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Abstract

Spatial transcriptomics (ST) provides powerful
insights into gene expression patterns within tis-
sue structures, enabling the discovery of molec-
ular mechanisms in complex tumor microenvi-
ronments (TMEs). Phenotype-based discovery in
ST data holds transformative potential for linking
spatial molecular expression patterns to clinical
outcomes; however, appropriate ST data analy-
sis remains fundamentally fragmented and highly
labor-intensive. Due to its limited scalability con-
sidering the size of typical ST data in large co-
horts, researchers must rely on other phenotype-
annotated omics data modalities (e.g. bulk RNA-
sequencing) and align them with ST data to ex-
tract clinically meaningful spatial patterns. Yet,
this process requires manually identifying rele-
vant cohorts, aligning multi-modal data, selecting
and tuning analysis pipelines, and interpreting re-
sults—typically without any built-in support for
biologically context-aware reasoning. In this pa-
per, we present PhenoGraph, a large language
model (LLM) based multi-agent system, that au-
tomates the full pipeline for phenotype-driven ST
data analysis, augmented by biological knowledge
graphs for enhanced interpretability. Built on a
modular agent architecture, PhenoGraph dynam-
ically selects, executes, and corrects phenotype
analysis pipelines based on user-defined queries.
We showcase the flexibility and effectiveness of
PhenoGraph across a variety of TME ST datasets
and phenotype classes, highlighting its potential
to enhance biological discovery efficacy.
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1. Introduction

The tumor microenvironment (TME) is a complex and dy-
namic ecosystem composed of a heterogeneous mixture
of cell phenotypes, subtypes, and spatial structures. The
highly heterogeneous tumor ecosystem contains not only
malignant cells but also other cell types, such as endothelial
cells, stromal fibroblasts, and a variety of immune cells that
their cellular composition, molecular features, and spatial
patterns in TME all contribute to how tumors evolve and
respond to different therapeutic strategies. Thus, TME plays
a crucial role in cancer progression, metastasis, and resis-
tance to therapy. For instance, the cellular composition,
spatial organization of immune cells and their interaction
with non-immune cells within the TME can influence the ef-
fectiveness of immune responses, leading to heterogeneous
treatment outcomes among patients (Echarti et al., 2019;
Gajewski et al., 2013; Maffuid & Cao, 2023).

Spatial transcriptomics (ST) has emerged as a powerful
technique for studying cellular heterogeneity in higher reso-
lution in spatial context when investigating TMEs by retain-
ing spatial positions besides profiling transcriptomic gene
expression data at a variety of spatial locations (spots) in
a tissue sample (Niyakan et al., 2024b). By maintaining
spatial information, ST facilitates the exploration of how
specific cell types and molecular pathways are organized
within the tissue architecture, providing a clearer picture
of TMEs’ functional landscapes (Hu et al., 2023). To iden-
tify spot clusters from ST data, the standard approach is to
perform spatially aware unsupervised clustering methods,
which incorporate spatial coordinates or distances between
spots to define spot clusters using both gene expression sim-
ilarity and physical proximity (Xu et al., 2024; Hu et al.,
2021; Xu et al., 2022). However, this unsupervised cluster-
ing of tissue spots is limited in its ability to identify specific
tissue domains linked to crucial phenotypes, such as tumor
progression, survival outcome, and response to treatment.
Identification of phenotype-associated tissue regions is of
indispensable importance since it will facilitate detection of
prognostic markers that are specific to individual tissue do-
mains (Arora et al., 2023). On the other hand, unfortunately,
ST technology is not practical in large cohorts due to the
resource-intensive nature of collecting spatial data, which
lacks sufficient statistical power to identify the tissue do-
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mains that are associated with the phenotype of interest (Jin
et al., 2024).

Meanwhile, extensive clinical phenotype information of
a large number of cohorts is readily available in pub-
licly accessible databases such as The Cancer Genome
Atlas (TCGA) (Weinstein et al., 2013). The clinical phe-
notype information in these databases is primarily col-
lected on bulk tissue samples. Recently, single-cell RNA-
sequencing (scRNA-seq) based methods such as Scis-
sor (Sun et al., 2022), scAB (Zhang et al., 2022a) and
PIPET (Ruan et al., 2024) have made significant progress
in linking single-cell subpopulations to clinical phenotypes
derived from bulk data. While these approaches have proven
effective in the single-cell domain, they are not directly ap-
plicable to spatial transcriptomics, as they ignore the spatial
coordinates that are intrinsic to ST datasets. As a result,
linking bulk gene expression data with spatial profiles to
identify phenotype-associated tissue domains in ST remains
an important but unsolved problem.

This integration between phenotype-annotated bulk expres-
sion data and spatial transcriptomics is far from straightfor-
ward and also largely manual in the current practice (Baul
et al., 2024). Researchers must independently search for rel-
evant bulk datasets that match the spatial cohort of interest,
extract and align phenotype labels, preprocess and harmo-
nize multi-modal data, select suitable analysis tools, and
iteratively tune model settings to ensure robust phenotype-
based clustering or segmentation. Even after this, interpret-
ing results in a biologically meaningful way often requires
external queries into literature or biological databases to
contextualize the findings (Luo et al., 2024). No existing
tool provides an end-to-end framework for automating this
multi-modal integration, phenotype-driven analysis, and
downstream biological interpretation.

Recent advances in large language models (LLMs) and
agent-based workflow developments offer an exciting op-
portunity to overcome these limitations (Xi et al., 2023).
LLM-based agents are capable of reasoning over complex
instructions, interacting with external tools, dynamically
rewriting code, and making iterative decisions based on
intermediate outputs (Gao et al., 2024). These capabili-
ties make them well-suited for automating scientific work-
flows that require coordination between heterogeneous data
modalities, programmatic analysis pipelines, and domain-
specific knowledge sources (Roohani et al., 2024; Zhou
et al., 2024). In particular, multi-agent systems composed
of specialized LLM-powered agents can collaborate to per-
form a wide range of tasks, including data retrieval, dynamic
code generation and execution, error handling, iterative op-
timization, and domain-specific reasoning, enabling flexi-
ble, modular, and scalable automation of complex scientific
workflows (Guo et al., 2024).

