in Sec. 2.1.2. Then, we point out two problems caused by the usage of SD maps on anchor-free and anchor-based models and propose our solutions. For the anchor-free model, we enhance the feature fusion with SD map through Enhanced Road Observation in Sec. 2.2. For the anchor-based model, we improve anchor distribution from the SD map with Pseudo Lane Expansion in Sec. 2.3.

2.1 E2E Structure for Motion Prediction with SD maps

156 2.1.1 OVERALL STRUCTURES

To reduce the performance gap between SD maps and HD maps, we extend motion prediction models in an end-to-end manner. We use an existing encoder (Li et al., 2022b) to obtain BEV features from raw sensor data. Then we propose modules including BEV-Agent encoder, BEV-Lane encoder, and Road Observation for feature fusion and we incorporate them into appropriate positions in anchor-free and anchor-based models.

The anchor-free model. For anchor-free model HiVT (Zhou et al., 2022), the feature of each agent is obtained from original agent-agent interaction and temporal transformer. Then, the agent features are enhanced with the SD lane feature, BEV feature, and BEV-lane feature in Agent-Lane interaction, BEV-Agent Encoder, and Road Observation module. After a global interaction that exchanges the information among agents, BEV-agent fusion is applied again. Finally, a decoder generates future trajectories from the agent features. The process is shown in Fig. 2.

The anchor-based model. For anchor-based model DenseTNT (Gu et al., 2021), the sparse goal points is generated from maps first. The features of SD maps and agents are extracted by a sparse context encoder, which is based on VectorNet (Gao et al., 2020) and enhanced with BEV-Agent encoder and BEV-Lanes. The sparse goal is scored and selected with extracted features. Then, the dense goal candidates are generated from selected sparse ones in the dense goal encoder and their probability distribution is computed. Finally, a decoder predicts target points based on the distribution and decodes the future trajectory. The process is shown in Fig. 3.

176 177

168

2.1.2 SD MAP ORIENTED E2E MODULES

BEV encoder. We adopt BEVFormer (Li et al., 2022b) as the BEV encoder, which extracts features from multi-view images using an image backbone (e.g., ResNet50). Then, it uses BEV2PV look-up to construct BEV features $B \in \mathbb{R}^{H \times W \times C}$ with the intrinsic and extrinsic of each camera. Note that other BEV encoders could work as well, for example, LSS (Philion & Fidler, 2020).

183

BEV-Agent encoder and BEV-Lane encoder. Since BEV features are spatial, it is common to 184 sample BEV features by positions of agent or lane and apply feature fusion. Previous study (Gu 185 et al., 2024b) explores the fusion of agent features with BEV features in motion prediction models. 186 It uses an approach similar to the Vision Transformer (ViT) (Dosovitskiy, 2020) to handle offline 187 BEV features. In the method, BEV features are projected into coarse patches, with the patch cor-188 responding to the agent's location serving as the query, and other patches acting as keys and values 189 in an attention mechanism. The resulting features are then concatenated with the agent features. 190 However, the projection can lead to the loss of fine-grained details, and the simple concatenation 191 could limit the direct interaction between the two types of features.

To this end, we propose a BEV-Agent encoder that uses deformable attention (Zhu et al., 2020) for more direct and efficient feature fusion. We donate BEV feature $B \in \mathbb{R}^{H \times W \times C}$, agent feature $Q_A \in \mathbb{R}^{N \times D}$, and 2D positions of agents $p \in \mathbb{R}^{N \times 2}$, where N represents numbers of agents and D denotes the hidden dimension. BEV-Agent encoder fuse feature through:

$$F_{\text{BEV-Agent}} = \text{DeformAtt}(Q_A, T_{\text{ref}}(p), B)$$
(1)

199 Where T_{ref} is the translation from ego vehicle coordinate system to BEV grids, $F_{BEV-Agent}$ is the 200 resulting BEV-Agent feature. The BEV-Lane encoder is similar to the BEV-Agent encoder. It just 201 replaces agent features with SD lane features. These two encoders sample BEV features spatially 202 close to the agent or lane, and fuse it with the agent or lane feature, enabling the agent or lane to 203 capture information about its surroundings from raw data.

204

197 198

Road Observation. The Road Observation module applies integration among the BEV features, SD map features, and agent features. It first uses a BEV-Lane encoder to get BEV-SD map features, then fuses them into agent features via attention. These operations enrich SD map features with visual information and interact them with agent features, providing agents with the visual and geometrical context of roads and thus named Road Observation. Specifically, We denote the vectorized SD map as $m \in \mathbb{R}^{N_m \times 2}$, with the encoded map features represented by $F_{map} \in \mathbb{R}^{N_m \times D}$, where N_m is the total number of points constituting the polylines. We obtain the BEV-SD map feature via

215

$$F_{\text{BEV-SDmap}} = \text{DeformAtt}(F_{map}, T_{ref}(m), B)$$
(2)

and then obtain the fused features from agents through

$$F_{\text{fused}} = \text{Atten}(Q_A, F_{\text{BEV-SDmap}}, F_{\text{BEV-SDmap}}) \tag{3}$$

Figure 3: **DenseTNT-based Model.** Left: Overall structure. The sparse context encoder, enhanced with BEV-agent encoder and BEV-lane encoder, extracts features from both the agent and the SD map, while the dense goal encoder densely samples target points and generates a probability distribution. The decoder predicts target points based on this distribution and decodes the future trajectory. Right: Original SD map vs. Pseudo Lane Expansion. Target points generated directly from the SD map may not be near the agent, while Pseudo Lane Expansion generates pseudo target points along the road direction near the agent.

