
In-Context Compositional Learning via Sparse Coding
Transformer

Wei Chen, Jingxi Yu, Zichen Miao, Qiang Qiu
Purdue University, IN, USA

{chen2732, yu667, miaoz, qqiu}@purdue.edu

Abstract

Transformer architectures have achieved remarkable success across language, vi-
sion, and multimodal tasks, and there is growing demand for them to address
in-context compositional learning tasks. In these tasks, models solve the target
problems by inferring compositional rules from context examples, which are com-
posed of basic components structured by underlying rules. However, some of
these tasks remain challenging for Transformers, which are not inherently designed
to handle compositional tasks and offer limited structural inductive bias. In this
work, inspired by the principle of sparse coding, we propose a reformulation of the
attention to enhance its capability for compositional tasks. In sparse coding, data
are represented as sparse combinations of dictionary atoms with coefficients that
capture their compositional rules. Specifically, we reinterpret the attention block
as a mapping of inputs into outputs through projections onto two sets of learned
dictionary atoms: an encoding dictionary and a decoding dictionary. The encoding
dictionary decomposes the input into a set of coefficients, which represent the com-
positional structure of the input. To enhance structured representations, we impose
sparsity on these coefficients. The sparse coefficients are then used to linearly
combine the decoding dictionary atoms to generate the output. Furthermore, to
assist compositional generalization tasks, we propose estimating the coefficients
of the target problem as a linear combination of the coefficients obtained from
the context examples. We demonstrate the effectiveness of our approach on the
S-RAVEN and RAVEN datasets. For certain compositional generalization tasks,
our method maintains performance even when standard Transformers fail, owing
to its ability to learn and apply compositional rules.

1 Introduction
Recent advancements in artificial intelligence (AI) have led to significant breakthroughs in various
domains [6, 11, 17, 26]. Models such as large-scale Transformers have demonstrated remarkable
capabilities in natural language understanding, image classification, and multimodal reasoning.
However, despite these successes, solving in-context compositional learning tasks remains a major
challenge [20]. As illustrated in Figure 1, such tasks involve data composed of basic components
arranged by underlying compositional rules, requiring models to infer and transfer these structural
patterns from context examples while achieving good representation and generalization.

Transformers primarily rely on dense attention mechanisms [26] without an explicit framework for
representing compositional rules. As a result, they struggle to capture structured relationships and
lack an effective mechanism to transfer these inferred rules across examples. The absence of structural
inductive bias limits their ability to generalize in tasks that demand compositional understanding.

In this paper, we extend the attention mechanism by explicitly encoding compositional rules, drawing
inspiration from the principles of sparse coding. In sparse coding [14], signals are expressed as sparse
combinations of basic elements, with the resulting coefficients capturing the compositional structure

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

0 1 2 3

4 5 6

7 8 9

Dictionary CoefficientsData

i ii iii

iv v vi

vii viii ix

i

ii

iii

iv

v

vi

vii

viii

ix

A

B

B

C

C

A
Compositional Rule

?

0 1 2 3 4 5 6 7 8 9

0
1

2

3

4

5

6

7

8

9

0

2

1

3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5

6

4

8

9

7

0 1 2 3 4 5 6 7 8 9

0
4

6
0

Encoding/Decoding Data ?

6 0
0 4

Context Target

(a)

Step 2: Estimate Target Coefficients

1

2

3

2

1

3

4

5

6

5

4

6

7

8

9

8

=
9

7

0
0

9

7

Dictionary

Step 3: Decode Coefficients

Step 1: Encode Data (Context + Target)

Solving Steps:

?

?

Result

(b)

Figure 1: Illustration of the in-context compositional learning task. The input data includes both
the context tasks and the target task. The goal is to solve the target task by inferring and applying
the compositional rule observed in the context tasks. (a) Applying the principles of sparse coding
to represent the data. Given a dictionary, the input data can be sparsely represented using a set of
coefficients that encode underlying compositional rules. Encoding/decoding data: An example of
one task is composed of four elements from the dictionary, with indices "6, 0, 0, 4." After one-hot
embedding, we obtain a 4× 10 matrix, where each nonzero entry corresponds to a specific element in
the dictionary. By stacking all 9 examples, we obtain a 36× 10 matrix representing the coefficients.
Compositional rules: Each row of the input data follows an underlying pattern. If the first two shapes
are constructed as (A, ∅, ∅, B) and (B, ∅, ∅, C), where A, B, and C correspond to unique elements in
the dictionary, ∅ means an empty shape, then the third shape should be (C, ∅, ∅, A). (b) Representing
the compositional rules as coefficients provides an effective way to estimate the coefficients of the
target task from those of the context tasks. Once inferred, these coefficients can be decoded into the
final output using the dictionary. Details of this task are described in Section 3.

of the signal. Specifically, as shown in Figure 2, we reinterpret the attention mechanism as a mapping
of inputs into outputs through projections onto two sets of learned dictionary atoms: an encoding
dictionary and a decoding dictionary. The encoding dictionary decomposes the input into a set of
coefficients, which represent the compositional structure of the input. The coefficients are then used
to linearly combine the decoding dictionary atoms to generate the output.

In the attention mechanism [26], the attention map is generated by computing the inner product
between inputs transformed by the query and key matrices. In contrast, our approach reinterprets
this process as projecting the input onto a learned dictionary, i.e., encoding dictionary, parameterized
by the query and key matrices to obtain the coefficients. To enhance structured representations, we
introduce sparsity into the coefficients, allowing them to explicitly represent the compositional rules
inherent in the input. These sparse coefficients are then used to combine another dictionary, i.e.,
decoding dictionary, parameterized by the value matrix, to generate the final output.

