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Abstract

Exploring new dopant materials is crucial for enhancing the performance, effi-
ciency, and versatility of semiconductors. Perovskites, with their diverse structures
and tunability, have emerged as promising candidates for the next generation of
semiconductors. Machine learning potentials (MLPs) have shown great promise
in efficiently predicting material properties for bulk materials. However, the lack
of comprehensive dopant datasets for perovskites has hindered the application of
data driven techniques for high-throughput screening and material discovery in this
domain. In this work, we propose a dopant dataset "Perovs-Dopants" comprising
over 20,000 density functional theory (DFT) data points from 438 different doped
perovskite material relaxation trajectories. Using Perovs-Dopants, we evaluate
MACE-MP, a foundation model pretrained on bulk material trajectories, to bench-
mark the performance of state-of-the-art MLPs. Our results show that despite
MACE-MP’s robust performance on bulk crystals, Perovs-Dopants represents an
out-of-distribution challenge with significant prediction errors. We redeem these er-
rors by finetuning MACE-MP to achieve comparative modeling of Perovs-Dopants
and pristine bulk crystals.

1 Introduction

The development of new doped materials is pivotal for advancing semiconductor technologies. The
introduction of dopants into semiconductor materials can tailor their electronic and optical properties,
enabling the design of materials with specific functionalities for complex logic devices. Among
the various classes of semiconductors, perovskites have emerged as promising candidates due to
their versatile crystal structures and rich chemical compositions [1–3]. Perovskites are the class of
material with a general chemical formula of ABX3 which share the same crystal structure as CaTiO3.
These materials exhibit remarkable properties, such as high carrier mobility, tunable band gaps, and
strong light absorption, making them ideal for a wide range of applications, including photovoltaics,
light-emitting diodes, and sensors [4–6].

In recent years, there has been a surge of research focusing on the use of machine learning (ML) to
accelerate the discovery of new materials, chemicals, and drugs [7–12]. The scientific community has
made significant efforts to construct computational datasets that facilitate the development of machine
learning potential (MLP) for diverse types of materials to broader and more efficient materials
modeling [13–21]. Prior work also proposed MLP foundation models, such as MACE [22], CHGNet
[23], and M3GNet [24], that claim fast and accurate predictions of material properties for a wide range
of chemical systems and applications. Despite the growing interest in perovskites, the exploration of
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ML models for dopant-infused perovskites remains underdeveloped. While the perovskite family
offers a vast compositional space, the lack of dopant datasets poses a significant challenge to the
systematic design and optimization of doped perovskite materials. Existing computational datasets
mainly focus on pristine perovskite structures [25, 26], leaving a gap for doped Perovskite systems.

To address this gap, we propose a dopant dataset specifically tailored for perovskites, "Perovs-
Dopants", containing relaxation trajectories of various dopant materials within oxide and halide
perovskites. This dataset is composed of over 20,000 data points on atomic configuration and Density
Functional Theory (DFT) calculated energy and forces. While we have already collected a significant
amount of DFT data, we note that we are actively working on populating the chemical space with
additional perovskite and dopant combinations with a greater set of data available at the time of
the workshop. Nevertheless, this dataset serves as a benchmark for evaluating the performance
of universal ML potentials in predicting relevant properties of doped perovskite systems, and can
subsequently be used to facilitate the identification of promising dopant candidates.

2 Method

2.1 Perovs-Dopants

To construct a broad dopant dataset, we begin by selecting a diverse set of perovskite materials and
dopant elements to ensure extensive coverage of different chemical environments and structural
variations. The base perovskite materials were selected from the Materials Project database [27], a
cubic perovskite dataset [28], and a halide perovskite dataset [29]. Based on the structures contained
in these datasets, we selected the perovskites that are stable, and have a band gap ranging from 1 to 3
eV. For the dopants, we focused on the d-block transition metals from group 3 to 12 of the periodic
table based on prior work related to doped semiconductor materials. Concretely, these elements
were chosen due to their diverse electronic configurations and their potential to introduce significant
property modifications to the host perovskite material. The doped perovskite structures were then
generated by substituting one atom in either the A or B site of the perovskite base structure with the
selected dopant. Additionally, we included scenarios where vacancies were introduced at the A or B
site to capture both substitutional and vacancy doping effects.