2.2 ENHANCE FEATURE FUSION WITH SD MAP IN ANCHOR-FREE MODEL

Challenges in feature fusion with SD maps. In the Road Observation, we utilize deformable attention to fuse SD map features with BEV features, generating road features. The 2D coordinates of the polylines in the vectorized map are selected as reference points. Standard deformable attention initializes sample points around these map points, sampling BEV features near the polylines. This process works well with HD maps whose polylines are accurate and dense. The sampling area of HD map lines almost covers the entire road, providing information of a wide range.

However, using SD maps as input introduces challenges. Due to low resolution, SD maps contain fewer polylines and reference points. The sample points are in a limited region and can not cover the entire road, as shown in Fig. 2 (lower left). Even worse, the misaligned SD lines may fuse useless BEV features around it. For example, it may capture features far away from the road.

245 246 247

248

226

227

228

229

230

231

232 233

234

Enhanced Road Observation. We observe that SD maps accurately indicate road direction despite alignment errors. Thus, we aim to expand reference points by creating parallel lines. In this way, a single line gets a wide sample area. Even if the original line from the SD map is out of the road, some of its parallel lines may still be within the road and sample useful BEV features. Based on this insight, we propose Enhanced Road Observation. We denote the SD map $S \in \mathbb{R}^{N_s \times N_d \times 2}$ with N_s SD map instances and each instance consists of N_d points. For S_i , we generate the extended reference points $\hat{S} \in \mathbb{R}^{N_s \times N_l \times N_d \times 2}$ through:

5

$$\hat{S}_{ij} = \text{Parallel}(S_i, l_j) \tag{4}$$

For a single SD map instance S_i , a set of parallel lines $\{\hat{S}_{i1}, \hat{S}_{i2}, \ldots, \hat{S}_{iN_l}\}$ are generated. Where N_l is the number of parallel lines and l_j represents the distance between the original polyline and each parallel line. To simplify processing, the number of parallel lines N_l is set equal to the number of heads N_h in the deformable attention mechanism.

263 Next, we modify deformable attention to accommodate 264 multiple sets of reference points. In standard deformable 265 attention, multiple heads share a single set of reference 266 points, while we assign each head with its own set of 267 reference points corresponding to a parallel line. Since 268 not all heads extract meaningful features (e.g., some par-269 allel lines may lie outside the road), we apply a learnable weight parameter h_i to the features obtained by each

Figure 4: Enhanced Road Observation. We extended several sets of reference points for deformable attention and predict weight for each set.

254

270 head:

272 273

$$F_{\text{BEV-SDmap}} = \sum_{j=1}^{N_h} h_i W_j \left[\sum_{k=1}^K A_{i,j,k} \cdot W_j' B\left(\hat{s}_{i,j} + \Delta \hat{s}_{i,j,k}\right) \right]$$
(5)

274 Where K denotes the number of sample points. W and $W' \in \mathbb{R}^{D \times D}$ are linear projections applied 275 to the BEV features B. The sample points $A \in \mathbb{R}^{N_d \times N_h \times K}$, sampling offsets $\Delta \hat{s} \in \mathbb{R}^{N_d \times N_h \times K}$, 276 and head weights h are all obtained through different linear projections from the SD map features 277 Q_s , which serve as the query. As in standard deformable attention, the weights A are normalized 278 using softmax along the last dimension. We demonstrate the process as in Fig. 4.

For the head weights *h*, multiple parallel lines from an SD instance may capture valuable environmental information, and softmax would overly prioritize a single head. DQNv4 (Xiong et al., 2024)
discusses the need for softmax normalization in attention and claims that normalization becomes unnecessary when the degradation issue does not exist. Thus, we do not use functions such as Sigmoid of Softmax to normalize head weights.

284

285 286

299

305

2.3 IMPROVE ANCHOR DISTRIBUTION FROM SD MAP IN ANCHOR-BASED MODEL

Challenges in anchor generation with SD maps. In the anchor-based model DenseTNT, the challenges of using SD maps lie in anchor generation. The model densely samples points around candidate target points from a vectorized map, then predicts the probability for each, selecting the final target point based on these probabilities. As a result, the map has a direct impact on the distribution of candidate target points. Unfortunately, due to the low resolution and alignment accuracy of SD maps, there may be no candidate points near the agent or its future trajectory, which significantly reduces prediction accuracy. Fig. 3 shows the matter.

Pseudo Lane Expansion. To address this issue, adding extra pseudo anchors is a straightforward way. Since DenseTNT is designed around lane and goal features, we directly input the expanded SD lines into the model. We denote a single polyline in the SD map containing N_d 2D points $p \in \mathbb{R}^{N_d \times 2}$, the unit normal vector of the vector from the i-th point to the (i+1)-th point \mathbf{n}_i . The i-th point \hat{p}_{ji} of the j-th expanded line is calculated as:

$$\hat{p}_{ji} = p_i + d_j \mathbf{n_i} \tag{6}$$

Where d_j is the distance between the j-th expanded line and the original line. Because DenseTNT's original lane scoring or goal scoring modules predict weights for each polyline or target point, we no longer predict weights for each parallel line as Enhanced road observation. This simple but effective anchor generation method greatly improves prediction performance with SD maps. We demonstrate the process as in Fig. 3 (right).

