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ABSTRACT

The mixture ratio of data from different source domains significantly affects
the performance of language models (LM) pretraining. In this paper, we intro-
duce DOMAIN2VEC, a novel approach that decomposes any dataset into a linear
combination of several “Meta-Domains”, a new concept designed to capture key
underlying features of datasets. DOMAIN2VEC maintains a vocabulary of Meta-
Domains and uses a Meta-Domain Classifier to decompose any given dataset into
a domain vector that corresponds to a distribution over this vocabulary. These
domain vectors enable the identification of optimal data mixture ratio for LM pre-
training in a training-free manner under the Distribution Alignment Assumption
(DA2), which suggests that when the data distribution of the training set and the
validation set is more aligned, a lower validation loss is achieved. Moreover,
previous work could use DOMAIN2VEC to model the relationship between do-
main vectors and LM performance, greatly enhancing the scalability of previous
methods without retraining as new datasets are introduced. Extensive experiments
demonstrate that DOMAIN2VEC finds data mixture ratios that enhance down-
stream task performance with minimal computational overhead. Specifically, DO-
MAIN2VEC achieves the same validation loss on Pile-CC using only 51.5% of
the compute required when training on the original mixture of The Pile Dataset.
Under equivalent compute budget, DOMAIN2VEC improves downstream perfor-
mance by an average of 2.72%. DOMAIN2VEC serves as a strong and efficient
baseline for data mixture optimization in LM pretraining, offering insights into
improving data efficiency in large-scale models.

1 INTRODUCTION

Through training on large-scale text corpora, Large Language Models (LLMs) have demonstrated
strong generalization capabilities (Touvron et al., 2023; OpenAI et al., 2024; Yang et al., 2024;
DeepSeek-AI et al., 2024). Training datasets for LLMs are typically divided into multiple domains
based on their sources. For example, a widely used dataset, The Pile (Gao et al., 2021), includes
12.07% Books3, 8.96% ArXiv, 6.12% FreeLaw, etc. Recent studies have highlighted that mixture
proportions of different domains (referred to as data mixture) could significantly impact the effec-
tiveness of language models (Hoffmann et al., 2022a; Xie et al., 2023b), with data from one domain
potentially influencing the outcomes of others (Guo et al., 2022). Typically, the data mixture used for
training large language models are determined heuristically or based on downstream performance
metrics, which is often unscalable and may lead to suboptimal mixtures. Thus, finding the optimal
data mixture in a scalable and efficient manner is a critical research question (Liu et al., 2024).

Recently, researchers have proposed various methods to predict the optimal data mixture. In this
paper, we categorize prior work into two lines. The first line implicitly adjusts the data mixture
via finding high-quality data from different domains or datasets. Lin et al. (2024) propose using
Selective Language Models to select useful tokens to align with the ideal data mixture. Ankner
et al. (2024) and Thakkar et al. (2023) directly filter out some low-quality data at the sample level
based on the perplexity or the influence score. The second line of work focuses more on modeling
the relationship between the data mixture and the performance of language models, which explicitly
adjusts the data mixture of different domains or datasets. A straightforward method is to train lan-
guage models on different data mixtures and select the one that yields the best performance, as seen
in the training of Gopher (Rae et al., 2022). However, it is impossible to enumerate all possible data
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mixtures owing to the enormous computation costs. To address this issue, Xie et al. (2023a) pro-
pose DoReMi, which leverages a well-trained reference model to guide the training of another proxy
model using Group DRO (Nemirovski et al., 2009; Sagawa* et al., 2020) over different datasets. The
optimized data mixture derived from this process is then used to train a large model. While DoReMi
enhances training efficiency for identifying better data mixtures, it still relies heavily on having a
well-trained reference model, and it remains difficult to determine what qualifies as a good refer-
ence model. To reduce this dependence, Fan et al. (2023) introduce DoGE, which assigns greater
weight to a domain based on its contribution to the learning of target domains. Inspired by scaling
laws Kaplan et al. (2020); Hoffmann et al. (2022b), to build a functional relationship between data
mixture and the performance of language models rather than providing a single data mixture (Xie
et al., 2023a; Fan et al., 2023), several works (Ye et al., 2024; Ge et al., 2024; Gu et al., 2024; Que
et al., 2024) attempt to fit nonlinear expressions through extensive experiments on smaller proxy
models. Gu et al. (2024) also accurately predicted that the pretrained domain loss would first rise
and then fall during continue pretraining, and introduced the critical mixture ratio to mitigate catas-
trophic forgetting on the pretrained domain. Instead of using nonlinear expressions, Liu et al. (2024)
propose RegMix, which formulates the search for optimal data mixture as a regression task and fits
a regression model to predict the performance of different data mixture.

While prior work has shown promising results, they have some issues as follows: 1) Higher Com-
putational Cost: For instance, although the proxy model used in DoReMi (Xie et al., 2023a) has
only 280M parameters, the estimated FLOPs of DoReMi is 3.7 × 1019. Similarly, RHO-1 (Lin
et al., 2024) only calculates loss on certain tokens but still requires the entire sentence to be input
into the model. 2) Lack of Scalability : When building the functional relationship like Ye et al.
(2024) and Liu et al. (2024), the dimension of the independent variable (i.e., the number of different
datasets) is fixed. If we change components of training dataset (i.e., introduce some new datasets, fil-
ter some low-quality data), the previously fitted functions cannot be generalized to current datasets.
This necessitates resampling new data mixtures, retraining proxy models, and refitting the functions,
which severely limits the scalability of these methods.

To address these issues, we introduce DOMAIN2VEC, a newly introduced concept to capture the
underlying features of datasets. DOMAIN2VEC maintains a vocabulary of “Meta-Domains”. We
hypothesize that any dataset, regardless of its source, be approximated by a linear combination of
several Meta-Domains in certain distribution. This distribution over the vocabulary could serve as
the vector representation (or domain vector) of the current dataset. To efficiently determine which
Meta-Domains comprise a given dataset, we propose utilizing a Meta-Domain Classifier to generate
the domain vector and outline a concrete pipeline to build a Meta-Domain Classifier from scratch.
For finding the optimal data mixture for language model pretraining, we introduce the Distribution
Alignment Assumption (DA2), stating that lower validation loss can be achieved when the domain
vector of training datasets aligns with domain vector of the validation datasets. Instead of model-
ing the relationship between data mixture and language model performance like previous work (Liu
et al., 2024; Ye et al., 2024; Que et al., 2024), we focus on modeling the relationship between do-
main vectors provided by DOMAIN2VEC and the LM performance which significantly enhances the
scalability of prior methods. Notably, regardless of changes to the training datasets, DOMAIN2VEC
could still provide corresponding domain vector. Moreover, combining different datasets is equiv-
alent to combining their respective domain vectors. This allows us to predict the performance of
various data mixtures without the need to retrain proxy models to fit these fictional relationship
again, further improving efficiency.