Several recent efforts have begun to explore the use of such
agents in the omics domain. For instance, CellAgent (Xiao
et al., 2024) automates several downstream scRNA-seq anal-
ysis tasks such as batch correction, trajectory inference and
cell type annotation (Niyakan et al., 2021); AutoBA (Zhou
et al., 2024), in addition to scRNA-seq data, facilitates the
automated downstream analysis of other omics data modali-
ties such as ATAC-seq and ChIP-seq data as well. Recently,
SpatialAgent (Wang et al., 2025) has been developed to
autonomously support specific spatial transcriptomics tasks
such as tissue annotation and cell-cell interaction analyses
by translating natural language instructions into executable
codes. These systems demonstrate the potential of Al agents
to reduce human effort, accelerate hypothesis generation,
and standardize workflows in omics data analysis. However,
despite these advances, no existing agent framework has
been developed for phenotype-guided ST data analysis, par-
ticularly one that integrates multi-modal data, specifically
external bulk data, and provides biological context through
structured knowledge sources.

To address current limitations, we introduce PhenoGraph,
a novel LLM-based multi-agent system designed for
phenotype-guided spatial transcriptomics analysis. Unlike
existing tools, PhenoGraph autonomously integrates exter-
nal bulk RNA-seq datasets with ST data of interest by re-
trieving relevant TCGA cohorts based on user-specified
phenotypes and tissue regions, executing spatial phenotype
association using a modified version of Scissor (Sun et al.,
2022) adapted for ST data, and interpreting results through
biological knowledge graph reasoning. The system is com-
posed of multiple collaborative agents, each responsible for
specialized subtasks such as dataset discovery, phenotype ex-
traction, code generation, parameter tuning, and biomarker
contextualization. By embedding domain knowledge and
dynamic decision-making within the agentic workflow loop,
PhenoGraph enables automated, interpretable spatial phe-
notype discovery that scales beyond manual bioinformatics
workflows.

2. Methods
2.1. Overview of PhenoGraph

Given the user prompt describing their analysis goal(s)
together with necessary ST data files including gene ex-
pression table and spatial coordinates of spots, our Pheno-
graph initiates an end-to-end, multi-agent analysis work-
flow for phenotype-guided discovery in the given ST data.
The overall framework of PhenoGraph is illustrated in Fig-
ure 1. First, the TCGA Agent extracts relevant tissue and
phenotype query terms (e.g., “tissue: brain”, “phenotype:
survival”, etc.) from the user prompt and autonomously re-
trieves top matching bulk RNA-seq and clinical phenotype
data from the TCGA database (Weinstein et al., 2013) via
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Figure 1. Schematic overview of the PhenoGraph multi-agent system for phenotype-driven discovery in spatial transcriptomics data

augmented with knowledge graphs.

the corresponding API as illustrated in Figure 1.B. Then,
our ML (machine learning) Agent utilizes a modified ver-
sion of Scissor—adapted to handle spatial transcriptomics
data—to associate phenotype information from bulk sam-
ples with spatial spots, identifying tissue regions most rele-
vant to the specified phenotype and reporting the list of top
differentially expressed genes (DEGs) between positively
and negatively associated spots with the phenotype of inter-
est (Figure 1.C). Lastly, to ensure biological interpretabil-
ity—a critical requirement for deploying AI/ML models in
biomedical research (Niyakan et al., 2024a)—PhenoGraph
leverages structured biological knowledge graphs (e.g.,
PrimeKG (Chandak et al., 2023)) in a Knowledge Graph
Agent to contextualize the genes identified in phenotype-
associated tissue regions (Figure 1.D). By mapping these
genes to known molecular pathways, diseases, phenotypes,
and drug interactions, the system grounds its discoveries in
established biological knowledge. This not only enhances
the interpretability of the model’s output but also provides
mechanistic insight into spatial patterns, making Pheno-
Graph a scalable and interpretable solution for spatial omics
research. Here, we discuss each agent in more details, re-
spectively:

2.2. TCGA Agent

The TCGA Agent in PhenoGraph is a specialized LLM-
powered component designed to automatically retrieve
phenotype-annotated bulk RNA-seq datasets from TCGA
that match the user’s query and uploaded ST data. Given

a natural language prompt describing the tissue and phe-
notype of interest (e.g., “brain tissue with survival infor-
mation”), the agent first invokes a LLM-based extraction
pipeline to identify key biomedical entities, including tissue
type, disease, and phenotype. To resolve ambiguities in
terminology and anatomical references, the agent performs
LLM-aided tissue mapping, translating fine-grained or col-
loquial descriptions (e.g., “frontal cortex”) into canonical
TCGA project identifiers (e.g., “TCGA-GBM”).

As illustrated in Figure 2, the agent uses a structured system
prompt that defines its role, objectives, and expected output
file format for relevance-scored TCGA dataset recommenda-
tions. This structure ensures consistency and interpretability
of reasoning across diverse queries.

To ensure accurate and robust retrieval, the TCGA Agent
employs a JSON-controlled prompt structure to guide each
reasoning step in a modular and interpretable fashion. It
performs semantic matching and synonym resolution to ex-
pand or refine query terms when exact matches are not
found, increasing flexibility across diverse query styles.
Once potential TCGA projects are identified, the agent
constructs API requests to the GDC endpoint at https:
//api.gdc.cancer.gov and retrieves relevant bulk
RNA-seq datasets along with associated clinical metadata
(e.g., survival time, vital status). The results are then ranked
based on phenotype alignment and anatomical proximity,
ensuring the most relevant cohorts are prioritized for down-
stream integration with ST data.
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# YOUR ROLE AND EXPERTISE
1- You are a bioinformatics expert specializing in tissue, cell
type and phenotype matching to TCGA datasets.

# YOUR OBJECTIVES

1- Based on the query tissue and dataset descriptions,
determine how relevant each dataset is to the query.

2- Rank the datasets by relevance and include a brief
explanation for each.

3- Return a JSON with ranked datasets metadata and
relevance scores (0-100).

The JSON should have the following structure:
{

"datasets": [
{H
"id": "dataset_id",
"relevance_score": 95,
"explanation": "Highly relevant
because it contains the exact tissue type"

1

]
1
Query tissue: {query tissue}
Available datasets: {datasets_info}
Return the top {top_n} most relevant datasets with relevance
(scores and brief explanations.

J

Figure 2. System prompts for the TCGA Agent role description,
objectives and JSON-structured output file format.

