
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Structured Predictive Representations in Re-
inforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement Learning (RL) remains brittle in complex environments char-
acterized by sparse rewards, partial observability, and subtask dependencies.
Predictive state abstractions capture the environment’s underlying tem-
poral structure and are crucial to overcoming these challenges. Yet, such
methods often only focus on global one-step transitions and overlook local
relationships between trajectories. This paper explores how capturing such
relationships can enhance representation learning methods in RL. Our pri-
mary contribution is to show that incorporating a Graph-Neural Network
(GNN) into the observation-predictive learning process improves sample
efficiency and robustness to changes in size and distractors. Through experi-
ments on the MiniGrid suite, we demonstrate that our GNN-based approach
outperforms typical models that use Multi-layer Perceptrons (MLPs) in
sparse reward and partially-observable environments where task decomposi-
tions are critical. These results highlight the value of structural inductive
biases for generalization and adaptability, revealing how such mechanisms
can bolster performance in RL.

1 Introduction

Environments with partial observability, sparse rewards, and dynamic changes frequently
challenge Deep Reinforcement Learning (RL) algorithms, often rendering them brittle and
sample-inefficient (Wang et al., 2019; Meng & Khushi, 2019; Lu et al., 2020; Tomar et al.,
2023; Benjamins et al., 2023). Traditional RL methods struggle particularly in such complex
environments due to the challenges of capturing long-term dependencies and relational
structures between states. Learning representations of the state relevant to control offers a
promising avenue to scale RL to complex scenarios. State abstractions in Markov Decision
Processes (MDPs) (Dayan, 1993; Dean & Givan, 1997; Li et al., 2006) and history abstractions
in Partially Observable MDPs (POMDPs) (Littman et al., 2001; Castro et al., 2009) improve
data efficiency and generalization (Killian et al., 2017; Zhang et al., 2021). Consequently,
numerous RL representation learning techniques have emerged in the last years (Castro
et al., 2021; Schwarzer et al., 2021; Hansen-Estruch et al., 2022; Lan & Agarwal, 2023; Guo
et al., 2020; Grill et al., 2020) making it an active area of research in RL.

Self-prediction has positioned itself as a prominent technique for learning state abstractions.
It is a self-supervised mechanism that uses a latent model to predict the next latent state
using the current latent state and action as inputs (Guo et al., 2019; 2020; Grill et al., 2020;
Schwarzer et al., 2021; Lee et al., 2021). In doing so, it approximates the one-step transition
structure in the latent space (Tang et al., 2023; Voelcker et al., 2024; Khetarpal et al.,
2024). This objective is also connected to the objective to predict subsequent observations
in POMDPs (Ni et al., 2024), allowing the agent to approximate the actual transition
dynamics in the belief space (Schrittwieser et al., 2020; Subramanian et al., 2022). Real-
world environments, however, often come with rich local structure as well (Mohan et al.,
2024), which is usually overlooked by these methods.

This paper investigates how leveraging Graph Neural Networks (GNNs) (Battaglia et al.,
2018) within a self-predictive framework can enhance representation learning in RL in
sparse reward and partially observable settings. Specifically, we propose a method that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

captures relationships between a batch of latent states generated by a history encoder.
This approach enables the model to encode temporal and relational dependencies in the
observation-prediction mechanism, improving the sample’s learning efficiency and robustness
to environmental changes. In contrast to commonly used Multi-Layer Perceptron (MLP)-
based methods, which often struggle with long-term dependencies and partial observability,
GNNs excel at capturing relational structure between the latent states produced over time
(see Figure 1.

Section 1 Section 2

Structured Observation
Prediction

Observation
Prediction

Recurrent Model-
Free RL

PC1

PC2 PC3

Figure 1: Latent Space Representation. A goal-reaching trajectory in
MiniGrid-UnlockPickup-v0 mapped to a 3D PCA representation of the latent states
generated by various belief encoders. States belonging to the first section are indicated in
blue, while those in the second one are shown in red, with the goal state highlighted in green.
Structured Observation Prediction captures the closeness of high-reward states (red) near
the goal. In contrast, normal Observation Prediction reveals a less organized representation,
indicating potential inefficiencies in recognizing rewarding states in this environment. This
emphasizes the advantage of graph-based approaches for improved decision-making and
performance in reinforcement learning tasks.

This paper’s main contribution is the introduction of a GNN-based observation-predictive
model designed to operate on latent states generated by a history encoder. Unlike prior
work that primarily focuses on spatial relationships (e.g., object-centric representations), our
method targets temporal and relational dependencies in POMDPs. By relationally reasoning
over trajectories, our method generalizes across variations in tasks. We validate our approach
through experiments on a subset of navigation tasks in MiniGrid (Chevalier-Boisvert et al.,
2023) that are particularly challenging for end-to-end observation prediction. Additionally,
we demonstrate the robustness of our relational model in continually changing settings,
showcasing its adaptability to distractors and environment size. Our results indicate that the
GNN-based latent model outperforms MLP-based baselines, achieving superior performance
in sparse-reward tasks and demonstrating better generalization to environmental variations.

2 Background

In this section, we provide the necessary background to understand our approach. We
briefly recap the fundamentals of RL, MDPs, and POMDPs, then delve deeper into state
abstractions. Subsequently, we formally introduce self-predictive and Observation-Predictive
(OP) abstractions, which we use to build our method.

2.1 MDPs, POMDPs and Reinforcement Learning

A discounted MDP (Puterman, 2014) is represented by a tupleM = (S,A, P,R, γ, µ). At
each time step t, an agent observes the state st ∼ S of the environment and chooses an
action at ∼ A using a policy π(at | st) to transition into a new state st+1. The dynamics
govern the transitions function P : S × A × S → [0, 1], and for each transition, the agent
receives a reward according to the reward function R : S ×A → R. The agent’s objective is
to maximize the expected cumulative discounted reward over an infinite horizon:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

max
π

Est+1∼P (.|st,at),at∼π(.|st)

[∞∑
t=0

γt−1rt

]
(1)

where γ ∈ [0, 1] is the discount factor, and the starting state s0 is sampled from the initial
state distribution distribution s0 ∼ µ(s0).

Value-based methods learn an optimal state-action value function Q∗(s, a), the expected
return after starting in state s and taking action a, by repeatedly performing two steps till
convergence: (i) Policy Evaluation: computing a value function Qπ(s, a) quantifying the
expected return after taking action a in state s: Qπ(s, a) = Eπ

[∑∞
i=t γ

i−tri+1 | st = s, at =

a
]
; and (ii) Policy Improvement: learning a new value function from which actions can

be greedily selected to maximize Qπ(s, a): π′(st) ∈ argmaxat∈AQ
π(st, at)

In many real-world scenarios, the agent cannot fully observe the environment. Such problems
are modeled by POMDPs, defined as a tupleMO = (S,O,A, P,R, γ, µ), where the agent
has access to observations o ∈ O based on the state s ∈ S. It can utilize a history ht :=
{o1, a1, o2, a2, . . . ot} ∈ H, by concatenating observations and actions, where H represents
the set of all possible histories.

