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ABSTRACT

Semantic hashing methods have been explored for learning transformations into
binary vector spaces. These learned binary representations may then be used in
hashing based retrieval methods, typically by retrieving all neighboring elements
in the Hamming ball with radius 1 or 2. Prior studies focus on tasks with a
few dozen to a few hundred semantic categories at most, and it is not currently
well known how these methods scale to domains with richer semantic structure.
In this study, we focus on learning embeddings for the use in exact hashing re-
trieval, where Approximate Nearest Neighbor search comprises of a simple table
lookup. We propose similarity learning methods in which the optimized base sim-
ilarity is the angular similarity (the probability of collision under SimHash.) We
demonstrate the benefits of these embeddings on a variety of domains, including
a coocurrence modelling task on a large scale text corpus; the rich structure of
which cannot be handled by a few hundred semantic groups.

1 INTRODUCTION

One of most challenging aspects in many Information Retrieval (IR) systems is the discovery and
identification of the nearest neighbors of a query element in an vector space. This is typically solved
using Approximate Nearest Neighbors (ANN) methods as exact solutions typically do not scale well
with the dimension of the vector space. ANN methods typically fall into one of three categories:
space partitioning trees, such as the kd-tree (Bentley (1975); Friedman et al. (1977); Arya et al.
(1998)), neighborhood graph search (Chen et al. (2018); Iwasaki & Miyazaki (2018)) or Locality
Sensitive Hashing (LSH) methods (Charikar (2002); Gionis et al. (1999); Lv et al. (2007)).

Despite their theoretical, intuitive, and computational appeal, LSH methods are not as prevalent in
modern IR systems as are space-partitioning trees or neighborhood graph methods (Bernhardsson
(2013); Chen et al. (2018); Johnson et al. (2017); Iwasaki & Miyazaki (2018)). Empirical stud-
ies demonstrate that LSH techniques frequently do not attain the same level of quality as space-
partitioning trees (Muja & Lowe (2009)).

Nonetheless, space-partitioning and neighborhood graph search methods are expensive, both in data
structure construction and in query time, and remain a bottleneck in many modern IR pipelines.
As many modern retrieval tasks revolve around solving ANN for vector representations learned
from raw, structured data, one might attempt to learn representations which are more suited towards
efficient retrieval. Metric learning methods (Xing et al. (2003); Weinberger et al. (2006); Chechik
et al. (2010); Hoffer & Ailon (2015); Kulis et al. (2013)) have been proposed for learning linear and
non-linear transformations of given representations for improved clustering and retrieval quality.
A class of related methods, semantic hashing or hash learning methods (Salakhutdinov & Hinton
(2009)), have also been explored for learning transformations into binary vector spaces. These
learned binary representations may then be used in hashing based retrieval methods, typically by
retrieving all neighboring elements in the Hamming ball with radius 1 or 2.

Exact hashing retrieval algorithms, that is, Hamming ball “search” with radius 0, have a particular
computational appeal in that search data structures are not needed nor is enumeration of all codes
within a Hamming ball. In addition, binary representations that are suitable for exact hashing re-
trieval can also be used to identify groups of related items that can be interpreted as clusters in the
traditional sense. As the number of clusters discovered by the algorithm isn’t explicitly controlled
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(only bounded by 2d,) algorithms generating binary embeddings suitable for exact hashing retrieval
can be viewed as nonparametric clustering methods.

To this end, we propose a method for learning continuous representations in which the optimized
similarity is the angular similarity. The angular similarity corresponds to the collision proba-
bility of SimHash, a hyperplane based LSH function (Charikar (2002)). Angular distance gives
a sharp topology on the embedding space which encourages similar objects have nearly identical
embeddings suitable for exact hashing retrieval.

Related work on similarity learning, LSH, and hash learning can be found in Section 2. The proposed
models are found in Section 3. The experimental results, and other technical details, can be found
in Sections 4. Finally, we conclude in Section 5.

2 PRELIMINARIES

2.1 SIMILARITY MODELLING

Similarity learning methods are a class of techniques for learning a similarity function between
objects. One successful approach for similarity learning are “twin network” or “two tower architec-
ture” models, in which two neural network architectures are joined to produce a similarity prediction
(Bromley et al. (1994); Chopra et al. (2005); Huang et al. (2013)). The weights of these networks
may be shared or not, depending on whether the two input domains are equivalent or not.