In summary, we highlight our contributions as follows:

1. We propose DOMAIN2VEC, a novel concept to capture the underlying features of datasets.
We also propose viewing datasets as combinations of “Meta-Domains” and propose an
efficient pipeline for vectorizing a dataset using a Meta-Domain Classifier.

2. We propose Distribution Alignment Assumption (DA2) for language model pretraining, a
training-free method to identify the optimal data mixture. Additionally, we demonstrate
how to integrate DOMAIN2VEC into prior work, which greatly enhances the scalability of
prior work without retraining as training datasets changes.

3. We validate the effectiveness of DOMAIN2VEC from two aspects: text generation ability
and downstream task performance. Experimental results show that our method could accu-
rately predict the performance of different data mixtures without the need for training any
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proxy model. Moreover, we identify data mixtures that achieve downstream performance
close to DoReMi (Xie et al., 2023a), while using only 0.26% of its computational cost.

2 DOMAIN2VEC

In this section, we introduce DOMAIN2VEC, an algorithm that decomposes a dataset into a lin-
ear combination of various “Meta-Domains”. This approach allows us to represent the underlying
features of datasets through a normalized vector. We also outline a pipeline for constructing the
vocabulary of DOMAIN2VEC and training a Meta-Domain classifier.

Key Assumption DOMAIN2VEC maintains a vocabulary, a set of “Meta-Domains”. Assume we
have n Meta-Domains D∗

j (0 ≤ j < n), where D∗
j is represented as ej , a one-hot vector where the

j-th element is 1. We hypothesize that, for any given dataset D, it could be represented as a domain
vector v, by linear combination of these Meta-Domains. Specifically,

v ≈
n−1∑
j=0

vj · ej , (1)

where each element vj of v represents the projection (weight) of the dataset D on D∗
j . Thus, v =

[v0, v1, v2, ..., vn−1]
⊤ can be a representation (distribution) of the dataset D over the Meta-Domains.

Construct the Vocabulary of DOMAIN2VEC First, we argue that constructed Meta-Domains,
which could represent dataset from any source, requires satisfying these following three conditions:

1. The original data for constructing Meta-Domains should be as diverse and large as possible.
2. The method for constructing Meta-Domains should be computationally efficient.
3. There should be distinct differences between different Meta-Domains.

Figure 1: The relationship be-
tween the number of Meta-
Domains and Inertia.

We collected data from more than 100 sources across three coarse
domains: English, Chinese, and Code. After deduplication, we ob-
tained around 5.2TB of text data. First, we utilize bge-small-en-
v1.5 and bge-small-zh-v1.5 (Xiao et al., 2023) to compute embed-
dings for the English and Chinese data, respectively. Then, we em-
ploy K-Means (Macqueen, 1967; Arthur & Vassilvitskii, 2006) to
cluster these embeddings, resulting in 240 different Meta-Domains
for English and Chinese Data. We also demonstrate the relation-
ship between the number of Meta-Domain and inertia (measuring
the distance between each data point and its centroid) in Figure 1.
As for the Code data, we directly classified these data based on
their programming language categories, ultimately constructing 20
Meta-Domains for code, covering mainstream programming lan-
guages. Finally, we construct 260 unique Meta-Domains.

Meta-Domain Classifier In this section, we will introduce how to obtain the normalized domain
vector for any given dataset Di, which satisfies Equation 1. First, we trained a Meta-Domain Clas-
sifier based on Qwen2-1.5b-base (Yang et al., 2024). For any given text textj ∈ Di, we have

pj = [p0, p1, p2, ..., pn−1]
⊤ = Classifier(textj) (2)

where pi represents the probability that textj belongs to the i-th Meta-Domain. For Di, we could
sample N texts then take the average of domain vector of these samples. Thus, the domain vector
vi of dataset Di is,

vi ≈
1

N

N−1∑
j=0

pj (3)

Then, we could use the vector vi to approximately represent the feature of dataset Di from any
source. Meanwhile, during the pretraining phase of large language models, we typically have
training datasets Dtrain = {D1,D2, ...,Dk} from multiple sources. We can convert each of these
datasets into domain vectors following Equation 2 and 3. Therefore, Dtrain can be approximately
represented as Vtrain = [v1,v2, ...,vk], where Vtrain ∈ Rk×n.
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Training and Evaluation The Meta-Domain Classifier is trained to determine which Meta-
Domain an arbitrary text from the training set originally belongs to. Thus, we extract 3, 000 texts
from each meta-domain for training and 500 documents for evaluation. We add a classifier head to
Qwen2-1.5B-base (Yang et al., 2024), which has a shape of (hidden size, 260), where 260 equals the
number of Meta-Domains. Then, we use the Adam (Kingma & Ba, 2017) optimizer with a learn-
ing rate of 2e-5 and train the classifier for 3 epochs via cross entropy loss. After that, we evaluate
the performance of the meta-domain classifier on the test set, achieving a classification accuracy of
74.73%. Meanwhile, we also sample 1, 000 examples from each sub-dataset of The Pile (Gao et al.,
2021). Following Equation 3, we obtain domain vectors predicted by the Meta-Domain classifier for
each sub-dataset, as shown in Figure 2. It can be seen that the distribution of the Pile’s sub-datasets
over the meta-domains is very different. This phenomena not only indicates that our classifier could
reasonably distinguish some base features from different datasets, but also demonstrates that the
various meta-domains have significant semantic differences.
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Figure 2: The Domain Vector of each sub-dataset of The Pile (Gao et al., 2021), where each row
corresponds to a sub-dataset and each column corresponds to a Meta-Domain. The higher the pro-
portion of data belonging to a particular Meta-Domain, the closer the color of the corresponding cell
is to blue). We only display the distribution on some English Meta-Domains for clarity. The full
picture is shown in Figure 7.

3 FINDING THE OPTIMAL DATA MIXTURE USING DOMAIN2VEC

In this section, we will introduce how to find the optimal data mixture using DOMAIN2VEC in a
training free manner called “Distribution Alignment Assumption (DA2)”. We will also demonstrate
how to incorporate our DOMAIN2VEC tools to prior work, which greatly enhance the scalability of
previous work as new datasets are introduced1.