The workflow for constructing the dopant dataset was developed using Atomate2 [30]. CP2K was
employed as the DFT code for all calculations [31], and the Perdew-Burke-Ernzerhof (PBE) was
applied as the exchange-correlation functional [32]. The calculations were conducted using the
Orbital Transformations method from the Quickstep code in CP2K [33]. TZVP basis set and GTH
Pseudopotential was used. Geometric optimization simulations were performed to generate the
relaxation trajectories for the doped structures. During these simulations, the atomic positions were
optimized with Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) to minimize the forces acting
on the atoms to ensure the structure reached a stable state. The relaxation process was iterated until
the forces on all atoms were reduced to below 0.02 eV/Å.

2.2 Machine Learning Model Analysis

For this study, we analyzed the MACE-MP model, which was pretrained on the MPtrj dataset that
contains 1.5M atomic configuration and DFT calculated properties [23, 34]. For testing the model
performance on the Perovs-Dopants dataset, we split it into an 8:1:1 ratio for training, validation and
testing. The training set also included 89 isolated atoms to adjust the atomic energies when training
the MACE models and account for the variation in the atomic energy between CP2K and VASP as
DFT codes. The pretrained model serves as a starting point for testing on the Perovs-Dopants dataset.
Given the differences between the Perovs-Dopants dataset and the majority of chemical systems in
the MPtrj dataset, we expect some level of fine-tuning to be necessary to adapt the pretrained model
to the new data. We fine-tuned the pretrained MACE-MP-0 model 1 using two different learning rates:
0.0005 and 0.00001 2. The fine-tuning process was run for 20 epochs. Additionally, we randomly
selected 2000 DFT data points from the MPtrj test set to create a quick evaluation dataset to measure

1The pretrained model (2024-01-07-mace-128-L2_epoch-199.model) was downloaded from https://
github.com/ACEsuit/mace-mp/releases/tag/mace_mp_0

2the MACE-MP-0 model was pretrained with a learning rate of 0.005
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the finetuned model’s performance on its original dataset. Additionally, we train the MACE model
from scratch on Perovs-Dopants and analyze its performance.

The pretrained (MACE-MP), finetuned MACE-MP (MACE-MP-ft), and trained from scratch MACE
(MACE-init) were evaluated on both the MPtrj subset and the Perovs-Dopants test set, and the
experiments are referred to as MACE-MP MPtrj, MACE-MP dopant, MACE-MP-ft MPtrj, MACE-
MP-ft dopant, MACE-init MPtrj and MACE-init dopant, respectively.

3 Results

The dopant dataset contains 438 doped perovskite materials, and the element distribution is shown in
Figure 1a. We performed a t-distributed stochastic neighbor embedding (t-SNE) [35] analysis to help
qualitatively analyze the difference in the chemical space coverage between the MPtrj dataset and the
dopant dataset from the model’s perspective. The node feature for 10000 randomly selected systems
from MPtrj training dataset and the entire Perovs-Dopants test set were extracted from the pretrained
MACE-MP model. These 256-dimensional vector features represent the atomic neighborhood of
each atom in a chemical system. We averaged the per-atom vectors within each system to obtain
a system-level descriptor. t-SNE was then applied to reduce the dimensionality and visualize the
distribution of the systems. As shown in Figure 1b, while there is some overlap suggesting shared
features between the datasets, a significant portion of the dopant dataset lies in the areas that are not
covered by MPtrj. This observation confirms that the Perovs-Dopants dataset explores new chemical
spaces, emphasizing the need for fine-tuning the pretrained MACE model to better adapt to these
out-of-distribution data points.

Figure 2 summarizes the results of the proposed experiments. The pretrained MACE-MP model
performance on the MPtrj subset aligns with the previously published results with an energy mean
absolute error (MAE) of 0.02 eV/atom and force MAE of 0.04 eV/Å. When the pretrained model was
directly applied to the Perovs-Dopants dataset, we observed a decline in performance as the model
tends to overestimate the atomic forces. This result is expected and consistent with our earlier analysis:
as indicated by Figure 1b, the Perovs-Dopants dataset represents an out-of-domain challenge.