2.3. Machine Learning Agent

The ML (Machine Learning) Agent in PhenoGraph is
responsible for automating the planning and execution
of phenotype-guided analyses on ST data by integrating
phenotype-labeled bulk RNA-seq data with spatial gene
expression profiles. At a high level, this agent determines
which tissue regions (spots) in the ST dataset are most as-
sociated with a clinical phenotype of interest (e.g., tumor
status, survival outcome), leveraging a modified version
of the Scissor algorithm (Sun et al., 2022). The agent is
designed to operate autonomously within a ReAct prompt-
ing framework (Yao et al., 2023), enabling dynamic code
generation utilizing human provided code templates, itera-
tive parameter tuning, and error recovery. Here, we discuss
concepts related to our ML Agent in more details:

2.3.1. SCISSOR

Scissor (Sun et al., 2022) is a supervised learning frame-
work originally developed for single-cell RNA-seq data that
identifies a subset of single cells associated with clinical

phenotypes measured from bulk RNA-seq data. The method
begins by computing a similarity matrix S € R™*™, where
each element S;; is the Pearson correlation between the
gene expression profile of the ¢-th bulk sample and the j-
th single cell. Given a phenotype vector Y € R" for the
bulk samples and the similarity matrix S, Scissor solves a
network-regularized regression problem to learn a sparse
coefficient vector 8 € R™, where each §; indicates the
contribution of the j-th cell to the phenotype. The objective
function is:

min  L(Y.98) +a (M8 +287LB) . (1)

Here, [ is a coefficient vector over the cells, ||3||1 pro-
motes sparsity, and 3 L3 enforces smoothness using the
graph Laplacian L of the cell-cell similarity network. The
loss term L is chosen based on the phenotype type: e.g.,
logistic loss for binary outcomes, Cox partial likelihood
for survival, and squared error for continuous traits. The
hyperparameters A\; and Ay control the trade-off between
sparsity and smoothness. Additionally, « is a global hy-
perparameter that controls the overall strength of the regu-
larization terms, allowing fine-grained adjustment of spar-
sity/smoothness impact relative to the phenotype associa-
tion loss. The resulting non-zero coefficients in [ identify
phenotype-associated cells, with sign and magnitude pro-
viding direction and strength of association. Specifically,
positive entries (Scissor(+)) mark cells positively associ-
ated with the phenotype, and negative entries (Scissor(-))
indicate inverse association.

2.3.2. SCISSOR FOR SPATIAL TRANSCRIPTOMICS

To adapt Scissor for use in ST data, we replace single cells
with spatial spots and use spatial coordinates to define the
neighborhood graph. The similarity matrix S is computed
by correlating the bulk expression profiles with the spatial
expression vectors. To construct the spot-spot similarity
network used in the graph Laplacian regularization term
of Scissor, we exploit the spatial organization of spots in-
herent to ST technologies. Most ST platforms, such as
Slide-seq (Rodriques et al., 2019) and 10X Visium (10x Ge-
nomics, 2022), capture gene expression measurements on a
fixed 2D grid with known geometric structures. Specifically,
Slide-seq adopts a lattice layout, while Visium uses a hexag-
onal layout. These spatial configurations enable a natural
definition of neighborhood relationships among spots. In
a lattice layout, each non-boundary spot typically shares
edges with four immediate neighbors (up, down, left, right),
whereas in a hexagonal layout, each spot connects to six sur-
rounding neighbors. We define edges in the spot-spot graph
based on these adjacency rules, constructing an undirected
graph where nodes represent spatial spots and edges capture
physical proximity. This graph forms the basis of the graph
Laplacian L used to enforce smoothness in phenotype as-
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sociation across spatially adjacent regions. We also modify
the hyperparameter o dynamically to ensure that the result-
ing spot selections are neither too sparse nor overly diffuse,
targeting a biologically interpretable subset (e.g., 40-70%
of spots). This spatially adapted version of Scissor enables
identification of tissue domains significantly associated with
the given phenotype.

2.3.3. REACT-BASED ML AGENT IMPLEMENTATION

The ML Agent in PhenoGraph employs a LLM at its core
to drive a ReAct (Reasoning and Acting) loop, which de-
composes complex phenotype-guided spatial analysis into
a sequence of interpretable, goal-directed steps (Yao et al.,
2023). The agent operates through iterative cycles of (1)
observation—analyzing the current execution state, tool out-
put, or error messages, (2) thought—determining the next
best action to take based on the current context, and (3)
action—invoking relevant tools such as R script execution
(generated from human-provided R code templates for exe-
cuting scissor pipeline), parameter tuning, or code rewriting
(Supplementary Figure S2). Crucially, based on the phe-
notype class extracted from the user’s query (e.g., binary,
survival, or continuous), the agent autonomously selects the
appropriate analysis pipeline and script template—ensuring
compatibility with the statistical model underlying Scis-
sor’s objective function. This loop enables the agent to
autonomously conduct spatial phenotype association anal-
ysis using the modified version of Scissor while adjusting
hyperparameters such as « to balance sparsity and smooth-
ness in the selection of associated spots.

Throughout this process, the agent maintains a short-term
memory buffer that stores prior tool outputs, internal reason-
ing steps, and user-provided context. This memory allows
the agent to perform robust multi-turn interactions and to
refine its actions based on past observations. For instance, if
script execution fails, the agent uses the logged error trace
to rewrite the code or alter parameters before reattempting
execution. The reasoning loop continues until the agent
produces a biologically plausible and computationally valid
result—namely, a set of spatial spots associated with the
phenotype and a ranked list of top differentially expressed
genes between Scissor-inferred positively and negatively
associated spots for downstream biological interpretation.
This architecture allows the ML Agent to act not just as an
executor of analysis scripts, but as an autonomous, goal-
driven problem solver tailored for phenotype-aware spatial
omics workflows.

2.4. Knowledge Graph Agent

The KG (Knowledge Graph) Agent in PhenoGraph is de-
signed to enrich phenotype-guided discoveries with mech-
anistic context by interfacing with the PrimeKG (Chandak

et al., 2023) biomedical knowledge graph. Built using the
LangChain framework, the KG Agent leverages a structured
graph of biomedical entities—including genes, phenotypes,
diseases, tissues, pathways, and drugs—to extract and ex-
plain biological relationships among phenotype-associated
markers identified by the ML Agent.

Upon receiving a query that includes a gene (or set of mark-
ers), tissue, and phenotype, the KG Agent executes a multi-
step workflow: (1) it searches for corresponding nodes in
the PrimeKG dataset; (2) it extracts a biologically relevant
subgraph within a specified hop distance using semantic
constraints; (3) it analyzes the subgraph to identify direct
and indirect paths between entities; and (4) it optionally vi-
sualizes the resulting network and summarizes its biological
implications. Specifically, given a query, the agent per-
forms a focused extraction of nearby nodes and edges that
may contain relevant paths, and returns a human-readable
explanation of how the entities are connected. This out-
put includes a graph-backed biological narrative highlight-
ing associations such as shared disease context, common
molecular targets, or regulatory cascades (Supplementary
Figure S3).

