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Abstract

Retrieval-Augmented Generation (RAG)001
merges retrieval methods with deep learning002
advancements to address the static limitations003
of large language models (LLMs) by enabling004
the dynamic integration of up-to-date external005
information. This methodology, focusing006
primarily on the text domain, provides a007
cost-effective solution to the generation of008
plausible but incorrect responses by LLMs,009
thereby enhancing the accuracy and reliability010
of their outputs through the use of real-world011
data. As RAG grows in complexity and012
incorporates multiple concepts that can013
influence its performance, this paper organizes014
the RAG paradigm into four categories:015
pre-retrieval, retrieval, post-retrieval, and016
generation, offering a detailed perspective017
from the retrieval viewpoint. It outlines018
RAG’s evolution and discusses the field’s019
progression through the analysis of significant020
studies. Additionally, the paper introduces021
evaluation methods for RAG, addressing022
the challenges faced and proposing future023
research directions. By offering an organized024
framework and categorization, the study025
aims to consolidate existing research on026
RAG, clarify its technological underpinnings,027
and highlight its potential to broaden the028
adaptability and applications of LLMs.029

1 Introduction030

The advent of ChatGPT has significantly impacted031

both academia and industry due to its interactive032

capabilities and widespread application, establish-033

ing itself as a leading artificial intelligence tool. At034

the core of ChatGPT is the large language model035

(LLM) GPT-4, as detailed by (OpenAI et al., 2023),036

which has seen numerous enhancements to its pre-037

decessors, showcasing exceptional abilities in a va-038

riety of Natural Language Processing (NLP) tasks.039

Despite these advancements, the adoption of LLMs040

has highlighted several critical issues primarily due041

Figure 1: An example of RAG benefits ChatGPT re-
solves questions that cannot be answered beyond the
scope of the training data and generates correct results.

to their reliance on extensive datasets. This reliance 042

restricts their ability to incorporate new informa- 043

tion post-training, leading to three primary chal- 044

lenges. First, the focus on broad and general data 045

to maximize accessibility and applicability results 046

in subpar performance in specialized areas. Second, 047

the rapid creation of online data, combined with the 048

significant resources required for data annotation 049

and model training, hinders LLMs’ ability to stay 050

updated. Third, LLMs are susceptible to generat- 051

ing convincing yet inaccurate responses, known as 052

“hallucinations”, which can mislead users. 053

Addressing these challenges is crucial for LLMs 054

to be effectively utilized across various domains. A 055

promising solution is the integration of Retrieval- 056

Augmented Generation (RAG) technology, which 057

supplements models by fetching external data in 058

response to queries, thus ensuring more accurate 059

and current outputs. Figure 1 illustrates how RAG 060

can enable ChatGPT to provide precise answers 061

beyond its initial training data. 062

Since its introduction by Lewis et al. (Lewis 063

et al., 2020b) in 2020, RAG technology has under- 064

gone significant advancements, particularly influ- 065

enced by ChatGPT’s success. However, there is a 066

noticeable gap in the literature regarding a thorough 067

analysis of RAG’s mechanisms and the progress 068

made by subsequent studies. Furthermore, the field 069

is characterized by diverse research focuses and the 070

use of ambiguous terminology for similar methods, 071

leading to confusion. This paper aims to clarify 072

these aspects by offering a structured overview of 073

RAG, categorizing various methods, and deliver- 074
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ing an in-depth understanding of this research area.075