Since the agent lacks full observability, maintaining a belief state — a probability distribution
over possible states given the history — is essential for optimal decision-making (Kaelbling
et al., 1998). However, computing and updating such beliefs for high dimensional environ-
ments can quickly become intractable (Subramanian et al., 2022). Therefore, the agent
requires a history encoder that maps the history to a Markovian representation ϕO : Ht → Z.

2.2 State abstractions, Self-Prediction and Observation-prediction

A Q-function itself can be decomposed into two parts: (i) An encoder that ϕQ∗ : S → Z,
that maps the states to abstract states z ∈ Z, also known as state abstractions (Li et al.,
2006), or latent states (Gelada et al., 2019). (ii) A critic C : Z → Q that predicts the Q−
values using the latent state Z. This decomposition requires the latent state-space Z to have
sufficient information to accurately predict Q∗, i.e. if ϕ(si) = ϕ(sj), then it must hold that
Q∗(si) = Q∗(sj). We can additionally incentivize the latent state to predict the one-step
transition probabilities(Equation (ZP)) and rewards (Equation (RP)), thereby preserving the
environment’s dynamics in the latent space. Equation (ZP) ensures that the latent state is
predictive of the subsequent latent state by mapping the joint latent state-action space to a
distribution over the latent space ∆(Z). Consequently, such abstractions are self-predictive
abstractions, learned using a latent model trained to predict the next latent state (Grill
et al., 2020; Guo et al., 2020).

∃Pz : Z ×A → ∆(Z) s.t. P (zt+1 | st, at) = Pz(zt+1 | ϕL(st), at) (ZP)

∃Pz : Z ×A → R s.t. E(rt+1 | ht, at) = Rz(ϕL(ht, at)) (RP)

For POMDPs, we can extend the state encoder to belief encoder ϕO to produce a history
abstraction z = ϕO(h) ∈ Z. This encoder satisfies as additional recurrent condition to ensure
belief reconstruction:

∃ψz : Z ×A×O → Z s.t. ϕ(ht+1) = ψz(ϕO(ht), at, ot+1) (Rec)

Furthermore, such abstractions should additionally satisfy a variant of Equation (ZP), called
Observation-prediction, ensuring that the latent state along with the action is sufficient to
predict the distribution over the subsequent observations (Equation (OP)):

∃Po : Z ×A → ∆(O) s.t. P (ot+1 | ht, at) = Po(ot+1 | ϕO(ht), at) (OP)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 Method

In this section, we motivate and outline our method. We present the general idea of
incorporating additional structure across batches of observations and the inter-trajectory
transfer it enables. We then argue how capturing structure across batches is particularly
beneficial for tasks with subtask decompositions, especially in a Sparse Reward environment.
We then outline our architecture that incentivizes the belief encoder to produce such histories.

3.1 Relational Task Decomposition

Complex RL tasks often involve multiple subtasks. In sparse-reward MDPs, these subtasks
are crucial but unrewarded steps, making learning challenging due to the delayed feedback.
A vital requirement for credit assignment is to model the relationships across these subtasks
to assign credit to the crucial state-action pairs. A state abstraction that preserves the
optimal Q-value must enable the agent to disentangle latent states corresponding to these
crucial ground states.

The intuition behind our approach is that trajectories corresponding to a single subtask
exhibit correlations. In addition to the global one-step transition dynamics captured by self-
and observation-predictive objectives, local structure among subtasks can be leveraged in
the latent space. For example, consider the MDP shown in Section 3.1 where the agent must
follow a goal-directed reward to the goal-state S5. The reward includes a small cost per step
to the agent and a large reward for reaching the goal. Therefore, the agent must discover
the shortest path to reach the goal.

We highlight two example trajectories τ1 = {S1, R, S3, U, S5} (illustrated in purple) and
τ2 = {S2, R, S4, U, S5} (shown in red). On reaching the goal S5, it gets a reward of
1 − k × n steps, where k ∈ [0, 1). It incentivizes the agent to reach the shortest path
to the goal. The two trajectories involve two steps to the goal and accumulate the same
return since they both comprise 2-steps to the goal. Although trained solely on data from
τ1, a predictive model capable of capturing relational similarities between these trajectories
can generalize to τ2 by capturing local similarities between these trajectories. For instance,
the relationship between S3 and S5 in τ1 parallels the relationship between S4 and S5 in τ2.

R R

R

U

U

U
Figure 2: Example MDP. The agent must
navigate to the goal S5 by maximizing a goal-
conditioned reward and minimizing the cost
per step. At the start of the episode, the
agent can spawn in any of the other states
{S1, S2, S3, S4}. From each state, it can either
go right R or up U .

Let us extend this to the POMDP setting, where the agent does not directly observe
the states. Instead, it receives partial observations corresponding to these states. The
trajectories in this POMDP now correspond to histories of observations, actions, and rewards
h1 = {o1, a1, r1, . . . o5} and h2 = {o2, a2, r2, . . . o5}. Here, the observations o1, o2, . . . are
partial representations of the states S1, S2, . . . , and the goal is to navigate towards the final
observation corresponding to S5. Since the agent only observes part of the state, it must
infer relationships and similarities between different observation sequences. As in the MDP
case, the agent benefits from recognizing relational similarities between these histories to
generalize across subtasks.

Proposition 3.1. Let h1, . . . , hn ∈ H be histories from similar subtasks in a POMDP, with
corresponding next observations o′1, . . . , o

′
n ∈ O. Let ϕ : H → Z be a Lipschitz continuous

function with constant Lϕ > 0, mapping histories to embeddings zi = ϕ(hi). Let f : Zn → O
be a Lipschitz continuous model with constant Lf > 0, predicting o′pred = f(z1, . . . , zn).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Assume the histories hi are similar, i.e., dH(hi, hj) ≤ δ for all i, j, where dH measures the
distance between histories.

Then, minimizing the squared error loss

L = ∥o′pred − o′i∥2,

for any i, ensures that the prediction error is bounded:

L ≤ (LfLϕnδ + ϵi)
2,

where ϵi accounts for model approximation errors or inherent noise.

We sketch this proposition more intuitively by considering the trajectories in Figure 2 as
histories. Since transitions from state S3 → S5 and S4 → S5 share a similar relational
structure, the embeddings z1 = ϕ

(
{S3, U, S5}

)
and z2 = ϕ

(
{S4, U, S5}

)
will be close in the

latent space. Training a model to minimize the loss L by reasoning over both these trajectories
ensures that the model generalizes between these subtasks, capturing the similarities between
these histories. We do this using a GNN. Please refer to Appendix A.1 for a more detailed
proof sketch.

3.2 Observation Prediction using a Graph-based Latent Model

Our method comprises three key components, illustrated in Figure 3:

1. Encoder (ϕ) that maps histories to latent representations z.

2. Model (ψ) that captures relationships among history embeddings.

3. RL network (πθ or qθ) that uses z for either learning a policy, or a Q- function
depending on the method that we utilize.

Encoder Policy

Model

Auxiliary Prediction Loss

RL Loss

Encoder Message
Passing

Decoder

Figure 3: Training Setup. The LSTM generates embeddings using observation history,
actions, and rewards, capturing temporal dependencies to create a belief state z. The policy
network uses this to select the next action. For a value-based agent in a discrete action space,
this would be a critic network that outputs values over discrete actions. Then, the algorithm
greedily selects the action with the highest value. During optimization, the structured model
- A GNN- reasons over a batch of latent states and corresponding actions to predict the
subsequent observations. This is compared against the corresponding next observations to
create the auxiliary prediction loss.