By embedding this biological reasoning loop into Pheno-
Graph, the KG Agent allows users to move beyond spa-
tial phenotype segmentation and into hypothesis generation
grounded in existing biomedical knowledge. This enhances
the biological interpretability and translational relevance
of the system’s output, a crucial requirement for Al-driven
tools in precision medicine and biomarker discovery.

2.5. Configurations

PhenoGraph is built on a modular agent framework powered
by OpenAI’s GPT-40 (OpenAl, 2024)and the LangChain or-
chestration platform (Chase & Team, 2023). GPT-4o0 serves
as the underlying large language model across all agents,
enabling complex reasoning, tool invocation, and multi-step
decision making. LangChain is used to coordinate tool
selection, manage agent memory, and ensure consistency
across multi-turn workflows. These technologies provide
the backbone for PhenoGraph’s autonomous spatial analysis
and biological interpretation. Detailed system configura-
tions, including model versions, context window sizes, and
orchestration structure, are provided in the Supplementary
Section A.2.

3. Results

In this section, we demonstrate the capabilities of the
PhenoGraph multi-agent framework through two phenotype-
guided spatial transcriptomics case studies. Each experi-
ment highlights a different phenotype class and tissue type,
showcasing the flexibility and biological relevance of our
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### 1. Summary of Key Findings
The subgraph analysis from PrimeKG reveals intricate relationships between the gene 'FOS', the gene 'VIM!', the tissue 'breast', and the
phenotype 'invasive breast carcinoma'’. Both genes are d with breast and show in breast tissue. The
phenotype 'invasive breast carcinoma' is a subtype of 'breast carcinoma', indicating a specific disease progression pathway. The protein-
protein interaction (PPI) between FOS and VIM suggests a collaborative role in the pathology of breast carcinoma.

### 2. Gene-Tissue Relationship

- **FOS in Breast Tissue**: The gene 'FOS' is associated with 'breast carcinoma', indicating its expression and potential regulatory role
in breast tissue. FOS is a well-known transcription factor involved in cell proliferation, differentiation, and survival.

- **VIM in Breast Tissue**: Similarly, "VIM' (vimentin) is expressed in breast tissue. Vimentin is a type Il intermediate filament
protein generally iated with epithelial ition (EMT), a process critical in cancer metastasis and progression.

### 3. Connection to the Phenotype

- **Invasive Breast Carcinoma**: Both FOS and VIM are associated with 'breast carcinoma', and by extension, with 'invasive breast
carcinoma'. The presence of these genes in the disease context suggests their involvement in the progression from a localized tumor to
an invasive phenotype. The parent-child relationship between 'breast carcinoma' and 'invasive breast carcinoma' in the graph
underscores this progression.

- **Gene Interactions**: The PPI between FOS and VIM suggests a synergistic interaction that might influence the invasive
capabilities of breast carcinoma cells, potentially through mechanisms like EMT.

### 4. Key Pathways and Mechanisms

- **EMT and Cancer Progression**: The expression of VIM in breast tissue and its association with FOS through PPIs point towards
their role in EMT. EMT is a key process in cancer metastasis where epithelial cells lose their characteristics and gain migratory
properties typical of mesenchymal cells.

- **Transcriptional Regulation by FOS**: As a transcription factor, FOS can regulate several downstream genes that are crucial for cell
cycle lation and is. Its iation with breast i its potential role in tumorigenesis.

#### 5. Therapeutic Implications

- **Targeting FOS and VIM**: Given their roles in breast carcinoma and potential involvement in EMT, targeting FOS and VIM
could be a strategy to inhibit tumor progression and is. Inhibitors or modulators of these proteins might prevent the transition
to invasive breast carcinoma.

- **Biomarkers for Early Detection**: Since FOS and VIM are associated with the p
breast carcinoma, they could serve as biomarkers for early detection of aggressive cancer types.

from breast to invasive

In conclusion, the analysis of this subgraph provides valuable insights into the molecular mechanisms underlying breast carcinoma,

diagnostic tools.

N

particularly its invasive forms. Understanding these relationships further aids in the development of targeted therapies anv

Figure 3. PhenoGraph analysis results for binary tumor vs. normal phenotype in breast carcinoma.

developed multi-agent system. First, we conduct a binary
phenotype analysis comparing tumor versus normal cells
in breast invasive carcinoma, using 10x Genomics Visium
spatial transcriptomics data collected from breast ductal car-
cinoma tissue. This experiment evaluates PhenoGraph’s
ability to localize tumor-associated regions and identify
phenotype-specific spatial markers. Second, we perform
a survival-based phenotype analysis of pancreatic ductal
adenocarcinoma (PDAC), using ST data from pancreatic

ductal tissue (Moncada et al., 2020). Here, we assess Pheno-
Graph’s capacity to stratify spatial regions based on clinical
survival outcomes and identify prognostic spatial biomark-
ers. Together, these experiments validate PhenoGraph’s
ability to integrate external phenotypic data, perform au-
tonomous spatial segmentation, and produce biologically
interpretable results across diverse cancer contexts.
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3.1. Binary Tumor Phenotype in Breast Carcinoma

To evaluate PhenoGraph’s performance on binary
phenotype-guided spatial analysis, we have applied our
multi-agent system to a breast invasive carcinoma case
study using a publicly available 10x Genomics Visium
ST data derived from breast ductal carcinoma tissue
(Figure 3). The user prompt specifies a request for binary
tumor phenotype analysis (between tumor and normal)
of the provided ST data (Figure 3.A). In response, the
TCGA Agent automatically identifies and retrieves the
most relevant bulk RNA-seq dataset, namely TCGA-BRCA,
which includes binary tumor status annotations (Figure 3.B).
The ML Agent then aligns the TCGA phenotype data
with the ST sample using the modified version of Scissor
to identify tissue regions associated with the tumor
phenotype (Figure 3.C). The detailed ReAct loop trace of
the ML Agent, including the full sequence of <Thought>,
<Action>, and <Observation> steps, along with the tools
it invokes and the corresponding intermediate outputs, is
provided in Supplementary Figures S4 and S5. This trace
illustrates how the agent dynamically selects the appropriate
phenotype analysis pipeline, adjusts hyperparameters, and
interprets results in a multi-step, reasoning-driven process
that ultimately leads to the final spatial segmentation and
gene prioritization.

