
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GEOBA: STEALTHY GEOMETRIC POISONING ON 3D
POINT CLOUD

Anonymous authors
Paper under double-blind review

ABSTRACT

Point cloud backdoor attacks exploit carefully crafted trigger patterns to manip-
ulate deep neural networks (DNNs), causing misclassification when specific in-
put patterns are encountered. Existing approaches primarily rely on (1) explicit
trigger injection (e.g., adding a specific shape) or (2) basic geometric transfor-
mations (e.g., rotation, scaling) to generate poisoned samples. However, such
trigger patterns are often easily detected by the human eye or statistical analysis,
undermining the stealth and effectiveness of the attack. To this end, we propose
GeoBA, a stealthy geometric poisoning backdoor attack that embeds impercep-
tible yet robust triggers into point clouds with minimal geometric perturbation.
Specifically, we first transform point clouds into a spherical domain, where subtle
phase perturbations are applied to introduce the backdoor pattern while preserv-
ing the global geometric structure. This perturbation effectively induces the model
to learn the trigger while avoiding noticeable shape deviations. A controlled in-
verse transformation then maps the poisoned samples back to the original space,
ensuring their imperceptibility and robustness to existing defenses. Experiments
show that GeoBA consistently triggers backdoors across mainstream 3D archi-
tectures (e.g., Mamba3D, PointMLP), with excellent stealth, transferability, and
robustness—highlighting overlooked security risks in geometric transformations.
Excitingly, it only takes 4 lines of core code to achieve this. The code will be
released promptly.
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Figure 1: Comparison of ASR, CD, and runtime of PointBA (ball trigger), IRBA (scaling trigger),
and our GeoBA trigger across three datasets. Our method outperforms in multiple dimensions, with
results highlighted in bold.

1 INTRODUCTION

The widespread use of 3D point cloud technology in autonomous driving Li et al. (2020); Chen
et al. (2017a); Hu et al. (2022) and robotics Pfrunder et al. (2017); Oh et al. (2024) has made it a
prime target for backdoor attacks. Existing methods Chen et al. (2017b); Nguyen & Tran (2021); Li
et al. (2021b) often adapt 2D attack strategies without leveraging the geometric properties of point
clouds, limiting stealth and effectiveness. As shown in Figure 1, our geometry-aware approach
balances attack success rate (ASR), shape fidelity, and computational efficiency, addressing key
gaps in practical deployment. Current 3D backdoor attacks fall into two main categories Li et al.
(2021a); Xiang et al. (2021); Bian et al. (2024): the first, exemplified by PointBA Li et al. (2021a),
injects explicit triggers by adding geometric structures, disrupting the native topology like grafting
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Figure 2: Visual analysis of backdoor attack paradigms: (a) Ball trigger shows statistical stealth
but is significantly weakened after preprocessing (e.g., SOR); (b) Scaling-based trigger exhibits
perceptual stealth and robustness to SOR, yet introduces noticeable distributional shifts.

an artificial limb. Figure 2(a) demonstrates that geometric purification methods such as SOR Zhou
et al. (2019) effectively smooth these triggers, neutralizing the attack and revealing its vulnerability.

The second category employs global geometric transformations (e.g., rotation, scaling, or nonlinear
deformation) Li et al. (2021a); Gao et al. (2023); Wang et al. (2024) to perturb point clouds without
explicit trigger insertion. By exploiting intrinsic geometric properties, these methods maintain struc-
tural integrity and offer flexibility across diverse datasets and architectures. Such transformations
preserve attack efficacy without relying on dataset-specific patterns, thereby enhancing transferabil-
ity and robustness. However, their coarse-grained and uniform nature often leads to noticeable shape
distortions, as illustrated in Figure 2(b), compromising geometric fidelity and increasing detectabil-
ity. This exposes a key challenge in 3D backdoor design: how to manipulate the latent feature space
effectively while avoiding perceptible geometric alterations.

Inspired by ripple dynamics Sinha et al. (2016); Wen et al. (2024); Liu et al. (2022), we observe that
spectral functions modulate amplitude to preserve global structure while phase shifts induce local
radial deformations. Building on this insight, spectral perturbations serve as triggers in point clouds,
enabling controllable local shifts without perceptible geometric changes. However, the irregularity
of 3D point clouds poses two key challenges for spectral transformations: (1) local deformation
disrupts isometry, causing geometric distortion; (2) phase perturbations induce scale drift, compro-
mising spatial consistency. This raises our central question: Can we design a backdoor mechanism
that respects point cloud geometry while enabling spectral controllability?