Encoder and Policy Network. The encoder ϕ maps the history of observations to a
latent state z = ϕ(ht). In a POMDP, this is either a recurrent encoder (Subramanian et al.,
2022) or possibly a transformer with a sufficiently large context window (Esslinger et al.,
2022). Any RL agent can now use this latent state. In both these cases, the policy π(at|zt)
takes the latent state zt as an input and outputs an action at. Value-based methods use
a critic network that outputs values for each action for a given z and greedily selects the
action with the maximum value.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Graph construction. The latent model ψ is a self-predictive model to enhance repre-
sentation learning. To capture relational structure within the latent space, we consider
a batch of latent states Z = [z1, . . . , zT] and corresponding actions {a1, . . . aT }. We con-
vert these actions to one-hot vectors and then concatenate them to form node features
{(z1, a1), . . . , (zT , aT)}. Then, we construct a m-nearest neighbors graph on these with
m = 4 using the Euclidean distance between the node features.

Message Passing. After constructing the graph, the nodes with actions as attributes
are passed through two message-passing layers. During this phase, each node in the graph
updates its state by aggregating information from its neighboring nodes. Firstly, for each
node, the features of its neighboring nodes are aggregated by concatenating the features of
the source node xi and the target node xj . This concatenated vector is then passed through
an MLP consisting of two fully connected layers with a ReLU activation function in between,
transforming the combined features to capture more complex interactions. The result of this
MLP is then used to update the target node’s features.

Observation-Prediction and training. After the message-passing steps, the updated
node features are decoded to produce the final node representations. The output of the
network has the same dimensionality as the flattened observation dimensions, and therefore,
allows the graph to predict a batch of the subsequent observations {ô2, . . . , ôt+1} by reasoning
across the batch of T observations and actions. The output of the GNN is then compared
with the corresponding ground-truth observations {o2, . . . , ot+1 present in the buffer during
training to create an auxiliary loss. This loss is jointly optimized along with the RL loss
from the policy or critic network. As a result, we can train the encoder (ϕ), the model (ψ),
and the policy (π) together during the optimization procedure.

{ô2, . . . , ôT+1} = ψ({[zj , aj]}Tj=1)

This output is trained using the Mean-Squared Error (MSE) loss between the predicted

outputs {ô′1, . . . , ôT } and the actual next observation {ô1, . . . , ôT } sampled from the batch
forming the representation learning auxiliary loss:

LOP =

T∑
t=1

∥ôt+1 − ot+1∥2

In principle, this objective is agnostic to the RL objective and, therefore, can be combined
with any RL algorithm. We demonstrate an example of using our model with a policy-gradient
algorithm in Algorithm 1.

Reward Module. For environments with multiple subtasks and sparse rewards, OP
alone is insufficient (Ni et al., 2024). Instead, it must be combined with an explicit reward
prediction using the latent state and action. For these environments, we utilize a two-layer
MLP for such a module in addition to the latent model and train it using a phased training
procedure, where the reward module is optimized separately from the end-to-end optimization
of the bellman and representation learning loss. Instead, we interleave the optimization of
the reward prediction from the representation learning modules by optimizing them one after
the other.

4 Experiments

In this section, we empirically investigate the effectiveness of our structured latent model.
We employ the Minigrid suite (Chevalier-Boisvert et al., 2023), which consists of a series of
mini-levels designed to test various aspects of learning and adaptation. The RL agent in
our experiments is the R2D2 agent (Kapturowski et al., 2019), including a recurrent replay
buffer with uniform sampling. Our hyperparameters can be found in A.2. In the following
paragraphs, we divide our analysis based on specific research questions. Our presented results
have been performed across 5 seeds with the aggregated IQMs (Agarwal et al., 2021).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Training Procedure with a value-based agent

Require: Initialized encoder ϕ, policy network π, auxiliary graph model ψ
1: while not converged do
2: Collect Trajectories using policy π(at | zt):
3: Collect experiences τ = {(ot, at, rt, ot+1)}
4: Compute zt = ϕ(ot), zt+1 = ϕ(st+1)
5: Collect experiences τ = {(ot, at, rt, ot+1)}
6: Compute zt = ϕ(ot), zt+1 = ϕ(ot+1)
7: Compute RL Loss:
8: Compute target values: Vtarget = rt + γV (zt+1)
9: Estimate Q-values: Q(zt, at)← Q(zt, at)

10: LRL = 1
N

∑
t (Q(zt, at)− Vtarget)2

11: Compute Observation-Prediction Loss:
12: Construct graphs Gt from zt
13: Predict ôt+1 = ψ(Gt, at)

14: LOP =
∑

t ∥ôt+1 − ot+1∥2
15: Update Parameters:
16: L = LRL + λLOP

17: Minimize L w.r.t. ϕ, π, ψ
18: end while

Performance on static environments. We first evaluate our model (Graph OP) on
selected environments in Minigrid. Our baselines are the observation predictive algorithm
(min-OP) and the observation and reward prediction algorithm (min-AIS) (Ni et al., 2024).
min-OP follows the same pipeline but uses an MLP for the observation prediction task. The
MLP predicts the subsequent observation for each latent state in a batch and does not use
relational reasoning for the whole batch. min-AIS, on the other hand, extends min-OP by
predicting the subsequent reward in addition to the observation, improving performance in
environments where observation prediction alone is insufficient for effective representation
learning. The critical distinction between our method and these baselines is how they
process the latent observations and associated actions. In the MLP-based baselines, each
combination of latent observation and action is processed independently to predict the
subsequent observation. By contrast, our GNN-based approach first constructs a graph
over all the latent observation-action pairs in the batch, applies message passing across the
graph to model relational dependencies, and then predicts the subsequent observations for
each element. Therefore, the performance difference between the baselines and our method
primarily comes from this privileged reasoning. We consider environments with subtasks from
the Minigrid suite challenging without representation learning and particularly challenging
for observation prediction. Please note that R2D2, without representation learning, fails to
accumulate notable returns in these environments, as indicated by the curves in Ni et al.
(2024). Moreover, we run each environment until the baselines demonstrate convergent
behavior. Based on the learning curves provided by Ni et al. (2024), we narrow down the
environments to the following four static ones:

1. MiniGrid-DoorKey-8x8-v0:The agent must pick up a key to unlock a door and
reach the green goal in a 8× 8 grid.

2. MiniGrid-ObstructedMaze-1Dl-v0: A blue ball is hidden in a maze with two
rooms. A locked door separates the two rooms, and a ball obstructs the doors. The
keys are hidden in boxes.

3. MiniGrid-KeyCorridorS3R2-v0: The agent has to pick up an object behind a
locked door. The key is hidden in another room, and the agent has to explore the
environment to find it.

4. MiniGrid-UnlockPickup-v0: The agent must pick up a box behind a locked door
in another room.

These environments share the commonality of subtasks the agent needs to solve before
reaching the goal. Apart from the DoorKey environment, all others require additional reward

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

prediction due to the sparsity of the reward in the original task. Consequently, we incorporate
an additional reward-prediction module with our graph prediction (Graph AIS).