The analysis reveals several tumor-associated spatial spots,
and the ML Agent identifies FOS, FNI, and EGRI as top 3
differentially expressed genes between inferred positively
and negatively tumor associated spots. These markers
have previously been studied as important regulators in
breast carcinoma, with roles in tumor progression and inva-
sion (Chang et al., 2023; Zhang et al., 2022b; Saha et al.,
2021). Their expression patterns, both spatially and across
distinct tissue compartments further support their biological
relevance in breast carcinoma: each gene exhibits distinct
differential expression across tumor and non-tumor regions
(Supplementary Figure S6). The top DEG (FOS) is sub-
sequently passed to the Knowledge Graph Agent, which
queries the PrimeKG biomedical knowledge graph to re-
trieve biologically contextual subgraphs. Notably, the sub-
graph reveals FOS and VIM as central nodes, each expressed
in breast tissue and associated with invasive breast carci-
noma. These genes are connected via protein-protein inter-
action (PPI) relationships and are each implicated in cancer-
related processes, particularly epithelial-mesenchymal tran-
sition (EMT) and transcriptional regulation (Figure 3.D).

From a biological perspective, FOS is a transcription fac-
tor known to regulate cell cycle progression and apopto-
sis, while VIM (vimentin) is a key marker of epithelial-
mesenchymal transition (EMT), frequently upregulated dur-
ing tumor invasion and metastasis (Casalino et al., 2023).
The Knowledge Graph Agent extracts a subgraph connect-

ing these markers and highlights their involvement in inva-
sive breast carcinoma, based on relationships encoded in
PrimeKG. In particular, it discovers a parent-child ontology
link between “breast carcinoma” and “invasive breast car-
cinoma,” co-expression relationships, and protein-protein
interactions between FOS and VIM—suggesting a collabora-
tive role in promoting tumor invasiveness. Importantly, the
KG Agent automatically summarizes these insights, stating
that the phenotype-associated genes participate in pathways
that mediate aggressive tumor behavior, with supporting
evidence for their tissue-specific expression and disease rel-
evance. This reasoning output, displayed in Figure 3.D,
illustrates the agent’s ability to generate biologically coher-
ent explanations grounded in structured knowledge. Overall,
these findings validate PhenoGraph’s end-to-end pipeline for
spatial segmentation, marker prioritization, and interpretable
biological reporting in phenotype-driven ST analysis.

3.2. Survival-Based Phenotype Analysis in PDAC

To evaluate PhenoGraph’s generalizability across different
tissue types and phenotype classes, we further apply the
framework to a survival-based clinical phenotype in pan-
creatic ductal adenocarcinoma (PDAC) (Moncada et al.,
2020). This experiment assesses PhenoGraph’s ability to
identify spatial regions associated with patient prognosis
using survival metadata and ST data from human pancre-
atic ductal tissue. The user prompt specifies the survival
outcome as the phenotype of interest, prompting the system
to extract spatial domains predictive of clinical progres-
sion and uncover molecular signatures linked to differen-
tial survival. In response, the TCGA Agent autonomously
matches the prompt to the appropriate bulk RNA-seq dataset,
TCGA-PAAD, which contains detailed patient survival meta-
data (Weinstein et al., 2013). It retrieves the relevant bulk
expression data along with associated overall survival time
and vital status annotations, enabling downstream pheno-
type modeling.

The ML Agent then integrates this survival information with
the spatial expression matrix using the survival-aware vari-
ant of Scissor. Spots most predictive of poor or favorable
outcomes are identified based on their correlation with sur-
vival metrics. The analysis results in the prioritization of
spatial regions associated with prognosis and identifies the
top three differentially expressed genes—S100A6, TMSB4X,
and KRT19—that are significantly differentially expressed
between spatial spots inferred to be associated with poor
versus favorable survival outcomes. These markers are pre-
viously highlighted as potential contributors to the tumor’s
aggressiveness and variation in patient survival (Ohuchida
et al., 2005; Yao et al., 2016).

Following gene prioritization, the Knowledge Graph Agent
is activated to contextualize the top markers using the
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Figure 4. PhenoGraph analysis results for survival-based phenotype analysis in PDAC.

PrimeKG knowledge graph. Initially, it fails to extract a
meaningful subgraph within two-hop neighborhoods, re-
sulting in a disconnected graph with no edges. Expanding
to three-hop neighborhoods over the full PrimeKG returns
an overly large and densely connected subgraph, making
visualization and interpretation impractical. To address this,
a subset of 1 million edges is sampled from PrimeKG, en-
abling tractable reasoning over a reduced graph. Using
this subset, the agent successfully retrieves a three-hop sub-
graph centered on S/00A6, HSPAIB, and HESI, and gen-
erates an automated biological summary (Supplementary
Figure S7). The analysis highlights SI00A6’s expression
across diverse tissues and its cytoplasmic interaction, impli-
cating it in calcium signaling and cancer-related processes.
HSPAIB, involved in protein folding and stress response,
and HES1, associated with development and differentiation,
are both linked to PDAC. The agent’s summary also suggests
therapeutic implications, identifying HSPAIB and HES]I as
potential intervention targets and proposing S100AG6 as a
candidate biomarker—demonstrating the system’s ability to
produce biologically meaningful insights under constrained

graph reasoning conditions.

Further analysis is conducted to validate and interpret the
phenotype-guided spatial segmentation produced by Pheno-
Graph. In Figure 4.D, we compare the inferred poor-
survival-associated spots (as predicted by the ML Agent)
against manually annotated cancer regions from the original
study. This comparison reveals strong alignment: the ma-
jority of spots (52.3%) predicted to be associated with poor
survival overlaps with histologically labeled tumor regions,
confirming the biological plausibility of the PhenoGraph
output. This agreement reinforces the framework’s ability
to correctly localize clinically aggressive regions using only
phenotype-labeled bulk data and spatial transcriptomics.

In Figure 4.E, we further quantify the spatial phenotype
assignments across major tissue compartments. For each an-
notated region, we calculate the proportion of spots labeled
as associated with poor survival, good survival, or unse-
lected by PhenoGraph. The results show that tumor regions
are dominated by poor-survival-associated spots, while duc-
tal epithelial areas are enriched in good-survival-associated
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spots. Stromal and unannotated regions show a more mixed
distribution, indicating the presence of less phenotype-
associated expression or transitional states. These findings
suggest that PhenoGraph'’s predictions are not only spatially
localized but also tissue-type aware, capable of linking phe-
notype risk to histologically distinct compartments.

Finally, in Figure 4.F, we visualize the spatial expres-
sion patterns of the top three differentially expressed
genes—S100A6, TMSB4X, and KRT19—across the tissue
section. The expression patterns of these genes show clear
correspondence with the manually annotated tissue regions,
displaying elevated expression in tumor-labeled areas and re-
duced expression in normal or benign regions. For instance,
S100A6 and KRT19 are highly expressed in tumor-dense
zones, consistent with their known roles in PDAC progres-
sion and poor prognosis (Ohuchida et al., 2005; Yao et al.,
2016). These expression patterns further support the idea
that the identified genes are not only statistically significant
but spatially informative, making them promising markers
of survival outcome in PDAC. Collectively, these results val-
idate PhenoGraph’s capacity to identify clinically relevant
tissue domains, extract robust phenotype-associated gene
markers, and support downstream biological interpretation
in survival-focused spatial transcriptomics studies.