By projecting the input of both the context and target tasks onto a shared encoding dictionary to
obtain their respective coefficients, we can effectively infer the compositional rules of the target tasks.
Inspired by the lifting scheme [22], we estimate coefficients of the target task through a simple linear
combination of the context task coefficients.

We first assess the effectiveness of our method on a toy example with a simple compositional rule,
demonstrating that our approach successfully learns and generalizes the rule, whereas the standard
Transformer fails in this case. The results are shown in Figure 3. We then evaluate our method on the
in-context compositional learning dataset, such as S-RAVEN [20] and RAVEN [29]. Our approach
consistently outperforms standard Transformer baselines. These results indicate that integrating
the attention mechanism with sparse coding enhances the ability of models to learn and apply
compositional rules.

2

We summarize our contributions as follows:

• We reformulate the attention mechanism, inspired by sparse coding, as a mapping of inputs
to outputs via projections onto two learned dictionaries: an encoding dictionary and a
decoding dictionary.

• We explicitly represent inputs as sparse combinations of the encoding dictionary to encode
compositional rules.

• We enable effective transfer of compositional rules across tasks by estimating target coeffi-
cients via a simple linear combination of context coefficients.

• We demonstrate the effectiveness of our approach on in-context compositional learning
tasks, maintaining good performance even in cases where standard Transformers fail.

2 Method

In this section, we first outline the problem setting of in-context compositional learning and then
introduce our framework, inspired by sparse coding, which reformulates the Transformer architecture
to better capture compositional structure.

2.1 Preliminary

Problem formulation. We define the in-context compositional learning task as learning a function
purely from demonstrations provided within a context window. Inspired by the RAVEN dataset [29],
we consider a setting where the model is given L− 1 structured example (the context) and predicts
the Lth one (the target). We illustrate this task in Figure 1.

Assume each example xi ∈ X is governed by a latent compositional ruleR. Let the context set be:

C = {x1, x2, . . . , xL−1} ⊂ XL−1. (1)

The model must produce x̂L ∈ X such that x̂L = f(C), where f is a learned model conditioned on
the context C. The goal is to minimize the expected error over a distribution of tasks:

min
f

EC,xL
[ℓ (f(C), xL)] , (2)

where ℓ is a task-specific loss function. To emphasize in-context compositional learning, the tasks in
the distributionD are constructed such that: (1) Each ruleR is composed from a finite set of primitive
operations P . (2) Test-time tasks involve novel combinations of primitives not seen during training,
i.e.,Rtest /∈ span(Rtrain). This setting evaluates the model’s ability to infer latent rules purely from
examples and apply them to unseen inputs in a compositional manner, mimicking human inductive
reasoning in Raven’s Progressive Matrices.

Sparse coding. Sparse coding represents signals using linear combinations of an overcomplete
dictionary D ∈ Rm×d (where m > d is the number of atoms), and representing the signal as:

X ≈ SD, (3)

where X ∈ RN×d is the input signal, S ∈ RN×m is the sparse coefficient vector, which has only a
few nonzero elements. To achieve sparsity, the common usage is the soft-thresholding function:

prox(S) = sign(S)⊙max(|S| − ξ, 0), (4)

where ⊙ is Hadamard product. It encourages sparsity by shrinking small values of S toward zero.
Sparse coding is widely used in signal processing, machine learning, and neuroscience, providing
efficient and interpretable representations of data.

2.2 Revisiting Transformer Blocks

Multi-head attention (MHA). The attention layer [26] transforms the input sequence X ∈ RN×d

to the output sequence O ∈ RN×d, where N denotes the sequence length, d is the dimension of

3

𝐗𝐖𝒗𝐗𝐖𝒒

𝐗

𝐙 = 𝐀𝐗𝐖𝒗

𝐗𝐖𝒌

𝐀 = 𝜎(𝐗𝐖𝒒𝑾𝒌
⊺ 𝐗)

Attention Map Value

𝐙 = 𝜎 𝐗	𝑾𝒒𝒌
⊺ 𝐗⊺ 	𝐗𝐖𝒗

(a)

𝜓(𝐗)𝜙(𝐗)

𝐗

𝛂 = σ(𝐗	𝜙 𝐗)

𝐙 = 𝛂	𝜓(𝐗)

Coefficients Dictionary

𝛂′ = 𝒈(𝛂)

𝐗

𝐙 = 𝜎 𝐗	𝜙(𝐗) 	𝜓(𝐗)

(b)

𝛂 = σ(𝐗	𝜙 𝐗)

σ())

𝐗	𝜙 𝐗

Sparsify

𝛂′ = 𝑔(𝛂)

𝑔 𝛂 =
𝛂! 							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛂′" =.𝜆# 𝛂#

Share
Compositional
Rule

𝛂′$ = 𝛂$ + 𝜆%𝛂% + 𝜆&𝛂&

𝜙(𝐗)
𝜓(𝐗)

: Encoding Dictionary

: Decoding Dictionary

(c)

Figure 2: (a) The attention block produces the output as a linear combination of the value matrix,
weighted by the attention map. (b) Our framework reformulates the attention mechanism: Outputs are
constructed as sparse combinations of learned dictionary atoms, i.e., decoding dictionary ψ(X), and
their coefficients α represent compositional rules. (c) Details of our method: The coefficients α are
obtained by decomposing the input features over the encoding dictionary ϕ(X), and then achieving
sparse representations with a nonlinear function σ(·). Since the coefficients of the target task only
provide partial information about its compositional rule due to limited observations, we propose to
estimate the coefficients of the target task αL as a simple linear combination of the context task
coefficients, i.e., α′ = g(α). Further details are provided in Section 2.3.

input and output features. The attention layer projects the input using the corresponding projection
matrices Wq,Wk,Wv ∈ Rd×d, and calculates the attention map,

A = ATTN(X) = σ(XWqW
⊺
kX

⊺), (5)

where σ(·) = softmax(·). The attention map A ∈ RN×N captures the token-wise relationship by
doing inner-product in a space transformed by Wq,Wk.