To address the above challenges, we propose GeoBA, a stealthy geometric poisoning backdoor at-
tack that embeds imperceptible yet robust triggers into point clouds with minimal geometric dis-
tortion. GeoBA forgoes explicit trigger insertion and global geometric transformations, instead
employing phase-aware poisoning within the intrinsically constrained spherical domain to realize
backdoor attacks. Specifically, GeoBA injects phase triggers in the tangential space via spherical
mapping, preserving radial distances to maintain geometry while embedding backdoors. Then, an
inverse transformation maps the perturbed point cloud back to the original space, ensuring imper-
ceptibility to humans and robustness against common purification defenses (e.g., SOR Zhou et al.
(2019)). Extensive experiments across multiple 3D architectures demonstrate that GeoBA achieves
state-of-the-art stealthiness, transferability, and resilience, revealing critical security risks in geomet-
ric transformations and offering new perspectives on backdoor attack design in 3D deep learning. In
summary, the main contributions of this paper are as follows:

1. We propose GeoBA, a novel backdoor attack that embeds imperceptible triggers into point
clouds via spatially minimal geometric distortion.

2. Leveraging phase perturbations in the spherical domain, GeoBA stealthily embeds back-
doors while preserving overall geometric integrity.

3. Extensive experiments on various 3D architectures show GeoBA’s state-of-the-art stealth
and robustness against preprocessing defenses.
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Figure 3: GeoBA’s clean-label backdoor attack pipeline. (a) Training stage: Poisoned samples
(marked with spherical phase perturbations φ = φ+α·sin(κθ)) are injected into the training set. (b)
Inference stage: The backdoored model misclassifies triggered samples (e.g., airplane→toilet) while
maintaining accuracy on clean inputs. Bottom: The spherical coordinate transformation achieves
imperceptible perturbations through phase-angle modulation along tangential displacements.

2 RELATED WORK

2.1 3D POINT CLOUD CLASSIFICATION

Deep learning has revolutionized 3D point cloud processing, with mainstream methods falling
into four categories: point-wise MLP Ma et al. (2022), convolution-based Li et al. (2018), graph-
based Wang et al. (2019), and transformer-based Guo et al. (2021) approaches. PointNet Qi et al.
(2017a) pioneered this field using shared MLPs and max-pooling for permutation invariance, while
PointNet++ Qi et al. (2017b) extended it with hierarchical local feature aggregation. Alternative ap-
proaches include PointCNN’s order-aware X-convolutions and DGCNN’s dynamic graph networks
for local structure modeling. Recent architectures, including Transformer-based PTv3 Wu et al.
(2024) and state-space model series (PCM Zhang et al. (2025b), CamPoint Zhang et al. (2025a),
Mamba3D Han et al. (2024)), have demonstrated state-of-the-art performance in point cloud recog-
nition and segmentation tasks.

Despite their success in point cloud tasks, these models remain underexplored in terms of backdoor
vulnerability. This security gap calls for systematic evaluation on representative architectures (e.g.,
PointNet, PointNet++, DGCNN, and PCT) to assess backdoor and guide robust model design.

2.2 BACKDOOR ATTACKS IN 3D POINT CLOUD

Backdoor attacks on 3D point cloud classifiers Gao et al. (2023); Li et al. (2021a; 2022); Wei et al.
(2024); Feng et al. (2025); Bian et al. (2024) manipulate model predictions by embedding malicious
triggers into training data. Early approaches, such as PointBA-Ball Li et al. (2021a); Xiang et al.
(2021), rely on explicit 3D triggers (e.g., additional clustered points) to execute the attack, while later
works explore geometric transformation-based triggers, including rigid rotations PointAPA Wang
et al. (2024) and PointBA-O Li et al. (2021a). More recent efforts employ nonlinear deformations
IRBA Gao et al. (2023) and noise-based modifications Fan et al. (2024) to improve stealth, yet these
methods remain vulnerable to statistical outlier removal (SOR) Zhou et al. (2019) and standard
data augmentations. Additionally, iBA Bian et al. (2024) and SPBA Feng et al. (2025) introduce
dedicated trigger networks for implicit injection, enhancing stealth while increasing computation.

By contrast, GeoBA exploits the intrinsic constraints of spherical space to construct a flexible,
non-parametric backdoor strategy that embeds stealthy triggers while preserving global geometry,
achieving both macroscopic imperceptibility and microscopic controllability with strong robustness
against pre-training data preprocessing.
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3 THREAT MODEL

We consider a practical poison-label backdoor attack where an adversary contaminates a third-party
point cloud dataset without access to downstream models or training details [6,8,19]. The attacker is
limited by three constraints: (1) poisoning less than 5% of training samples, (2) no changes to model
architectures or training pipelines, (3) Users typically cannot detect whether data has been poisoned
or identify the poisoning type, and (4) poisoned samples must withstand common preprocessing
such as augmentation and denoising Borgnia et al. (2021); Wang et al. (2024); Gao et al. (2023). The
attack succeeds if models trained on the poisoned data misclassify triggered inputs as a target label
while preserving accuracy on clean samples. Importantly, geometric perturbations must maintain
visual fidelity to evade human and automated detection.

The threat model mainly includes two categories: (1) parameter-free data poisoning (e.g., embedding
triggers via distortion or rotation); and (2) proxy-based prediction injection (e.g., inserting geometric
triggers). Later methods (PointAPA, SPBA, IBA, etc.) are extensions of these two paradigms.