3.1 TASK FORMULATION

During the pretraining phase of large language models, we typically collect training datasets
Dtrain = {D1,D2, ...,Dk} from multiple sources (e.g., ArXiv, Wikipedia). We also pre-define
a validation set Dvalid, which might be independently and identically distributed with the training
dataset or might be unrelated to the training dataset (e.g., data that exceeds the training dataset cutoff
date, data with quality but small quantity). Accordingly, the data mixture r = [r1, r2, ..., rk]

⊤, 0 ≤
ri ≤ 1,

∑k
i=1 ri = 1 specifies the sampling probability distribution over different trainsets. Let the

trained language model be denoted as θ, and the validation loss of the model be denoted as Lθ. Thus,
the optimization objective of finding the optimal data mixture r∗ is to improve the performance of
language models, such as minimizing the validation loss, as shown in Equation 4. LDvalid(r) repre-
sents the validation loss of the language model pretrained via data mixture r.

r∗ = argmin
r

(min
θ

LDvalid

θ (r)) ≜ argmin
r

LDvalid(r) (4)

3.2 DISTRIBUTION ALIGNMENT ASSUMPTION (DA2)

Empirically, when the data distribution of the training set Dtrain and the validation set Dvalid is con-
sistent, we could achieve a lower validation loss LDvalid on the validation set2. The most essential

1The pseudo code of DOMAIN2VEC+DA2 and DOMAIN2VEC + RegMix are shown in Appendix A.2.
2We also have provided the detailed description in the Appendix A.1.
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question is “How do we model the data distribution of various datasets?”. Fortunately, according to
Section 2, for the training dataset Dtrain, we can obtain its vector representation Vtrain ∈ Rk×n,
which models some base features of Dtrain. Correspondingly, for the validation set Dvalid, we also
have its vector representation qvalid = [q0, q1, q2, ..., qn−1]

⊤. After mixing Dtrain with data mix-
ture r, the final distribution over Meta-Domains of Dtrain is given by Vtrain · r. Therefore, based
on the distribution alignment assumption, Equation 4 can be equivalently written as:

r∗ = argmin
r

Dist(Vtrain · r, qvalid) (5)

where Dist(·, ·) is a distance function used to measure the similarity between two vectors. In this
paper, we use Huber Loss (Huber, 1964; Hastie et al., 2009) to measure the similarity.

3.3 APPLYING DOMAIN2VEC TO PRIOR WORK

As mentioned before, we could directly combine DOMAIN2VEC with prior work, which could
address the issue of needing to refit the relationship LDvalid(r) between the data mixture r and the
validation loss L as new datasets are introduced. In this section, we will introduce how to integrate
DOMAIN2VEC with RegMix (Liu et al., 2024) to search for the optimal data mixture. Following Liu
et al. (2024), we train a Linear Regression Model (ŷ = ω⊤ · x) like Equation 6 to fit L(p) on D∗

i

(notated as LD∗
i (p)) to build the relationship between the validation loss on D∗

i and domain vector
p = [p0, p1, p2, ..., pn−1]

⊤, 0 ≤ pi ≤ 1,
∑n−1

i=0 pi = 1. Formally,

ω∗
i = argmin

ω
∥LD∗

i (p)− ω⊤ · p∥ (6)

Because any validation set Dvalid can also be viewed as a linear combination of multiple Meta-
Domains, i.e., Dvalid ≈

∑n−1
i=0 qi ·D∗

i . Meanwhile, the validation loss over different Meta-Domains
are additive. Thus, the validation loss on the Dvalid of the data mixture p is,

LDvalid(p) =

n−1∑
i=0

qi · LD∗
i (p) =

n−1∑
i=0

qi · (ω∗
i )

⊤ · p (7)

Figure 3: The relationship be-
tween the number of trained
data mixture and the Spear-
man Correlation Coefficient.

After mixing Dtrain according to the data mixture r, the final dis-
tribution over the Meta-Domain is given by Vtrain · r. Therefore,
we can conclude that p = Vtrain · r. Substituting p = Vtrain · r,
Equation 4 can be equivalently written as follows,

r∗ = argmin
r

n−1∑
i=0

qi · LD∗
i (Vtrain · r) (8)

To fit Equation 6 for each Meta-Domain, we sampled 10, 500 di-
verse data mixture from a Dirichlet distribution based on the token
distribution of Meta-Domains. Then we used these data mixtures
to train different models with 85M parameters on 1B tokens. We
used LightGBM to fit Equation 6 for each Meta-Domain. We also
reserved data mixtures that were not trained by LightGBM to eval-
uate whether fitted equations can accurately predict the validation loss for unseen data mixture.
The Spearman Correlation Coefficient between the actual loss and the predicted loss by LightGBM
is shown in Figure 3. As the trained data mixture increases, the predictions made by LightGBM
become more accurate.

4 DOMAIN2VEC HELPS FIND THE OPTIMAL DATA MIXTURE WITH LESS
COMPUTATION, EVEN WITHOUT TRAINING

The motivation for finding the optimal data mixture is to “Enhance the performance of large lan-
guage models”. The performance of large language models can be evaluated from two perspectives:
1) Text generation ability, which refers to the language modeling loss or perplexity on the hold-out
validation dataset. 2) Downstream task performance, such as MMLU (Hendrycks et al., 2021) and
GSM8K (Cobbe et al., 2021). Therefore, for the text generation ability, we should find the optimal
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Figure 4: The validation loss on the EuroParl (The Pile) and Stackexchange (RedPajama) of models
trained using data mixture in Table 1. The loss on other validation sets are shown in Appendix A.4.

data mixture to minimize the validation loss. For downstream task performance, we should find the
optimal data mixture to maximize the downstream task performance. By deploying DOMAIN2VEC,
we could accurately predict the validation loss of any training dataset with different mixture ratios
on any validation dataset, even without the need for training some proxy models. Moreover, we
used only 0.26% of the computational costs required by DoReMi (Xie et al., 2023a) to find a data
mixture with performance comparable to baselines like DoReMi.

4.1 MINIMIZE THE VALIDATION LOSS

4.1.1 PILOT STUDY

Table 1: The data mixture we used to
mix C4 (Raffel et al., 2020) and Knowledge
Pile (Fei et al., 2024).