Multi-head attention extends this by allowing multiple attention mechanisms to work in parallel,
with each head independently learning attention patterns. For H attention heads, each attention head
calculates attention maps as A(h) = σ(XW

(h)
qk X⊺), where W

(h)
qk = W

(h)
q W

(h)⊺
k is corresponding

to projection matrices W(h)
q ,W

(h)
k ∈ Rd× d

H , h = 1, · · · , H . The multi-head attention represents as,

MHA(X) =

H∑
h=1

A(h)XW(h)
vo =

H∑
h=1

σ(XW
(h)
qk X⊺)XW(h)

vo , (6)

where W
(h)
vo = W

(h)
v W

(h)⊺
o , W(h)

v ,W
(h)
o ∈ Rd× d

H , W(h)
vo ∈ Rd×d.

While the MHA offers a form of learned localization via query-key similarity, it suffers from two
fundamental limitations in compositional tasks:

• The use of the softmax function produces dense attention weights, resulting in indiscrimi-
nate global mixing of information. This lack of sparsity hinders the model from representing
the compositional structure inherent in contextual tasks.

• There is no explicit mechanism for reusing local compositional rules. It struggles to
disentangle meaningful subcomponents, limiting its capacity to generalize via transferring
compositional rules.

4

2.3 Reformulate Transformer Using Sparse Coding

We propose to explicitly reinterpret the attention in the Transformer as a form of learned, sparse
coding problem. We factorize MHA (6) as follows:

MHA(X) =

H∑
h=1

σ(X W
(h)
qk X⊺︸ ︷︷ ︸) XW(h)

vo︸ ︷︷ ︸
=

H∑
h=1

σ(X ϕ(h)(X)︸ ︷︷ ︸
Encoding dictionary

) ψ(h)(X)︸ ︷︷ ︸
Decoding dictionary

,

(7)

where ϕ(h)(X) and ψ(h)(X) generate a set of dictionary atoms conditioned on the input X, ϕ(h)(·)
and ψ(h)(·) are the basis functions parameterized by W

(h)
qk and W

(h)
vo . Our method is illustrated in

Figure 2.

Learned dictionary atoms. Our method reformulates the attention mechanism as a composition
over learned dictionary atoms to enable structured representations. Specifically, we introduce two
sets of input-dependent dictionaries: ϕ(X) and ψ(X), both parameterized by learnable functions of
the input X.

• The encoding dictionary ϕ(X) is used to extract coefficients by computing the product
Xϕ(X), which represents how the input X decomposed with respect to the learned dictionary
atoms. These coefficients encode the combination rule underlying the input structure.

• The decoding dictionary ψ(X) serves as a reconstruction dictionary that synthesizes the
final output from the coefficients.

Both ϕ(X) and ψ(X) are dynamic and data-dependent, allowing the model to adaptively learn
dictionary atoms that best represent the compositional patterns in each input instance.

Sparse coefficients. The coefficients X ϕ(X) encode the combination rule underlying the input
structure. To enhance the model’s capability to capture compositional structure, we apply sparsity-
promoting nonlinearities σ(·), such as soft-thresholding, defined as prox(x) = sign(x)⊙max(|x| −
ξ, 0) to introduce sparsity in coefficients α, where ξ is the threshold for setting values to zero, i.e.,

α = σ (X ϕ(X)) . (8)

Different from the attention map A, which applies softmax operation, sparse coefficients preserve the
most informative components while suppressing redundant interactions. The resulting representation
is more structured and better aligned with the underlying compositional rules.

Update coefficients of the target task. By encoding the underlying compositional rule as sparse
coefficients α, we aim to transfer this rule from context tasks to the target task. The coefficients of the
target task encode only partial information about its compositional rule due to limited observations of
itself. We can transfer the compositional rule to the target task by coefficient transfer.

To address this, we propose estimating the target coefficients based on those of the context tasks.
Inspired by the lifting scheme [22], we devise a procedure that predicts the target task coefficients
through a linear combination of the context task coefficients. Specifically, sparse coefficients α ∈
RN×N consist of contributions from both context and target tasks, with L− 1 portions derived from
the context tasks and a single portion αL ∈ RN

L ×N corresponding to the target task. We can update
the coefficients of target tasks αL by,

αL ← αL +

L−1∑
i=1

λiαi, (9)

where λi is the learnable parameter for combining the coefficients of context tasks. The coefficients
of context tasks remain unchanged. We represent this operation with a function g(·),

g(α) =

{
αi context tasks,
αL +

∑L−1
i=1 λiαi target task.

(10)

5

A

B

B

C

C

A

?

Compositional Rule

Question Panel

Baseline
PSNR: 21.7

Ours
PSNR: 81.5

Ground Truth

OursBaseline

Attention Map

(a)

Compositional Rule

Question Panel

?