Adaptive Pseudo Lane Expansion. Because of the variability in road structures and the distri-306 bution of SD maps, using fixed parameters, including the number and distances of the extended 307 parallel lines in Pseudo Lane Expansion, often fails to achieve optimal performance across diverse 308 scenarios. Thus, we adapt the parameters based on the distance of the SD map lane relative to the 309 vehicle to predict, and the density of SD map lanes. (1) Distance. If the closest distance between 310 the SD map and the target vehicle is large, it likely indicates poor alignment of the SD map. In such 311 case, we generate more pseudo lanes on the side closer to the vehicle while reducing the number 312 on the opposite side to decrease the creation of irrelevant lines, as in Fig. 5 (left). (2) Density. For 313 sparsely distributed SD lanes (only one or two SD lanes in the range), we increase the number of 314 pseudo lanes to ensure better coverage of the road. Conversely, in dense areas (e.g., intersections), 315 we decrease the number and spacing of pseudo lanes to avoid overlap and interference as in Fig. 5 (right). Furthermore, we design a set of pseudo lanes for special situation that there is no SD lanes 316 in the range. The detail is discussed in C.2. 317

318 319

320

322

3 EXPERIMENTS

321 3.1 DATASET AND METRICS

Dataset. We conduct experiments on the nuScenes dataset (Caesar et al., 2019), which contains 1,000 driving scenes of approximately 20 seconds each. The dataset includes various sensor data

Table 1: Quantitative Results of ESDMotion. Maps indicates the source of map inputs. "BEV" and "E2E" indicate the usage of BEV feature and end-to-end structure. "ESDMotion++" means
 ESDMotion enhanced by Adaptive Pseudo Lane Expansion. The results of Base/Unc/BEVPred methods with GT maps is the same as "Offline Map".

Base	HiVT (Zhou et al., 2022)			DenseTNT (Gu et al., 2021)						
Method	Map Model	Мар Туре	BEV	E2E	$ $ minADE \downarrow	$minFDE\downarrow$	$MR\downarrow$	$ \min ADE \downarrow$	$minFDE\downarrow$	$MR\downarrow$
Offline Map	GT	HDmap	×	×	0.3868	0.8063	0.0870	0.8809	1.4890	0.1903
Offline Map	GT	SDmap	\times	×	0.3998	0.8207	0.0918	1.2117	1.9849	0.2776
Base Online Map	MapTR	HDmap	\times	×	0.4234	0.8900	0.0955	1.0462	2.0661	0.3494
Base Online Map	MapTRv2-CL	HDmap	\times	×	0.3657	0.7473	0.0710	0.7664	1.3174	0.1547
Base Online Map	MapTRv2	SDmap	×	×	0.4429	0.9165	0.0986	1.3692	2.2417	0.3937
Unc (Gu et al., 2024a)	MapTR	HDmap	\times	×	0.4036	0.8372	0.0822	1.1190	2.1502	0.3669
Unc (Gu et al., 2024a)	MapTRv2-CL	HDmap	\times	×	0.3588	0.7232	0.0660	0.8123	1.3426	0.1567
Unc (Gu et al., 2024a)	MapTRv2	SDmap	×	×	0.4285	0.9007	0.0956	1.3020	2.1364	0.3738
BEVPred (Gu et al., 2024b)	MapTR	HDmap	\checkmark	×	0.3617	0.7401	0.0720	0.7608	1.4700	0.2593
BEVPred (Gu et al., 2024b)	MapTRv2-CL	HDmap	\checkmark	×	0.3652	0.7323	0.0710	0.7630	1.3609	0.1576
BEVPred (Gu et al., 2024b)	MapTRv2	SDmap	\checkmark	×	0.3904	0.7690	0.0741	1.1940	2.0029	0.3285
ESDMotion(Ours)	GT	SDmap	\checkmark	\checkmark	0.3134	0.6662	0.0737	0.7941	1.3863	0.1627
ESDMotion++(Ours)	GT	SDmap	\checkmark	\checkmark	0.3134	0.6662	0.0737	0.7597	1.3105	0.1523
ESDMotion++(Ours)	MapTRv2	SDmap	~	<	0.3147	0.6671	0.0740	0.7712	1.3260	0.1561
ESDMotion++(Ours)	MapTRv2-CL	HDmap	\checkmark	\checkmark	0.3114	0.6692	0.0727	0.7529	1.3088	0.1517
ESDMotion++(Ours)	MapTR	HDmap	\checkmark	\checkmark	0.3176	0.6738	0.0751	0.7616	1.3139	0.1533

such as camera inputs, annotations, and high-definition (HD) maps. While the dataset itself does not provide standard-definition (SD) maps, we follow (Jiang et al., 2024) to extract SD maps from OpenStreetMap (Haklay & Weber, 2008) and align them with the coordinate system of nuScenes. We strictly follow the benchmark protocol in state-of-art online mapping-based motion prediction methods (Gu et al., 2024a;b). We use trajdata (Ivanovic et al., 2024) interface to access the past and future trajectories of agents. We upsample the trajectories to 10Hz and predict 3 seconds of future trajectories from 2 seconds of past trajectories. Only samples with complete past and future trajectories are used for training and evaluation.

Metrics. We follow the metrics in (Gu et al., 2024a;b) as well, with three widely used metrics: minimum Average Displacement Error (minADE), minimum Final Displacement Error (minFDE), and Miss Rate (MR). We predict multiple future trajectories and calculate the ADE and FDE for the trajectory closest to the ground truth, referred to as minADE and minFDE. ADE measures the average L_2 distance between predicted and ground-truth trajectories, while FDE measures the L_2 distance between the final points of the predicted and ground-truth trajectories. Miss Rate is the proportion of samples where FDE exceeds a certain threshold.

3.2 Results

Competitive Performance. We compare ESDMotion mainly with online mapping-based motion prediction methods. We select MapTR(Liao et al., 2023a) and MapTRv2-CenterLine(Liao et al., 2023b) as online map estimation models. As shown in Table 1, both anchor-free and anchor-based model achieves significant improvements. Our anchor-based model reduced minADE and minFDE by 13.4% and 7.8%.