4 METHODOLOGY

4.1 PRELIMINARIES

In the context of 3D deep learning, a point cloud classifier is trained to map a set of 3D point
coordinates to a predefined label space. Formally, let the training dataset be defined as:

D = {(Pi,Yi)}Ni=1, Pi ∈ RK×3, Yi ∈ {1, 2, . . . , C},

where Pi represents a point cloud instance containing K individual points, and Yi is its corre-
sponding ground-truth label from a total of C possible classes. A deep learning-based classifier
fθ : RK×3 → {1, 2, . . . , C} is trained with model parameters θ, minimizing a loss function L(·, ·)
over the dataset D.

In a backdoor attack, an adversary aims to implant a stealthy trigger into the dataset so that the
trained model fθ behaves normally on clean inputs but misclassifies samples containing the trigger
into a predefined target label Yt. To achieve this, the dataset is partitioned into two subsets:

Dc = {(Pi,Yi)}N−M
i=1 , Db = {(P̂i,Yt)}Mi=1,

whereDc is the clean subset andDb is the poisoned subset, consisting of a fraction ρ = M/N of the
dataset. The poisoned samples P̂i are generated by applying a transformation function T (·), which
modifies clean samples to embed a trigger while preserving the global structure:

P̂i = T (Pi), ∀Pi ∈ Db.

Since real-world training pipelines commonly incorporate data augmentation and preprocessing
steps such as Statistical Outlier Removal (SOR) and geometric transformations P(·), an effective
backdoor attack must ensure that the trigger remains functional even after such modifications:

fθ(P(P̂i)) = Yt, ∀P̂i ∈ Db,

where P(·) represents these preprocessing transformations. The objective of a successful backdoor
attack is thus twofold: maximizing the Attack Success Rate (ASR), defined as the proportion of
poisoned samples classified as Yt, while minimizing the degradation in Benign Accuracy (ACC),
i.e., accuracy on clean samples:

max
θ

∑
P̂i∈Db

I
(
fθ(P(P̂i)) = Yt

)
, s.t. ACC ≈ ACCclean,

where I(·) is the indicator function.

This formulation highlights the challenge of designing an imperceptible yet robust backdoor trigger,
particularly in 3D point clouds where spatial transformations and structural integrity play a crucial
role in model generalization.

4
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Figure 4: Visual comparison of euclidean-space (IRBA) poisoning vs. spherical phase-angle
(GeoBA) poisoning.

4.2 SPHERICAL-GEOMETRIC POISONING

In this section, we present a detailed analysis of the proposed GeoBA backdoor attack. As shown
in Figure 3, our goal is to generate robust poisoned samples that remain effective under various
preprocessing techniques and different model architectures. These samples are embedded into the
training phase and persist during inference, ensuring the backdoor is successfully activated.

Euclidean Geometry vs. Spherical Geometry. While most existing point cloud attacks oper-
ate in Euclidean space, they face fundamental challenges in 3D backdoor design: achieving subtle
poisoning without causing noticeable shape distortion. As illustrated in Figure 4(a), conventional
approaches like IRBA that employ linear transformation matrices T ∈ R3×3 suffer from:

• Global deformation propagation (left heatmap in Figure 4(a) left)
• Destruction of intrinsic scale properties (red dashed curve in Figure 4(b))

Motivated by the natural properties of spherical geometry for localized perturbation and scale preser-
vation, we propose a novel poisoning method based on spherical coordinate transformation.

Given a point cloud P = {Pi}Ni=1, we first map each point into the spherical coordinate system:

(ri, θi, ϕi) = S(Pi), S : R3 → R+, (1)

where S denotes the Cartesian-to-spherical transformation. Unlike global linear transformations in
Euclidean space, we introduce phase-based perturbations within the tangent space:

ϕ′
i = ϕi + δϕ · sin(kθi)︸ ︷︷ ︸

Polar Modulation

, (2)

This design offers two key advantages:

• Locality Guarantee: The modulation term sin(kθi) concentrates the perturbation energy
within specific polar bands (see right panel of Figure 4(a), cool-color regions with minimal
hot spots), satisfying:

∥∇θδϕ sin(kθ)∥ ≤ kδϕ. (3)

• Geometric Preservation: Both the radial distance ri and polar angle θi remain unchanged,
thereby preserving the differential geometric structure of the point cloud.

Besides, under a uniform scaling transformation Xs(P ) = sP , Euclidean poisoning exhibit a scale-
sensitive variance increase:

Var(Teuc(Xs(P ))) = s4 · Var(Teuc(P )). (4)

In contrast, our spherical poisoning maintains scale covariance:

Var(Tsph(Xs(P ))) = s2 · Var(P ), (5)

this stems from the spherical mapping property:

S(Xs(P )) = (sr, θ, ϕ), (6)

5
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Algorithm 1: Geometric Poisoning on Point Clouds
Input : P ∈ RN×3, phase shift δϕ, frequency k
Output: Perturbed point cloud Pperturbed ∈ RN×3

(r, θ, ϕ)← CartesianToSpherical(P ) // Convert coordinates
ϕ← [ϕ+ δϕ · sin(k · θ)] mod 2π // Perturb azimuthal angle
Ppoisoned ← SphericalToCartesian(r, θ, ϕ) // Reconstruct point cloud
return Ppoisoned // Output result

which naturally decouples the phase attack δϕ sin(kθ) from scale transformations. As shown by
the nearly constant green curve in Figure 4(b), the attack maintains scale invariance since the scale
factor s exclusively modifies the radial component r, while our phase modulation depends solely on
angular coordinates θ and ϕ.