A

B

B

C

C

A

OursBaseline

Baseline
PSNR: 15.8

Ours
PSNR: 54.5

Ground Truth

Attention Map

(b)

Figure 3: The effectiveness of sparse coefficients (attention map). Models are trained on setting (a)
and tested on both setting (a) and novel setting (b), which has a different compositional rule. The
baseline method, Transformer with standard MHA, produces blurry outputs due to dense coefficients,
which lead to mixed and entangled results. In contrast, our sparse coefficients prevent this blurring
and effectively transfer the construction rule from the context tasks to the target task. Further details
are in Section 3.

This method is parameter-efficient. At each layer, there are L− 1 learnable parameters λi correspond-
ing to the number of context tasks, which remains relatively small compared to the overall parameter
count of the Transformer blocks.

Variation of basis functions. This formulation allows us to explore various designs for the basis
functions ϕ(·) and ψ(·) to modulate the expressiveness of the model. A detailed discussion is provided
in Appendix 8.

3 Discussion

We construct a synthetic dataset designed to evaluate in-context compositional learning. Each input
consists of 9 panels. The panels are grouped such that panels 1–3, 4–6, and 7–9 share the same
underlying compositional rule, as illustrated in Figure 3. The first two rows represent the context
tasks, while the last row is the target task, which the model predicts based on the pattern observed in
the first two examples.

Compositional rules. Each panel is an 8 × 8 binary image composed of four smaller basic
shapes, arranged according to a predefined rule. For example, in Figure 3 (a), every three panels
are composed of 3 basic shapes. Denoting these shapes as A,B,C, and use ∅ to represent an
empty position, the panels are arranged from left to right and top to bottom as follows: (A, ∅, ∅, B),
(B, ∅, ∅, C), and (C, ∅, ∅, A). Similarly, the compositional rule of Figure 3 (b) is: (∅, A,B, ∅),
(∅, B,C, ∅), and (∅, C,A, ∅). The basic shapes are chosen from a set of 16 elements, allowing for
about P (16, 9) = 16!

(16−9)! ≈ 4×109 distinct panel configurations. Details of the experimental setting
are described in Appendix 7.

Learning configures. A single-layer Transformer block, containing only an attention layer, is
trained to predict the target panel given the 8 context panels. The model is trained with a mean
squared error (MSE) loss. The target panel is masked in the input, and the model is optimized to
reconstruct it from the context examples. During training, the model is exposed to data generated
under one compositional rule and evaluated on test data generated under a different rule to assess
compositional generalization.

3.1 Effectiveness of Sparse Coefficients

We compare our approach with the baseline, where our method introduces sparsity in the coefficients.
As shown in Figure 3, the baseline model with dense attention fails to predict the target panel on the
test set and produces only blurry predictions on the training data. In contrast, through sparse attention
and coefficient transfer, our method effectively infers and applies compositional rules to accurately
predict the target panel on both training and test data, as illustrated in Figure 3 (a) and (b).

6

Layers 4 layers 8 layers
Training Tasks 10M 20M 40M 10M 20M 40M

Transformer 51.6± 1.3 55.7± 1.5 58.1± 1.4 59.8± 1.4 63.3± 1.9 65.1± 4.3
HYLA [20] 55± 2.1 68.6± 1.5 73.2± 0.6 72.5 ± 6.6 77.1 ± 3.4 79.3 ± 1.8

Ours 63.1± 2.8 73.9± 3.8 76.3 ± 2.1 72.6 ± 3.9 78.2 ± 3.9 82.7 ± 2.5

20 30 40
PSNR Threshold

0

10

20

30

40

50

Pe
rc

en
ta

ge

Baseline
Ours, w/o g()
Ours

Figure 4: (Table) Accuracy comparison between our method and baseline methods on the Symbolic
RAVEN (S-RAVEN) dataset. Our method consistently achieves higher accuracy than baselines.
(Plot) Results on the RAVEN dataset. It shows the percentage of test samples with PSNR values
exceeding a given threshold. At lower PSNR levels, the baseline method performs similarly to ours.
However, for PSNR values above 40, the baseline achieves nearly 0 coverage, whereas our method
retains over 30% of the samples.

3.2 Effectiveness of Coefficient Transfer

By representing an input X as [X1, · · · ,XL]
⊺, where Xi,∀i = 1, · · · , L− 1 and XL ∈ RN

L ×d are
corresponding to context tasks and the target task, we have output according to (7),Z1

...
ZL

 =

σ(X1 ϕ(X)) ψ(X)
...

σ(XL ϕ(X)) ψ(X)

 =

α1 ψ(X)
...

αL ψ(X)

 . (11)

We set XL = 0, where 0 ∈ RN
L ×d is a matrix with all zeros, since no observation for the target task.

Baseline methods. A standard Transformer with σ(·) = softmax(·), produces coefficients αL =

σ(XLϕ(X)) = softmax(0) = 1
N 1, where 1 ∈ RN

L ×d is a matrix with all ones. It leads to the
output of the target task as

ZL =
1

N
1ψ(X) = (

1

N
1X)Wv, (12)

where 1
N 1X is an average of the input. Estimating the output ZL by simply averaging the inputs

results in a blurry output, as illustrated in Figure 3.