Base I	Predict	tion Mode	1	HiVT (Z	Zhou et al., 2	022)	DenseTN	Γ (Gu et al.,	2021)
Method	E2E	HD map	SD map	$ \min ADE \downarrow$	$minFDE\downarrow$	$MR\downarrow$	$minADE\downarrow$	$minFDE\downarrow$	$MR\downarrow$
	×	\checkmark	×	0.3868	0.8063	0.0870	0.8809	1.4890	0.1903
Offline Map	×	×	\checkmark	0.3998	0.8207	0.0918	1.2117	1.9849	0.2776
	×	×	×	0.4192	0.8727	0.1018	-	-	-
	✓	\checkmark	×	0.3099	0.6581	0.0721	0.7166	1.2752	0.1483
ESDMotion++	\checkmark	×	\checkmark	0.3134	0.6662	0.0737	0.7597	1.3105	0.1523
	✓	×	×	0.3502	0.7765	0.1051	-	-	-

Table 2: Performance Gap Between HD Maps and SD Maps. We use different maps as input for
 the offline mapping method and ESDMotion. In general, ESDMotion narrows the gap.

Performance Improvement from End-to-End Method. As illustrated in Table 1, compared to base models (HiVT and DenseTNT) with SD maps as input, the end-to-end approach improves performance. With features extracted from raw data, it reduces minADE by 21.6% and 37.8% respectively on anchor-free and anchor-based models and decreases minFDE by 18.8% and 34.0%.

395 Performance gap between HD maps and SD maps. We examine how the type of base mod-396 els and the usage of end-to-end framework influence the performance gap between HD maps and 397 SD maps on our anchor-based and anchor-free model. We show the results in Table 2. For base motion prediction models, the anchor-based model DenseTNT is affected more greatly by the 398 precision of the maps than the anchor-free model HiVT. Compared within ESDMotion, the mi-399 nADE gap of maps on the anchor-based model is 0.0431(5.7%), while on the anchor-free model it 400 is just 0.0035(1.1%). Compared with HD map based online methods in Table 1, the anchor-free 401 model achieves larger improvement than the anchor-free model. We speculate that this is due to the 402 different ways these models utilize and depend on maps. Anchor-free model HiVT are designed 403 around agent features, with map features serving as auxiliary information, integrated through cross-404 attention. This makes the model less dependent on the map, allowing it workers even without any 405 map input. Additionally, the robust map encoder and cross-attention mechanism can still generate 406 useful map features from lower-precision SD maps. As a result, the performance gap between HD 407 and SD maps is relatively small. In contrast, anchor-based model DenseTNT directly uses vector-408 ized maps to extract goal points, predict their probability distribution, and select the optimal goal 409 point based on this distribution. The accuracy of the map directly affects the plausibility of goal point distribution and, consequently, the accuracy of the predicted target. This makes the model 410 highly dependent on map precision, widening the performance gap between HD and SD maps. 411

412 To investigate how the usage of the end-to-end framework influences the gap, we conducted experi-413 ments using different map inputs in both end-to-end (our method) and non-end-to-end architectures 414 (original HiVT and DenseTNT models). We found that the end-to-end approach not only im-415 proved overall performance but also reduced the gap between HD and SD map performance. For the anchor-free model, the gap between minADE and minFDE narrows by 73% (from 0.0130 416 to 0.0035) and 44% (from 0.0144 to 0.0081). For the anchor-based model, the gap decreases by 417 87% on minADE and 93% on minFDE. Notably, the narrowed gap does not mean that maps are 418 unnecessary, because an anchor-free model without maps has significantly poorer performance. It 419 states that the precision of maps is less important in end-to-end architecture. This aligns with our 420 hypothesis that under the end-to-end architecture, the motion prediction model directly incorporates 421 visual scene information. It may capture features such as lane markings or road boundaries from 422 BEV features, so the BEV feature partially compensates for the absence of high-precision maps. As 423 a result, maps primarily provide coarse priors, such as road direction and general layout, making 424 map precision less critical to the model's performance.

425

380 381 382

391

392

393

394

Results with predicted SD maps. We conduct experiments using the predicted SD map gener ated by MapTRv2 as input for four methods. The results show that when using the predicted SD
 map, ESDMotion achieves performance comparable to that with ground-truth SD maps. In con trast, using the predicted SD map leads to significant performance degradation for the base and
 MapUncentaintyPred (Gu et al., 2024a) methods compared to using ground-truth SD maps. For the
 MapBEVPred (Gu et al., 2024b) method, performance with the predicted SD map is better than using ground-truth SD maps alone but remains significantly lower than when using HD maps. Because

Agent to Predict \bigcirc Other Agents \rightarrow GT Future Trajectory \rightarrow Predicted Trajectories \bigcirc Past Trajectory Figure 6: Qualitative Results. The purple lines with arrows show six predicted future trajectories, and the red lines represent GT future trajectories. The BEV Feature is colored by the max value of the hidden feature at each grid. Our method provides an accurate prediction of turning and lane following.

Our method is specifically designed for SD maps, it accounts for the relative inaccuracies inherent to SD maps and demonstrates strong robustness. This robustness effectively mitigates the impact of errors introduced by predicted SD maps, ensuring reliable performance under such conditions.

Oualitative Analysis. As shown in Fig. 6, we visualize the motion prediction results of our method 468 in two scenarios and compare them with methods that utilize offline or online HD maps. The first 469 row illustrates a scene at a T-junction. The SD map indicates the road direction, signaling turning 470 right, while the BEV feature has stronger responses (darker color) along the turning path. Together, 471 ESDMotion accurately predicts the future motion trajectory. In contrast, the online HD map method 472 underestimates the motion distance, resulting in overly divergent trajectories, some of which en-473 croach into opposite lanes. The error in map estimation leads to inaccurate predictions. The second 474 row depicts a scenario where the vehicle should maintain its current lane after passing through the 475 intersection. The SD map suggests the road direction, while the BEV features highlight the driv-476 able area ahead (indicated by darker colors). ESDMotion correctly predicts that the vehicle should 477 continue straight, whereas the other two methods mistakenly predict a left turn.