Therefore, our core methodology leverages spherical geometric properties to generate poisoned
point cloud data, injecting latent backdoors during 3D network training while maintaining stealth.
The detailed implementation is presented in Algorithm 1.

Spherical Transformation. Given a point cloud P ∈ RN×3 with Cartesian coordinates Pi =
(xi, yi, zi), we transform each point to spherical coordinates (ri, θi, ϕi) via the nonlinear mapping:

ri =
√

x2
i + y2i + z2i

θi = arccos (zi/ri)

ϕi = arctan 2(yi, xi)

(7)

where ri denotes the radial distance from origin, θi ∈ [0, π] represents the polar angle measuring in-
clination from the positive z-axis, and ϕi ∈ (−π, π] is the azimuthal angle in the xy-plane measured
from the positive x-axis.

This bijective transformation establishes a complete mapping between Cartesian space and spherical
manifold while preserving geometric information. The spherical representation naturally encodes
rotational invariance in the angular domain, which proves particularly advantageous for 3D point
cloud processing.

Spherical Phase Poisoning. This method introduces controlled perturbations to the azimuthal an-
gle ϕ through harmonic phase modulation. Specifically, we apply a nonlinear transformation to
the original spherical coordinates (ri, θi, ϕi), updating ϕi as ϕ′

i = ϕi + α sin(kθi) followed by
modulo 2π to maintain periodicity. Here, α controls the poisoning intensity and k governs the har-
monic frequency. The sinusoidal term generates θ-dependent phase shifts, ensuring structured yet
subtle angular distortions. This strategy selectively perturbs the cyclic orientation information in
the xy-plane while preserving radial distances. Key advantages include: (1) maintaining geometric
plausibility via cyclic boundaries, (2) producing non-uniform perturbations that enhance stealthi-
ness, and (3) retaining the original point density distribution. Hyperparameters α and k are ablated
in the experiments section.

Spherical-Cartesian Remap. The poisoned spherical coordinates (ri, θi, ϕ
′
i) are remapped to

Cartesian space using the standard transformation: x′
i = ri sin θi cosϕ

′
i, y

′
i = ri sin θi sinϕ

′
i, and

z′i = ri cos θi. This reconstruction preserves the poisoned angular distribution while maintaining
geometric validity. The backdoor threat remains effective for three key reasons: First, 3D DNNs
fundamentally depend on position angular relationships between points for feature extraction. Sec-
ond, the ϕ-poisoning introduces consistent angular shifts that propagate through the network’s fea-
ture space. Third, the preservation of radial distances (ri) maintains surface topology while only
perturbing angular coordinates.

Crucially, our spherical-phase poisoning fundamentally differs from conventional Euclidean-space
poisoning. Rather than direct coordinate manipulation, it targets implicit angular relationships in the
non-Euclidean spherical manifold. The attack preserves exact pairwise Euclidean distances while
creating geometrically plausible samples that systematically mislead deep classifiers. The remapped
points P ′ maintain visual authenticity but contain learned angular perturbations that induce targeted
misclassification, demonstrating that 3D DNNs are particularly sensitive to these spherical-space
perturbations despite their Euclidean invariance.

6
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Victim Model PointBA-I* PointBA-O IRBA GeoBA (Ours)
ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑

PointNet 89.6 99.8 88.7 78.2 87.1 93.2 88.2 93.8
PointNet++ 91.3 98.8 91.0 91.3 90.5 95.7 91.0 97.3
DGCNN 90.6 100 91.0 82.0 91.3 94.0 91.2 96.7
PointCNN 91.2 100 91.2 82.9 83.9 94.6 90.2 93.6
PCT 90.6 100 90.5 81.7 89.5 74.2 90.4 95.0

Avg 90.7 99.7 90.5 83.2 88.5 90.3 90.2 95.3

Table 1: ACC (%) and ASR (%) of backdoored models with the PointBA-I (ball), PointBA-O (ro-
tation), IRBA (scaling), and our GeoBA triggers on ModelNet40. Results of our proposed GeoBA
are highlighted in bold.

Victim Model PointBA-I* PointBA-O IRBA GeoBA (Ours)
ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑

PointNet 98.5 100 98.3 92.2 98.2 91.3 98.4 98.3
PointNet++ 98.9 100 98.6 92.6 98.9 99.0 98.5 99.0
DGCNN 98.8 100 98.9 88.9 98.7 83.0 98.8 99.3
PointCNN 98.3 100 98.3 86.6 97.6 88.0 98.0 97.0
PCT 98.7 100 98.4 83.5 98.1 84.6 98.6 97.7

Avg 98.6 100 98.5 88.8 98.3 89.2 98.4 98.3

Table 2: ACC (%) and ASR (%) of backdoored models with the PointBA-I (ball), PointBA-O (ro-
tation), IRBA (scaling), and our GeoBA triggers on ShapeNetPart. Results of our proposed GeoBA
are highlighted in bold.