Let i ∈ U and j ∈ V be the identities of two objects, where U and V are the two domains
across which a similarity function is to be learned. Let φu(i) and φv(j) be the input represen-
tations for the objects (these functions φ may be identity functions if the input domains are dis-
crete.) These representations are then transformed through parameterized vector-valued functions
fu(·|θu) and fv(·|θv), whose output are typically the learned representations ui = fu(φu(i)|θu) and
vj = fv(φv(j)|θv).

A loss is then defined using pairwise labels yij and an interaction function s(ui, vj) which denotes
the similarity or relevancy of the pair. Taking fu to be a mapping for each index i to an independent
parameter vector ui (similarly for fv and vi), and taking s(ui, vj) = uTi vj with an appropriate loss
results in a variety of matrix factorization approaches (Koren et al. (2009); Lee & Seung (2001);
Mnih & Salakhutdinov (2008); Blei et al. (2003); Rendle et al. (2012); Pennington et al. (2014)).

Taking fu to be a neural network mapping a context φu(i) to a representation ui allows for similarity
models that readily make use of complex contextual information. Common choices for the similarity
function include transformations of Euclidean distance (Chopra et al. (2005)), and cosine similarity:
s(ui, vj) =

uTi vj
||ui||||vj || (Huang et al. (2013)). In addition, the loss can be defined for pairs (Chopra

et al. (2005)), triplets (one positive pair, one negative pair) (Rendle et al. (2012); Chechik et al.
(2010)), or on larger sets (Huang et al. (2013)).

2.2 LOCALITY SENSITIVE HASHING AND ANGULAR SIMILARITY

A Locality Sensitive Hash (LSH) family F is a distribution of hashes h on a collection of objects Q
such that for qi, qj ∈ Q, (Indyk & Motwani (1998); Gionis et al. (1999); Charikar (2002))

Pr[h(qi) = h(qj)] = s(qi, qj) (1)

for some similarity function s on the objects. SimHash (Charikar (2002)) is a LSH technique de-
veloped for document deduplication but may be used in other contexts. For a vector representations
q ∈ Rd, SimHash draws a random matrix Z ∈ Rd×M with standard Normal entries. The hash
h(qi) ∈ {0, 1}M is then constructed as

h(qi)m = 1[qTi Z:m > 0]. (2)

Intuitively, SimHash draws random hyperplanes intersecting the origin to separate points. A useful
property of this hash function, as stated in Charikar (2002), is that

ψ(qi, qj) := Pr[h(qi)m = h(qj)m] = 1− 1

π
cos−1

(
qTi qj
||qi||||qj ||

)
,
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Figure 1: (left) Response of 8-bit SimHash collision probability vs. cosine distance. The plot
indicates that vectors that are extremely close in cosine distance may not collide under SimHash.
For example, a cosine distance of 0.001 corresponds to a collision probability of only 0.9. (right)
Response of various similarities vs cosine distance. Angular distance (1-bit Simhash collision prob-
ability) induces the sharpest topology. The DCH distance uses γ = 5 and d = 32.

where the above probability is measured with respect to Z. ψ(qi, qj), the collision probability for
two vectors, is also known as the angular similarity, and ξ = 1 − ψ is the angular distance, which
is a proper metric (unlike the cosine distance 1− qTi qj

||qi||||qj || ). As the columns of Z are independent,
the collision probability for a K bit hash is ψK .

2.3 LEARNING TO HASH

A related approach to similarity learning is hash learning methods, introduced in Salakhutdinov
& Hinton (2009). These methods train binary embeddings directly and then use hash collisions
or Hamming Ball search to retrieve approximate nearest neighbors. Binary representations lead to
some technical challenges; Salakhutdinov & Hinton (2009) uses contrastive divergence for train-
ing, whereas Hubara et al. (2016) implement binary threshold activation functions with stochastic
neurons.