The comparison between the two learning rate in the fine-tuning process can be found in Figure A1
and Table A1. The fine-tuning result from the lower learning rate (0.00001) is included in Figure
2. Finetuning on the Perovs-Dopants dataset significantly improved the model performance and
showed a better alignment with the behavior of the foundation model. However, when we tested the
fine-tuned model on the original MPtrj dataset, the force MAE increased to 0.14 eV/Å, indicating the
occurrence of catastrophic forgetting where the finetuned model loses learnt information from its
original training domain. The higher learning rate results in larger energy and forces errors. More
investigation into robust fine-tuning strategies to preserve generalization across different dataset is
necessary.

The MACE model trained from scratch on the Perovs-Dopants dataset performed comparably well.
However, it comes at the cost of not leveraging the advantages of pretraining on other chemical
interactions. Most likely this model will fail to accurately predict new perovskite dopant materials if
they fall outside of the scope of the current training data.

4 Conclusion

In this study, we demonstrate our work towards the development of a dopant dataset for perovskite
materials. The current benchmark dataset consists of over 20000 DFT data points from the relax-
ation trajectories of 438 doped perovskite systems. We demonstrated the potential of ML models,
specifically the MACE Universal model, to predict the properties of these doped systems efficiently.
The t-SNE analysis with the MACE-MP embeddings illustrates that the perovskite dopant materials
are outside of the distribution of its training set. This emphasizes the importance to build new com-
putational datasets for advancing the development of foundation models and accelerating material
discovery. Our results highlight that while the pretrained MACE-MP model shows extraordinary
performance on its original MPtrj dataset, it struggles with the dopants in perovskites. Finetuning
the model improved its accuracy on the Perovs-Dopants dataset, but also resulted in catastrophic
forgetting on the MPtrj dataset.
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Figure 1: (a) Distribution of elements in the dopant dataset. (b) t-SNE plot comparing the chemical
space covered by the MPtrj and Perovs-Dopants datasets.

(a) Distribution of the difference in atomic forces be-
tween DFT and MACE. DFTF and MACEF stand for
atomic forces calculated from DFT and MACE model
respectively.

Model Test set

Energy
MAE
(eV/
atom)

Force
MAE
(eV/
Å)

MACE-MP MPtrj 0.02 0.04
Dopant 0.18 0.12

MACE-MP-ft MPtrj 0.16 0.14
Dopant 0.02 0.03

MACE-init MPtrj 0.59 0.44
Dopant 0.04 0.03

(b) Summary of MAE for energy and force predic-
tion across different models.

Figure 2: MACE performance on Perovs-Dopants
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This study aims for providing a valuable perovskite dopant dataset for the material science community
to fill a critical gap in the field of semiconductor research. Future efforts will focus on expanding
the dataset to cover more chemical spaces, and exploring other pretrained models’, i.e.: ChGNet
and M3GNet, performance on the Perovs-Dopants dataset with the Open MatSci ML Toolkit by
Miret et al. [21]. Moving forward, there is a need to improve fine-tuning strategies to maintain the
generalization ability of MLP foundation models. We plan to integrate multi-head architectures to
address the heterogeneity of DFT settings across different datasets.
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A Appendix

A.1 Fine-tune analysis

We fine-tuned the pretrained MACE-MP-0 model using two learning rates: 0.005 and 0.0001. For
reference, the pretrained model was originally trained with a learning rate of 0.0005. Both fine-tuning
processes were run for 20 epoches with other training parameters same as the pretraining process.
Both learning rates exhibit catastrophic forgetting, but the effect is more pronounced with the larger
learning rate of 0.0005. The high energy and forces error on the MPtrj dataset indicates that the
fine-tuned model is overfitted to the dopant dataset.

Model Test set Energy MAE
(eV/atom)

Force MAE
(eV/A)

Force RMSE
(eV/A)

MACE-MP MPtrj 0.02 0.04 0.08
Dopant 0.18 0.12 0.23

MACE-MP-ft
lr = 0.00001

MPtrj 0.16 0.14 0.27
Dopant 0.02 0.03 0.08

MACE-MP-ft
lr = 0.0005

MPtrj 0.62 0.23 0.55
Dopant 0.01 0.02 0.07

MACE-init MPtrj 0.59 0.44 4.03
Dopant 0.04 0.03 0.08

Table A1: Summary of energy and forces MAE, and force root mean squared error (RMSE) prediction
across different models.

Figure A1: Distribution of the differences in the atomic forces predicted by fine-tuned and pretrained
MACE models.
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