5 EXPERIMENTS

5.1 EVALUATION SETUP

Dataset and Victim Models. We conduct comprehensive evaluations on three standard 3D point
cloud benchmarks: ModelNet10, ModelNet40 Wu et al. (2015) (9,843 training and 2,468 test sam-
ples across 40 categories), ShapeNetPart Chang et al. (2015) (12,128 training and 2,874 test samples
from 16 categories), and the real-world scanned dataset ScanObjectNN Uy et al. (2019), which con-
tains 3D objects embedded in cluttered background scenes. Following established protocols Li et al.
(2021a); Xiang et al. (2021), all point clouds are uniformly sampled to 1,024 points with surface
normals, then normalized into a unit sphere. Our evaluation covers representative architectures
(PointNet, PointNet++, DGCNN, PointCNN, PCT) selected for their: (1) prevalence in prior back-
door studies Gao et al. (2023); Bian et al. (2024); Wang et al. (2024), and (2) architectural diversity.
For more results, see supplementary material.

Baseline Methods. We rigorously compare with three state-of-the-art backdoor attacks—PointBA-
Ball Li et al. (2021a), PointBA-Rotation Li et al. (2021a), and IRBA Gao et al. (2023)—all faithfully
implemented according to their original specifications for fair comparison.

Attack Settings. Following the standard backdoor attack settings, we set the poisoning ratio to
0.1 for both datasets, indicating that 10% of the poisoned dataset consists of adversarial samples.
Specifically, poisoned samples are randomly selected from non-target classes, with the target labels
set to table (yt = 8) for ModelNet10, toilet (yt = 35) for ModelNet40, and lamp (yt = 8) for
ShapeNetPart. For the proposed GeoBA, we set the phase perturbation magnitude to α = 0.2 and
the stripe frequency to k = 5. We employ the Adam optimizer Kingma & Ba (2014) with a learning
rate of 0.001 and train all models for 200 epochs with a batch size of 32. Notably, the poisoned
training follows the same schedule as clean data.

Evaluation. To evaluate our backdoor attack, we use classification accuracy (ACC) on clean data,
attack success rate (ASR) on poisoned samples, and imperceptibility measured by Chamfer Distance
(CD) Barrow et al. (1977) and Hausdorff Distance (HD) Huttenlocher et al. (1993) between original

7
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Method ModelNet40 ShapeNetPart
CD↓ HD↓ CD↓ HD↓

PointBA 0.41 0.47 0.45 0.50
IRBA 0.47 0.14 0.41 0.14
GeoBA (Ours) 0.08 0.11 0.05 0.10

Table 3: CD×100 and HD×10 (↓) of existing
methods and GeoBA across two datasets

Method yt = 4 (13.8%) yt = 0 (2.6%)

ACC ↑ ASR ↑ ACC ↑ ASR ↑
IRBA 62.3 91.2 65.0 90.2
GeoBA 63.4 91.8 65.0 93.8

Table 4: PointNet-based poisoning on
ScanObjectNN.

and poisoned point clouds. A successful attack achieves high ASR, maintains ACC, and minimizes
CD and HD. ACC and ASR are reported as percentages; CD values are multiplied by 100 and HD
by 10 in all tables.

5.2 ATTACK RESULTS

Tables 1 and 2 report backdoor attack results on ModelNet40, where GeoBA achieves 95.3% and
98.3% ASR, significantly outperforming rotation-based PointBA-O and deformation-based IRBA.
Although slightly less effective than PointBA-I on clean data, GeoBA is parameter-free, whereas
PointBA-I depends on a surrogate network for ball trigger injection. Furthermore, Table 10 confirms
GeoBA’s optimal performance in both CD and HD metrics, achieving a strong balance between
attack effectiveness and visual stealth. Table 4 reports backdoor attack results on the real-world
ScanObjectNN (OBJ BG) dataset. Testing two extreme class-ratio targets (yt = 4, yt = 0) at 0.1
poisoning ratio with PointNet, GeoBA achieves optimal ACC and ASR.

5.3 ABLATION STUDIES

Dataset 0.01 0.05 0.10 0.15 0.20

ModelNet40 87.8 89.4 93.8 94.1 94.5
ShapeNetPart 91.2 95.3 98.3 98.3 98.7

Table 5: GeoBA ASR (%) under different poison-
ing ratios.

Ablation on Poisoning Ratio. Table 5 shows
the impact of different poisoning ratios on ASR
for PointNet on ModelNet40 and ShapeNet-
Part. ASR significantly improves after 0.05 poi-
soning ratio, exceeding 93% once above 0.1.
This demonstrates GeoBA is highly efficient
at low poisoning rates, achieving considerable
success even with a 0.01 ratio, demonstrating
its practical viability.