Another approach (and the one followed in this work) is to avoid explicit binary representations in
training and to introduce an quantization loss to penalize embeddings that are not close to binary, and
to subsequently threshold these near-binary embeddings to binary ones. This type of quantization
loss is distinct from those used in vector quantization methods (Ahalt et al. (1990); Kohonen (1990);
Sato & Yamada (1996)) in which the data representations are fixed and the codes are learned; here
the codes are fixed and the representations are learned.

The quantization loss introduced in Deep Hashing Networks (DHN) Zhu et al. (2016) is of the form

b(ui|θ) =
∑
d

log cosh (|uid| − 1) ≈ ‖|ui| − 1‖1 . (3)

Other quantization losses based on distances to binary codes have been used in Li et al. (2016);
Liu et al. (2016). Cao et al. (2017) utilizes a quantization loss whose strength increases over time.
Finally, Deep Cauchy Hashing (DCH) (Cao et al. (2018)) has shown improvements by utilizing a
heavy-tailed similarity function with a similarly inspired quantization loss.

3 LOCALITY SENSITIVE EMBEDDINGS

Many similarity learning methods utilize dot products or cosine similarity to relate the embeddings
of a pair to each other. For example GloVe (Pennington et al. (2014)) minimizes the weighted error
between the dot product of the embeddings and a log-coocurrence matrix, and the DSSM model
(Huang et al. (2013)) utilizes cosine similarity as the “crossing” layer between the two halves of a
twin network. In general, embeddings trained in this way are not suitable for SimHash retrieval,
as can be seen in Figure 1. If models are trained so as to minimize the error of a prediction made
by cosine similarity, extremely low tolerances are required in order to achieve embeddings with
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significant collision probability. Similar observations on the misspecifiation of cosine distance for
Semantic Hashing were made in Cao et al. (2018). In this section, we define models in which
collision probabilities of learned representations are directly optimized.

3.1 LOSS DEFINITION

In the following, we define a population loss through a data distribution D of relevant and irrelevant
pairs. Each sample from D is a tuple (y, i, j) ∈ {0, 1} × U × V , where U and V are the sets across
which a similarity is to be learned – for example, “users” and “items” in a recommender system. y
is the relevancy of the pair (i, j).

The population losses we consider are expectations over D of a per-tuple loss l with regularization
terms r per item:

L(θ) = E
y,i,j∼D

l(y, i, j|θ) + λr(i|θ) + λr(j|θ). (4)

In practice, we minimize the empirical loss L̂ constructed from a finite sample from D, and we use
r(i|θ) = b(ui|θ) defined in equation 3.

θ represents all parameters of the model, including any learned representations for the elements of
the sets U and V . An embedding ui for element i may either be a vector of free parameters, as
would be in a fixed vocabulary embedding model, or may be the output of a model on a raw input:
ui = fu(φu(i)), as would be in a twin network model. In addition, each half of the pair (ui, vj)
may represent a different input space, as in the DSSM model.

3.2 BINARY CROSS ENTROPY LOSS

We may simply model the relevancy yij for the pair (ui, vj) with a binary cross entropy loss:

l(yij , i, j|θ) =− yij log (p̂(yij |i, j, θ))− β(1− yij) log (1− p̂(yij |i, j, θ)) . (5)

where p̂ is the learned estimate for E[yij |i, j, θ], and β is a scalar hyperparameter for tuning the
relative importance of positive and negative samples. One standard choice for p̂ in representation
learning is to take

p̂(yij |i, j, θ) = sσ(ui, vj) := σ

(
α

uTi vj
||ui||||vj ||

)
, (6)

where σ is the logistic function and α is a scalar. As the logistic function saturates quickly, the
embeddings ui and vj do not need to be extremely close (when yij is positive) in order to achieve
low error. Thus, to encourage representations that are amenable to hashing retrieval, we might
consider other transformations of the embeddings that do not saturate so quickly. For example, one
may take a polynomial transformation of cosine similarity:

p̂(yij |i, j, θ) = sc(ui, vj)
K :=

1

2K

(
1 +

uTi vj
||ui||||vj ||

)K
, (7)

or a polynomial transformation of the angular similarity:

p̂(yij |i, j, θ) = ψ(ui, vj)
K =

(
1− 1

π
cos−1

(
uTi vj
||ui||||vj ||

))K
. (8)

The p̂(yij |i, j, θ) = ψ(ui, vj)
K choice has a natural interpretation of using the SimHash collision

probability under a K bit hash as the estimation function. Intuitively, we are training representa-
tions whose collision probability distribution under SimHash has minimum cross entropy with the
pairwise label distribution y. Embeddings trained with equation 8 are termed Locality Sensitive
Embeddings (LSE) and are the proposed method of this paper. Deterministic thresholding is still
used to derive binary embeddings from dense versions.