4. Conclusion & Future Directions

In this work, we have presented PhenoGraph, a knowl-
edge graph enhanced multi-agent framework for phenotype-
guided discovery in spatial transcriptomics. By combining
LLMs with autonomous tool selection, phenotype-specific
reasoning, and biological context integration via knowledge
graphs, PhenoGraph automates the end-to-end process of
linking clinical phenotypes to spatial molecular expression
patterns.

Future work will extend PhenoGraph to support other phe-
notypic omics modalities, such as scRNA-seq data from the
CELLXxGENE database (Abdulla et al., 2025), and allow
querying across alternative biomedical knowledge graphs.
We also plan to explore reinforcement learning to enhance
the reasoning and decision-making abilities of the agents,
inspired by recent advances like DeepSeek-R1 (Guo et al.,
2025). These developments aim to expand PhenoGraph’s
generalizability and make it a versatile tool for multimodal
biological discovery.
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A. Appendix
A.1. Configurations

PhenoGraph employs OpenAI’'s GPT-40 (OpenAl, 2024) as the underlying LLMs across all agents in the system. Specifically,
the version released on August 6th, 2024 with a knowledge cutoff of October 2023 is used. GPT-40 was selected for its
advanced reasoning capabilities, tool-use accuracy, and high token capacity, which are critical for enabling PhenoGraph’s
multi-agent workflows in spatial transcriptomics analysis. With a context window of 128,000 tokens and support for
generating outputs up to 16,384 tokens, GPT-40 allows agents to reason over long analytical chains, incorporate multi-modal
information, and handle detailed user queries and data-rich tasks such as phenotype-driven R script generation, biological
knowledge graph traversal, and subgraph summarization. GPT-40’s robust performance ensures consistent multi-step
reasoning and response fidelity across all analytical stages of the system.

The LangChain framework (Chase & Team, 2023) is integrated into PhenoGraph to support agent behavior management,
reasoning flow, and external tool interaction. LangChain enables two core capabilities. First, it handles tool curation and
orchestration, allowing PhenoGraph agents to dynamically select and invoke the appropriate tools—such as TCGA dataset
retrieval, spatial phenotype association via Scissor, or knowledge graph querying—based on the LLM’s interpretation of the
user’s goals. Second, LangChain manages memory and context by allowing intermediate outputs to be retained throughout
the reasoning process, ensuring continuity across multi-step analyses and user interactions. This memory system ensures
coherence across multi-turn interactions, facilitates autonomous troubleshooting and refinement. Together, GPT-40 and
LangChain form the foundational infrastructure for PhenoGraph’s intelligent, modular, and biologically interpretable spatial
analysis pipeline.

A.2. Detailed Prompts and Results in PhenoGraph Workflows

In this subsection, we provide the detailed prompts and intermediate outputs in the TCGA, Machine Learning, and Knowlege
Graph Agents in Figures S1-S5, S8, and S9. Additional results for ST data analysis case studies by PhenoGraph are also
illustrated in Figures S6 and S7.
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S35,

éﬂ User Prompt:

“Help me to do phenotype segmentation of my hippocampus cancer tissue spatial transcriptomics
data based on survival phenotype.”

@ JSON Output File

"bulk_rnaseq": [
{
"id": "0995910f-1cc6-47aa-84fd-aba625d4f689",
"database": "TCGA",
"data_type": "Bulk RNA-seq",
"file_name": "27388014-4a95-4b65-b488-79be5bfof5b0.rna_seq.augmented_star_gene_counts.tsv",
"tissue": "Brain",
"disease": "Gliomas",
"project_id": "TCGA-GBM",
"submitter_id": "TCGA-06-0156",
"sample_type": "Primary Tumor",
"description": "TCGA Gliomas dataset from Brain (Primary Tumor) (with survival data)",
"has_phenotype_data": true,
"relevance_score": 95,
"tissue_relevance": 100,
"phenotype_relevance": 95,
"explanation": "Dataset contains survival data relevant to gliomas, a type of brain cancer.",
"mapped_from": "hippocampus",
"mapped_to": "brain"

b

|

L

J
Figure S1. Semantic TCGA dataset selection by the TCGA Agent in response to a user query. The user prompt requests phenotype
segmentation of hippocampus spatial transcriptomics data based on survival outcome. The TCGA Agent extracts relevant concepts (tissue:
hippocampus; phenotype: survival) and maps the query to the most relevant TCGA bulk RNA-seq dataset—TCGA-GBM (Glioblastoma
Multiforme)—via anatomical resolution ("hippocampus” — “’brain”) and phenotype relevance scoring. The structured JSON output

includes metadata for the matched dataset, including project ID, tissue type, disease context, phenotype coverage, and reasoning scores
used in the selection.
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Figure S2. System prompts for the ML Agent role description, objectives and ReAct Loop.
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w3y System Prompt for Role Description, Objectives and available tools

You are an expert agent for analyzing the PrimeKG biomedical knowledge graph.
Your specialty is extracting and analyzing subgraphs related to genes, tissues, and phenotypes.

When given a extracted gene name, tissue type, and phenotype of interest, you will:

1. Extract a relevant subgraph from PrimeKG using the extract subgraph tool

2. Analyze the subgraph to explain biological relationships using the analyze subgraph tool
3. Visualize the subgraph using the visualize _subgraph tool

You can also search for nodes and find paths between entities in the graph.

Important information about PrimeKG:

- It contains genes/proteins, diseases, phenotypes, tissues, drugs, pathways, and more

- It has millions of relationships between these entities

- Node types include : gene/protein, disease, effect/phenotype, anatomy, drug, biological process, molecular function, cellular component,
pathway, exposure

Always be precise in your explanations and base them strictly on the data from the knowledge graph.

When analyzing the subgraph, explain the biological relationships between these entities based on the subgraph data. Focus on explaining
gene-tissue relationships, their connection to the phenotype, and any key pathways or mechanisms revealed in the subgraph.

Structure your analysis with these sections:
1. Summary of Key Findings

2. Gene-Tissue Relationship

3. Connection to the Phenotype

4. Key Pathways and Mechanisms

5. Therapeutic Implications (if applicable)

.