Phase Shift α. Our ablation study on the phase shift parameter α ∈ {0.01, 0.05, 0.1, 0.2, 0.3}
reveals a critical trade-off between attack effectiveness and stealthiness. As shown in Figure 5a,
the attack success rate (ASR) peaks at α = 0.2 (97.5%) while maintaining reasonable geometric
distortion (CD=0.9). Although α = 0.3 achieves comparable ASR (98.2%), it incurs significantly
higher chamfer distance (CD=1.4), making the perturbations more detectable. This non-linear re-
lationship demonstrates that excessive phase shifts degrade stealthiness disproportionately to the
marginal ASR gains. We therefore select α = 0.2 as the optimal operating point, balancing ASR
with minimal visual artifacts (CD<1).

Frequency k. The frequency parameter k in our spherical poisoning function φ ← φ + α sin(kθ)
controls the spatial concentration of perturbations. As k increases, distortions shift from broad,
global deformations to localized noise. As shown in Figure 5b, low frequencies (e.g., k = 1) achieve
high ASR (98.6%) but introduce significant geometric distortion (CD=1.85) by uniformly displacing
large surface regions. In contrast, high frequencies (k ≥ 7) better preserve geometry (CD≈0.95)
but yield lower ASR (87.4%). Mid-frequency (k = 5) achieves the best trade-off (98.0% ASR,
CD=0.93), altering key features while maintaining structural integrity. This aligns with the spectral
bias of 3D classifiers, which are most sensitive to mid-frequency perturbations.

5.4 FURTHER ANALYSIS

Performance of the New Architecture. Our experiments (Table 6) on both PointMLP and
Mamba3D architectures reveal: (1) Mamba3D achieves superior clean ACC (92.5% vs 89.0%),
while (2) our method demonstrates significantly higher ASR (96.0% vs IRBA’s 89.5%). Our ap-
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Figure 5: Ablation on phase shift α and phase frequency k.

Dataset IRBA GeoBA (Ours)
ACC↑ ASR↑ ACC↑ ASR↑

PointMLP 87.9 90.2 89.0 95.6
Mamba3D 91.2 89.5 92.5 96.0

Table 6: ModelNet40 results on the new ar-
chitecture.

Method PCBA IRBA GeoBA

1,024 1.10 ms 4.63 ms 0.46 ms
100,000 173.1 ms 258.0 ms 42.2 ms

Table 7: Runtime performance over 10 re-
peated runs.

1

IRBA

GeoBA
(Ours)

Airplane Chair Pistol Earphone Chair

Red points represent ground truth (GT) sample points Blue points denote poisoned samples

Figure 6: Visualization of poisoned vs. clean point clouds

proach balances clean-input accuracy and attack success, consistently robust across different archi-
tectures. This architectural invariance confirms our geometric perturbations effectively decouple
attack patterns from model-specific features.

Visualization Analysis. Figure 6 visualizes the comparison between GeoBA and IRBA in point
cloud backdoor attacks. IRBA exhibits noticeable scale distortions and geometric artifacts, while
GeoBA produces stealthier perturbations that closely preserve the structure and scale of the original
point cloud. These visuals align with the metrics in Table 10, confirming that our geometry-aware
method achieves a strong balance between structural integrity and attack effectiveness.

Time Consumption. Table 7 shows that over 10 poisoning runs, GeoBA is about 10× and 2.4×
faster than IRBA and PCBA, processing 100K points in 42.2 ms. This speedup comes from GeoBA’s
simple 4-line code using only phase addition and modulo operations.

6 CONCLUSION

In this paper, we present GeoBA, a novel geometric backdoor attack that embeds stealthy triggers
in 3D point clouds via spherical phase perturbations, effectively balancing geometric fidelity with
attack potency. Our key insight lies in transforming point clouds to spherical coordinates and in-
jecting carefully designed phase distortions in the frequency domain, followed by differentiable
inverse mapping to Cartesian space that preserves structural integrity while maintaining attack ef-
fectiveness. Extensive experiments demonstrate that GeoBA-generated poisoned samples achieve
compelling attack performance across mainstream 3D architectures while exhibiting strong robust-
ness against common preprocessing defenses. These findings not only reveal the stealthiness of
spherical-domain attacks but also pose new security challenges for point cloud models.
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Victim Model PointBA-I* PointBA-O IRBA GeoBA (Ours)
ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑

PointNet 92.5 100 91.7 79.6 92.9 83.1 92.6 97.8
PointNet++ 92.6 100 92.6 95.0 93.5 92.8 93.4 100
DGCNN 93.5 100 93.1 86.0 92.4 81.6 92.4 98.9
PointCNN 93.4 100 93.5 84.3 92.3 76.9 92.6 93.0
PCT 93.3 100 93.6 86.6 92.8 75.9 93.0 95.3

Avg 93.1 100 92.9 86.3 92.8 82.1 92.8 97.0

Table 8: ACC (%) and ASR (%) of backdoored models with the PointBA-I (ball), PointBA-O (ro-
tation), IRBA (scaling), and our GeoBA triggers on ModelNet10. Results of our proposed GeoBA
are highlighted in bold.