DCH Cao et al. (2018) introduced the following similarity measure for defining the loss:

p̂(yij |i, j, θ) = sh(ui, vj) :=
γ

γ + d
2

(
1− uTi vj

||ui||||vj ||

) . (9)
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Table 1: Results of Tuned Models on SBM Experiment
Model K β Hard Negatives? λ Prec Rec F1

COS 4 1 False 0.3 0.724± 0.030 0.679± 0.028 0.701± 0.027
DCH 2 2 False 3.0 0.924± 0.021 0.916± 0.008 0.920± 0.012
DHN 2 4 False 0.3 0.415± 0.017 0.124± 0.010 0.191± 0.013
LSE 2 1 True 0.1 0.992± 0.005 0.986± 0.005 0.989± 0.005

3.3 TOPOLOGICAL ANALYSIS

The SimHash method and the angular similarity can be used for studying the topologies induced by
the different similarity measures in the previous section.
Theorem 1. Let B(qi) = N(δ, qi, 1 − s) denote a ball around qi with radius δ under the 1 − s
distance. For an arbitrary point qj ∈ B(qi), we can consider the probability qj and qi will collide
under SimHash – denote this with Ps(δ). Then,

1. (LSE) Pψ(δ) ≥ 1− δ

2. (COS) Psc(δ) ≥ 1− 2
√
δ

π −O(δ
3
2 )

3. (DCH) Psh(δ) ≥ 1−
(

4γδ
π2d(1−δ)

) 1
2 −O(δ

3
2 )

Proof in Appendix. These bounds are tight as we know the asymptotic error for each (for LSE there
is no error term). Theorem 1 reveals that, for a similarity model trained to tolerance level δ for
positive pairs, under a SimHash algorithm LSE would have linear scaling of a single bit collision
probability, while COS and DCH would have sublinear scaling.

Note that for the logistic based similarity, Psσ (δ) is only well defined for α > | log(δ)− log(1− δ)|
(otherwise 1− sσ cannot be below δ.) Any analysis here requires choosing a rate for α.

There is also a relationship between Angular and Hamming distances. Angular distance can be
viewed as a dimension scaled version of Hamming distance applied to randomly rotated inputs.
Lemma 1. Let b(qi) be the vector indicating signs of qi, that is b(qi)m := 1[qim > 0]. Denote the
Hamming distance of the sign vectors as ρH(qi, qj) := ||b(qi)− b(qj)||1 which defines a semimetric
on Rd. Take R as a uniformly random orthogonal matrix. Then

1− ψ(qi, qj) =
1

d
ER[ρH(Rqi, Rqj)]. (10)

Proof in Appendix. Lemma 1 demonstrates that angular distance may be viewed as an expectation
of a dimension-scaled Hamming distance, where the expectation is taken with respect to the choice
of basis. In other words, minimizing angular distance is equivalent to minimizing the Hamming
semimetric ρH averaged over all possible bases.

4 EXPERIMENTS

In this section, we compare representations trained using equation 8 (LSE), using equation 7 (COS),
using DHN’s logistic based similarity, and using DCH. All methods use the quantization loss in
equation 3 from Zhu et al. (2016), except DCH which uses the quantization loss from Cao et al.
(2018).

4.1 SYNTHETIC DATA

We generate data from a Stochastic Block Model (SBM) (Holland et al. (1983)) with 500 factions, 10
individuals per faction, and the probability of an edge appearing between two individuals belonging
to factions i and j governed by the matrix of probabilitiesW ∈ R500×500 withWij = 0.8I(|i−j| =
0)+0.1I(0 < |i−j| < 3)+εI(|i−j| >= 3). The resulting cooccurrence matrixD ∈ {0, 1}5000×5000
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Figure 2: Results of the SBM experiment hyperparameter search, sliced by different variables. Each
set of bars represents the scores of the highest F1 model with the listed constraint.