This survey will primarily focus on textual appli-076

cations of RAG, reflecting the current emphasis of077

research efforts in this area.078

RAG combines retrieval methods and advanced079

deep learning to address two main questions: ef-080

fectively retrieving relevant information and gen-081

erating accurate responses. The workflow of RAG082

is outlined in Section 2, categorizing the method-083

ologies into pre-retrieval, retrieval, post-retrieval,084

and generation phases. These sections, from 3 to085

6, provide an in-depth analysis of the technologies086

within these phases. Section 7 looks at future re-087

search directions, focusing on text-based studies088

and touching on image and multimodal data. The089

conclusion is presented in Section 8. Appendix090

A discusses the evaluation techniques for RAG.091

Appendices B and C provide summaries of the092

studies reviewed and the retrievers and generators093

employed, respectively.094

The contributions of this paper are threefold:095

This paper offers a comprehensive framework for096

understanding the RAG domain, identifying areas097

for improvement and challenges for future research.098

It provides a detailed analysis of RAG’s core tech-099

nologies, examining their strengths in addressing100

retrieval and generation. Additionally, it introduces101

the evaluation methods used in RAG research, high-102

lighting current challenges and suggesting promis-103

ing directions for future studies.104

2 RAG Framework105

The hallucinations are largely attributed to LLMs’106

inability to access up-to-date information. This107

limitation stems from the models’ reliance on their108

training datasets. RAG proposes a solution to this109

issue by supplementing the LLM’s training data110

with current information from external sources111

through a retrieval model, thereby enabling the gen-112

eration of accurate responses. RAG presents a more113

cost-effective alternative to the extensive training114

and fine-tuning processes typically required for115

LLMs. It allows for the dynamic incorporation116

of fresh information via traditional retrieval meth-117

ods or pre-trained LMs, without the need to directly118

integrate this new data into the LLM. This feature119

makes RAG both flexible and scalable, facilitat-120

ing its application across different LLMs for vari-121

ous purposes. The information retrieved through122

RAG is derived from real-world data, authored123

by humans, which not only simplifies the gener-124

ation process but also increases the reliability of125

the generated responses. Figure 2 represents the 126

unified RAG framework with basic workflow and 127

paradigm. 128

Research by Khandelwal et al. (Khandelwal 129

et al., 2020) demonstrates that accessing relevant 130

information from the training dataset itself can sig- 131

nificantly improve LLM performance, highlight- 132

ing the effectiveness of RAG. Over time, RAG 133

has evolved from a means of providing supplemen- 134

tary information to enabling multiple interactions 135

between the retrieval and generation components. 136

This involves conducting several rounds of retrieval 137

to refine the accuracy of the information retrieved 138

and iteratively improve the quality of the gener- 139

ated output. Platforms such as LangChain1 and 140

LlamaIndex2 have modularized the RAG approach, 141

enhancing its adaptability and expanding its range 142

of applications. Despite these platforms employing 143

diverse methodologies to tackle different aspects of 144

RAG—from multiple search iterations to iterative 145

generation—they maintain adherence to the funda- 146

mental RAG workflow. This consistency is crucial 147

for understanding their operation and pinpointing 148

opportunities for further development. 149

2.1 Basic RAG Workflow 150

The foundational workflow of RAG begins with the 151

creation of an index comprising external sources. 152

This index serves as the basis for retrieving relevant 153

information through a retriever model based on a 154

specific query. The final step involves a generator 155

model, which combines the retrieved information 156

with the query to produce the desired output. 157

2.1.1 Indexing 158

Efficient retrieval begins with comprehensive in- 159

dexing, where data preparation is key. This stage 160

involves text normalization processes such as tok- 161

enization, stemming, and the removal of stop words 162

to enhance the text’s suitability for indexing (Man- 163

ning et al., 2008). Text segments are then organized 164

into sentences or paragraphs to facilitate more fo- 165

cused searches, allowing for the pinpointing of seg- 166

ments containing pertinent keywords. The integra- 167

tion of deep learning has revolutionized indexing 168

through the use of pretrained LMs for generating 169

semantic vector representations of texts. These 170

vectors are stored, enabling rapid and precise re- 171

trieval from extensive data collections, significantly 172

enhancing retrieval efficiency. 173

1https://www.langchain.com
2https://www.llamaindex.ai
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Figure 2: An unified RAG framework with basic workflow and paradigm.