Dataset Data Mixture
C4 0 0.2 0.4 0.6 0.8 1.0

Knowledge Pile 1.0 0.8 0.6 0.4 0.2 0.0

Using the validation loss of the large language
model as a metric to evaluate its generation capa-
bilities is very straightforward. However, is there
a data mixture that can simultaneously achieve the
lowest loss across all validation sets? Can the
optimal data mixture generalize across models of
different model size? These questions are essen-
tial for the study of data mixture of large language
models. To answer these questions, we first mix C4 (Raffel et al., 2020) and Knowledge Pile (Fei
et al., 2024) with different data mixtures as the training set as shown in Tabel 1. We pretrain two
Transformer (Vaswani et al., 2017) Decoder-only models with 83M and 1.6B parameters from
scratch using a next-token prediction loss. During pretraining, we evaluate the validation loss of
models trained with different mixture ratios on 20 subsets of The Pile (Gao et al., 2021) and RedPa-
jama (Computer, 2023), as shown in Figure 4. We find that, for different validation sets, the ranking
of mixture ratios varies significantly. For each validation dataset, we also rank all the data mixtures
based on their validation loss and calculate the Spearman and Pearson correlation coefficients of the
data mixture ranking between the 83M model and the 1.6B model on various validation sets. The
Spearman correlation coefficient is 0.9743, and the Pearson correlation coefficient is 0.9947. Thus,
for the same validation set, the data mixture ranking of validation loss on identical validation
dataset does not change with the variation in model parameters. This phenomena indicates that
we could find the optimal data mixture without the need to train a large model. Based on these find-
ings, we will demonstrate how DOMAIN2VEC could predict the ranking of different mixture ratios
even without training some small proxy models.

4.1.2 EXPERIMENTAL SETUP

Dataset & Data Mixture Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020) is a colossal
and cleaned version of Common Crawl’s web crawl corpus. Knowledge Pile (Fei et al., 2024) is a
high-quality 735 GB dataset which could significantly improves the performance of large language
models in knowledge-related and mathematical reasoning tasks. We mix C4 and Knowledge Pile
with different data mixtures as the training set as shown in Tabel 1.

Training Setup We pretrained some Transformer (Vaswani et al., 2017) Decoder-only models
with 83M and 1.6B parameters from scratch using a next-token prediction loss. All the models have
a batch size of 1.5M tokens, and the maximum sequence length is 4096. We use the Adam (Kingma
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Figure 5: The validation loss on the Pile-CC subset. DOMAIN2VEC achieves the comparable valida-
tion loss of Human (The model using original data mixture from The Pile), which only uses almost
51.5% training computational costs of Human. Using the same training cost, DOMAIN2VEC can
reduce the validation loss by approximately 4.72% compared to Human.

& Ba, 2017) optimizer with gradient clip of 1.0. The learning rate linearly warms up to a maximum
learning rate of 2e-4 over the first 100 steps, then decreases to 2e-5 using a cosine learning rate
scheduler with 10,000 steps. The detailed parameters of models we used are shown in the Table 6.

Evaluation Because the optimal mixture ratio varies for different validation datasets, it is impos-
sible to find a data mixture that is optimal for all validation sets. Therefore, we turn to predict the
ranking of loss on 20 validation datasets from The Pile (Gao et al., 2021) and RedPajama (Com-
puter, 2023) for the six different mixture ratios shown in Table 1. Then, we evaluate our proposed
method using the Spearman correlation coefficient and the Pearson correlation coefficient between
the predicted ranking and the actual ranking.

4.1.3 EXPERIMENTAL RESULTS

Table 2: The results of deploying the DOMAIN2VEC to pre-
dict the ranking of different Validation sets.

Metrics Random DOMAIN2VEC+DA2 DOMAIN2VEC+RegMix
Pearson 0.0300 0.5833 0.3881

Spearman 0.0497 0.6657 0.4629

First, we present the validation loss
curves for various data mixtures in
Figure 4 and the Appendix A.1. It
can be observed that, on most val-
idation sets, incorporating a certain
amount of Knowledge Pile signifi-
cantly reduces the model’s valida-
tion loss, even on the C4 validation set from RedPajama. This indicates the high quality of the
training data in the Knowledge Pile. Then, we sample 10, 000 samples from C4 and Knowledge Pile
respectively, and 1, 000 samples from each validation set. After that, we apply DOMAIN2VEC to
rank the data mixture, as shown in Table 1. As demonstrated in Table 2, the ranking predicted by
DOMAIN2VEC exhibits a strong positive correlation with the actual ranking, significantly outper-
forming random guessing. Interestingly, we find that DOMAIN2VEC + RegMix even predicted that
a mixture of 20% Knowledge Pile and 80% C4 could achieve the lowest validation loss on C4 vali-
dation set from RedPajama. We hypothesize that this is due to the higher data quality of Knowledge
Pile compared to C4, as well as the overlap between these two datasets in certain Meta-Domains. As
a result, incorporating a portion of Knowledge Pile into the mixture likely enhances the training of
C4. It is also important to note that our method is a training-free approach, unlike prior works that
rely on training small proxy models to rank data mixtures. Despite this more challenging setup, our
method accurately predicts the rankings of different data mixtures. We believe these experimental
results could offer valuable insights for the community.

4.2 MAXIMIZE THE DOWNSTREAM TASK PERFORMANCE.

In this section, we demonstrate how to use DOMAIN2VEC to identify the optimal data mixture
for maximizing downstream task performance. A key question is how to model the relationship
between data mixture and downstream task performance. Fortunately, Liu et al. (2024) finds that
the validation loss on Pile-CC has the highest correlation with the downstream performance across
their evaluations. To make a comparison with previous work, we use the same evaluation datasets
as Liu et al. (2024). Thus, our task is to find a data mixture that minimizes the validation loss on Pile-
CC. Experimental results reveal that DOMAIN2VEC predicts a data mixture with performance
comparable to DoReMi (Xie et al., 2023a), while using only 0.26% computational cost.
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Table 3: Downstream Task Performance of different models pretrained on different data mixture.
Similiar to Liu et al. (2024), Human refers the original data mixture from The Pile. Pile-CC Only
refers only training on the Pile-CC subset. The data mixture and estimated flops of DoReMi and
RegMix are from Liu et al. (2024). All the data mixture we used are shown in Table 4 and Table 5.
The results of 106M models pretrained on 2B tokens are showin in Table 7 owing to the page limit.