Table 2: Mean Average Precision on Image Models
Datasets Cifar-10 NUS Wide ImageNet

Methods\Metrics 64 48 32 16 64 48 32 16 64 48 32 16

DHN 0.779 0.776 0.773 0.777 0.821 0.818 0.809 0.790 0.518 0.473 0.423 0.400
DCH 0.774 0.777 0.780 0.772 0.763 0.761 0.759 0.742 0.564 0.583 0.607 0.558
COS 0.802 0.802 0.797 0.778 0.792 0.788 0.775 0.757 0.638 0.634 0.616 0.558
LSE 0.789 0.786 0.788 0.772 0.758 0.753 0.742 0.732 0.594 0.586 0.567 0.505

is roughly block diagonal, with additional edges appearing from “nearby” factions at a lower rate.
The task is to hash the individuals from each faction together, while separating them from all other
factions. In order to enable higher precision of the resulting models, a set of hard negatives is
generated by taking pairs (i, j) such that (DTD)ij > 0 and Dij = 0. Easy negatives are also
generated by taking pairs at random and assuming a cooccurrence of 0, as is common in Noise
Contrastive Estimation (Gutmann & Hyvärinen (2010)) inspired methods.

Each individual is given a free parameter ui which is the output of a embedding layer followed by
tanh activation. This output is dropped-out (shared randomization for each half of the training
pair) before the cosine similarity computation. Batches are constructed from 1024 positive pairs,
and 3072 negative pairs (1024 of which may either be hard or easy negatives, determined as a
hyperparameter.)

We trained all models with 32 dimensional representations, for 50 epochs, where 1 epoch is the
number of batches required to iterate through all positive pairs. We explore 4 hyperparameters, K,
β, λ, and the use of hard negative samples. During evaluation, we retrieve all individuals which have
the same binarized embedding as the query individual. We measure precision, recall and F1-score
with the data generating factions as the target. 10 trials are repeated for each hyperparameter setting,
and the mean over trials is reported. Figure 2 shows a detailed view of the hyperparameter tuning,
and Table 1 shows the chosen hyperparameters for each model when ranking by F1-score. DCH and
LSE are competitive, however the LSE model is able to achieve surprisingly accurate recovery of
the data generating structure with an F1 of nearly 0.99.
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Table 3: Tuned Parameters and Performance of 100-Epoch Models on OSCAR dataset
Model K β λ Tr. Prec. Tr. Rec Tr. F1 WP Ts. HR@50 Ts. HR@500 Clusters

DHN 12 1 0.3 0.031 0.005 0.008 0.042 0.004 0.009 14K
COS 16 2 0.3 0.301 0.186 0.230 0.279 0.040 0.100 298K
DCH 4 4 3.0 0.345 0.185 0.241 0.264 0.045 0.115 253K
LSE 8 4 0.3 0.412 0.260 0.319 0.291 0.048 0.150 313K

Table 4: Example Clusters Discovered
Cluster Words Cluster Size Author Annotations

basil, honey, vinegary, ribeye, grilling, ... 1134 Generic Food
vegan, veganism, cleaneating, vegano, plantpower, ... 28 Vegan Terms
scleractinia, pertusa, pistillata, acropora, hystrix, ... 14 Coral Species
bristle, tinged, mohair, metallic, inseam, ... 1208 Generic Style/Fashion