(a) MiniGrid-DoorKey-8x8-v0 (b) MiniGrid-ObstructedMaze-1Dl-v0

(c) MiniGrid-KeyCorridorS3R2-v0 (d) MiniGrid-UnlockPickup-v0

Figure 4: IQM and quartiles of Performances on static environments.

Our results are presented in Figure 4. Overall, the Graph-based representation learning
methods outperform the MLP-based techniques in most cases. For environments where
observation prediction struggles with long-term dependencies, the combination of Graph-
based observation prediction and reward prediction – Graph AIS – consistently outperforms
the baselines. This reiterates the inefficiencies of pure observation prediction in such
environments since the reward is highly sparse in these subtasks.

Adapting to environment changes. A crucial outcome of Proposition 3.1 would be the
ability of our method to extrapolate the learned prediction across environmental changes
insofar as these changes share some similarity with data seen already. We investigate this
by creating a scenario where an agent must continually adapt to environmental variations.
We introduce changes to MiniGrid-DoorKey-8x8-v0 by changing: (i) Number of keys:
We introduce distractions in the form of additional colorless keys, forcing the agent to
focus on the colored key. The number of distractors remains constant for each episode, but
their location changes after the reset. (ii) Size: We periodically increase the size of the
environment to investigate how well the agent adapts to the increase in the number of states.

Figure 5 shows the performance of Graph OP against min OP for different types of changes.
Figure 5(a) demonstrates the agent’s performance when distractors are added after 800K
steps, and Figure 5(b) shows the adaptation to increase in size after 1M steps. We introduce
additional dimensions of hardness by combining these changes. Figure 5(c) shows the scenario
in which the grid increases in size every 1M step, and a distractor is simultaneously added.
Finally, Figure 5(d) shows the scenario in which the agents must adapt to a new distractor
every 600K step and a size increment every 1M step in the bottom right figure.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

As expected, both methods’ performance generally degrades when changes occur, and recovery
from these changes becomes increasingly difficult as we increase hardness. As a result, in
Figure 5(d), neither method has enough time to return to stable performance. In most of
these scenarios, Graph OP remains consistently more robust performance and outperforms
min OP. The impact of distractions seems more pronounced than size, as shown in Figure
5(a).

(a) Distractions (b) Size Change

(c) Simultaneous change in size and distractions (d) Interleaved change in size and distractions

Figure 5: Performances on Dynamic Variations of MiniGrid-DoorKey-8x8-v0.

Compound changes particularly impact both methods since the size change forces the agent
to explore more, while the distractors force the agent to focus on the right kind of key. Given
that in DoorKey, the agent has to traverse a sub-goal of getting to a key before reaching a
door and then going to the goal, changing the size and adding distractors together degrades
performance faster. In both cases, the graph-based agent Graph OP is more robust to the
changes than the MLP baseline. This highlights the particular advantage relational inductive
bias offers: it allows the state representations to model relationships between trajectories
and the one-step temporal consistency of self-prediction.

5 Related Work

Our work touches upon three crucial areas in RL: Abstractions, GNNs in RL, and incorpo-
rating structure in RL. summarized below.

State and History Abstractions in RL. State abstractions constitute an active area in
RL, and a complete categorization of approaches is beyond the scope of this work. Model-
irrelevance has been studied under a variety of techniques, such as bi-simulation (Ferns
et al., 2004; Gelada et al., 2019; Castro et al., 2021; Hansen-Estruch et al., 2022; Lan &

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Agarwal, 2023), variational inference (Eysenbach et al., 2021; Ghugare et al., 2023), and
successor features (Dayan, 1993; Barreto et al., 2017; Borsa et al., 2019; Lehnert & Littman,
2020; Scarpellini et al., 2024). Self-predictive representations have been a separate line
of work (Guo et al., 2020; Grill et al., 2020; Schrittwieser et al., 2020; Schwarzer et al.,
2021; Hansen et al., 2022; Ghugare et al., 2023; Zhao et al., 2023) with increasing interest
in understanding how these objectives behave (Tang et al., 2023; Ni et al., 2024; Fang &
Stachenfeld, 2024; Voelcker et al., 2024; Khetarpal et al., 2024). Observation predictive
representations have been used to formulate belief states (Kaelbling et al., 1998; Wayne
et al., 2018; Hafner et al., 2019; Han et al., 2020; Lee et al., 2020) and predictive state
representations (Littman et al., 2001; Zhang et al., 2019), and are also related to observation
reconstruction objectives commonly used for improving sample efficiency Yarats et al. (2021).
Our work adds to this line of work by exploring how the self-predictive objective can capture
relational structure in the latent space.

Structure in RL. Structural decompositions can be useful as inductive biases for various
purposes (Mohan et al., 2024). Our work assumes a relational decomposition in joint state-
action space. Such assumptions have previously been applied through modeling frameworks
such as Relational MDPs (Dzeroski et al., 2001; Guestrin et al., 2003) and object-oriented
MDPs (Diuk et al., 2008). However, we neither model entities in the environment separately
nor handcraft any form of first-order representation in the value function (Guestrin et al.,
2003; Fern et al., 2006; Joshi & Khardon, 2011). Instead, we reason across trajectories using
a GNN to model relationships.

GNNs in RL. GNNs have increasingly been used in RL, such as modeling environ-
ments (Chen et al., 2020; Chadalapaka et al., 2023), agent’s morphology in embodied con-
trol (Wang et al., 2018; Oliva et al., 2022), relationships between different action sets (Jain
et al., 2021), and concurrent policy optimization method (Wang & van Hoof, 2022). We share
similarities to methods that use GNNs as structured models, used for applications such as
learning the latent transition dynamics in simple manipulation tasks (Kipf et al., 2020), the
dynamics of joints of physical bodies (Sanchez-Gonzalez et al., 2020), obtaining object-centric
representations from images and RRT planners (Driess et al., 2022), or computing intrinsic
reward and online planning (Sancaktar et al., 2022). We add to this line of work by using
GNNs for observation-prediction. Although Transformers have also been used for learning
state representations (Zhu et al., 2022) and state-action representations (Zheng et al., 2024),
they require substantial data and computational resources, often making them less practical
in data-scarce RL settings. In contrast, GNNs effectively leverage structural properties in
relational tasks, providing an efficient alternative for relational reasoning in reinforcement
learning.

6 Conclusion and Future Work

Using a structured latent model to investigate the impact of relational inductive biases,
Using a structured latent model to investigate the impact of relational inductive biases, we
incorporated a GNN to capture the similarity between the latent space belief representations
produced by a recurrent encoder. Our experiments on a relevant subset of Minigrid tasks
demonstrated that agents utilizing this latent space exhibit improved performance and
the learned representations tend to be more robust to changes in size and against added
distractions. Although effective, our approach has been evaluated only on discrete action
spaces and requires further investigations on continuous action spaces in environments such
as robotic control (Freeman et al., 2021; Todorov et al., 2012), and on more complicated
navigation topologies such as those found in Cobbe et al. (2020); Samvelyan et al. (2021).
Additionally, we want to incorporate more algorithms since the current framework is agnostic
to the RL algorithm. Finally, we want to extend our method to 3D point clouds to capture
granular structure. Despite these limitations, our current findings offer a foundation for
future research, and addressing these challenges will be crucial to advancing the capabilities
of graph-based latent models in RL.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References

R. Agarwal, M. Schwarzer, P. Samuel Castro, A. C. Courville, and M. G. Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In M. Ranzato,
A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan, and Y. Dauphin (eds.), Proceedings of
the 35th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’21). Curran Associates, 2021.