478 479 480

481

460

461

462 463

464

465

466 467

3.3 ABLATION STUDIES

Road Observation and Enhanced Road Observation. Table 4 presents the ablation study re sults for Road Observation and Enhanced Road Observation on the HiVT-based model. Our Road
 Observation integrates map features and BEV features and improves motion prediction performance
 (-0.0052 on minADE and -0.0201 on minFDE). Enhanced Road Observation increases the flexibility
 of integration, leading to further improvements (-0.0162 on minADE and -0.0418 on minFDE).

486 Table 3: Ablation Study on Pseudo Lane 487 Expansion. We examine several combina-488 tions of numbers and distances of parallel lines to expand and choose the best dis-489 tances as 3 and 6 meters. 490

Map	Distances	$ \min ADE \downarrow $	$minFDE \downarrow$	$MR\downarrow$
HDMap	-	0.7166	1.2752	0.1483
SDMap	-	1.9735	3.8357	0.5892
SDMap	[0,3]	0.9627	1.5110	0.2451
SDMap	[0,3,6]	0.7941	1.3863	0.1627
SDMap	[0,2,4]	0.8472	1.3979	0.1722
SDMap	[0,3,6,9]	0.8132	1.3855	0.1630
SDMap	Adaptive	0.7597	1.3105	0.1523

Additionally, we tested different normalization methods of head weights. Normalizing weights using either Softmax or Sigmoid functions results in poorer performance, while directly using unrestricted and more expressive weights yields the best performance.

Pseudo Lane Expansion. Table 3 presents 505 the ablation study results for Pseudo Lane Ex-506 pansion on the DenseTNT-based model. The 507 number of expanded parallel lines and their dis-508 tance from the original SD instance are two crit-509 ical parameters in Pseudo Lane Expansion. In-510 sufficient or too close expanded lines can limit 511 coverage, potentially missing areas near the ve-512 hicle to be predicted, especially when the bias of the SD instance is large. Conversely, an ex-513 cessive number of lines can lead to interfer-514 ence and increased computational load. Our dy-515 namic strategy adjusts the parameters based on 516 the distribution of SD lanes, enhancing the cov-517

Table 4: Ablation Study on Enhanced Road Observation. F_{norm} denotes the normalization of head weights. "-" under "Module" means not using any road observation module.

Module	F_{norm}	$minADE \downarrow$	$minFDE\downarrow$	$MR\downarrow$
-	-	0.3296	0.7080	0.0881
Road Obs.	-	0.3244	0.6879	0.0832
Enhanced Road Obs.	Softmax	0.3239	0.6918	0.0863
Enhanced Road Obs.	Sigmoid	0.3211	0.6879	0.0801
Enhanced Road Obs.	None	0.3134	0.6662	0.0737

Figure 7: Visualization of Pseudo Lane Expansion. Left: the detailed HD map generates appropriate anchors in front of the agent. Middle: the sparser and misaligned SD map results in biased anchors. Right: Pseudo Lane Expansion generates extra anchors near the agent and helps predict the right goal and trajectory.

erage and accuracy of the generated lines and achieving best performance. 518

The visualization illustrates the effect of Pseudo Lane Expansion. In the scenario, the vehicle is on 519 the right side of the road and will drive straight. The provided SD instance correctly indicates the 520 road direction but is located far to the left, resulting in candidate target points that are also positioned 521 on the left side, leading to substantial errors. By applying the Pseudo Lane Expansion method, the 522 SD instance is extended laterally, with the parallel line on the right generating candidate target points 523 ahead of the vehicle, allowing the model to accurately select the target point and predict a trajectory 524 closely aligned with the ground truth. 525

4

526 527 528

499

500

501

502

503 504

CONCLUSION

In this paper, we introduce ESDMotion, a novel end-to-end motion prediction framework that ex-529 clusively utilizes SD maps without any HD map supervision. This framework effectively integrates 530 with both anchor-based and anchor-free motion prediction models. To address the low resolution 531 and alignment accuracy of SD maps, we designed two modules called Enhanced Road Observation 532 and Pseudo Lane Expansion. Experiments demonstrate that our model achieves performance com-533 parable to, or even better than online HD mapping-based models. We focused on the performance 534 gap between HD and SD maps, analyzing how the type of motion prediction model and the adoption of end-to-end architectures influence the gap.