Our method. Different from standard Transformer, our method enforces sparsity in coefficients by
applying σ(·) = prox(·) to obtain αL = σ(XLϕ(X)) = prox(0) = 0, which produces

ZL = αL ψ(X) = 0. (13)
This indicates that no estimation of the target output is made when there is no observation of the input.
However, with the coefficient estimation (9), αL ← αL +

∑L−1
i=1 λiαi, we avoid a zero estimation

of the target coefficients by linearly combining the coefficients of the context tasks, and produce
nonzero output,

ZL = αL ψ(X) +

L−1∑
i=1

λiαi ψ(X). (14)

Without coefficient estimation, neither standard Transformer nor our method yields informative
outputs for ZL. However, by learning λi and leveraging the accurate reconstruction of context
examples by Zi,∀i = 1, · · · , L − 1, ZL = αL ψ(X) +

∑L−1
i=1 λiαi ψ(X) is capable to generate

meaningful outputs that reuse compositional rules from the context tasks. In practice, we observe the
sharp and recurrent attention patterns produced by our method, as shown in Figure 3. We provide
details of our analysis in Appendix 9.

4 Experiments

4.1 Symbolic RAVEN

The S-RAVEN dataset [20], detailed in the original paper, is specifically designed to evaluate composi-
tional reasoning. In S-RAVEN, each task is built from a finite set of rule combinations systematically

7

?

Ground Truth Baseline

Ours, w/o 𝒈(𝛂) Ours

(a)

?

Ground Truth Baseline

Ours, w/o 𝒈(𝛂) Ours

(b)

?

Ground Truth Baseline

Ours, w/o 𝒈(𝛂) Ours

(c)

?

Ground Truth Baseline

Ours, w/o 𝒈(𝛂) Ours

(d)

Figure 5: Example results of RAVEN. The model predicts the 9th panel based on the first 8 panels. We
compare our method with and without g(α), the coefficient estimation for the target task, alongside
the baseline method. The baseline often yields blurry images with incorrect layouts, whereas our
method preserves structure and improves compositional accuracy. However, all models occasionally
fail on the most challenging cases, e.g., (d).

applied across panels, with each panel represented as a tuple of integers that symbolically encodes its
features. Details of the experimental setting are described in Appendix 7.

Experimental settings. We train models using the standard decoder-only Transformer architecture
and evaluate performance under varying numbers of training tasks and attention layers. Our method
builds directly on the S-RAVEN implementation, introducing sparsity into the attention maps and
applying a lifting scheme to enhance compositional rule transfer within the attention mechanism.

Metrics. To evaluate whether a model trained on a subset of rule combinations can generalize to
unseen combinations, we partition all possible rule combinations into separate training and test sets,
where 25% of the combinations are held out for testing. Model performance is assessed by measuring
the accuracy of correctly predicted examples from the test set.

Results. The results, summarized in Table 4, are obtained by running the experiment three times.
Our method consistently outperforms baseline approaches, including standard Transformer [26] and
HYLA [20], achieving significantly higher accuracy even with fewer layers.

4.2 RAVEN dataset

The RAVEN dataset [29] was originally designed for visual reasoning, requiring models to select the
correct answer from eight candidates based on the underlying structure of context panels. In contrast,
our work focuses on evaluating the compositional capabilities of models by tasking them with
generalizing the answer directly, rather than selecting from predefined options—a more challenging
objective that demands better understanding and application of the compositional rule.

Experimental settings. For our experiments, we adapt the rule framework from RAVEN and
focus on the simplified case where examples are arranged in a 2 × 2 grid. The model generates
the target answer based on the composition of the eight context images. We modify the standard
Transformer architecture to serve as a baseline and compare its performance against our approach,
which incorporates sparsity and estimation of the coefficients into the attention mechanism.

Metrics. To assess model performance, we adapt the Peak Signal-to-Noise Ratio (PSNR) metric to
quantify the difference between the generated images and the ground truth. We report the percentage
of test samples exceeding PSNR thresholds of 20, 30, and 40, where a higher percentage indicates
better reconstruction quality and overall model performance.

8

Results. As shown in Figure 4, the results demonstrate that our method consistently achieves higher
accuracy than the standard Transformer baseline. While the standard Transformer yields nearly 0%
of test samples with PSNR above 40, our method maintains around 40%. Additionally, we observe
further performance gains when the target coefficient estimation is applied.

Example predictions are visualized in Figure 5, where the baseline model frequently produces blurry
images with incorrect arrangements, while our method preserves clear structural information and
generates more accurate compositions. Nevertheless, in particularly challenging cases, all models
occasionally fail to produce satisfactory outputs.

5 Related Work

In-context compositional learning. Recent research on compositional reasoning with transformers
has explored several key directions. Some studies focus on understanding and measuring com-
positional generalization abilities, often identifying gaps between LLM performance on known
components and novel compositions, and how these gaps evolve with model scale or in-context
learning [7, 9, 16, 21]. Other works delve into the underlying mechanisms and offer explanations for
how LLMs achieve or fail at compositional reasoning, for example, by proposing that attention acts
as a hypernetwork or by analyzing emergent algorithmic behaviors [15, 19, 20, 24]. Another line of
inquiry compares the effectiveness of general pre-training against specialized architectures, investi-
gating whether broad pre-training itself can endow models with strong compositional capabilities,
sometimes rivaling or exceeding those of systems explicitly designed for such tasks [2, 8]. However,
conventional Transformers often struggle with in-context compositional tasks due to insufficient
structural inductive bias. We address this limitation by introducing a sparse coding attention, explicitly
designed to capture and transfer structural rules from context examples.