2.1.2 Retrieval174

While traditional retrieval methods, such as the175

BM25 algorithm (Robertson and Zaragoza, 2009),176

focus on term frequency and presence for document177

ranking, they often overlook the semantic infor-178

mation of queries. Current strategies leverage pre-179

trained LMs like BERT (Devlin et al., 2019), which180

capture the semantic essence of queries more effec-181

tively. These models improve search accuracy by182

considering synonyms and the structure of phrases,183

thereby refining document ranking through the de-184

tection of semantic similarities. This is typically185

achieved by measuring vector distances between186

documents and queries, combining traditional re-187

trieval metrics with semantic understanding to yield188

search results that are both relevant and aligned189

with user intent.190

2.1.3 Generation191

The generation phase is tasked with producing text192

that is both relevant to the query and reflective of193

the information found in the retrieved documents.194

The usual method involves concatenating the query195

with the retrieved information, which is then fed196

into an LLM for text generation (Li et al., 2022).197

Although ensuring the generated text’s alignment198

and accuracy with the retrieved content presents199

challenges, it is also essential to strike a balance be-200

tween adhering closely to the source material and201

infusing the output with creativity. The generated202

text should accurately convey the information from203

the retrieved documents and align with the query’s204

intent, while also offering the flexibility to intro-205

duce new insights or perspectives not explicitly206

contained within the retrieved data.207

2.2 RAG Paradigm 208

The RAG paradigm organizes research within 209

the domain, offering a straightforward yet robust 210

framework to enhance LLM performance. Cen- 211

tral to RAG is its search mechanism, crucial for 212

generating high-quality outcomes. Therefore, this 213

paradigm is structured into four main phases from 214

a retrieval perspective: pre-retrieval, retrieval, post- 215

retrieval, and generation. Both single-hop and 216

multi-hop retrieval approaches, encompassing itera- 217

tive retrieve-generate cycles, follow this four-phase 218

structure. Figure 3 is the taxonomy tree of RAG’s 219

core techniques. 220

2.2.1 Pre-Retrieval 221

The pre-retrieval phase of retrieval-augmented gen- 222

eration lays the foundation for successful data and 223

query preparation, ensuring efficient information 224

retrieval. This phase includes essential tasks to 225

prepare for effective data access. 226

Indexing The process starts with indexing, which 227

establishes an organized system to enable fast and 228

accurate retrieval of information. The specificity 229

of indexing depends on the task and data type. 230

For example, sentence-level indexing is beneficial 231

for question-answering systems to precisely locate 232

answers, while document-level indexing is more 233

appropriate for summarizing documents to under- 234

stand their main concepts and ideas. 235

Query Manipulation After indexing, query ma- 236

nipulation is performed to adjust user queries for a 237

better match with the indexed data. This involves 238

query reformulation, which rewrites the query to 239

align more closely with the user’s intention; query 240

3



expansion, which extends the query to capture241

more relevant results through synonyms or related242

terms; and query normalization, which resolves dif-243

ferences in spelling or terminology for consistent244

query matching.245

Data Modification Data modification is also crit-246

ical in enhancing retrieval efficiency. This step247

includes preprocessing techniques like removing248

irrelevant or redundant information to improve the249

quality of results and enriching the data with ad-250

ditional information such as metadata to boost the251

relevance and diversity of the retrieved content.252

2.2.2 Retrieval253

Search & Ranking The retrieval stage is the254

combination of search and ranking. It focuses on255

selecting and prioritizing documents from a dataset256

to enhance the quality of the generation model’s257

outputs. This stage employs search algorithms to258

navigate through the indexed data, finding docu-259

ments that match a user’s query. After identifying260

relevant documents, the process of initially ranking261

these documents starts to sort them according to262

their relevance to the query.263

2.2.3 Post-Retrieval264

The post-retrieval phase serves to refine the initially265

retrieved documents to improve the quality of text266

generation. This phase consists of re-ranking and267

filtering, each aimed at optimizing the document268

selection for the final generation task.269

Re-Ranking In the re-ranking step, the docu-270

ments previously retrieved are reassessed, scored,271

and reorganized. The objective is to more accu-272

rately highlight the documents most relevant to273

the query and diminish the importance of the less274

relevant ones. This step involves incorporating ad-275

ditional metrics and external knowledge sources276

to enhance precision. In this context, pre-trained277

models with superior accuracy but lower efficiency278

can be effectively employed due to the limited set279

of candidate documents available.280

Filtering Filtering aims to remove documents281

that fail to meet specified quality or relevance282

standards. This can be done through several ap-283

proaches, such as establishing a minimum rele-284

vance score threshold to exclude documents below285

a certain relevance level. Furthermore, the use of286

feedback from users or prior relevance evaluations287

assists in adjusting the filtering process, guaran-288

teeing that only the most relevant documents are 289

retained for text generation. 290

2.2.4 Generation 291

The generation stage is a crucial component of the 292

RAG process, responsible for leveraging retrieved 293

information to enhance the quality of the generated 294

response. This stage encompasses several sub-steps 295

aimed at producing content that is readable, engag- 296

ing, and informative. 297

Enhancing At the heart of the generation phase 298

is the enhancement step, where the objective is 299

to merge the retrieved information with the user’s 300

query to create a coherent and relevant response. 301

This includes the process of elaboration, adding 302

extra details to the retrieved content to enrich it. Ef- 303

forts are focused on improving the output’s quality 304

by increasing its clarity, coherence, and stylistic 305

appeal through methods such as rephrasing and 306

restructuring. Information from various sources 307

is combined to offer a comprehensive perspective, 308

and verification is conducted to ensure the accuracy 309

and relevance of the content. 310

Customization Customization is an optional 311

step, involving the adjustment of content to align 312

with the user’s specific preferences or the context 313

of the request. This tailoring includes adapting the 314

content to meet the needs of the target audience or 315

the format in which it will be presented and con- 316

densing the information to succinctly convey the 317

essence of the content. The process also entails 318

creating summaries or abstracts that emphasize the 319

key points or arguments, ensuring the output is both 320

informative and concise. 321

3 Pre-Retrieval 322

3.1 Indexing 323

The integration of the k-nearest neighbor (kNN) 324

algorithm with pre-trained neural LMs, as demon- 325

strated in kNN-LMs (Khandelwal et al., 2020), rep- 326

resents significant progress in language modeling. 327

This method employs a datastore created from col- 328

lections of texts, enabling the dynamic retrieval of 329

contextually relevant examples to improve perplex- 330

ity without necessitating additional training. 331

Known for its efficiency, FAISS (Johnson et al., 332

2021) has been adopted in many studies for index- 333

ing purposes (Khandelwal et al., 2020; Lewis et al., 334

2020b; Khattab et al., 2022). Some research inte- 335

grates enhancements like the Hierarchical Naviga- 336
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RAG

Pre-Retrieval

Indexing

REALM (Guu et al.,
2020); kNN-LMs (Khan-

delwal et al., 2020);
RAG (Lewis et al.,

2020b); Webgpt (Nakano
et al., 2021); RETRO

(Borgeaud et al., 2022);
MEMWALKER (Chen

et al., 2023a); At-
las (Ma et al., 2023)

Query Manipulation

Webgpt (Nakano et al.,
2021); DSP (Khattab
et al., 2022); COK (Li
et al., 2023); IRCOT
(Trivedi et al., 2023);

Query2doc (Wang et al.,
2023a); Step-Back

(Zheng et al., 2023);
PROMPTAGATOR (Dai

et al., 2023); KnowledGPT
(Wang et al., 2023b);

Rewrite-Retrieve-Read
(Ma et al., 2023); FLARE

(Jiang et al., 2023)

Data Modification

RA-DIT (Lin et al.,
2023b); RECITE (Sun
et al., 2023); UPRISE
(Cheng et al., 2023a);
GENREAD (Yu et al.,
2023a); KnowledGPT
(Wang et al., 2023b)

Retrieval

Search & Ranking

REALM (Guu et al.,
2020); kNN-LMs (Khan-

delwal et al., 2020); RAG
(Lewis et al., 2020b);

FiD (Izacard and Grave,
2021); Webgpt (Nakano

et al., 2021); RETRO
(Borgeaud et al., 2022);

ITRG (Feng et al., 2023);
RA-DIT (Lin et al., 2023b);

SURGE (Kang et al.,
2023); PRCA (Yang et al.,

2023a); AAR (Yu et al.,
2023b); ITER-RETGEN

(Shao et al., 2023);
UPRISE (Cheng et al.,
2023a); MEMWALKER

(Chen et al., 2023a); Atlas
(Ma et al., 2023); FLARE

(Jiang et al., 2023)

Post-Retrieval

Re-Ranking

Re2G (Glass et al.,
2022); DSP (Khattab
et al., 2022); COK (Li
et al., 2023); FiD-TF
(Berchansky et al.,

2023); ITER-RETGEN
(Shao et al., 2023);
PROMPTAGATOR
(Dai et al., 2023);

Selfmem (Cheng et al.,
2023b); DKS-RAC

(Huang et al., 2023);
In-Context RALM (Ram
et al., 2023); Fid-light

(Hofstätter et al., 2023)

Filtering

Webgpt (Nakano et al.,
2021); Self-RAG (Asai
et al., 2023); FiD-TF

(Berchansky et al., 2023);
PROMPTAGATOR (Dai
et al., 2023); RECOMP
(Xu et al., 2023); DKS-

RAC (Huang et al., 2023)

Generation

Enhancing

FiD (Izacard and Grave,
2021); Webgpt (Nakano

et al., 2021); DSP
(Khattab et al., 2022);
IRCOT (Trivedi et al.,

2023); ITRG (Feng et al.,
2023); RA-DIT (Lin

et al., 2023b); PRCA
(Yang et al., 2023a);
RECITE (Sun et al.,

2023); UPRISE (Cheng
et al., 2023a); GENREAD

(Yu et al., 2023a);
Selfmem (Cheng et al.,
2023b); MEMWALKER
(Chen et al., 2023a);

Atlas (Ma et al., 2023)

Customization

PKG (Luo et al., 2023);
Self-RAG (Asai et al.,
2023); SURGE (Kang
et al., 2023); REPLUG

(Shi et al., 2023)