Method Number Params Details

PointAPA 3 Rotation θ, M , Scale λ
IRBA 3 Anchor W , Scale S, Rotation R
GeoBA 2 Phase shift α, Frequency k

Table 9: Parameter comparison of backdoor
attack data poisoning methods.

Method ModelNet10
CD↓ HD↓

PointBA 0.23 0.41
IRBA 0.27 0.45
GeoBA (Ours) 0.04 0.08

Table 10: CD ×100 and HD×10 (↓) of exist-
ing methods and GeoBA on modelNet10

A APPENDIX

A.1 ASR PERFORMANCE ON MODELNET10

As shown in Table 8, GeoBA achieves superior ASR performance compared to other geometric
transformation-based methods (e.g., rotation/scaling), though it slightly underperforms explicit lo-
cal patch triggers (e.g., ball trigger) in absolute metrics. Crucially, our method maintains signifi-
cantly lower shape distortion (CD/HD in Table 10) at competitive ASR levels—demonstrating an
optimal trade-off between attack efficacy and stealthiness. This advantage arises from our geometry-
aware spherical perturbations, which selectively introduce subtle frequency-specific changes while
preserving curvature and shape fidelity.

A.2 COMPARISON OF HYPERPARAMETERS

As shown in Table 9, our method GeoBA requires only two hyperparameters: phase shift α and
frequency k. In contrast, other methods such as PointAPA and IRBA involve three hyperparam-
eters each. The reduced number of hyperparameters in GeoBA simplifies the tuning process and
streamlines ablation studies, which underscores its strengths in both practical deployment and re-
producibility.

A.3 EXTENDED PREPROCESSING RESULTS

Table 11 presents a comprehensive comparison of attack success rate (ASR) and clean accuracy
(ACC) under increasingly strong defense settings, including statistical outlier removal (SOR),
random point removal (+R), random point dropout (+Drop), and input jittering (+J). These
preprocessing-based defenses are widely adopted in point cloud backdoor defense literature. No-
tably, while baseline statistical backdoor methods such as PointBA and IRBA suffer significant ASR
degradation under these defenses, GeoBA consistently maintains high ASR with minimal compro-
mise to clean accuracy. For example, under the strongest defense combination (+SOR +R +Drop
+J), IRBA’s ASR drops to 47.5%, and PointBA-I* drops to 9.25%, whereas GeoBA still achieves an
ASR of 80.9% with a clean accuracy of 92.0%, which is close to the undefended model.

Ablation on Poisoning Ratio. Table 5 shows the impact of different poisoning ratios on ASR for
PointNet on ModelNet40 and ShapeNetPart. ASR significantly improves after 0.05 poisoning ratio,
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Method PointBA-I* PointBA-O IRBA GeoBA (Ours)
ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑

Base 92.5 100 91.7 79.6 92.9 83.1 92.6 97.8
+SOR +R 84.4 17.2 91.3 74.6 92.9 82.4 92.3 95.7
+SOR +R +Drop 90.2 4.47 90.9 10.3 90.4 52.1 92.4 83.3
+SOR +R +Drop +J 88.8 9.25 90.7 9.13 90.7 47.5 92.0 80.9

Table 11: ACC (%) and ASR (%) of backdoored models with PointBA-I (ball), PointBA-O (ro-
tation), IRBA (scaling), and our GeoBA triggers on ModelNet10. “+Drop” denotes random point
removal and “+J” indicates coordinate jitter. Results of GeoBA are in bold.

Method PointBA-I* PointBA-O IRBA GeoBA (Ours)
ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑ ACC↑ ASR↑

IF-Defense 81.7 18.3 90.4 98.7 92.5 78.3 92.6 94.1
IF-Defense+SOR+R 81.1 14.6 84.9 41.5 92.3 88.1 92.6 93.7

Table 12: ACC (%)/ASR (%) of three attacks on ModelNet10 against PointNet after SOR+R and
IF-Defense.

exceeding 93% once above 0.1. This demonstrates GeoBA is highly efficient at low poisoning rates,
achieving considerable success even with a 0.01 ratio, demonstrating its practical viability.

This robustness stems from GeoBA’s spherical angle-aware phase perturbations, which are inher-
ently resilient to statistical filtering and spatial corruptions. In particular, the sinusoidal sin(kθ)
phase profile avoids sharp local anomalies commonly targeted by SOR and dropout strategies, while
the jitter-invariant structure of the perturbation preserves its backdoor functionality. Overall, these
results validate the defense-agnostic property of GeoBA and demonstrate its superiority in retaining
attack effectiveness even under strong, real-world preprocessing defenses—highlighting its potential
as a stealthy and robust backdoor mechanism for 3D point cloud models.