- 538

540 REFERENCES 541

552

553

554

559

560

561

562

566

567

568

569

581

583

589

- Yuriy Biktairov, Maxim Stebelev, Irina Rudenko, Oleh Shliazhko, and Boris Yangel. Prank: motion 542 prediction based on ranking. Advances in neural information processing systems, 33:2553–2563, 543 2020. 14 544
- Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush 546 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for 547 autonomous driving. arXiv preprint arXiv:1903.11027, 2019. 6, 13 548
- Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urtasun. Spagnn: Spatially-aware graph neu-549 ral networks for relational behavior forecasting from sensor data. In 2020 IEEE International 550 Conference on Robotics and Automation (ICRA), pp. 9491–9497. IEEE, 2020. 14 551
 - Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 4
- Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia 555 Schmid. Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In 556 Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11525– 557 11533, 2020. 4 558
 - Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien Moutarde. Home: Heatmap output for future motion estimation. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 500–507. IEEE, 2021. 14
- Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien Moutarde. 563 Gohome: Graph-oriented heatmap output for future motion estimation. In 2022 international 564 conference on robotics and automation (ICRA), pp. 9107–9114. IEEE, 2022. 14 565
 - Junru Gu, Chen Sun, and Hang Zhao. Densetnt: End-to-end trajectory prediction from dense goal sets. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15303– 15312, 2021. 1, 2, 4, 7, 8, 14
- Junru Gu, Chenxu Hu, Tianyuan Zhang, Xuanyao Chen, Yilun Wang, Yue Wang, and Hang Zhao. 570 Vip3d: End-to-end visual trajectory prediction via 3d agent queries. In Proceedings of the 571 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5496–5506, 2023. 14, 572 573
- 574 Xunjiang Gu, Guanyu Song, Igor Gilitschenski, Marco Pavone, and Boris Ivanovic. Producing 575 and leveraging online map uncertainty in trajectory prediction. In Proceedings of the IEEE/CVF 576 Conference on Computer Vision and Pattern Recognition (CVPR), 2024a. 2, 7, 8, 14, 16 577
- Xunjiang Gu, Guanyu Song, Igor Gilitschenski, Marco Pavone, and Boris Ivanovic. Accelerating 578 online mapping and behavior prediction via direct bev feature attention. In European Conference 579 on Computer Vision (ECCV), 2024b. 2, 4, 7, 8, 14, 16 580
- Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. IEEE Pervasive 582 computing, 7(4):12–18, 2008. 7, 13
- Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tian-584 wei Lin, Wenhai Wang, Lewei Lu, Xiaosong Jia, Qiang Liu, Jifeng Dai, Yu Qiao, and Hongyang 585 Li. Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Conference on Com-586 puter Vision and Pattern Recognition, 2023. 2 587
- 588 Boris Ivanovic, Guanyu Song, Igor Gilitschenski, and Marco Pavone. trajdata: A unified interface to multiple human trajectory datasets. Advances in Neural Information Processing Systems, 36, 590 2024. 7
- Bo Jiang, Shaoyu Chen, Xinggang Wang, Bencheng Liao, Tianheng Cheng, Jiajie Chen, Helong 592 Zhou, Qian Zhang, Wenyu Liu, and Chang Huang. Perceive, interact, predict: Learning dynamic and static clues for end-to-end motion prediction. arXiv preprint arXiv:2212.02181, 2022. 16

601

602 603

604

605

606

613

624

631

632

633

- Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu Liu, Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient autonomous driving. *ICCV*, 2023. 2
- Zhou Jiang, Zhenxin Zhu, Pengfei Li, Huan ang Gao, Tianyuan Yuan, Yongliang Shi, Hang Zhao, and Hao Zhao. P-mapnet: Far-seeing map generator enhanced by both sdmap and hdmap priors, 2024. 1, 7, 13
 - Jiaqi Li, Pingfan Jia, Jiaxing Chen, Jiaxi Liu, and Lei He. Local map construction methods with sd map: A novel survey. *arXiv preprint arXiv:2409.02415*, 2024a. 13
 - Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map construction and evaluation framework. In 2022 International Conference on Robotics and Automation (ICRA), pp. 4628–4634. IEEE, 2022a. 1, 13
- Tianyu Li, Peijin Jia, Bangjun Wang, Li Chen, Kun Jiang, Junchi Yan, and Hongyang Li. Lane segnet: Map learning with lane segment perception for autonomous driving. In *ICLR*, 2024b. 1, 13
- ⁶¹⁰ Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer: Learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers. *arXiv preprint arXiv:2203.17270*, 2022b. 3, 4, 14
- ⁶¹⁴ Zhiqi Li, Zhiding Yu, Shiyi Lan, Jiahan Li, Jan Kautz, Tong Lu, and Jose M Alvarez. Is ego status all you need for open-loop end-to-end autonomous driving? In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14864–14873, 2024c. 16
- Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun. Learning lane graph representations for motion forecasting. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16*, pp. 541–556.
 Springer, 2020. 14
- Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu, and Chang Huang. Maptr: Structured modeling and learning for online vectorized hd map construction. In *International Conference on Learning Representations*, 2023a. 1, 7, 13
- Bencheng Liao, Shaoyu Chen, Yunchi Zhang, Bo Jiang, Qian Zhang, Wenyu Liu, Chang Huang, and Xinggang Wang. Maptrv2: An end-to-end framework for online vectorized hd map construction. *arXiv preprint arXiv:2308.05736*, 2023b. 7
- Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Alberto Del Bimbo. Mantra: Memory augmented networks for multiple trajectory prediction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7143–7152, 2020. 14
 - Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d. In *Computer Vision–ECCV 2020: 16th European Conference*, *Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16*, pp. 194–210. Springer, 2020. 4
- Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion transformer with global intention
 localization and local movement refinement. *Advances in Neural Information Processing Systems*,
 2022. 1, 14
- Rémy Sun, Li Yang, Diane Lingrand, and Frédéric Precioso. Mind the map! accounting for
 existing map information when estimating online hdmaps from sensor data. *arXiv preprint arXiv:2311.10517*, 2023. 13
- Huijie Wang, Tianyu Li, Yang Li, Li Chen, Chonghao Sima, Zhenbo Liu, Bangjun Wang, Peijin Jia, Yuting Wang, Shengyin Jiang, Feng Wen, Hang Xu, Ping Luo, Junchi Yan, Wei Zhang, and Hongyang Li. Openlane-v2: A topology reasoning benchmark for unified 3d hd mapping. In *NeurIPS*, 2023. 13
- Xinshuo Weng, Boris Ivanovic, Yan Wang, Yue Wang, and Marco Pavone. Para-drive: Parallelized
 architecture for real-time autonomous driving. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15449–15458, 2024. 16