Figure 3: Taxonomy tree of RAG’s core techniques

ble Small World (HNSW) approximation (Malkov337

and Yashunin, 2020) to achieve faster retrieval338

(Lewis et al., 2020b). In addition, alternative tools339

like utilizing the Bing API 3 for indexing based340

on actual user search histories as outlined in We-341

bgpt (Nakano et al., 2021), illustrate the variety of342

indexing techniques under investigation.343

Furthermore, MEMWALKER (Chen et al.,344

2023a) introduces an innovative method to over-345

come the limitations of context window size in346

LLMs by creating a memory tree from the input347

text. This tree is formed by initially segmenting348

the text into smaller pieces and then summariz-349

ing these segments into a hierarchical structure of350

summary nodes, facilitating efficient indexing and351

management of large volumes of information.352

3.2 Query Manipulation353

Studies such as FiD (Izacard and Grave, 2021),354

COK(Li et al., 2023), and Query2doc (Wang et al.,355

2023a) emphasize the significance of creating new356

queries or refining existing ones to achieve more357

pertinent retrieval results. These research efforts358

highlight the necessity of efficiently gathering evi-359

dence from multiple passages and tailoring queries360

to suit various knowledge sources, whether struc-361

tured or unstructured. Techniques ranging from the362

creation of pseudo-documents to enhance queries363

have shown to bolster retrieval performance across364

diverse information retrieval datasets.365

Further exploration into query manipulation has366

been conducted by Step-Back (Zheng et al., 2023)367

and PROMPTAGATOR (Dai et al., 2023), which368

focus on abstracting high-level concepts or uti-369

3https://www.microsoft.com/en-us/bing/apis/bing-web-
search-api

lizing LLMs for prompt-based query generation. 370

These strategies strive to better align queries with 371

the retrieval system’s functionality by rephrasing 372

tasks into more generalized versions or crafting 373

task-specific queries from limited examples. Such 374

methodologies enhance the consistency between 375

queries and indexed data, facilitating the retrieval 376

of more pertinent and insightful information. 377

Moreover, KnowledGPT (Wang et al., 2023b) 378

and Rewrite-Retrieve-Read (Ma et al., 2023) intro- 379

duce approaches for query manipulation through 380

“program of thought” prompting and innovative 381

query rewriting techniques. KnowledGPT inno- 382

vates by generating code to interface with knowl- 383

edge bases, converting user queries into structured 384

search commands. In contrast, Rewrite-Retrieve- 385

Read utilizes a trainable compact LM for query 386

reformulation, adjusting them to more effectively 387

reflect the user’s intent and context. 388

Lastly, FLARE (Jiang et al., 2023) presents a 389

strategy based on confidence for query formulation, 390

which focuses on crafting queries that precisely 391

reflect the information needs. This method incorpo- 392

rates the use of generated sentences or fragments 393

thereof as a foundation for search queries. By opt- 394

ing to directly use sentences, obscuring tokens of 395

low confidence, or formulating explicit questions, 396

this approach aims to boost the efficiency of the 397

retrieval process, ensuring that the retrieved infor- 398

mation faithfully satisfies the requirements of the 399

generation process. 400

3.3 Data Modification 401

RA-DIT (Lin et al., 2023b) and RECITE (Sun et al., 402

2023) emphasize enhancements through internal 403

data modifications. RA-DIT distinguishes between 404
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fine-tuning datasets for LLMs and retrievers, aim-405

ing to bolster the LLM’s contextual comprehension406

and the retriever’s ability to align with queries. RE-407

CITE, on the other hand, utilizes passage hints and408

synthetic question-passage pairs to increase the409

variety and relevance of its generated recitations410

and responses. This approach seeks to broaden the411

model’s knowledge base and improve its response412

accuracy.413

UPRISE (Cheng et al., 2023a) and GENREAD414

(Yu et al., 2023a) target the refinement of external415

data. UPRISE converts raw task data into a struc-416

tured format and refines the selection of prompts417

to enhance retrieval outcomes. In contrast, the418

Clustering-Based Prompts method employed by419

GENREAD generates documents from questions420

and clusters them to eliminate irrelevant data, en-421

riching the input with varied contextual insights.422

This technique aims to improve the performance of423

the generative model by providing it with a richer424

set of information.425

Furthermore, KnowledGPT (Wang et al., 2023b)426

is dedicated to augmenting raw text data with struc-427

tured, semantically rich information through entity428

linking. This enrichment process not only struc-429

tures the data more cohesively and makes it more430

amenable to queries but also boosts the model’s431

retrieval efficiency. It leverages precise, linked432

knowledge to enhance the model’s understand-433

ing and its ability to generate relevant responses,434

thereby improving its overall performance.435

4 Retrieval436

4.1 Search & Ranking437

Atlas (Izacard et al., 2023) investigates few-shot438

learning approaches, including Attention Distil-439

lation and Perplexity Distillation, to steer the re-440

triever toward retrieving more relevant documents.441

IRCOT (Trivedi et al., 2023) integrates retrieval442

with reasoning to improve the effectiveness of re-443

trieval. SURGE (Kang et al., 2023) employs a444

subgraph retriever to extract relevant subgraphs445

from a knowledge graph, while AAR (Yu et al.,446

2023b) modifies search preferences to help LLMs447

in fetching pertinent documents.448

PRCA (Yang et al., 2023a) focuses on employ-449

ing domain-specific abstractive summarization to450

extract relevant and context-rich information from451

documents, using a supervised learning strategy452

to prioritize content crucial for accurate query re-453

sponses. Meanwhile, MEMWALKER (Chen et al.,454

2023a) leverages an internal search and ranking 455

mechanism in the constructed memory tree to iden- 456

tify pertinent information for long-context question 457

answering. Additionally, the Confidence-based Ac- 458

tive Retrieval approach of FLARE (Jiang et al., 459

2023) dynamically triggers information retrieval 460

based on the confidence levels of generated sen- 461

tences, utilizing the insight that low-confidence 462

tokens signal a need for external knowledge. 463

5 Post-Retrieval 464

5.1 Re-Ranking 465

Re2G (Glass et al., 2022) introduces a sequence- 466

pair classification approach for re-ranking, utiliz- 467

ing a BERT transformer to simultaneously analyze 468

the query and passage. This interaction model, em- 469

ploying cross-attention between sequences, offers a 470

contrast to the representation model typically used 471

in initial retrieval phases. PROMPTAGATOR (Dai 472

et al., 2023) also employs a cross-attention model 473

for re-scoring. Its “Lift Yourself Up” strategy iter- 474

atively selects the best candidate from a pool for 475

further generation rounds, progressively improving 476

content quality via self-generated content. 477

Re-ranking is also a significant focus of In- 478

Context RALM (Ram et al., 2023). Two ap- 479

proaches to reranking are explored: zero-shot 480

reranking using language models and predictive 481

reranking through trained models. This step is 482

aimed at refining the selection of documents based 483

on their expected utility for improving language 484

model performance. ITER-RETGEN (Shao et al., 485

2023), in particular, leverages knowledge distilla- 486

tion from the re-ranker to the dense retriever, fine- 487

tuning retrieval efforts based on relevance signals 488

from LLM outputs. This optimization of the re- 489

trieval model aims to more accurately capture query 490

nuances, thereby improving document selection. 491

DKS-RAC (Huang et al., 2023) presents the 492

Dense Knowledge Similarity (DKS) for aligning 493

the knowledge between answers and retrieved pas- 494

sages at the sequence level. This approach is cate- 495

gorized under re-ranking due to its direct impact on 496

passage selection based on knowledge similarity, 497

refining the match between queries and documents. 498

FiD-light (Hofstätter et al., 2023) introduces a 499

listwise autoregressive re-ranking method that em- 500

ploys source pointers to optimize the ranking order. 501

This method maintains a link between the gener- 502

ated text and source passages, enabling a more 503

structured generation process. By incorporating 504
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textual citations within the model’s output as point-505