Sparsity in attention. Sparsity has proven to be a powerful principle, and extensive research has
investigated its application in Transformers, primarily to reduce the computational complexity [23]
of the attention mechanism. Sparse attention mechanisms aim to reduce the number of token pairs
being attended to. This includes methods employing fixed, pre-defined sparsity patterns, such as
local windowed attention combined with varying forms of global or random attention [1, 3, 28].
Learnable or adaptive sparsity patterns have been explored, where the attention pattern is dynamically
determined, for instance, through locality-sensitive hashing [12] or learned routing strategies [18].
Some approaches seek to approximate full attention using kernel methods or low-rank projections,
which implicitly reduce computational load without explicit sparse connections [4, 27]. In contrast
to prior work, our approach introduces sparsity in attention mainly to enhance the representation
of compositional rules. By replacing softmax with soft-thresholding, we promote the learning of
structured, localized attention patterns that better capture and encode compositional relationships.

6 Conclusion

In this work, we proposed a reformulation of the Transformer architecture to address the challenge of
in-context compositional learning. By drawing inspiration from sparse coding, we introduced a frame-
work that represents compositional rules as sparse coefficients over learned dictionaries, enhancing the
transferability of structure across tasks. By enforcing sparsity in the coefficients and estimating target
coefficients from those of the context tasks, our method further enhances rule transfer and localization
within the attention mechanism. Experimental results on in-context compositional learning datasets,
such as S-RAVEN and RAVEN benchmark, demonstrate that our approach significantly outperforms
standard Transformers, particularly in tasks requiring compositional reasoning and generalization to
unseen rule combinations. These findings highlight the potential of combining principles from sparse
coding and attention to advance structured reasoning in neural models.

Limitations. While our approach shows promising results in training Transformers on relatively
small-scale tasks, its application to large pre-trained models remains unexplored. Although inte-
grating the linear combination of attention maps into pre-trained models could potentially enhance
compositional learning, we leave this for future work.

9

References
[1] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,

Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc: Encoding long and structured
inputs in transformers. In Empirical Methods in Natural Language Processing, 2020.

[2] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learn-
ing algorithm is in-context learning? investigations with linear models. The International
Conference on Learning Representations, 2023.

[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

[4] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. The International Conference on Learning Representations, 2021.

[5] Bhishma Dedhia, Michael Chang, Jake Snell, Tom Griffiths, and Niraj Jha. Im-promptu: in-
context composition from image prompts. Advances in Neural Information Processing Systems,
2023.

[6] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at
scale. The International Conference on Learning Representations, 2021.

[7] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 2023.

[8] Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli. Compositional gen-
eralization in semantic parsing: Pre-training vs. specialized architectures. arXiv preprint
arXiv:2007.08970, 2020.

[9] Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, and Aaron Courville.
On the compositional generalization gap of in-context learning. In Proceedings of the Fifth
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, 2022.

[10] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
2022.

[11] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023.

[12] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. The
International Conference on Learning Representations, 2020.

[13] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In
ICML, 2024.

[14] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 1996.

[15] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. Consortium for Reliability and Reproducibility, 2022.

[16] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. Empirical Methods in
Natural Language Processing, 2023.

[17] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In The IEEE / CVF Computer Vision
and Pattern Recognition Conference, 2022.

10

[18] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based
sparse attention with routing transformers. Transactions of the Association for Computational
Linguistics, 2021.

[19] Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal
analysis of chain-of-thought. The International Conference on Learning Representations, 2023.

[20] Simon Schug, Seijin Kobayashi, Yassir Akram, João Sacramento, and Razvan Pascanu. Atten-
tion as a hypernetwork. The International Conference on Learning Representations, 2025.

[21] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
The International Conference on Learning Representations, 2025.

[22] Wim Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM
journal on mathematical analysis, 1998.

[23] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Computing Surveys, 2022.

[24] Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David
Bau. Function vectors in large language models. The International Conference on Learning
Representations, 2024.

[25] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 2017.

[27] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[28] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird:
Transformers for longer sequences. Advances in neural information processing systems, 2020.

[29] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for
relational and analogical visual reasoning. In The IEEE / CVF Computer Vision and Pattern
Recognition Conference, 2019.

11

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have provided an accurate discussion of our contribution in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations at the end of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

12

Justification: We have included assumptions and proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided sufficient experimental details in the main paper. Additional
information is also included in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

13

Answer: [Yes]

Justification: We have provided the code for our main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided sufficient experimental details in the main paper. Additional
information is also included in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct our experiments for multiple runs and include error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided this information in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conforms with NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper only proposes a study to learn compositional generalization tasks. It
doesn’t have a clear impact on the real-world applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

15

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the models, datasets that are used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

16

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: It is not a crowdsourcing experiment.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

17

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

7 Experimental Details

The experimental setting of synthetic data. We conduct experiments on a synthetic dataset
composed of 16 distinct basic elements, which are shown in Figure 6 (a), where each panel is
constructed by selecting and combining two of these elements. The examples of training and test data
are displayed in Figure 6 (b-c) The model architecture consists of a single-layer Transformer using
only self-attention, omitting the feedforward layer. The input sequence length is fixed at N = 32,
with a feature dimension of 16 and a single attention head (H = 1). Training is performed over 200
epochs using a batch size of 128. We optimize the model using the Adam optimizer with a learning
rate of 0.001 and employ mean squared error (MSE) loss as the training objective.