A. Barreto, W. Dabney, R. Munos, J. Hunt, T. Schaul, D. Silver, and H. Hasselt. Successor
features for transfer in reinforcement learning. In I. Guyon, U. von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Proceedings of the
31st International Conference on Advances in Neural Information Processing Systems
(NeurIPS’17). Curran Associates, 2017.

P. Battaglia, J. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gülçehre, H. Song, A. Ballard,
J. Gilmer, G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational
inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018. URL
http://arxiv.org/abs/1806.01261.

C. Benjamins, T. Eimer, F. Schubert, A. Mohan, S. Döhler, A. Biedenkapp, B. Rosenhan,
F. Hutter, and M. Lindauer. Contextualize me – the case for context in reinforcement
learning. Transactions on Machine Learning Research, 2023.

D. Borsa, A. Barreto, J. Quan, D. Mankowitz, H. van Hasselt, R. Munos, D. Silver, and
T. Schaul. Universal successor features approximators. In Proceedings of the International
Conference on Learning Representations (ICLR’19), 2019. Published online: iclr.cc.

P. Castro, P. Panangaden, and D. Precup. Equivalence relations in fully and partially
observable markov decision processes. In IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, 2009.

P. Castro, T. Kastner, P. Panangaden, and M. Rowland. MICo: Improved representa-
tions via sampling-based state similarity for markov decision processes. In M. Ranzato,
A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan, and Y. Dauphin (eds.), Proceedings of
the 35th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’21). Curran Associates, 2021.

V. Chadalapaka, V. Ustun, and L. Liu. Leveraging graph networks to model environments in
reinforcement learning. In Proceedings of the Thirty-Sixth International Florida Artificial
Intelligence Research Society Conference (FLAIRS’23), 2023.

C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva. Relational graph learning for crowd
navigation. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’20), 2020.

M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou, S. Pal,
P. Castro, and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement
learning environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In H. Daume III and A. Singh (eds.), Proceedings of the
37th International Conference on Machine Learning (ICML’20), volume 98. Proceedings
of Machine Learning Research, 2020.

P. Dayan. Improving generalization for temporal difference learning: The successor represen-
tation. Neural Comput., 5(4):613–624, 1993.

T. Dean and R. Givan. Model minimization in markov decision processes. In Proceedings
of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative
Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997,
Providence, Rhode Island, USA, 1997.

11

http://arxiv.org/abs/1806.01261
iclr.cc

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

C. Diuk, A. Cohen, and M. Littman. An object-oriented representation for efficient rein-
forcement learning. In W. Cohen, A. McCallum, and S. Roweis (eds.), Proceedings of the
25th International Conference on Machine Learning (ICML’08). Omnipress, 2008.

D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint. Learning multi-object dynamics
with compositional neural radiance fields. In Conference on Robot Learning (CoRL’22),
2022.

S. Dzeroski, L. Raedt, and K. Driessens. Relational reinforcement learning. Machine Learning,
43(1/2):7–52, 2001.

K. Esslinger, R. Platt, and C. Amato. Deep transformer q-networks for partially observable
reinforcement learning. CoRR, abs/2206.01078, 2022.

B. Eysenbach, R. Salakhutdinov, and S. Levine. Robust predictable control. In M. Ranzato,
A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan, and Y. Dauphin (eds.), Proceedings of
the 35th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’21). Curran Associates, 2021.

C. Fang and K. Stachenfeld. Predictive auxiliary objectives in deep RL mimic learning in
the brain. In iclr24, 2024.

A. Fern, S. Yoon, and R. Givan. Approximate policy iteration with a policy language bias:
Solving relational markov decision processes. Journal of Artificial Intelligence Research,
25:75–118, 2006.

N. Ferns, P. Panangaden, and D. Precup. Metrics for finite markov decision processes.
In R. Holte and A. Howe (eds.), Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI’04). AAAI Press, 2004.

C. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax - A
differentiable physics engine for large scale rigid body simulation. In Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, 2021.

C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. Bellemare. DeepMDP: Learn-
ing continuous latent space models for representation learning. In K. Chaudhuri and
R. Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning (ICML’19), volume 97. Proceedings of Machine Learning Research, 2019.

R: Ghugare, H. Bharadhwaj, B. Eysenbach, S. Levine, and R. Salakhutdinov. Simplifying
model-based RL: learning representations, latent-space models, and policies with one
objective. In International Conference on Learning Representations (ICLR’23), 2023.
Published online: iclr.cc.

J. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Pires,
Z. Guo, M. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko. Bootstrap your
own latent - A new approach to self-supervised learning. In H. Daume III and A. Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning (ICML’20),
volume 98. Proceedings of Machine Learning Research, 2020.

C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new environments
in relational MDPs. In G. Gottlob and T. Walsh (eds.), Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI’03), 2003.

Y. Guo, J. Choi, M. Moczulski, S. Bengio, M. Norouzi, and H. Lee. Efficient exploration with
self-imitation learning via trajectory-conditioned policy. arXiv preprint arXiv:1907.10247,
2019.

Z. Guo, B. Pires, B. Piot, J. Grill, F. Altché, R. Munos, and M. Azar. Bootstrap latent-
predictive representations for multitask reinforcement learning. In H. Daume III and
A. Singh (eds.), Proceedings of the 37th International Conference on Machine Learning
(ICML’20), volume 98. Proceedings of Machine Learning Research, 2020.

12

iclr.cc

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learn-
ing latent dynamics for planning from pixels. In K. Chaudhuri and R. Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning (ICML’19),
volume 97. Proceedings of Machine Learning Research, 2019.

D. Han, K. Doya, and J. Tani. Variational recurrent models for solving partially observable
control tasks. In iclr20, 2020.

N. Hansen, H. Su, and X. Wang. Temporal difference learning for model predictive control. In
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato (eds.), Proceedings
of the 39th International Conference on Machine Learning (ICML’22), volume 162 of
Proceedings of Machine Learning Research. PMLR, 2022.

P. Hansen-Estruch, A. Zhang, A. Nair, P. Yin, and S. Levine. Bisimulation makes analo-
gies in goal-conditioned reinforcement learning. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvári, G. Niu, and S. Sabato (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning (ICML’22), volume 162 of Proceedings of Machine Learning
Research. PMLR, 2022.

A. Jain, N. Kosaka, K. Kim, and J. Lim. Know your action set: Learning action relations
for reinforcement learning. In M. Meila and T. Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning (ICML’21), volume 139 of Proceedings of
Machine Learning Research. PMLR, 2021.

S. Joshi and R. Khardon. Probabilistic relational planning with first order decision diagrams.
Journal of Artificial Intelligence Research, 41:231–266, 2011.

L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 1998.

S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney. Recurrent experience
replay in distributed reinforcement learning. In Proceedings of the International Conference
on Learning Representations (ICLR’19), 2019. Published online: iclr.cc.