ers to relevant information sources, this approach506

facilitates an organized retrieval and generation507

process, enhancing the overall coherence and rele-508

vance of the generated content.509

5.2 Filtering510

COK (Li et al., 2023) presents the Progressive Ra-511

tionale Correction technique, aimed at iteratively512

refining rationales with retrieved knowledge. This513

method constitutes a continuous optimization pro-514

cess, significantly enhancing the relevance and515

quality of information used in content generation.516

Self-RAG (Asai et al., 2023) introduces a self-517

reflection mechanism to efficiently filter out irrel-518

evant content. By employing critique tokens, this519

approach evaluates the relevance, supportiveness,520

and utility of retrieved passages, ensuring the inte-521

gration of only high-quality information into the522

content generation process.523

Additionally, FiD-TF (Berchansky et al., 2023)524

and RECOMP (Xu et al., 2023) are dedicated to the525

removal of irrelevant or redundant tokens and infor-526

mation from retrieved documents. FiD-TF employs527

a dynamic mechanism to identify and eliminate un-528

necessary tokens, enhancing the efficiency of infor-529

mation processing. RECOMP, on the other hand,530

compresses documents into concise summaries, fo-531

cusing on selecting only the most pertinent content532

for the generation process. These methods stream-533

line the content generation workflow by ensuring534

that only relevant and supportive information is535

utilized, thereby improving the overall quality and536

relevance of the generated content.537

6 Generation538

6.1 Enhancing539

DSP (Khattab et al., 2022) introduces a framework540

designed to generate multiple retrieval queries to541

summarize and answer questions, drawing upon in-542

formation aggregated from various passages. This543

framework employs CombSUM (Fox and Shaw,544

1994) to calculate a cumulative probability score545

for passages across different retrieval lists, facilitat-546

ing the compilation of a comprehensive response547

from multiple sources.548

PRCA (Yang et al., 2023a) outlines a Reward-549

Driven Stage, wherein the distilled context is re-550

fined based on feedback from the generator. Uti-551

lizing reinforcement learning, this stage adjusts552

the parameters of PRCA according to the rewards553

received for providing relevant context. The ob- 554

jective is to fine-tune the extracted context to meet 555

the specific requirements of the generator, thereby 556

optimizing the generation process. 557

REPLUG (Shi et al., 2023) proposes a method 558

for prepending retrieved documents to the input 559

context before the final prediction by the black-box 560

LM. It introduces an ensemble strategy to encode 561

retrieved documents in parallel, overcoming the 562

limitations of LM context length and enhancing 563

accuracy through the allocation of increased com- 564

putational resources. This approach improves the 565

generation process by ensuring that the LM has 566

access to a broader range of relevant information. 567

RECITE (Sun et al., 2023) implements a self- 568

consistency technique, which involves generating 569

multiple recitations independently and employing 570

a plurality/majority vote system to determine the 571

most appropriate answer. This method is designed 572

to increase the reliability and accuracy of the an- 573

swers, thereby improving the quality and credibility 574

of the output. 575

6.2 Customization 576

The PKG framework, introduced by (Luo et al., 577

2023), represents an approach to customizing the 578

output of LMs. By generating background knowl- 579

edge internally using a pre-trained model, PKG 580

eliminates the need for traditional external retrieval 581

processes. This method directly integrates domain- 582

or task-specific knowledge into the generation step, 583

significantly enhancing the LM’s capacity to pro- 584

duce responses that are specifically tailored to the 585

given context or requirements. 586

Self-RAG (Asai et al., 2023) offers a strategy 587

that incorporates reflection tokens within a cus- 588

tomizable decoding algorithm. This technique per- 589

mits dynamic adjustment of the model’s retrieval 590

and generation behaviors based on the specific task, 591

facilitating more versatile response generation. De- 592

pending on the requirements, this approach can be 593

tuned for accuracy or creativity, providing flexibil- 594

ity in generating outputs that meet diverse needs. 595

SURGE (Kang et al., 2023) achieves customiza- 596

tion through the application of graph-text con- 597

trastive learning. This method ensures that the 598

generated dialogue responses are in tight alignment 599

with the knowledge contained in the retrieved sub- 600

graph, yielding responses that are specific, relevant, 601

and deeply rooted in the dialogue context. By main- 602

taining consistency between the retrieved knowl- 603

edge and the generated text, SURGE is capable 604

7



of producing outputs that precisely reflect the de-605

tailed knowledge of the subgraph, enhancing the606

relevance and specificity of the responses.607

7 Future Directions608

7.1 Retrieval Quality609

The integration of RAG into LLMs faces significant610

hurdles due to the vast amounts of unreliable infor-611

mation on the internet, including fake news. This612

presents a challenge for accurately retrieving useful613

knowledge, leading to the unreliable generation of614

responses by LLMs. As a result, LLMs may gen-615

erate content based on incorrect information, un-616

dermining their reliability. Recent research efforts617

are directed towards enhancing retrieval methods618

to improve the efficiency, scalability, and effective-619

ness of LLMs in generating accurate and reliable620

responses.621

Differentiable Search Indices (Tay et al., 2022)622

and (Bevilacqua et al., 2022) developed differen-623

tiable search indices that integrate the retrieval pro-624

cess within a Transformer model, enabling direct625

mapping of text queries to document identifiers.626

These approaches offer superior performance and627

potential for more efficient and scalable retrieval.628

Generative Models for Search GERE (Chen629

et al., 2022a) can directly generate document titles630

and evidence sentences for fact-verification tasks.631

PARADE (Li et al., 2024) is a method for document632

reranking that aggregates passage representations633

into a unified document relevance score. Both of634

them demonstrate significant improvements in re-635

trieval quality over traditional methods.636

Fine-tuning Pre-trained Language Models637

RankT5 (Zhuang et al., 2023) is a model that fine-638

tunes the T5 framework specifically for text rank-639

ing. It leverages ranking losses to optimize per-640

formance metrics and exhibits promising zero-shot641

performance on out-of-domain data.642

Noise Power (Cuconasu et al., 2024) provide a643

comprehensive analysis of the impact of IR compo-644

nents on RAG systems, revealing that the inclusion645

of irrelevant documents can significantly improve646

accuracy. It challenges conventional retrieval strate-647

gies and underscores the potential for developing648

specialized approaches that integrate retrieval with649

language generation models.650

7.2 Multimodal RAG 651

The multimodal RAG domain has experienced sig- 652

nificant growth, highlighting a pivotal advancement 653

at the confluence of text and visual comprehension. 654

The introduction of MuRAG (Chen et al., 2022b) 655

marked a breakthrough by amalgamating textual 656

and visual information for language generation, es- 657