Benchmark Human DoReMi Pile-CC Only RegMix DOMAIN2VEC + DA2 DOMAIN2VEC + RegMix

290M Model Pretrained on 6B Tokens

Social IQA 0.364 0.373 0.374 0.371 0.371 0.368
HellaSwag 0.295 0.312 0.317 0.315 0.307 0.312
PiQA 0.605 0.631 0.639 0.642 0.624 0.633
OpenBookQA 0.261 0.271 0.271 0.262 0.268 0.266
Lambada 0.175 0.208 0.206 0.210 0.182 0.208
SciQ 0.711 0.682 0.663 0.674 0.670 0.697
ARC Easy 0.395 0.410 0.419 0.417 0.420 0.412
COPA 0.632 0.660 0.682 0.657 0.627 0.642
RACE 0.265 0.280 0.280 0.276 0.283 0.281
LogiQA 0.283 0.293 0.296 0.276 0.277 0.292
WinoGrande 0.511 0.506 0.509 0.524 0.498 0.504
MultiRC 0.507 0.555 0.513 0.545 0.521 0.517
Average Performance 0.417 0.432 0.431 0.431 0.421 0.428

595M Model Pretrained on 6B Tokens

Social IQA 0.378 0.387 0.390 0.394 0.383 0.388
HellaSwag 0.338 0.377 0.386 0.385 0.355 0.366
PiQA 0.624 0.656 0.663 0.667 0.651 0.659
OpenBookQA 0.273 0.279 0.283 0.294 0.288 0.271
Lambada 0.255 0.294 0.332 0.310 0.269 0.292
SciQ 0.777 0.757 0.770 0.791 0.763 0.769
ARC Easy 0.439 0.453 0.478 0.481 0.453 0.460
COPA 0.642 0.680 0.672 0.663 0.668 0.667
RACE 0.289 0.309 0.311 0.311 0.288 0.303
LogiQA 0.263 0.268 0.252 0.267 0.263 0.267
WinoGrande 0.509 0.515 0.506 0.509 0.512 0.503
MultiRC 0.516 0.533 0.522 0.507 0.506 0.527
Average Performance 0.442 0.459 0.464 0.465 0.450 0.456

1B Model Pretrained on 20B Tokens

Social IQA 0.387 0.411 0.406 0.406 0.394 0.401
HellaSwag 0.375 0.427 0.431 0.436 0.410 0.410
PiQA 0.658 0.684 0.693 0.691 0.684 0.680
OpenBookQA 0.278 0.298 0.300 0.304 0.299 0.302
Lambada 0.301 0.359 0.348 0.353 0.334 0.339
SciQ 0.802 0.822 0.809 0.828 0.821 0.818
ARC Easy 0.482 0.508 0.512 0.518 0.500 0.499
COPA 0.683 0.692 0.713 0.708 0.678 0.698
RACE 0.306 0.319 0.313 0.314 0.305 0.300
LogiQA 0.259 0.258 0.269 0.272 0.268 0.267
WinoGrande 0.513 0.527 0.541 0.512 0.535 0.533
MultiRC 0.523 0.504 0.510 0.530 0.529 0.548
Average Performance 0.464 0.484 0.487 0.489 0.480 0.483

Estimated FLOPs 0
3.7× 1019

0
3.5× 1018 9.66× 1016 9.66× 1016

(100%) (9.46%) (0.26%) (0.26%)

4.2.1 EXPERIMENTAL SETUP

Dataset & Baseline The Pile dataset (Gao et al., 2021) is an 825 GB English text corpus for the
pretraining of large language models. Following RegMix (Liu et al., 2024), we also just use the 17
components of The Pile that do not have copyright issues. And we should find the data mixture to
achieve lower validation loss on Pile-CC for better downstream task performance. We also compare
our approach with various baselines, such as Human (Based on the data size), DoReMi (Xie et al.,
2023a), and RegMix (Liu et al., 2024). Pile-CC Only (Just train the model on the Pile-CC sub
dataset) is designed for verifing that there is a strong correlation between Pile-CC’s validation loss
and downstream performance. The data mixture of different baselines are shown in Table 4.

Training Setup We pretrained various sizes of Transformer (Vaswani et al., 2017) Decoder-only
models from scratch using a next-token prediction loss. The model parameters range from 106M
to 1B. Following (Hoffmann et al., 2022b), the computed token number for the different models is
20 times the parameter number of current model. All the models have a batch size of 1M tokens,
and the maximum sequence length is 4096. We use the Adam Kingma & Ba (2017) optimizer with
gradient clip of 1.0. The learning rate linearly warms up to a maximum learning rate of 6e-4 over
the first 1, 000 steps, then decreases to 0 using a cosine learning rate scheduler at the end of training
stage. The detailed parameters of models we used are shown in the Table 6.
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Evaluation First, we observed the performance on Pile-CC’s validation loss on different model
sizes as shown in Figure 5. Then we evaluated the performance of different data mixture using
following benchmarks: Social IQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), PiQA (Bisk
et al., 2019), OpenBookQA (Mihaylov et al., 2018), Lambada (Paperno et al., 2016), SciQ (Welbl
et al., 2017), ARC Easy (Clark et al., 2018), COPA (Gordon et al., 2012), RACE (Lai et al., 2017),
LogiQA (Liu et al., 2021), WinoGrande (Sakaguchi et al., 2021), and MultiRC (Khashabi et al.,
2018). We utilize LM Evaluation Harness (Gao et al., 2024) to evaluate these models and report the
average score across 0-shot to 5-shot settings in Table 3.

4.2.2 EXPERIMENTAL RESULTS

First, we sample 1, 000 samples from each component from The Pile and Pile-CC validation set
and use the Meta-Domain Classifier to calculate the domain vector of each dataset. We generate
100, 000 different data mixture from a Dirichlet distribution based on the token distribution. Using
these mixtures, we predict the optimal data mixture by applying Equation 5 (DOMAIN2VEC+DA2)
and Equation 7 (DOMAIN2VEC+RegMix). To avoid the over-fitting of language models, each subset
of The Pile is trained for at most one epoch. We also apply rejection sampling to eliminate all the
unreasonable data mixtures. As a result, the optimal data mixture predicted by DOMAIN2VEC may
vary depending on the size of language models.

Figure 6: We use t-SNE to visual-
ize domain vectors from different
sub-datasets from The Pile. This
figure indicates that different sub-
datasets may contain data from
the same Meta-Domain, which ex-
plains why different datasets can
mutually benefit the training of
each other.