K. Khetarpal, Z. Guo, B. Pires, Y. Tang, C. Lyle, M. Rowland, N. Heess, D. Borsa, A. Guez,
and W. Dabney. A unifying framework for action-conditional self-predictive reinforcement
learning. CoRR, abs/2406.02035, 2024. doi: 10.48550/ARXIV.2406.02035.

T. Killian, S. Daulton, F. Doshi-Velez, and G. Konidaris. Robust and efficient transfer
learning with hidden parameter markov decision processes. In I. Guyon, U. von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Proceedings of
the 31st International Conference on Advances in Neural Information Processing Systems
(NeurIPS’17). Curran Associates, 2017.

T. Kipf, E. van der Pol, and M. Welling. Contrastive learning of structured world models. In
Proceedings of the 8th International Conference on Learning Representations (ICLR’20),
2020.

C. Lan and R. Agarwal. Revisiting bisimulation: A sampling-based state similarity pseudo-
metric. In The First Tiny Papers Track at the 11th International Conference on Learning
Representations (ICLR’23), 2023.

A. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep rein-
forcement learning with a latent variable model. In H. Larochelle, M. Ranzato, R. Hadsell,
M.-F. Balcan, and H. Lin (eds.), Proceedings of the 34th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’20). Curran Associates,
2020.

J. Lee, Q. Lei, N. Saunshi, and J. Zhuo. Predicting what you already know helps: Provable
self-supervised learning. In M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan,
and Y. Dauphin (eds.), Proceedings of the 35th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’21). Curran Associates, 2021.

13

iclr.cc

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

L. Lehnert and M. Littman. Successor features combine elements of model-free and model-
based reinforcement learning. J. Mach. Learn. Res., 2020.

L. Li, T. Walsh, and M. Littman. Towards a unified theory of state abstraction for mdps.
In Proceedings of the International Symposium on Artificial Intelligence and Mathematic
(AI&M’06), 2006.

M. Littman, R. Sutton, and S. Singh. Predictive representations of state. In Proceedings of
the 15th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’01), 2001.

M. Lu, Z. Shahn, D. Sow, F. Doshi-Velez, and L. Lehman. Is deep reinforcement learning
ready for practical applications in healthcare? a sensitivity analysis of duel-ddqn for
hemodynamic management in sepsis patients. In Proceedings of the American Medical
Informatics Association Annual Symposium (AMIA’20), 2020.

T. Meng and M. Khushi. Reinforcement learning in financial markets. Data, 4(3):110, 2019.

A. Mohan, A. Zhang, and M. Lindauer. Structure in deep reinforcement learning: A survey
and open problems. Journal of Artificial Intelligence Research, 79, 2024.

T. Ni, B. Eysenbach, E. Seyedsalehi, M. Ma, C. Gehring, A. Mahajan, and P. Bacon. Bridging
state and history representations: Understanding self-predictive rl. In Proceedings of the
12th International Conference on Learning Representations (ICLR’24), 2024.

M. Oliva, S. Banik, J. Josifovski, and A. Knoll. Graph neural networks for relational inductive
bias in vision-based deep reinforcement learning of robot control. In International Joint
Conference on Neural Networks, IJCNN 2022, Padua, Italy, July 18-23, 2022, pp. 1–9,
2022.

M. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M. Jiang, E. Hambro, F. Petroni,
H. Kuttler, E. Grefenstette, and T. Rocktäschel. Minihack the planet: A sandbox for
open-ended reinforcement learning research. In M. Ranzato, A. Beygelzimer, K. Nguyen,
P. Liang, J. Vaughan, and Y. Dauphin (eds.), Proceedings of the 35th International
Conference on Advances in Neural Information Processing Systems (NeurIPS’21). Curran
Associates, 2021.

C. Sancaktar, S. Blaes, and G. Martius. Curious exploration via structured world models
yields zero-shot object manipulation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Proceedings of the 36th International Conference on Advances
in Neural Information Processing Systems (NeurIPS’22). Curran Associates, 2022.

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learn-
ing to simulate complex physics with graph networks. In H. Daume III and A. Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning (ICML’20),
volume 98. Proceedings of Machine Learning Research, 2020.

G. Scarpellini, K. Konyushkova, C. Fantacci, T. Le Paine, Y. Chen, and M. Denil. π2vec:
Policy representations with successor features. In International Conference on Learning
Representations (ICLR’24), 2024. Published online: iclr.cc.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering atari, go,
chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

M. Schwarzer, A. Anand, R. Goel, R. Hjelm, A. Courville, and P. Bachman. Data-efficient
reinforcement learning with self-predictive representations. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR’21), 2021. Published online:
iclr.cc.

14

iclr.cc
iclr.cc

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan. Approximate information state for
approximate planning and reinforcement learning in partially observed systems. Journal
of Machine Learning Research, 2022.

Y. Tang, Z. Daniel Guo, P. Richemond, B. Pires, Y. Chandak, R. Munos, M. Rowland,
M. Gheshlaghi Azar, C. Lan, C. Lyle, A. György, S. Thakoor, W. Dabney, B. Piot,
D. Calandriello, and M. Valko. Understanding self-predictive learning for reinforcement
learning. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning (ICML’23),
volume 202 of Proceedings of Machine Learning Research. PMLR, 2023.

E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In
International Conference on Intelligent Robots and Systems (IROS’12), pp. 5026–5033.
ieeecis, IEEE, 2012.

M. Tomar, U. Mishra, A. Zhang, and M. Taylor. Learning representations for pixel-based
control: What matters and why? Trans. Mach. Learn. Res., 2023, 2023.

C. Voelcker, T. Kastner, I. Gilitschenski, and A. Farahmand. When does self-prediction
help? understanding auxiliary tasks in reinforcement learning. Reinforcement Learning
Journal, 2024.

Q. Wang and H. van Hoof. Model-based meta reinforcement learning using graph structured
surrogate models and amortized policy search. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvári, G. Niu, and S. Sabato (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning (ICML’22), volume 162 of Proceedings of Machine Learning
Research. PMLR, 2022.

T. Wang, R. Liao, J. Ba, and S. Fidler. Nervenet: Learning structured policy with graph
neural networks. In Proceedings of the 6th International Conference on Learning Repre-
sentations (ICLR’18), 2018.

T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel,
and J. Ba. Benchmarking model-based reinforcement learning. CoRR, abs/1907.02057,
2019. URL http://arxiv.org/abs/1907.02057.

G. Wayne, C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-Barwinska, J. Rae,
P. Mirowski, J. Leibo, A. Santoro, M. Gemici, M. Reynolds, T. Harley, J. Abramson,
S. Mohamed, D. Rezende, D. Saxton, A. Cain, C. Hillier, D. Silver, K. Kavukcuoglu,
M. Botvinick, D. Hassabis, and T. Lillicrap. Unsupervised predictive memory in a
goal-directed agent. CoRR, abs/1803.10760, 2018.

D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus. Improving sample
efficiency in model-free reinforcement learning from images. In Q. Yang, K. Leyton-Brown,
and Mausam (eds.), Proceedings of the Thirty-Fifth Conference on Artificial Intelligence
(AAAI’21). Association for the Advancement of Artificial Intelligence, AAAI Press, 2021.