tablishing a new standard for multimodal datasets. 658

This model showcased the efficacy of utilizing a 659

multimodal memory system to boost the accuracy 660

in question-answering and reasoning tasks. 661

After MuRAG, studies such as REVEAL (Hu 662

et al., 2023) and Re-Imagen (Chen et al., 2023c) 663

have focused on enhancing visual question answer- 664

ing and text-to-image generation. They achieved 665

this through the incorporation of dynamic retrieval 666

mechanisms and the improvement of image fidelity, 667

respectively. These advancements laid the ground- 668

work for further models by researchers like Sarto 669

et al. (Sarto et al., 2022) for image captioning, 670

and Yuan et al. (Yuan et al., 2023) for text-to-audio 671

generation, broadening the scope of RAG’s applica- 672

tion across different modalities and improving the 673

quality and realism of the generated outputs. Fur- 674

thermore, Re-ViLM (Yang et al., 2023b) refined 675

image captioning capabilities through a retrieval- 676

augmented visual language model. By fine-tuning 677

model parameters and implementing innovative fil- 678

tering strategies, it has made strides in producing 679

more precise and contextually appropriate captions. 680

By tapping into external resources, these models 681

have provided significant enhancements over tradi- 682

tional benchmarks, highlighting the advantage of 683

integrating diverse sources of knowledge. 684

8 Conclusions 685

In this paper, we have presented a comprehen- 686

sive framework for understanding the RAG do- 687

main, highlighting its significance in enhancing 688

the capabilities of LLMs. Through a structured 689

overview of RAG, categorizing various methods, 690

and an in-depth analysis of its core technologies 691

and evaluation methods, this study illuminates the 692

path for future research. It identifies crucial areas 693

for improvement and outlines potential directions 694

for advancing RAG applications, especially in tex- 695

tual contexts. This survey aims to elucidate the 696

core concepts of the RAG field from a retrieval 697

perspective, and it is intended to facilitate further 698

exploration and innovation in the accurate retrieval 699

and generation of information. 700
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9 Limitations701

This survey comprehensively examines existing702

RAG models, summarizing their core techniques703

into four main steps from a retrieval perspective. It704

recognizes that some methods may encompass mul-705

tiple steps and that decoupling these steps could706

potentially obscure their intrinsic connections. Nev-707

ertheless, the primary objective is to simplify the708

complexity of the approach, clearly delineating the709

specific problems it addresses. This allows for a710

clearer identification of areas ripe for further opti-711

mization and improvement. Despite the thorough712

investigation, the rapid evolution of the field and713

page limits mean that certain aspects might not714

have been fully analyzed and explored, or recent715

developments could have been missed. While the716

paper references evaluation methods that can aid717

in the development of RAG, it also acknowledges718

mature tools like LangChain and LlamaIndex as719

useful resources. However, the focus of this survey720

is not on detailing the evaluation pipeline or how721

these tools are specifically used, but rather on il-722

lustrating how evaluation aspects can support the723

advancement of RAG. This choice highlights an724

area for future work, emphasizing the importance725

of methodological clarity and the application of726

evaluation tools in refining and enhancing RAG727

models.728
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A Evaluation in RAG1411

To understand the effectiveness of LMs in generat-1412

ing more accurate, relevant, and robust responses1413

by leveraging external knowledge, the evaluation1414

of RAG systems has become a significant research1415

area. With the popularity of dialogue-based interac-1416

tions, recent works have been focused on assessing1417

the performance of RAG models on such down-1418

stream tasks using established metrics like Exact1419

Match (EM) and F1 scores. Furthermore, a wide1420

array of datasets has been utilized for this purpose,1421

including TriviaQA (Joshi et al., 2017), HotpotQA1422

(Yang et al., 2018), FEVER (Thorne et al., 2018),1423

Natural Questions (Kwiatkowski et al., 2019), Wiz-1424

ard of Wikipedia (Dinan et al., 2019), and T-REX1425

(ElSahar et al., 2018).1426

However, evaluation solely from the perspec-1427

tive of downstream tasks falls short in addressing1428

the evolving needs of RAG development. Recent1429

research has introduced various frameworks and1430

benchmarks that aim to evaluate these systems1431

across multiple dimensions, including the quality1432

of the generated text, the relevance of retrieved 1433

documents, and the model’s resilience to misinfor- 1434

mation, as shown in Table 1. These evaluations fo- 1435

cus on assessing specific capabilities such as noise 1436

robustness, negative prompting, information inte- 1437

gration, and counterfactual robustness, highlight- 1438

ing the complex challenges faced by RAG systems 1439

in practical applications. The continuous devel- 1440

opment of evaluation frameworks and metrics is 1441

crucial for advancing the field, broadening the ap- 1442

plicability of RAG systems, and ensuring they meet 1443

the demands of a complex and evolving informa- 1444

tion landscape. 1445

A.1 Retrieval-based Aspect 1446

In information retrieval, the quality of search re- 1447

sults is typically evaluated using standard metrics 1448

such as Mean Average Precision (MAP), Precision, 1449

Reciprocal Rank, and Normalized Discounted Cu- 1450

mulative Gain (NDCG) (Radlinski and Craswell, 1451

2010; Reimers and Gurevych, 2019; Nogueira et al., 1452

2019). These metrics primarily assess the relevance 1453

of retrieved documents to a given query. 1454

Retrieval-based Metrics in RAG focus on the ef- 1455

fectiveness of retrieving relevant information to 1456

support generation tasks. These include Accu- 1457

racy, which measures the precision of retrieved 1458

documents in providing correct information for an- 1459

swering queries, and Rejection Rate (Chen et al., 1460

2023b), assessing a system’s ability to decline an- 1461

swering when no relevant information is found. 1462

Additionally, Error Detection Rate (Chen et al., 1463

2023b) evaluates the model’s capability to identify 1464

and disregard incorrect or misleading information 1465

from retrieved documents. Context Relevance is 1466

another essential metric, assessing the pertinence 1467

of the retrieved documents to the query. It’s vital to 1468

ensure the information used to generate responses 1469

is directly related to the query’s context. Faithful- 1470

ness (Shahul et al., 2023) measures the accuracy 1471

with which the generated content reflects the infor- 1472

mation in the retrieved documents, ensuring that 1473

the generation process with no misinformation. 1474

A.2 Generation-based Aspect 1475

Evaluating the quality of text produced by LLMs 1476

involves analyzing their performance on various 1477

downstream tasks using standard metrics. These 1478

metrics assess linguistic quality, coherence, accu- 1479

racy, and the extent to which the generated text 1480

reflects ground-truth data. Linguistic quality and 1481

coherence are evaluated through metrics such as 1482
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Evaluation Framework Aspects Methods Metrics Datasets