As illustrated in Figure 5, our proposed DOMAIN2VEC +
DA2 and DOMAIN2VEC + REGMIX could significantly im-
prove the training efficiency on Pile-CC compared to Hu-
man (Using the original data mixture from The Pile). Specif-
ically, DOMAIN2VEC + DA2 and DOMAIN2VEC + REGMIX
require only about 55.38% and 51.50% of the training steps,
respectively, to reach the same validation loss as Human. Fur-
thermore, under equivalent compute budget, DOMAIN2VEC
+ DA2 and DOMAIN2VEC + REGMIX reduce the validation
loss by approximately 4.04% and 4.64%, respectively, com-
pared to Human. In Table 3, we report the performance of
models trained on data mixtures derived from various base-
lines across a wide range of downstream tasks. It can be ob-
served that the Pile-CC Only shows an average accuracy im-
provement of 4.27% over Human, indicating that training on
more tokens from Pile-CC does enhance the downstream task
performance of language models. More importantly, our pro-
posed DOMAIN2VEC + DA2 and DOMAIN2VEC + REG-
MIX, utilizing only about 0.26% of the FLOPs required by
DoReMi, could identify data mixtures that achieve perfor-
mance comparable to DoReMi, RegMix and Pile-CC Only.
This demonstrates both the effectiveness and computational
efficiency of DOMAIN2VEC. At the same time, it is important to note that while achieving compa-
rable performance, our method does not allocate an excessively high proportion on Pile-CC training
dataset as DoReMi and RegMix do. This suggests that different datasets might mutually benefit the
training of other datasets. To investigate the cause of this phenomenon, we used t-SNE (Van der
Maaten & Hinton, 2008) to visualize the domain vector of each component of The Pile, as shown
in Figure 6. This figure reveals that different datasets can contain data belonging to same meta-
domain, and datasets like Pile-CC, Wikipedia, PhilPapers encompass data from many different
meta-domains. This overlap between datasets suggests that the domain vector effectively captures
the underlying features of different datasets, explai

5 RELATED WORK

Recently, there has been a amount of research focusing on finding the optimal data mixture, which
could be broadly categorized into two lines. The first line implicitly adjusts the data mixture by
down-sampling data from various datasets via finding high-quality data. For instance, Lin et al.
(2024) propose RHO-1, which leverages Selective Language Models to select useful tokens to align
the data mixture with the ideal ratio. Rather than selecting high-quality data at the token level,
Ankner et al. (2024) utilize the perplexity of small reference models to filter out low-quality samples.
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Additionally, Thakkar et al. (2023) demonstrate that the Influence Score could guide the process of
data re-weighting. After that, Thakkar et al. (2023) propose an online data selection method that
eliminates the need of any reference model. The second line of research emphasizes modeling the
relationship between data mixture and the performance of language models, which explicitly ad-
justs the data mixture across different datasets. The most straightforward approach is to observe the
performance of various data mixtures and then select the optimal one, as demonstrated during the
training of Gopher (Rae et al., 2022). However, this approach comes with high training costs, making
it challenging to scale for larger models. To address this issue, Xie et al. (2023a) propose DoReMi,
which utilizes a small proxy model to re-weight data from different domains, improving the training
efficiency of larger models to some extent. However, DoReMi still requires a well-trained reference
model beforehand, which introduce additional computational costs, and it is challenging to define
what constitutes an ideal reference model. In response, Fan et al. (2023) introduce DoGE, a method
that uses a min-max optimization to train a proxy model for obtaining better domain weights. This
approach assigns larger weights to domains that either contribute to learning in other domains or are
themselves more challenging to learn. Chen et al. (2023) also propose a skills-based framework to
dynamically adjust data mixtures during model training. While the aforementioned methods con-
sider the relationship between data mixture and the performance of language models, they typically
provide a single data mixture rather than modeling a functional relationship. Inspired by the scal-
ing law (Kaplan et al., 2020; Hoffmann et al., 2022b), Ye et al. (2024) propose Data Mixing Laws,
which describes this relationship using an exponential form. Similarly, Ge et al. (2024) introduce
BiMix, a scaling law that accounts for both compute consumption and the data mixture. Both Que
et al. (2024) and Gu et al. (2024) develop scaling laws for continued pretrain, considering the data
mixtures between pretrained and continued pretrained datasets. Notably, Gu et al. (2024) accurately
predict that the pretrained domain loss would first increase and then decrease during continued pre-
training, and introduce critical mixture ratios to mitigate catastrophic forgetting in the pretrained
domain. More recently, Liu et al. (2024) propose using a Linear Regression Model to fit the valida-
tion loss of different data mixtures, demonstrating a strong correlation.

While prior works have shown promising results, they have some issues as follows: 1) Computa-
tional Efficiency: For instance, the estimated FLOPs of DoReMi and RegMix is 3.7 × 1019 and
3.5 × 1018. 2) Lack of Scalability: When the components of the training dataset change (i.e., add
some new datasets), the previously fitted functions like Ye et al. (2024) and Liu et al. (2024) can-
not be directly applied to the updated scenario. This limitation arises because the dimension of the
independent variable (i.e., the number of different datasets) in these fitted relationships is fixed. As
a result, we need to resample different data mixtures, then retrain some proxy models, and perform
the fitting again. In this paper, we propose a novel concept DOMAIN2VEC, which decomposes any
dataset into a linear combination of several Meta-Domains to capture underlying features of datasets.
DOMAIN2VEC shares some ideas with some prior works in the field of Meta-Learning, such as Jo-
maa et al. (2021) and Chen et al. (2024). These works have explored dataset representation in latent
spaces. While sharing the concept of latent space representation for datasets, DOMAIN2VEC dif-
fers in both purpose and implementation and we focus on language model pretraining data mixture.
Then we propose DISTRIBUTION ALIGNMENT ASSUMPTION, a training-free manner to identify
the optimal data mixture for language model pretraining. Importantly, using DOMAIN2VEC tools
we provided, all fitting experiments are conducted in the dimension of Meta-Domains. When train-
ing datasets change, we can still map them as linear combinations of several Meta-Domains, which
greatly enhance the scalability of prior works (Xie et al., 2023a; Ye et al., 2024; Liu et al., 2024).