A. Zhang, Z. Lipton, L. Pineda, K. Azizzadenesheli, A. Anandkumar, L. Itti, J. Pineau, and
T. Furlanello. Learning causal state representations of partially observable environments.
CoRR, 2019. URL http://arxiv.org/abs/1906.10437.

A. Zhang, S. Sodhani, K. Khetarpal, and J. Pineau. Learning robust state abstractions
for hidden-parameter block MDPs. In Proceedings of the International Conference on
Learning Representations (ICLR’21), 2021. Published online: iclr.cc.

Y. Zhao, W. Zhao, R. Boney, J. Kannala, and J. Pajarinen. Simplified temporal consistency
reinforcement learning. In icml23, 2023.

R. Zheng, X. Wang, Y. Sun, S. Ma, J. Zhao, H. Xu, H. Daumé, and F. Huang. Taco:
Temporal latent action-driven contrastive loss for visual reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

J. Zhu, Y. Xia, L. Wu, J. Deng, W. Zhou, T. Qin, T. Liu, and H. Li. Masked contrastive
representation learning for reinforcement learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(3):3421–3433, 2022.

15

http://arxiv.org/abs/1907.02057
http://arxiv.org/abs/1906.10437
iclr.cc

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A Appendix

A.1 Proof Sketch of Proposition 3.1

In this section, we provide a theoretical foundation for the generalization capability of
our proposed method. We formalize the relationship between subtask similarity and the
embeddings learned by the GNN-based model. We restate the proposition in detail below:

Proposition A.1. Let h1, h2, . . . , hn ∈ H be histories sampled from individual subtasks
at different time steps in a POMDP, and let o′1, o

′
2, . . . , o

′
n ∈ O be the corresponding next

observations. Let ϕ : H → Z be a belief function mapping histories to embeddings zi = ϕ(hi).
Assume that ϕ is Lipschitz continuous; that is, there exists a constant Lϕ > 0 such that for
all i, j:

∥zi − zj∥ ≤ Lϕ · dH(hi, hj),

where dH : H × H → R≥0 is a distance metric on H. Let f : Zn → O be a model that
predicts an observation o′pred = f(z1, . . . , zn). Assume that f is Lipschitz continuous with
constant Lf > 0.

Then, (
max
i,j

dH(hi, hj) ≤ δ
)

=⇒ L(o′pred, o′i) ≤
(
LfLϕnδ + ϵi

)2
,

where ϵi represents the inherent error due to model approximation or noise.

Proof Sketch.

Step 1: Lipschitz Continuity of ϕ. Since ϕ is Lipschitz continuous:

∥zi − zj∥ ≤ Lϕ · dH(hi, hj) ≤ Lϕδ for all i, j.

Step 2: Bounding Differences in Embeddings. The maximum distance between any
pair of embeddings zi, zj is bounded:

∥zi − zj∥ ≤ Lϕδ.

Step 3: Lipschitz Continuity of f . Applying f to embeddings z1, . . . , zn and another set
z′1, . . . , z

′
n (which in this case are zj , since embeddings are close):

∥f(z1, . . . , zn)− f(z′1, . . . , z′n)∥ ≤ Lf

n∑
k=1

∥zk − zj∥.

Since ∥zk − zj∥ ≤ Lϕδ:

∥f(z1, . . . , zn)− f(z′1, . . . , z′n)∥ ≤ LfLϕnδ.

Step 4: Relating to the True Observation. Assuming o′j = f(zj , . . . , zj) + ϵj , where ϵj
accounts for model approximation error or noise. Then, for any i:

∥o′pred − o′i∥ ≤ ∥o′pred − o′j∥+ ∥o′j − o′i∥.

Since o′pred is close to o′j due to the bound from Step 3, and o′j is close to o′i if o
′
i ≈ o′j .

Justification: The model f processes a batch of embeddings z1, . . . , zn to predict the next
observation o′pred. When we input identical embeddings zj into f , i.e., f(zj , . . . , zj), the
model effectively focuses on the information contained in zj without interference from
variations in other embeddings. Given that zj represents the embedding of history hj , it
is reasonable to expect that f(zj , . . . , zj) approximates the true next observation o′j , up to
some approximation error ϵj .

Step 5: Bounding the Prediction Error. Combining the above:

∥o′pred − o′i∥ ≤ LfLϕnδ + ϵi,

where ϵi accounts for discrepancies between o
′
i and o

′
j and any inherent noise.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Step 6: Squared Error Loss. Therefore:

L(o′pred, o′i) = ∥o′pred − o′i∥2 ≤ (LfLϕnδ + ϵi)
2.

Hence, minimizing the squared error loss under the Lipschitz continuity of ϕ and f under the
assumption of similar histories ensures that small differences in histories lead to proportionally
small prediction errors. This confirms that our method effectively leverages relational
structures among histories to generalize across subtasks, validating the proposition.

While the proof establishes an upper bound on the prediction error based on the Lipschitz
continuity of ϕ and f , it’s important to consider how minimizing the squared error loss

L(o′pred, o′i) = ∥o′pred − o′i∥2

during training impacts the approximation errors ϵi and the bound.

Minimizing L reduces the approximation errors ϵi, leading to a tighter bound on the prediction
error:

L(o′pred, o′i) ≤ (LfLϕnδ + ϵi)
2.

As ϵi decreases, the bound becomes tighter, enhancing the model’s predictive accuracy. This
process improves the model’s ability to generalize across similar histories and subtasks by
effectively capturing relational structures in the data. Therefore, minimizing the loss during
training is crucial for achieving the theoretical benefits outlined in the proof.

A.2 Hyperparameters and Experimental Details

Hyperparameter Value

Discount factor (γ) 0.99
Number of environment steps 3× 106

Maximum number of distractors 4
Maximum size change 12× 12
Target network update rate (τ) 0.005
Replay buffer size 400, 000
Batch size 256
Learning rate 0.001
Latent state dimension 128
Epsilon greedy schedule exponential(1.0, 0.05, 400, 000)
R2D2 sequence length 10
R2D2 burn-in sequence length 5
n-step TD 5
Training frequency every 10 environment steps
Auxiliary loss coefficient (λ) 0.01
Latent state size 147
Num. neighbors in GNN (m) 4
Num. of message passing steps 2
Hidden state of Graph model 147//2 = 73.5

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 Latent Space Trajectories

This section outlines the methodology used to construct visual trajectories in the latent
space of the encoder. These visualizations provide insights into how the latent spaces
encode task-relevant information across different phases of the agent’s trajectory, such as
key collection and goal navigation.

To generate these trajectories, we used the checkpoint of a trained encoder and simulated a
path to the goal. We then divided this into two phases based on the subtask of key collection:

1. Phase 1: trajectory until collection of the key.

2. Phase 2: trajectory after collecting the key until the goal.

For each phase, the hidden states produced by the encoder were collected during the execution
of the corresponding actions. We then applied Principal Component Analysis (PCA) to
reduce the dimensionality of these latent states to three components, enabling visualization
in 3D space. The resulting points connect consecutive latent states, forming a trajectory
in the latent space. Each connection and corresponding point is color-coded by phase to
emphasize transitions between sub-tasks, with the goal state represented as a distinct point
in the latent space. This visualization allows a qualitative comparison of how algorithms
organize and structure their latent representations for task completion. We now summarize
the general observations from these figures.