RAGAS (Shahul et al., 2023) Quality of RAG Systems
Context Relevance Extracted Sentences / Total Sentences

WikiEval 4Answer Relevance Average Cosine Similarity
Faithfulness Supported Statements / Total Statements

ARES (Saad-Falcon et al., 2023) Improving RAGAS
Context Relevance

Confidence Intervals
KILT (Petroni et al., 2021)

SuperGLUE (Wang et al., 2019)
Answer Relevance

Answer Faithfulness

RECALL (Liu et al., 2023) Counterfactual Robustness
Response Quality

Accuracy (QA)
BLEU, ROUGE-L (Generation)

EventKG (Gottschalk and Demidova, 2018)
UJ (Huang et al., 2022)

Robustness
Misleading Rate (QA)

Mistake Reappearance Rate (Generation)

RGB (Chen et al., 2023b) Impact of RAG on LLMs

Noise Robustness Accuracy

Synthetic Dataset including English and Chinese
Negative Rejection Rejection Rate

Information Integration Accuracy

Counterfactual Robustness
Error Detection Rate
Error Correction Rate

Table 1: The Comparison of Different RAG Evaluation Frameworks

BLEU (Papineni et al., 2002), which measures flu-1483

ency and similarity to human-produced text, and1484

ROUGE-L (Lin, 2004), which quantifies the over-1485

lap with reference summaries to gauge the text’s1486

capacity to encapsulate main ideas and phrases.1487

Accuracy and overlap with ground-truth data are1488

gauged using metrics like EM and F1 Score, which1489

respectively determine the percentage of answers1490

that are entirely correct and offer a balanced assess-1491

ment of precision and recall in retrieving relevant1492

answers while minimizing inaccuracies.1493

Beyond these standard metrics, the evaluation1494

may also incorporate task-specific criteria and1495

novel metrics tailored to particular applications.1496

For instance, in dialogue generation, perplexity1497

and entropy are used to evaluate response diver-1498

sity and naturalness. Additionally, metrics such as1499

Misleading Rate and Mistake Reappearance Rate1500

(Liu et al., 2023) gauge a model’s ability to avoid1501

misinformation and inaccuracies. Other special-1502

ized metrics include Answer Relevance (Shahul1503

et al., 2023), assessing the precision of responses1504

to queries; Kendall’s tau (Saad-Falcon et al., 2023),1505

for evaluating the accuracy of RAG system rank-1506

ings; Micro-F1 (Saad-Falcon et al., 2023), which1507

fine-tunes accuracy evaluation in tasks with multi-1508

ple correct answers; and Prediction Accuracy, di-1509

rectly measuring the alignment of generated an-1510

swers with expected responses, thereby offering a1511

direct insight into a system’s effectiveness in gen-1512

erating accurate content.1513

B The Comprehensive Summary of RAG1514

Table 2 offers a detailed examination of the RAG1515

studies discussed in this paper. The analysis reveals1516

that the majority of these studies have employed1517

external data sources to enhance the information of1518

LLMs. A preference for multiple-hop over single-1519

hop retrieval was observed, indicating that iterative1520

search rounds yield significantly better results. Fur- 1521

thermore, there is a notable focus on optimizing the 1522

retrieval phase, underscoring its critical role in the 1523

research. However, there appears to be a lack of 1524

studies focusing on customization in the generation 1525

stage, suggesting this area as a potential direction 1526

for future exploration. 1527

C Retriever and Generator 1528

In RAG, the primary components are the retriever 1529

and the generator. Table 3 provides a summary of 1530

the retrievers and generators utilized in the studies 1531

discussed in this paper. It is evident from the table 1532

that, although most generators employ advanced 1533

language models, a significant number of retrievers 1534

use the traditional BM25 for its efficiency. The 1535

method of retrieval is a fundamental issue in RAG, 1536

making it crucial to explore ways to enhance re- 1537

trieval performance without sacrificing efficiency. 1538
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Research Year Retrieval Source Multi-hop Training Pre-Retrieval Retrieval Post-Retrieval Generation
Internal External Indexing Query Manipulation Data Modification Search & Ranking Re-Ranking Filtering Enhancing Customization

REALM (Guu et al., 2020) 2020 ! ! ! !

kNN-LMs (Khandelwal et al., 2020) 2020 ! ! ! ! !

RAG (Lewis et al., 2020b) 2020 ! ! ! !

FiD (Izacard and Grave, 2021) 2021 ! ! !

Webgpt (Nakano et al., 2021) 2021 ! ! ! ! ! ! ! !

Re2G (Glass et al., 2022) 2022 ! ! ! !

RETRO (Borgeaud et al., 2022) 2022 ! ! ! ! !

DSP (Khattab et al., 2022) 2022 ! ! ! ! !

COK (Li et al., 2023) 2023 ! ! ! !

IRCOT (Trivedi et al., 2023) 2023 ! ! ! !

ITRG (Feng et al., 2023) 2023 ! ! ! ! !

PKG (Luo et al., 2023) 2023 ! !

RA-DIT (Lin et al., 2023b) 2023 ! ! ! ! ! !

Self-RAG (Asai et al., 2023) 2023 ! ! ! !

SURGE (Kang et al., 2023) 2023 ! ! !

FiD-TF (Berchansky et al., 2023) 2023 ! ! !

PRCA (Yang et al., 2023a) 2023 ! ! ! !

REPLUG (Shi et al., 2023) 2023 ! ! !

AAR (Yu et al., 2023b) 2023 ! ! !