- Yuwen Xiong, Zhiqi Li, Yuntao Chen, Feng Wang, Xizhou Zhu, Jiapeng Luo, Wenhai Wang, Tong Lu, Hongsheng Li, Yu Qiao, Lewei Lu, Jie Zhou, and Jifeng Dai. Efficient deformable convnets: Rethinking dynamic and sparse operator for vision applications. *arXiv preprint arXiv:2401.06197*, 2024. 6
- Tianyuan Yuan, Yicheng Liu, Yue Wang, Yilun Wang, and Hang Zhao. Streammapnet: Streaming mapping network for vectorized online hd map construction. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 7356–7365, January 2024.
- Shuang Zeng, Xinyuan Chang, Xinran Liu, Zheng Pan, and Xing Wei. Driving with prior maps:
 Unified vector prior encoding for autonomous vehicle mapping. *arXiv preprint arXiv:2409.05352*, 2024. 13
- Hengyuan Zhang, David Paz, Yuliang Guo, Arun Das, Xinyu Huang, Karsten Haug, Henrik I Christensen, and Liu Ren. Enhancing online road network perception and reasoning with standard definition maps. *arXiv preprint arXiv:2408.01471*, 2024. 13
- Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben Sapp, Balakrishnan Varadarajan, Yue Shen,
 Yi Shen, Yuning Chai, Cordelia Schmid, et al. Tnt: Target-driven trajectory prediction. In *Con- ference on Robot Learning*, pp. 895–904. PMLR, 2021. 14
- Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. Hivt: Hierarchical vector trans former for multi-agent motion prediction. In *Proceedings of the IEEE/CVF Conference on Com- puter Vision and Pattern Recognition (CVPR)*, 2022. 1, 2, 4, 7, 8, 14
- Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. Query-centric trajectory prediction.
 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17863–17873, 2023. 14
 - Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020. 4
- 676 677 678 679

680

674

675

660

667

A RELATED WORK

681 A.1 HD MAPS AND SD MAPS 682

683 HD Maps. High-definition(HD) maps contain detailed road information, but their creation re-684 quires extensive manual annotation and ongoing maintenance, making them expensive and unscal-685 able (Li et al., 2022a). This leads to the development of various online map estimation methods, which estimate HD maps from camera or LiDAR data. Recent approaches such as MapTR(Liao 686 et al., 2023a; Li et al., 2024b) are mostly based on an encoder-decoder architecture, where BEV 687 (bird's-eye view) features are extracted from sensor data, and a transformer decoder is used to pre-688 dict various map elements. Moreover, MapEX (Sun et al., 2023) encodes map elements into query 689 tokens and refines the matching algorithm. This results in better performance and robustness. Online 690 map estimation enables autonomous vehicles to operate in areas without Offline HD map coverage, 691 reducing dependency on HD maps. However, these methods still require HD map ground truth for 692 supervised training, making it challenging to obtain sufficient HD map data for large-scale training. 693 Additionally, online HD map estimation consumes computational resources and time.

694

SD Maps. Since obtaining HD maps is costly, easily accessible, and scalable standard-definition (SD) maps garner increasing attention. Currently, many methods utilize SD maps as priors to predict HD maps (Li et al., 2024a). For example, PriorDrive uses a unified vector encoder to effectively encode diverse vector prior maps including SD maps to enhance the robustness and accuracy of online HD map construction. (Zeng et al., 2024) Some studies in this field (Jiang et al., 2024; Zhang et al., 2024) merge SD maps from Open Street Maps (OSM) (Haklay & Weber, 2008) into widely used datasets like nuScenes (Caesar et al., 2019) and OpenLane-V2 (Wang et al., 2023) to make them more available.

A.2 MOTION PREDICTION WITH MAPS

704 Motion prediction with offline HD maps. Many motion prediction models use offline HD maps 705 to obtain environmental information. Early models typically use rasterized HD maps and encode them with Convolutional Neural Networks (CNNs) (Marchetti et al., 2020; Biktairov et al., 2020; 706 Casas et al., 2020; Gilles et al., 2021). However, high-resolution rasterized maps incur significant 707 storage and computational costs. Recent approaches shift towards vectorized representations of HD 708 maps. In terms of map utilization, some methods such as LaneGCN(Liang et al., 2020), GOHOME 709 (Gilles et al., 2022) and HiVT(Zhou et al., 2022), employ Graph Neural Networks (GNNs) to encode 710 the influence of map elements on vehicle interactions. Other methods like MTR (Shi et al., 2022) and 711 QCNet(Zhou et al., 2023) directly use transformer architectures, leveraging cross-attention mecha-712 nisms to fuse map and vehicle features. Some target-based approaches (Zhao et al., 2021; Gu et al., 713 2021) generate candidate target points based on the map, leading to a stronger dependency on the 714 map. However, most methods rely on HD maps, which are costly to obtain. ViP3D(Gu et al., 2023) 715 combines detection, tracking, and prediction in an end-to-end structure, gets agent information di-716 rectly from sensor data, but still uses offline HD maps. Currently, there is a lack of motion prediction 717 methods specifically designed for or adapted to SD maps.

718

719 Motion prediction with online HD maps. Directly inputting online HD maps into motion pre-720 diction models is a basic method of online mapping-based motion prediction. However, the error 721 between estimated HD maps and GT HD maps leads to errant behaviors in motion prediction. To 722 address this issue, a highly rated work (Gu et al., 2024a) (CVPR24 best paper candidate) extends online map estimation methods to additionally estimate uncertainty, to provide information about 723 potential errors of maps for downstream models. Another study (Gu et al., 2024b) directly uses 724 BEV features generated by online map estimation models as substitutes for vectorized HD maps. In 725 this way, decoding HD maps in upstream models and encoding in the downstream model is omitted, 726 which results in increased speed, decreased information loss, and better performance. However, 727 in this work, the upstream model and downstream model are trained separately and the latter uses 728 stored offline BEV features obtained by the former. This makes the system non-differentiable. Op-729 positely, in our method, we train all modules in an end-to-end way demonstrating a performance 730 enhancement, and we only use SD maps as map input.