A.4 ADAPTIVE PREPROCESSING RESULTS

As shown in Table 12, we adopt the original neural restoration defense strategy from IF-Defense Wu
et al. (2020) as a preprocessing step, adaptively increasing the number of training points from 1024
to 4096 after the SOR+R layer and effectively restoring the target surface geometry. The results
clearly show that GeoBA remains highly robust against backdoor attacks under both standard and
adaptive preprocessing, further demonstrating its overall effectiveness.

A.5 RESULTS ON REAL-WORLD OUTDOOR LIDAR SCENES

While datasets like ModelNet40, ModelNet10, and ShapeNetPart use uniformly sampled points
(e.g., 1024/2048) for object classification, they fail to capture the irregular sparsity of real-world 3D
data. In outdoor LiDAR scans, for instance, point density varies with distance—denser nearby and
sparser farther away. To assess robustness under such realistic conditions, we evaluate whether our
spherical phase backdoor remains effective on non-uniform, real-scene point clouds.

1

Near

N=1014

Far

N=340 N=245 N=34

Cars at varying scene distances

Figure 7: Visualization of the point cloud
object in the scene.

Specifically, we conducted a preliminary experiment on
the KITTI dataset Geiger et al. (2012), focusing on two
typical moving objects in outdoor scenes—pedestrians
and cars—as target categories, as illustrated in Figure 7.
We selected 10% of the car samples for GeoBA-based
backdoor injection. Given that extremely sparse point
clouds are inherently difficult to recognize, we filtered
out target samples containing fewer than 5 points.

As shown in Table 14, after injecting the GeoBA
backdoor on the KITTI3D dataset, both PointNet and
DGCNN maintained stable performance on clean sam-
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Target Class Clean IoU ↑ – GeoBA IoU ↑GeoBA ASR ↑
Car (4.08%) 95.4 – 94.7 97.2
Person (0.18%) 63.9 – 63.4 80.7

Table 13: 3D Semantic seg ACC (%) and ASR
(%) of GeoBA on semanticKITTI (Sparse-
UNet)

Models IRBA GeoBA (Ours)
ACC↑ ASR↑ ACC↑ ASR↑

PointNet 98.9 90.1 99.1 95.3
DGCNN 98.5 96.8 98.9 97.0

Table 14: Application of our backdoor at-
tack methods, GeoBA and IRBA (based
on scale deformation) triggers, to target
recognition on KITTI scene point cloud
data.

Red points represent ground truth (GT) sample points Blue points denote poisoned samples

IRBA

GeoBA
(Ours)

ChairChair Table Shelf

Figure 8: Visualization of real-world point cloud objects from the scanned dataset ScanObjectNN.

GeoBA (Ours)

Point Size 353140

10889

Scissors

Phone

Time Overhead: 41.96 ms

3090-11.77ms

118988

3090-
496.06ms

353140

Input Point Cloud IRBA (Warp and Scale)

Point Size 118988 Time Overhead: 11.77 ms Time Overhead: 496.06ms

Time Overhead: 895.53ms

⌚🔥

🔥“Ultra-fast Poisoning”

🔥“Ultra-fast Poisoning”

Figure 9: Visualization of real-world point cloud objects from the scanned dataset PartNet.

ples while achieving high attack success rates (ASR). Specifically, GeoBA outperformed IRBA in
ASR, with 95.3% for PointNet and 97.0% for DGCNN, compared to 90.1% and 96.8% for IRBA.
These results demonstrate GeoBA’s effectiveness even under real-world sparsity and imbalance.

Moreover, we conducted backdoor injection experiments on the SemanticKITTI Behley et al. (2019)
dataset for point cloud segmentation (mIoU) to further evaluate the effectiveness of backdoor attacks
in real-world outdoor scenarios. As shown in the table, GeoBA achieves high attack success rates
(ASR) on both frequent and rare target classes, such as Car (4.08% of the data) with an ASR of
97.2%, and Person (0.18%) with an ASR of 80.7%, while maintaining similar IoU performance
on clean samples. These results demonstrate GeoBA’s strong stealthiness and effectiveness under
realistic conditions with sparse and imbalanced data distributions.
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A.6 MORE VISUALIZATION RESULTS

In Figure 8, we further present a visualization of backdoor injection on the real-world scanned
dataset ScanObjectNN. It can be observed that GeoBA introduces minimal shape and scale distor-
tions, demonstrating better stealth and adaptability in the presence of background noise.

In addition, we evaluate on the real-world PartNet dataset with denser and more realistic objects. For
the Scissors category (≈ 120k points), our method performs poisoning almost instantaneously with
negligible geometric distortion. In the Phone experiment, IRBA introduces noticeable scale changes,
whereas our approach preserves object integrity. Even on large-scale point clouds exceeding 300k
points, GeoBA requires only 41.96 ms on a single RTX 3090 GPU, while IRBA takes nearly 900
ms (measuring poisoning time only).

A.7 THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models (LLMs) as a supportive tool in the preparation
of this manuscript. Specifically, we have utilized these models solely for improving the clarity,
grammar, and style of our writing. This application of LLMs was strictly limited to refining the
language to ensure the effective communication of our scientific findings.
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