6 CONCLUSIONS

In this work, we introduce DOMAIN2VEC, a novel concept to capture the underlying features
of datasets by decomposing datasets into a linear combination of several “Meta-Domains”. We
also propose an efficient method to acquire vectorized representation (domain vector) for any
given dataset. Based on the domain vector, we introduce a training-free approach by Distribution
Alignment Assumption (DA2) for language models pretraining to find the optimal data mixture.
By leveraging DOMAIN2VEC, we greatly enhance the scalability of previous methods without re-
training as training datasets change. Experimental results show that DOMAIN2VEC could use less
computation costs to find the data mixture with better text generation ability and downstream task
performance. DOMAIN2VEC could serve as a strong and efficient baseline, and we hope that this
work will provide some insights into the data mixture optimization for language models pretraining.
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A APPENDIX

A.1 DETAILED DESCRIPTION OF THE DISTRIBUTION ALIGNMENT ASSUMPTION

In this section, we will introduce the detailed description of the Distribution Alignment Assumption
for language model pretaining.

In the scenario of finding the optimal data mixture for language model pretraining, the validation set
Dvalid is fixed, and we should adjust the data mixture to construct the training set Dtrain to achieve
lower validation loss calculated by Equation 9, where θ̂ is parameters of a pretrained language
model.

EX∼Dvalid
− logP (X|θ̂) = EX∼Dvalid

|X|∑
i=1

− log(P (xi|x<i, θ̂)) (9)

Typically, we pretrain language models via next token prediction (Radford, 2018) like Equation 10.

θ̂ = argmax
θ

EX∼Dtrain logP (X|θ)

= argmax
θ

EX∼Dtrain

|X|∑
i=1

log(P (xi|x<i, θ))
(10)

That is, we need to find a θ̂ that maximizes the expected probability of X ∼ Dtrain, which is
also known as Maximum Likelihood Estimation (MLE). When the data distributions of Dtrain and
Dvalid are aligned, the optimization target of language models pretraining process equals find a θ̂
that maximizes the expected probability of X ∼ Dvalid. Therefore, we introduce the Distribution
Alignment Assumption for language model pretaining, a novel method to find the optimal data
mixture without training. After that, we propose to use the Meta-Domain Classifier to capture some
underlying features of datasets which could helps modeling the data distribution of different datasets.

A.2 ALGORITHM

In Algorithm 1, we show the pseudo code for acquiring the domain vector for pretraining datasets.

In Algorithm 2 and 3, we show the pseudo code for how to use DOMAIN2VEC to find the opti-
mal data mixture, including Distribution Alignment Assumption, and applying DOMAIN2VEC to
RegMix (Liu et al., 2024).

Algorithm 1 DOMAIN2VEC

Require: Training Datasets Dtrain = {D1,D2, ...,Dk} , Validation Dataset Dvalid, Meta-Domain
Classifier Classifier

1:
2: Domain Vectors Vtrain = []
3: for i = 1 to k do
4: Sample N data points from Di

5: vi =
1
N

∑N−1
j=0 Classifier(textj), where textj ∈ Di ▷ Get Domain Vectors of Dtrain

6: Vtrain = [Vtrain,vi]
7: end for
8:
9: Sample N data points from Dvalid

10: qvalid = 1
N

∑N−1
j=0 Classifier(textj), where textj ∈ Dvalid ▷ Get Domain Vector of Dvalid

11:
12: return Vtrain = [v1,v2, ...,vk], qvalid

A.3 DATA MIXTURE OF DIFFERENT METHODS

In this section, we will show the data mixture on The Pile (Gao et al., 2021) of different methods
we used in this paper for reproduction. In Table 4, we show the optimal data mixture predicted by
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Algorithm 2 DOMAIN2VEC+DA2

Require: Domain Vectors of Training Datasets Vtrain = [v1,v2, ...,vk], Domain Vectors of Vali-
dation Dataset qvalid, Token Distribution of Training Datasets atrain = [α1, α2, ..., αk].

1:
2: Sample K candidates data mixture ri from Dirichlet(atrain)
3:
4: The Optimal Data Mixture r∗ = r1 ▷ Initialize the optimal data mixture
5:
6: for i = 2 to k do
7: if Dist(Vtrain · r, qvalid) < Dist(Vtrain · r∗, qvalid) then ▷ Updata the optimal data

mixture
8: r∗ = ri
9: end if

10: end for
11:
12: return the optimal data mixture r∗

Algorithm 3 DOMAIN2VEC+RegMix
Require: Domain Vectors of Training Datasets Vtrain = [v1,v2, ...,vk], Domain Vectors of Vali-

dation Dataset qvalid, Token Distribution of Training Datasets atrain = [α1, α2, ..., αk], Fitted
Linear Regression Model for Each Meta-Domain LD∗

i (p).
1:
2: Sample K candidates data mixture ri from Dirichlet(atrain)
3:
4: The Optimal Data Mixture r∗ = r1 ▷ Initialize the optimal data mixture
5: L(r∗) =

∑n−1
i=0 qi · LD∗

i (Vtrain · r1)
6:
7: for i = 2 to k do
8: if L(ri) < L(r∗) then ▷ Updata the optimal data mixture
9: r∗ = ri

10: L(r∗) = L(ri)
11: end if
12: end for
13:
14: return the optimal data mixture r∗

DOMAIN2VEC + DA2 and DOMAIN2VEC + RegMix. It should be noted that, to avoid the over-
fitting problem, any subset of The Pile (Gao et al., 2021) will be only trained at most one epoch.
Because we adopt rejection sampling to filter out certain unreasonable data mixtures. The data
mixture predicted may change as model sizes change.

A.4 EXPERIMENTAL RESULTS OF PILOT STUDY

In this section, we report the validation loss on various datasets Arxiv, C4, Book3, PG19 from Red-
Pajama (Computer, 2023), and BookCorpus2, DM Mathematics, Enron Emails, FreeLaw, Hack-
erNews, NIH ExPorter, OpenSubtitles, OpenWebText2, PhilPapers, PubMed Abstracts, PubMed
Central, USPTO Backgrounds, Ubuntu IRC, Youtube Subtitles from The Pile (Gao et al., 2021) in
Figure 4, Figure 9 and Figure 8. According to the experimental results, we find that 1) for different
validation sets, the ranking of mixture ratios varies significantly. 2) for the same validation set,
the data mixture ranking of validation loss on identical validation dataset does not change with
the variation in model parameters. We hope our experimental results and findings could provide
some insights to the community about efficiently finding the optimal data mixture.
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Table 4: The data mixture of The Pile (Gao et al., 2021) from different baselines, which aligns with
the data mixture used in Liu et al. (2024).