Clearer Trajectories in Graph OP. The latent trajectories reveal notable differences
in how various objectives shape the latent space representations. The Graph OP method
consistently exhibits clearer and smoother trajectories between task phases, such as key
collection and goal navigation. This clarity arises from the graph prediction objective, which
helps the model learn a well-structured latent space. By focusing on observation prediction,
Graph OP emphasizes encoding the environment’s dynamics and transitions between states,
resulting in smoother and more structured latent.

Ruggedness in Graph AIS. In contrast, incorporating the reward prediction objective, as
seen in Graph AIS, introduces more ruggedness into the latent trajectories. This ruggedness
reflects the aggressive influence of the reward prediction objective, which aligns the latent
space with task rewards. While this alignment prioritizes encoding goal-directed information,
it often disrupts the smooth structure typically learned by the graph prediction objective.
Consequently, the latent trajectories for Graph AIS are less structured than that of Graph OP
but better aligned with task-relevant rewards.

Goal State Placement. Another key observation is the placement of the goal state in
the latent space. In Graph AIS, the goal state appears further away from other latent states
compared to Graph OP. This distinction highlights how the reward prediction objective drives
the model to strongly differentiate goal states from other regions of the latent space. This
explicit separation facilitates more effective credit assignment, enabling the agent to focus
on actions that lead to the goal.

Why Graph AIS Outperforms Graph OP. Despite the less structured latent space,
Graph AIS generally outperforms Graph OP. This is because reward alignment ensures that
the latent space emphasizes task-relevant features, particularly those associated with long-
term planning and goal achievement. Combining the graph and reward prediction objectives
enables Graph AIS to balance relational modeling and goal-directed alignment, improving
task performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3.1 MiniGrid-DoorKey-8x8-v0

(a) Simulated Trajectory

(b) Graph OP (c) Graph AIS

(d) min OP (e) min AIS

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.3.2 MiniGrid-ObstructedMaze-1Dl-v0

(a) Simulated Trajectory

(b) Graph OP (c) Graph AIS

(d) min OP (e) min AIS

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.3.3 MiniGrid-KeyCorridorS3R2-v0

(a) Simulated Trajectory

(b) Graph OP (c) Graph AIS

(d) min OP (e) min AIS

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.3.4 MiniGrid-UnlockPicup-v0

(a) Simulated Trajectory

(b) Graph OP (c) Graph AIS

(d) min OP (e) min AIS

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.4 Prediction of the Models

In this section, we compare the predictions generated by the MLP-based model and the
Graph-based model. To produce the predictions in the figures below, we initialized an agent,
loaded the model, critic, and encoder checkpoints, and populated the buffer by interacting
with the environment. A minibatch of observations was then sampled from this buffer, and
the model was queried to predict the corresponding subsequent observations. The figure
compares an observation image from the batch with the predictions from the MLP-based
and Graph-based models.

The Graph-based model consistently generates predictions with higher fidelity than the
MLP-based model, highlighting the advantages of the GNN’s temporal reasoning capabilities.
While the MLP model struggles to produce visually accurate reconstructions, it retains
vital features such as approximate spatial contrasts and object colors. These features may
explain its ability to perform reasonably despite poor visual quality. In contrast, the Graph
model produces predictions that closely resemble the original observations, demonstrating
its superior ability to leverage temporal relationships across trajectories.

A.4.1 MiniGrid-DoorKey-8x8-v0

(a) Observation (b) MLP Model (c) Graph Model

A.4.2 MiniGrid-ObstructedMaze-1Dl-v0

(a) Observation (b) MLP Model (c) Graph Model

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.4.3 MiniGrid-KeyCorridorS3R2-v0

(a) Observation (b) MLP Model (c) Graph Model

A.4.4 MiniGrid-UnlockPickup-v0

(a) Observation (b) MLP Model (c) Graph Model

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.5 Different Values for Neighbors

We ablated the number of neighbors (m) used in the graph construction to evaluate its effect
on task performance. The results, presented in Appendix A.5, demonstrate that the model is
robust to changes in m, with similar final returns across m = 4, m = 6, m = 8, and m = 16in
most tasks. In the early stages of training, m = 4 tends to achieve faster returns, suggesting
that smaller graphs may provide more efficient learning initially. However, tasks with more
complex relational dependencies, such as UnlockPickup-v0, benefit slightly from m = 6,
indicating that the optimal number of neighbors may be task-specific. Larger values of m
introduce more variability in performance for some environments, as evidenced by broader
confidence intervals, potentially due to increased noise in the graph. Overall, these results
highlight the robustness of the proposed method across different graph configurations, with
m = 4 serving as a reasonable default choice for most tasks.

(a) MiniGrid-DoorKey-8x8-v0 (b) MiniGrid-ObstructedMaze-1Dl-v0

(c) MiniGrid-KeyCorridorS3R2-v0 (d) MiniGrid-UnlockPickup-v0

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.6 Isolating the Effect of Relational Reasoning in the GNN

We designed an experiment to isolate this effect and understand whether the GNN’s observed
benefits arise from its relational reasoning or simply from operating on the entire batch
of observations. In our standard setup, the GNN processes a batch of observations by
constructing a graph over the entire batch and performing relational reasoning through
message passing. By contrast, the baseline MLP independently predicts the next observation
for each element in the batch without leveraging relationships across the batch.

We modified the GNN and MLP architectures for this experiment to process mini-batches of
50 observations each sequentially. Specifically, we divided the original batch into 50-unit
mini-batches and processed them sequentially. The GNN constructed a graph over each
mini-batch and performed relational reasoning with a sparse connection via message passing,
while the MLP processed the mini-batches without relational reasoning. After processing each
mini-batch, the outputs were concatenated into a new batch with the same dimensionality
as the original input, and a final linear transformation was applied to produce the output.

This setup ensures that both architectures operate sequentially on mini-batches, making the
primary difference between them using relational reasoning in the GNN. The results, shown
in Figure 15, demonstrate that the GNN-based model outperforms the MLP-based model in
this scenario, indicating that the benefits of the GNN arise from its ability to reason over
observations within each mini-batch relationally. This experiment highlights the critical role
of relational reasoning in achieving better performance.

Figure 15: Difference between batch of 50 observations for the Graph and MLP models
MiniGrid-UnlockPickup-v0

26

	Introduction
	Background
	MDPs, POMDPs and Reinforcement Learning
	State abstractions, Self-Prediction and Observation-prediction

	Method
	Relational Task Decomposition
	Observation Prediction using a Graph-based Latent Model

	Experiments
	Related Work
	Conclusion and Future Work
	Appendix
	Proof Sketch of Proposition 3.1
	Hyperparameters and Experimental Details
	Latent Space Trajectories
	MiniGrid-DoorKey-8x8-v0
	MiniGrid-ObstructedMaze-1Dl-v0
	MiniGrid-KeyCorridorS3R2-v0
	MiniGrid-UnlockPicup-v0

	Prediction of the Models
	MiniGrid-DoorKey-8x8-v0
	MiniGrid-ObstructedMaze-1Dl-v0
	MiniGrid-KeyCorridorS3R2-v0
	MiniGrid-UnlockPickup-v0

	Different Values for Neighbors
	Isolating the Effect of Relational Reasoning in the GNN