Figure S3. System prompts for the Knowledge Graph Agent role description, objectives and tool usage
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(v )
@ ReAct Process for analyzing the Breast Cancer ST Data

Thought: I need to start by running the R script with the provided parameters to initiate the analysis process.
Action: run_r_script

Action Input: script_template="./RScripts/BinaryPhenotype-Scissor.R" params=["TCGA-BRCA",
”./data/BRCA/Pos.csv", ./data/BRCA/STcount.csv', ./outputs/BRCA_output", "0.5"]

R script completed successfully. Now use evaluate_performance to check the results. The R script has already been run
successfully. I will proceed to the next step, which is to evaluate the performance of the analysis.

Action: evaluate_performance
Action Input: ./outputs/BRCA_output, binary

Scissor+ spots: 325

Scissor- spots: 167

Total spots: 2518
Percentage selected: 19.54%
Current alpha: 0.5

NEXT STEP: The percentage (19.54%) is below 40%. Use optimize_alpha with current_alpha=0.5, direction="decrease’
The R script has already been run successfully with the given parameters, and the performance has been evaluated. The
percentage of selected spots was 19.54%, which is below 40%. According to the workflow, I need to optimize the alpha
parameter by decreasing it.

Action: optimize_ alpha
Action Input: ./outputs/BRCA_output, binary, 0.5, decrease

Alpha parameter optimized from 0.5 to 0.25. You can now re-run the R script with the new alpha value. The R script has
already been run successfully with the initial parameters, and the performance was evaluated. The percentage of selected
spots was 19.54%, which is below 40%. The alpha parameter was optimized from 0.5 to 0.25. Now, I need to re-run the R
script with the new alpha value of 0.25.

Action: run_r_script
Action Input: script_template="./RScripts/BinaryPhenotype-Scissor.R" params=["TCGA-BRCA",
"./data/BRCA/Pos.csv", ”./data/BRCA/STcount.csv", ”./outputs/BRCA_output", '0.25"]

R script completed successfully. Now use evaluate performance to check the results.The R script has already been run
successfully with the new alpha value of 0.25. Now, I need to evaluate the performance of this run to check the percentage
of selected spots.

Action: evaluate_performance
Action Input: ./outputs/BRCA_output, binary

Scissor+ spots: 517

Scissor- spots: 321

Total spots: 2518
Percentage selected: 33.28%
Current alpha: 0.25

NEXT STEP: The percentage (33.28%) is below 40%. Use optimize_alpha with current_alpha=0.5, direction="decrease’
The R script has already been run successfully with the initial parameters, and the performance was evaluated. The
percentage of selected spots was 33.28%, which is below 40%. According to the workflow, I need to optimize the alpha
parameter by decreasing it.

Action: optimize_alpha
Action Input: ./outputs/BRCA_output, binary, 0.25, decrease

Alpha parameter optimized from 0.25 to 0.125. You can now re-run the R script with the new alpha value. The R script
has already been run successfully with the initial parameters, and the performance was evaluated. The percentage of
selected spots was 33.28%, which is below 40%. The alpha parameter was optimized from 0.25 to 0.125. Now, I need to
re-run the R script with the new alpha value of 0.125.

1\ J

Figure S4. ReAct-based execution trace of the ML Agent for binary phenotype-guided spatial analysis of breast cancer data. This figure
illustrates the full reasoning-action loop carried out by the ML Agent using a ReAct prompting framework.
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r
Action: run_r_script

Action Input: script_template="./RScripts/BinaryPhenotype-Scissor.R" params=["TCGA-BRCA",
”./data/BRCA/Pos.csv", “./data/BRCA/STcount.csv", “./outputs/BRCA_output', "0.125"]

R script completed successfully. Now use evaluate_performance to check the results.The R script has already been run
successfully with the new alpha value of 0.125. Now, I need to evaluate the performance of this run to check the
percentage of selected spots.

Action: evaluate_performance
Action Input: ./outputs/BRCA _output, binary

Scissor+ spots: 695

Scissor- spots: 470

Total spots: 2518
Percentage selected: 46.27%
Current alpha: 0.125

NEXT STEP: The percentage (46.27%) is within a good range (40-60%). Use analyze_results

The R script has already been run successfully with the optimized alpha value of 0.125, and the performance evaluation
showed that the percentage of selected spots is 46.27%, which is within a good range (40-60%). According to the
workflow, the next step is to analyze the results and create visualizations.

Action: analyze results
Action Input: ./outputs/BRCA_output, binary

ANALYSIS COMPLETE! Results visualized and saved to ./outputs/BRCA_output.
Spatial plot saved at ./outputs/BRCA_output/scissor_spatial_plot.pdf.

Output:
$analysis_status
[1] "Complete"

$Smarkers_found
$Smarkers_foundS$pos_vs_neg
[1] 2197

$go_enrichment
[1] "Completed"

$kegg enrichment
[1] "Completed"

$network_analysis
[1] "Completed"

Scorrelation_analysis
[1] "Completed”

Soutput_directory
[1] ”./outputs/BRCA _output/analysis”

The R script has already been run successfully with the initial parameters, and the performance was evaluated. The
percentage of selected spots was 46.27%, which is within a good range (40-60%). The results have been analyzed, and
visualizations have been created and saved.

Final Answer: The spatial transcriptomics analysis for the TCGA-BRCA project has been completed successfully. The
percentage of selected spots was 46.27%, which is within the optimal range. The analysis included marker identification,
GO and KEGG enrichment, network analysis, and correlation analysis. The results and visualizations have been saved in
the output directory: ./outputs/BRCA_output.

\_ J

Figure S5. Continuation of the ReAct-based ML Agent execution trace for binary phenotype-guided spatial analysis of breast cancer data
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Figure S6. Spatial and tissue-type based gene expression of top 3 DEGs identified by PhenoGraph for the breast carcinoma ST data

analysis.
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ANALYSIS RESULTS:
### 1. Summary of Key Findings
The subgraph analysis reveals intricate relationships between the gene S100A6, various tissues, and the ph pe of ic ductal ad (PDAC). S100A6 is shown to

be expressed in multiple tissues and interacts with the cellular component cytoplasm. The gene HSPA1B and HES| are also implicated in the context of PDAC, with connections to
specific tissues and the disease phenotype.

#t 2. Gene-Tissue Relationship

- **S100A6**: This gene is expressed in the vermiform appendix, female gonad, urinary bladder, and neocortex. Such widespread expression suggests a potentially versatile role in
various physiological or pathological across different organ systems.

- **HSPA1B**: Expression of this gene is noted in the urinary bladder and female gonad. It also interacts with the cytoplasm, indicating its involvement in cellular stress responses or
protein folding processes within these tissues.