Query2doc (Wang et al., 2023a) 2023 ! !

Step-Back (Zheng et al., 2023) 2023 ! ! !

ITER-RETGEN (Shao et al., 2023) 2023 ! ! ! !

RECITE (Sun et al., 2023) 2023 ! ! ! ! !

PROMPTAGATOR (Dai et al., 2023) 2023 ! ! ! ! !

UPRISE (Cheng et al., 2023a) 2023 ! ! ! ! ! !

GENREAD (Yu et al., 2023a) 2023 ! ! !

KnowledGPT (Wang et al., 2023b) 2023 ! ! ! !

Selfmem (Cheng et al., 2023b) 2023 ! ! ! ! !

MEMWALKER (Chen et al., 2023a) 2023 ! ! ! !

RECOMP (Xu et al., 2023) 2023 ! ! !

Rewrite-Retrieve-Read (Ma et al., 2023) 2023 ! ! !

Atlas (Ma et al., 2023) 2023 ! ! ! ! ! !

DKS-RAC (Huang et al., 2023) 2023 ! ! ! ! !

In-Context RALM (Ram et al., 2023) 2023 ! !

Fid-light (Hofstätter et al., 2023) 2023 ! ! !

FLARE (Jiang et al., 2023) 2023 ! ! !

Table 2: The comprehensive summary of RAG studies. A!in the “Multi-hop” column signifies that the research
involves multiple search rounds. Similarly, a!in the “Training” column indicates that the study included training
phases. It is important to note that in this context, “Training” encompasses both initial model training and fine-tuning
processes.

Research Year Retriever Generator
REALM (Guu et al., 2020) 2020 BERT (Devlin et al., 2019) Transformers (Vaswani et al., 2017)

kNN-LMs (Khandelwal et al., 2020) 2020 FAISS (Johnson et al., 2021) Transformers
RAG (Lewis et al., 2020b) 2020 DPR (Karpukhin et al., 2020) BART-Large (Lewis et al., 2020a)

FiD (Izacard and Grave, 2021) 2021 BM25 (Robertson and Zaragoza, 2009), DPR T5 (Raffel et al., 2020)
Webgpt (Nakano et al., 2021) 2021 Bing GPT-3 (Brown et al., 2020)

Re2G (Glass et al., 2022) 2022 BM25, DPR BART
RETRO (Borgeaud et al., 2022) 2022 BERT Transformer

DSP (Khattab et al., 2022) 2022 ColBERTv2 (Khattab and Zaharia, 2020) GPT-3.5 (text-davinci-002)

COK (Li et al., 2023) 2023 LLaMA2-7B (Touvron et al., 2023b), ChatGPT (gpt-
3.5-turbo-0613) ChatGPT (gpt-3.5-turbo-0613)

IRCOT (Trivedi et al., 2023) 2023 BM25 GPT-3 (code-davinci-002), Flan-T5 (Chung et al., 2022)
ITRG (Feng et al., 2023) 2023 Atlas (Ma et al., 2023) LLaMA 33B (Touvron et al., 2023a)
PKG (Luo et al., 2023) 2023 LLaMa-7B InstructGPT-3.5 (text-davinic-002) (Ouyang et al., 2022)

RA-DIT (Lin et al., 2023b) 2023 DRAGON+ (Lin et al., 2023a) LLama
Self-RAG (Asai et al., 2023) 2023 Contriever (Izacard et al., 2022) Llama2 (7B and 13B) , GPT-4 (OpenAI et al., 2023)
SURGE (Kang et al., 2023) 2023 Graph Neural Networks (GNN) (Hamilton, 2020) Transformers

FiD-TF (Berchansky et al., 2023) 2023 BM25, Sentence Transformers T5

PRCA (Yang et al., 2023a) 2023 BM25, DPR, Contriver, SimCSE (Gao et al., 2021),
SBERT (Reimers and Gurevych, 2019)

T5-large, Phoenix-7B (Chen et al., 2023d), Vicuna-7B (Peng
et al., 2023), ChatGLM (Du et al., 2022), GPT-3.5

REPLUG (Shi et al., 2023) 2023 Contriever GPT-3
AAR (Yu et al., 2023b) 2023 ANCE (Xiong et al., 2021), Contriever Flan-T5, InstructGPT

Query2doc (Wang et al., 2023a) 2023 BM25, DPR GPT-3 (text-davinci-003)
Step-Back (Zheng et al., 2023) 2023 PaLM-2L (Chowdhery et al., 2023) PaLM-2L, GPT-4

ITER-RETGEN (Shao et al., 2023) 2023 Contriever InstructGPT (text-davinci-003), Llama-2

RECITE (Sun et al., 2023) 2023 PaLM, UL2 (Tay et al., 2023), OPT (Zhang et al., 2022),
Codex (Chen et al., 2021)

PROMPTAGATOR (Dai et al., 2023) 2023 T5 FLAN

UPRISE (Cheng et al., 2023a) 2023 GPT-Neo-2.7B (Black et al., 2021) BLOOM-7.1B (Workshop et al., 2022), OPT-66B, GPT-3-
175B

GENREAD (Yu et al., 2023a) 2023 InstructGPT
KnowledGPT (Wang et al., 2023b) 2023 GPT-4

Selfmem (Cheng et al., 2023b) 2023 BM25 XGLM (Lin et al., 2022), XLM-Rbase (Conneau et al., 2020)
MEMWALKER (Chen et al., 2023a) 2023 LLaMA-2 LLaMA-2

RECOMP (Xu et al., 2023) 2023 BM25 T5-Large
Rewrite-Retrieve-Read (Ma et al., 2023) 2023 Bing T5-Large, ChatGPT(gpt-3.5-turbo), Vicuna-13B

Atlas (Ma et al., 2023) 2023 Contriever T5
DKS-RAC (Huang et al., 2023) 2023 DPR BART

In-Context RALM (Ram et al., 2023) 2023 BM25, BERT-base, Contriever, Spider (Ram et al.,
2022)

GPT-2, GPT-Neo, GPT-J (Wang and Komatsuzaki, 2021),
OPT, and LLaMA

Fid-light (Hofstätter et al., 2023) 2023 GTR-Base (Ni et al., 2022) T5
FLARE (Jiang et al., 2023) 2023 BM25, Bing GPT-3.5 (text-davinci-003)

Table 3: The summary of Retrievers and Generators. The retrieval models and pre-trained language models explicitly
mentioned in these studies have been recorded.
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