4.2 HAMMING BALL IMAGE RETRIEVAL ON IMAGE DATASETS

The experiment on image datasets is motivated from state of the art methods which build binary
embeddings directly and use hashing retrieval for image similarity search. In this section we demon-
strate that LSE is appropriate for these tasks as well. We follow the experimental setup as in Zhu
et al. (2016) on three datasets: Cifar-10 Krizhevsky et al. (2009), NUS-WIDE Chua et al. (2009)
and ImageNet Russakovsky et al. (2015). Cifar-10 is a dataset consisting of 10 categories and 60000
color images of size 32 × 32. We use the same data splits (available online) as Zhu et al. (2016):
500 images per category in training set, 100 images per category it test query set and the remaining
54000 images are used as database. We again follow Zhu et al. (2016) for experiments with NUS-
WIDE dataset: 149736 images that are associated with 21 most frequent categories as database and
2100 images as queries, and 10500 images from the database as training set. For ImageNet, we use
the same 100 categories as Cao et al. (2017) as the indexing database and the 13000/5000 image
train/test split. We follow Cao et al. (2018) and use pretrained AlexNet as described. We take the
open-source code for deep hashing methods 1 (Zhu et al. (2016)) and add the LSE model. Results
are shown in Table 2. We show results for binary embedding size of 64 bits, 48 bits, 32 bits, and 16
bits. We do not alter any other setting and use K = 1, λ = 0.1 for all models. In pilot experiments
we did not find any significant improvement for higher K for any of the methods. All baseline
papers use mean average precision for the evaluation (Cao et al. (2018); Zhu et al. (2016)) which is
the evaluation method we adopt for this experiment. The LSE model is comparable to the baseline
methods. Cifar10 results are statistically significant with the p-value of 7.5× 10−4, NUS Wide with
the p-value of 2.81 × 10−146 and Imagenet with the p-value of 7.99 × 10−4 according to widely
used Iman Daveport test (Garcia & Herrera, 2008). We want to point out that all the experimental
results (originally in the respective baseline papers and in this paper) on DCH and DHN have used
pretrained AlexNet. The usage of pretrained network and well separated categories reduces the need
for a model with a strong inductive bias like LSE. Nonetheless LSE remains a good choice for these
type of tasks as well.

4.3 OSCAR COOCCURRENCE MODEL

Finally, we compare all methods on a cooccurrence matrix generated from the OSCAR English
dataset (Ortiz Suarez et al. (2019); Ortiz Suarez et al. (2020)). We take the deduplicated version of
the corpus (1.2TB compressed) and generate an initial symmetric cooccurrence matrix by counting
word pairs with a window of size 10, inversely weighting the counts by the distance of the words
within the sentence, as in Pennington et al. (2014). This initial matrix is then filtered to remove
extremely common terms, extremely rare terms. Additional filtering based on row and column nor-
malized cooccurrences is used to retain pairs that are atypical compared to the marginal frequencies
of the two terms. For each row, the top 100 pairs ranked by the original cooccurrence are kept, and
the resulting binary matrix is symmetrized. The resulting cooccurrence matrix D has 660K unique

1https://github.com/swuxyj/DeepHash-pytorch
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Figure 3: Results of the OSCAR experiment hyperparameter search, sliced by different variables.
Each set of bars represents the scores of the highest combined WP+F1 measures (where WP is Wu-
Palmer similarity – described in main text) with the listed hyperparameter value fixed. F1 score
are computed on a query set randomly sampled from the 660K vocabulary, and is computed by
performing retrieval on the full 660K vocabulary. Wu-Palmer similarity is computed on the 46K
WordNet evaluation vocabulary, with a query set sampled from the WN vocabulary. (bottom right)
T-SNE plot of the dense embeddings assigned to a single hash cluster (“Generic Food”), revealing
additional structure

words, with 16M nonzero entries. A set of hard negatives is generated by taking pairs (i, j) such
that (DTD)ij > 0 and Dij = 0. 4600 pairs from D are held out for the final evaluation.

Popular models for text data frequently allow for each word’s representation to have multiple con-
texts, as in topic modelling (Hofmann (1999); Blei et al. (2003)) or multi-sense embedding models
(Nguyen et al. (2017)). To incorporate multiple context representations into semantic hashing meth-
ods, we represent each word i with L embeddings uil (these are free parameters per word and no
subword information is used.) The maximum among all pairwise cosine similarities is then taken as
the base similarity function:

s(ui, uj) = max
l,m

uTilujm
||uil||||ujm||

. (11)

This base similarity is then used in place of cosine similarity in defining the loss for all models2. At
retrieval time, a query word is mapped to its L hashes, corresponding to L “clusters.” The union of
the L clusters is the retrieved set for the query – no search is performed and the only data structures
used are hash tables. As each word is associated with L hashes, this model may be understood as a
“word2hashes” method.