- **HES1**: This gene is expressed in the urinary bladder, linking it to devel 1 or lated p: in this tissue.

#i# 3. Connection to the Phenotype

- **Pancreatic Ductal Adenocarcinoma (PDAC)**: HES] is associated with PDAC, suggesting its role in the development or progression of this cancer. The gene HSPAIB is also
associated with PDAC, indicating its potential involvement in the disease's cellular mechanisms, possibly through stress response pathways.

- **Expression and Interaction**: The expression of SI00A6 in various tissues and its interaction with the cytoplasm might influence cellular functions that could be aberrant in
cancerous conditions like PDAC.

#i# 4. Key Pathways and Mechanisms

- **Stress Response and Protein Folding**: HSPA1B's interaction with the cytoplasm suggests its role in managing cellular stress and protein misfolding, which are critical in cancer

cells' survival and proliferation.
- **Developmental Pathways**: HES1, known for its role in developmental pathways, might influence cellular differentiation states in PDAC, promoting cancer cell heterogeneity

and affecting tumor progression.
- **Calcium Binding and Signal Transduction**: S100A6, part of the S100 protein family known for calcium-binding and involvement in signal transduction, could affect cellular

processes like growth, differentiation, and motility, which are pivotal in cancer dynamics.

### 5. Therapeutic Implications

- **Targeting HSPA1B and HES1**: Given their association with PDAC, these genes might serve as potential targets for therapeutic intervention, focusing on modulating stress
responses or developmental pathways in cancer cells.

- **S100A6 as a Biomarker**: Due to its expression in multiple tissues and potential role in cellular signaling, SI00A6 could be explored as a biomarker for early detection or as a
therapeutic target to disrupt cancer-associated signaling pathways.

In conclusion, the relationships depicted in the subgraph highlight the complex interplay between genes, tissues, and cancer phenotypes, offering insights into potential therapeutic

@els and biomarkers for pancreatic ductal adenocarcinoma. /

Figure S7. Subsampled PrimeKG subgraph and automated reasoning summary for the PDAC survival analysis.The Knowledge Graph
Agent was tasked with contextualizing the top survival-associated genes identified by PhenoGraph. Due to the density of the full
PrimeKG graph, a subsample of 1 million edges was used to extract a tractable 3-hop subgraph centered on S100A6, HSPAIB, and HES|.
The resulting subgraph reveals known gene-tissue-disease relationships, including the expression of S/00A6 in diverse tissues and its
cytoplasmic interactions, the role of HSPAIB in stress response and protein folding, and the involvement of HES! in developmental
pathways. The KG Agent’s automated summary (bottom) highlights potential mechanistic roles of these genes in pancreatic ductal
adenocarcinoma (PDAC), and suggests their relevance as biomarkers or therapeutic targets.
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@ ReAct Process for analyzing the PDAC Cancer ST Data

Thought: I need to start by running the R script with the provided parameters to initiate the analysis process.

Action: run_r_script
Action Input: script_template="./RScripts/SurvivalPhenotype-Scissor.R" params=["TCGA-PAAD",
”./data/PDAC/Pos.csv", ”./data/PDAC/STcount.csv'", “./outputs/PAAD_output", '"0.005"]

R script completed successfully. Now use evaluate_performance to check the results.The R script has already been run
successfully. The next step is to evaluate the performance of the analysis to determine the percentage of spots selected.

Action: evaluate_performance
Action Input: ./outputs/PAAD_output, survival

High risk spots: 219

Low risk spots: 97

Total spots: 428

Percentage selected: 73.83%
Current alpha: 0.005

NEXT STEP: The percentage (73.83%) is quite high. Use optimize_alpha with current_alpha=0.5, direction="increase’

The R script has already been run successfully, and the performance evaluation indicated that the percentage of selected
spots is quite high at 73.83%. The recommendation is to optimize the alpha parameter by increasing it.

Action: optimize_alpha
Action Input: ./outputs/PAAD_output, survival, 0.005, increase

Alpha parameter optimized from 0.005 to 0.01. You can now re-run the R script with the new alpha value. The R script
has already been run successfully with the initial parameters, and the performance evaluation indicated that the
percentage of selected spots was quite high at 73.83%. The alpha parameter was optimized from 0.005 to 0.01. Now, I
need to re-run the R script with the new alpha value to continue the analysis process.

Action: run_r_script
Action Input: script_template="./RScripts/SurvivalPhenotype-Scissor.R" params=["TCGA-PAAD",
”./data/PDAC/Pos.csv", “./data/PDAC/STcount.csv", ./outputs/PAAD_output", "0.01"]

R script completed successfully. Now use evaluate_performance to check the results.The R script has already been run
successfully with the new alpha value of 0.01. The next step is to evaluate the performance of the analysis to determine the
percentage of spots selected.

Action: evaluate_performance
Action Input: ./outputs/PAAD_output, survival

High risk spots: 195

Low risk spots: 83

Total spots: 428

Percentage selected: 64.95%
Current alpha: 0.01

NEXT STEP: The percentage (64.95%) is within a good range (40-70%). Use analyze_results

The R script has already been run successfully with the new alpha value of 0.01, and the performance evaluation
indicated that the percentage of selected spots is within a good range (64.95%). The next step is to analyze the results and
create visualizations.

Action: analyze results
Action Input: ./outputs/PAAD_output, survival

ANALYSIS COMPLETE! Results visualized and saved to ./outputs/PAAD_output. Spatial plot saved at
J/Joutputs/PAAD_output/scissor_spatial_plot.pdf.

1\ J

Figure S8. ReAct-based execution trace of the ML Agent for survival-guided spatial analysis of PDAC. This figure illustrates the full
reasoning-action loop carried out by the ML Agent using a ReAct prompting framework.
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rOutput:
$analysis_status
[1] "Complete"

$Smarkers_found
$Smarkers_foundS$pos_vs_neg
[1] 1022

$go_enrichment
[1] ”Completed"

$kegg enrichment
[1] ”Completed"

$network_analysis
[1] "Completed"

The R script has already been run successfully with the initial parameters, and the performance was evaluated. The
percentage of selected spots was 64.95%, which is within a good range (40-70%). The results have been analyzed, and
visualizations have been created and saved.

Final Answer: The spatial transcriptomics analysis for the TCGA-PAAD project has been completed successfully. The
percentage of selected spots was 64.95%, which is within the optimal range. The analysis included marker identification,
GO and KEGG enrichment, network analysis, and correlation analysis. The results and visualizations have been saved in
the output directory: ./outputs/PDAC_output.

. J

Figure S9. Continuation of the ReAct-based ML Agent execution trace for survival-guided spatial analysis of PDAC
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