Data Mixture Human DoReMi Pile-CC Only RegMix

ArXiv 0.134 0.004 0.0 0.001
FreeLaw 0.049 0.005 0.0 0.001
NIH ExPorter 0.007 0.008 0.0 0.001
PubMed Central 0.136 0.006 0.0 0.003
Wikipedia (en) 0.117 0.086 0.0 0.016
DM Mathematics 0.025 0.002 0.0 0.0
Github 0.054 0.022 0.0 0.0
PhilPapers 0.003 0.034 0.0 0.0
Stack Exchange 0.118 0.019 0.0 0.0
Enron Emails 0.004 0.009 0.0 0.002
Gutenberg (PG-19) 0.025 0.009 0.0 0.002
Pile-CC 0.142 0.743 1.0 0.87
Ubuntu IRC 0.009 0.011 0.0 0.064
EuroParl 0.005 0.008 0.0 0.0
HackerNews 0.01 0.016 0.0 0.012
PubMed Abstracts 0.107 0.014 0.0 0.024
USPTO Backgrounds 0.053 0.004 0.0 0.002

Table 5: The optimal data mixture predicted by DOMAIN2VEC + DA2 and DOMAIN2VEC + Reg-
Mix. To avoid the over-fitting problem, any subset of The Pile (Gao et al., 2021) will be trained at
most one epoch. And we adopt rejection sampling to filter out certain unreasonable data mixtures.
Thus, the data mixture predicted may change as model sizes change.

Data Mixture DOMAIN2VEC+DA2 DOMAIN2VEC+RegMix

106M 290M 595M 1B 106M 290M 595M 1B

ArXiv 0.0131 0.0131 0.0389 0.0431 0.0152 0.0070 0.0114 0.0103
FreeLaw 0.0076 0.0076 0.0316 0.0305 0.0395 0.0267 0.0339 0.0268
NIH ExPorter 0.0008 0.0008 0.0028 0.0023 0.0000 0.0199 0.0000 0.0000
PubMed Central 0.0773 0.0773 0.0519 0.0704 0.0343 0.0576 0.0099 0.0518
Wikipedia (en) 0.2970 0.2970 0.2049 0.2126 0.0847 0.0101 0.1014 0.2577
DM Mathematics 0.0003 0.0003 0.0056 0.0026 0.0177 0.0018 0.0011 0.0008
Github 0.0096 0.0096 0.0290 0.0298 0.0034 0.0538 0.0500 0.0138
PhilPapers 0.0018 0.0018 0.0093 0.0025 0.0118 0.0005 0.0333 0.0401
Stack Exchange 0.0464 0.0464 0.0661 0.0585 0.0698 0.0430 0.1199 0.0262
Enron Emails 0.0000 0.0000 0.0009 0.0000 0.0018 0.0000 0.0000 0.0000
Gutenberg (PG-19) 0.0217 0.0217 0.0484 0.0370 0.0467 0.0223 0.0007 0.0252
Pile-CC 0.4338 0.4338 0.3191 0.3814 0.5370 0.6323 0.5546 0.4704
Ubuntu IRC 0.0022 0.0022 0.0063 0.0072 0.1019 0.0123 0.0161 0.0069
EuroParl 0.0003 0.0003 0.0042 0.0040 0.0070 0.0037 0.0116 0.0000
HackerNews 0.0154 0.0154 0.0521 0.0199 0.0028 0.0551 0.0170 0.0673
PubMed Abstracts 0.0596 0.0596 0.0739 0.0532 0.0259 0.0102 0.0190 0.0017
USPTO Backgrounds 0.0130 0.0130 0.0549 0.0449 0.0004 0.0438 0.0201 0.0010

Table 6: The parameters of different models we used in Section 4.1 and Section 4.2. When calculat-
ing the model parameters, we do not take into account the embedding layer and the language model
head layer.

Parameter Text Generation Downstream Task

83M 1.6B 106M 290M 595M 1B

Hidden Size 768 2048 768 1280 1536 2048
FFN Hidden Size 2048 5504 2048 3392 4096 5440
Num of Layers 12 24 15 15 21 21
Num of Heads 12 16 12 10 12 32
Max Seq Length 4096 4096 4096 4096 4096 4096
Vocab Size 128256 128256 151936 151936 151936 151936
RoPE Base 10000 10000 10000 10000 10000 10000
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Table 7: Downstream Task Performance of different data mixture on 106M Model. Similiar to Liu
et al. (2024), Human refers the original data mixture from The Pile. Pile-CC Only refers only
training on the Pile-CC subset. The data mixture and estimated flops of DoReMi and RegMix are
from Liu et al. (2024).

Benchmark Human DoReMi Pile-CC Only RegMix DOMAIN2VEC + DA2 DOMAIN2VEC + RegMix

106M Model Pretrained on 2B Tokens

Social IQA 0.340 0.349 0.353 0.356 0.339 0.342
HellaSwag 0.268 0.268 0.269 0.269 0.267 0.264
PiQA 0.573 0.584 0.580 0.586 0.579 0.583
OpenBookQA 0.245 0.251 0.249 0.242 0.245 0.249
Lambada 0.065 0.099 0.102 0.091 0.091 0.090
SciQ 0.550 0.520 0.509 0.537 0.549 0.518
ARC Easy 0.329 0.339 0.335 0.337 0.334 0.331
COPA 0.525 0.570 0.572 0.585 0.578 0.557
RACE 0.236 0.254 0.246 0.251 0.240 0.244
LogiQA 0.282 0.280 0.271 0.274 0.268 0.286
WinoGrande 0.516 0.516 0.502 0.508 0.506 0.499
MultiRC 0.539 0.520 0.515 0.533 0.541 0.544
Average Performance 0.372 0.379 0.375 0.381 0.378 0.376

Estimated FLOPs 0
3.7× 1019

0
3.5× 1018 9.66× 1016 9.66× 1016

(100%) (9.46%) (0.26%) (0.26%)

Figure 7: The Domain Vector of each sub-dataset of The Pile (Gao et al., 2021), where each row
corresponds to a sub-dataset and each column corresponds to a Meta-Domain. The higher the pro-
portion of data belonging to a particular Meta-Domain, the closer the color of the corresponding
cell is to blue). Additionally, since The Pile primarily consists of English texts, we only display the
distribution on English Meta-Domains for clarity.

Figure 8: The validation loss on different dataset of models trained using data mixture in Table 1.
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Figure 9: The validation loss on different dataset of models trained using data mixture in Table 1.
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