731 732 733

734

B IMPLEMENTATION DETAILS

We strictly follow the benchmark protocol in state-of-art online mapping-based motion prediction methods (Gu et al., 2024a;b). For some samples without SD maps in the range, we use an all-zero vector as input. We train ESDMotion on 8 RTX 4090 GPUs with the batch size of 1 on each GPU. We set the learning rate to 2×10^{-4} and the number of epochs to 48, with no dropout for faster convergence.

For the BEV encoder, we adopt the official configuration of BEVFormer-base (Li et al., 2022b).
The encoder takes a temporal queue of 4 samples as input and obtains BEV features with 6 encoder layers. The BEV feature has a size of 200x200x256 and is in the Lidar coordinate system.

For the motion prediction models, we strictly align the setting of original modules in HiVT and
DenseTNT with previous works (Gu et al., 2024a;b) for fair comparison. Specifically, we use a
4-layer temporal transformer, a 1-layer local interaction module, and a 3-layer global interaction
module of HiVT. We only add new modules to these two base models without removing existing
modules.

- 748
- 749
 750 C MORE DETAILS AND DISCUSSIONS ABOUT DENSETNT AND
 751 ANCHOR-BASED MODEL
- 752

753 C.1 LARGE SAMPLE KERNEL V.S. PSEUDO LANE EXPANSION 754

755 The sample kernel in DenseTNT determines the number and range of dense goal points generated from sparse goals(points on lanes). The larger sample kernel results in the wider coverage of dense

Table 5: Performance of Two Dense Goals Generation Strategy.

way. 786 787 In DenseTNT, goal point selection is a hierarchical process. The lane scoring is performed first, 788 where features are extracted for each lane of the vectorized map, and scores are computed to select 789 a fixed number of lanes. Then, dense goal points are generated around the points of selected lanes

791 Simply increasing the sampling kernel size to achieve a coverage similar to pseudo-lane expansion 792 would require a kernel size of nearly 10. This would lead to an excessively large number(more 793 than 2000 for a lane) of densely sampled points, significantly reducing model efficiency, which 794 is shown in Fig. 8 (left). In contrast, Pseudo Lane Expansion uses a smaller sample kernel and 795 generates pseudo lanes that hypothesize the approximate locations of potential drivable paths, as shown in Fig. 8 (right). Through lane scoring, the model identifies the pseudo lanes most "real" and 796 most likely to represent road structures. Dense sampling is then applied only around these selected 797 pseudo-lanes. This approach reduces the number of densely sampled points and is specifically de-798 signed to adapt to the coarser and less aligned SD maps. The Tab. 5 shows that our Pseudo Lane 799 Expansion achieves better performance than simply increasing the size of the sample kernel. 800

801

790

802 803

C.2 PSEUDO LANES WITH EMPTY MAPS

with the sampling kernel.

804

805 Although SD maps are globally covered, there are small areas like parking lots that are not covered. 806 In fact, this is a common limitation of methods that rely entirely on maps for goal point selection. 807 We make adaptations to DenseTNT to handle such special scenarios. As shown in Fig. 9, We defined a set of lanes at specific angles to simulate the potential driving directions of the vehicle. With the 808 positions of other vehicles and visual information provided by the BEV feature, the model selects 809 appropriate goal points and paths in these situations.

Pseudo Lanes 🔶 Goal Candidates

Figure 9: Pseudo Lanes with Empty Maps. Table 6: Protocols and focus of works in end-to-end motion prediction.

Methods	Map information	Agents' Information	Focus
ViP3D (Gu et al., 2023)	GT HD maps	Detection results	The cooperative relations of detection and motion prediction
PiP (Jiang et al., 2022)	Predicted HD maps	Detection results	The interaction between detection and online mapping
ESDMotion (Ours)	GT/predicted SD maps	GT	Replacing HD Map with low-cost SD Map for motion prediction

PROTOCOLS AND FOCUS OF END-TO-END WORKS IN MOTION D PREDICTION

With the rapid development of end-to-end motion prediction, many valuable works emerge with different protocols and focus in the field of motion prediction, as shown in Tab. 6.

ViP3D (Gu et al., 2023) is the first fully differentiable vision-based approach to predict future tra-jectories of agents. For the prediction module in ViP3D, the input information of agents is obtained from the detection and tracking module and the input maps are GT HD maps. This setting is suitable for studying the cooperative relations of detection and motion prediction.

PiP (Jiang et al., 2022) is the first end-to-end Transformer-based framework that jointly and interac-tively performs online mapping, object detection, and motion prediction. For the prediction module in PiP, the input information of agents is from the perception model, and the input map is estimated online. This protocol is designed to explore the interaction between detection and online mapping, and its influence on downstream motion prediction task.

ESDMotion focuses on replacing HD Map with low-cost SD Map for motion prediction. End-to-end feature usage is our solution for the issues caused by using SD maps. To study the influence of map in a decoupled way, we adopt the protocols of MapUncertainty (Gu et al., 2024a) and BEVPred (Gu et al., 2024b). We use ground-truth information of agents and SD maps as input. With this protocol, the conclusion would not be influenced by the detection module.

Ε FUTURE WORK

There are two important aspects worth further investigation regarding the usage of SD maps. (1) Investigating the performance of motion prediction using SD maps in complex scenarios. Two insightful studies (Weng et al., 2024; Li et al., 2024c) have highlighted that most road structures in the nuScenes dataset are relatively simple. It is valuable to explore the differences between utilizing HD maps and SD maps in complex road structures, such as intricate intersections and detailed ramps. (2) Exploring methods for utilizing SD maps in other downstream tasks such as planning.