The experimental setting of S-RAVEN. We evaluate on the S-RAVEN benchmark [20], where
each task is defined by 4 features, sampled from a pool of 8 possible rules. For each task, we generate
three input-output sequences of length three, using random inputs for each rule to form the context.
Our model architecture follows HYLA [20], varying the number of layers between 4 and 8. The input
has a feature dimension of 128 and 16 attention heads (H = 16). For baseline comparisons, including
HYLA and a standard Transformer, we adopt the original configurations as specified in the HYLA
paper. All models use Root Mean Square (RMS) normalization for attention activations. To promote
structured representations, our method applies soft thresholding to the attention weights, encouraging
sparsity. Training is conducted for one epoch using a batch size of 128, the Adam optimizer with a
learning rate of 0.001 and a weight decay of 0.1, and the cross-entropy loss as the objective.

The experimental setting of RAVEN. We conduct experiments on a restricted version of the
RAVEN dataset [29], focusing solely on the 2-by-2 grid layout. To ensure deterministic target
generation, we remove stochastic variations in rotation and color, so that the target panel is uniquely
determined by the eight context panels. Each image is resized to 40 × 40 pixels. The model is a
standard Transformer with 4 layers, a sequence length of N = 36, a feature dimension of 512, and
16 attention heads (H = 16). Training is performed over 2000 epochs with a batch size of 256, using
the Adam optimizer with a learning rate of 0.0001. The model is trained to minimize mean squared
error (MSE) loss.

8 Experimental Results

Sparsity and threshold To investigate the impact of the threshold on attention sparsity, we conduct
experiments on the RAVEN dataset. Specifically, we measure the average sparsity of the attention
maps across all layers, where sparsity is defined as the proportion of zero-valued entries after
thresholding. As the threshold increases, more small-magnitude values are suppressed, leading to
higher sparsity levels. Our results confirm this trend: larger thresholds consistently yield sparser
attention maps, demonstrating the controllable nature of sparsity in our model through the threshold
parameter. The results are shown in Table 1.

(a) 16 basic elements (b) An example of training data (c) An example of test data

Figure 6: Examples of the synthetic dataset.

1

Table 1: The effect of threshold on the sparsity of the attention map.
Threshold (ξ) 0.003 0.01 0.03 0.1 0.3

Sparsity 18.53 57.82 90.45 97.82 99.38

Table 2: Variation of basis functions.
Configs of ϕ(X) and ψ(X) W

(h)
qk X, W(h)

vo X ReLU(W(h)
qk X), W(h)

vo X W
(h)
qk X, ReLU(W(h)

vo X) ReLU(W(h)
qk X), ReLU(W(h)

vo X)

Accuracy 71.7 72.3 72.9 73.6

Variation of basis functions. With the above formulation, we explore different designs for the
basis functions ϕ(·) and ψ(·) to adjust the expressiveness of models. In the baseline configuration,
the basis functions are constructed through linear projections of the input, parameterized by W

(h)
qk

or W(h)
vo . A simple variation is to introduce nonlinearity into the basis construction by applying an

activation function, such as ReLU, after the linear projections. For instance, a different basis function
can be redefined as ϕ(X) = ReLU(W(h)

qk X) or ψ(X) = ReLU(W(h)
vo X). Incorporating nonlinearity

into the basis functions can increase the representational capacity, enabling the model to capture more
complex localized patterns beyond those achievable with purely linear projections.

We conduct experiments on the S-RAVEN dataset using a 4-layer Transformer architecture, training
the model on a dataset of 20 million samples. We compare the different designs of ϕ(X) and ψ(X)
by adding the ReLU. The results are shown in Table 2.

Application to language modeling tasks. While our primary focus is to address specific limitations
of attention mechanisms in compositional tasks, we have conducted experiments on language models
to demonstrate our method’s effectiveness on standard benchmarks.

We integrate the proposed sparse-coding inspired attention into the Llama-7B [25] model. We
then fine-tuned these modified models on several widely-used commonsense reasoning bench-
marks and compared the results against both the original base models and those fine-tuned using
LoRA/DoRA [10, 13].

In our implementation, we target the model’s Attention blocks. We treat the original attention weights
(denoted as ψ(X) and ϕ(X)) as fixed and introduce our core components: new, learnable parameters
for sparsity (ξ) and the coefficient transfer mechanism (λi). We initialize these new parameters to
zero, ensuring that our module has no impact on the model’s output before training. By fine-tuning
only these new parameters, we can cleanly measure the influence of our method.

Our findings show that models incorporating our model achieve a notable performance improvement
over the base Llama model, which is shown in Table 3. Although these results do not yet surpass those
from LoRA and DoRA fine-tuning, it’s important to consider that our approach uses significantly
fewer trainable parameters (over a hundred vs. over 50 million) and has not undergone extensive
hyperparameter optimization. The performance gains over the base models suggest that large language
models benefit from our mechanism on reasoning tasks, providing compelling evidence of its value.
We believe that with further refinement, our approach has the potential to achieve better performance
on language modeling tasks. We see the exploration of its application to other benchmarks, such as
translation and summarization, as a promising direction for future work.

Evaluate the models on Im-promptu benchmark. We evaluate our method on the Im-promptu
benchmark [5], including 3D Shapes, BitMoji Faces, and CLEVr Objects datasets. For this com-
parison, we adopt the Object-Centric Learner from the original paper as our baseline and integrate
our approach by modifying its attention layer. As detailed in the Table 4, our method consistently
achieves a lower MSE, demonstrating an improvement over the baseline.

2

Table 3: Results on language modeling tasks.
Model Params BoolQ PIQA HellaSwag WinoGrande ARC-c OBQA Avg.

Llama-7B - 56.5 79.8 76.1 70.1 63.2 77.0 70.5
+ Ours 128 57.3 80.7 80.6 71.1 64.2 77.6 71.9

LoRA 55.9M 67.5 80.8 83.4 80.4 62.6 79.1 75.6
LoRA + Ours 55.9M 69.5 81.8 81.6 80.8 65.1 79.0 76.3

DoRA 56.6M 69.7 83.4 87.2 81.0 66.2 79.2 77.8
DoRA + Ours 56.6M 70.0 83.6 87.3 81.2 67.4 78.9 78.1

Table 4: Results on Im-promptu benchmark.
MSE 3D Shapes BitMoji Faces CLEVr Objects

OCL 4.36 4.77 37.54
Ours 4.31 4.42 36.23

9 Additional Analysis

By representing an input X as [X1, · · · ,XL]
⊺, where Xi,∀i = 1, · · · , L− 1 and XL ∈ RN

L ×d are
corresponding to context tasks and the target task, we have,Z1

...
ZL

 =

σ(X1 ϕ(X)) ψ(X)
...

σ(XL ϕ(X)) ψ(X)

 =

α1 ψ(X)
...

αL ψ(X)

 . (15)

We set XL = 0, where 0 ∈ RN
L ×d is a matrix with all zeros, since no observation for the target task.

Our method. Different from standard Transformer, our method enforces sparsity in coefficients by
applying σ(·) = prox(·) to obtain αL = σ(XLϕ(X)) = prox(0) = 0, which produces

ZL = αL ψ(X) = 0. (16)

This indicates that no estimation of the target output is made when there is no observation of the input.
However, with the coefficient estimation (9), αL ← αL +

∑L−1
i=1 λiαi, we avoid a zero estimation

of the target coefficients by linearly combining the coefficients of the context tasks, and produce
nonzero output,

ZL = αL ψ(X) +

L−1∑
i=1

λiαi ψ(X). (17)

Without coefficient estimation, neither standard Transformer nor our method yields informative
outputs for ZL. However, by learning λi and leveraging the accurate reconstruction of context
examples by Zi,∀i = 1, · · · , L− 1, ZL = αL ψ(X) +

∑L−1
i=1 λiαi ψ(X) is capable to generate the

target outputs that reuse compositional rules from the context tasks.

9.1 Compositional Reconstruction of the Target Output

We have a dictionary of basis elements, ψ(X) = {ψj}Nj=1. Each output Zi for i = 1, . . . , L is
expressed as a linear combination of elements in ψ(X) using coefficient vectors αi ∈ RN , i.e.,

Zi =

n∑
j=1

α
(j)
i ψj = α⊺

i ψ, (18)

where ψ = [ψ1, . . . , ψN]⊺.
Assumption 9.1. The dictionary ψ(X) is sufficient to represent the target output ZL.
Assumption 9.2. Each of the L− 1 outputs Z1, . . . ,ZL−1 is correctly constructed using coefficient
vectors α1, . . . ,αL−1.

3

Assumption 9.3. Across {Z1, . . . ,ZL−1}, every dictionary element ψj is used at least once, i.e., ∀j,
there exists i such that α(j)

i ̸= 0.

Proposition 9.4. There exists a set of weights λ1, . . . , λL−1 such that:

αL =

L−1∑
i=1

λiαi, (19)

and αL reconstructs ZL using only elements in ψ(X).

Proof. Let A = {α1, . . . ,αL−1} ⊂ RN denote the set of known coefficient vectors. Let V =
span(A) ⊆ RN be the subspace spanned by them. Since from Assumption 9.2, each αi reconstructs
Zi correctly and the union of their support covers all dictionary elements, the span V includes
directions along all dictionary elements used for constructing ZL.

From Assumption 9.1, we know there exists some α∗
L ∈ RN such that:

ZL = α∗⊺
L ψ. (20)

Because supp(α∗
L) ⊆

⋃L−1
i=1 supp(αi), i.e., the dictionary elements needed for ZL have already been

used in A, and all such directions are already present in V , it follows that:

α∗
L ∈ V. (21)

Therefore, there exist scalars λ1, . . . , λL−1 such that:

α∗
L =

L−1∑
i=1

λiαi.

Thus, by setting αL :=
∑L−1

i=1 λiαi, we obtain the desired coefficient vector such that:

ZL = α⊺
Lψ.

Given that the dictionary is sufficient, and the L−1 outputs collectively utilize all necessary dictionary
elements, the coefficient vector for the L-th output can be expressed as a linear combination of
previous coefficient vectors. This demonstrates the ability to transfer compositional rules from
context examples to new tasks via linear combination of coefficients.

10 Computational Resource

We conducted development and experiments on a Linux workstation equipped with a single NVIDIA
A5000 GPU (24GB memory). A single run of the synthetic task typically takes 3–5 minutes, while a
single S-RAVEN experiment run takes between 60 and 200 minutes. For RAVEN experiments, a full
run requires approximately 200 minutes.

4

	Introduction
	Method
	Preliminary
	Revisiting Transformer Blocks
	Reformulate Transformer Using Sparse Coding

	Discussion
	Effectiveness of Sparse Coefficients
	Effectiveness of Coefficient Transfer

	Experiments
	Symbolic RAVEN
	RAVEN dataset

	Related Work
	Conclusion
	Experimental Details
	Experimental Results
	Additional Analysis
	Compositional Reconstruction of the Target Output

	Computational Resource