The base architecture used for all models is a 32 dimension tanh activated embedding layer fol-
lowed by dropout (with shared randomization across all 2L embeddings,) with L = 3. Following
the dropout layer is equation 11. Batches are constructed from 8192 positives, 8192 hard negatives,
and 16384 easy negatives. Models are trained for 20 epochs through the positive set using 2 GPUs.

We utilize a semantic quality measure based on Wu-Palmer similarity (WP) (Wu & Palmer (1994))
on WordNet (WN) (Miller (1995); Fellbaum et al. (1998)). We take all nouns, verbs and adjectives
from the WordNet corpus and remove all words with no hypernyms (these are typically isolated
nodes in the WordNet graph for which WP values are not available.) The intersection with the 660K

2As DHN uses the unnormalized inner product, for which the max operation has undesirable properties, we
modify the DHN implementation to use 5s(ui, uj) as the input to the logistic function.
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vocabulary leaves 46K words, which we index based on the semantic hashing models. For each
query word w and its retrieved set V (w), the average WP similarity is computed across all pairs
w, v with v ∈ V (w). Self-pairs are removed, and empty V (w) are given 0 values. This WP measure
is bounded between 0 and 1, with higher values indicating more semantically meaningful clusters.

Figure 3 shows WP of the models on a 1K word query set (taken randomly from the 46K WN
vocabulary) which we use as a tuning data set. We also report F1 score on a 1K query set sampled
from the 660K vocabulary to evaluate how well each model reconstructs the training data. All
models used the same tuning grid, except COS for which K = 16 was added, as the initial sweep
showed potentially large improvement by expanding the grid for the COS model.

Table 3 shows the final model comparison. The hyperparameters with highest WP per model are
taken and models for each are trained with 100 epochs. We compare the scores of these models on
a non-tuning set of 1K queries from WN for WP, and 1K queries from the full vocab for Precision,
Recall, and F1. In addition, we evaluate a HitRatio (HR) score on the heldout 4600 pairs, where all
colliding words for a query are retrieved, and if the target word appears in the top n items ranked by
cosine similarity (of the dense embeddings,) the query achieves a HR of 1. This is the only measure
to use the dense embeddings. We also report the number of non-singleton clusters. As can be seen,
LSE outperforms the baselines on training, test, and semantic quality measures.3

We display some example queries and their retrieved hash siblings from the 100 epoch LSE model
in Table 7. T-SNE Maaten & Hinton (2008) plots of the dense embeddings on WordNet vocabulary
are shown in Figures 5, 6, and 7. Within the discrete hash based clusters used in retrieval, there
is still additional structure in the dense embeddings that may be leveraged. This can be seen from
T-SNE plots (Figures 8 and 9) of the dense embeddings that collide together in the “Generic Food”
cluster seen in Table 7.

5 CONCLUSION

We extend semantic hashing methods to problems with substantial label noise and to the exact hash-
ing retrieval case via the introduction of Locality Sensitive Embeddings, which leverage angular
similarity as the main component of an output prediction. The learned representations show su-
perior performance in the exact hashing retrieval setting. We applied LSE to a multiple-context
representation learning model to a cooccurrence matrix generated from the OSCAR English corpus,
producing a “word2hashes” model which is novel to the best of the authors’ knowledge.
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Figure 4: (left) Subset of SBM dataset, indicating near block-diagonal structure. (right) Hard neg-
atives sampled for SBM dataset
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A APPENDIX

A.1 EFFECT OF HARD NEGATIVES AND ABLATION STUDY

In this section we study the impact of hard negatives. Recall from the main text that we define hard
negatives from a dataset D by taking pairs where (DTD)ij > 0 and Dij = 0. See Figure 4 for a
diagram showing these hard negative pairs on the SBM synthetic data.

We performed an experiment on the OSCAR dataset in which a modified loss function is used where
hard negatives samples are weighted (that is, easy negatives are always given weight of 1.) These
tuned models are compared to the tuned models of the main text in Table 5. This tuning gives a
modest improvement to COS and DCH models in terms of WP (and a degradation for LSE,) while
keeping F1 much the same. However, DCH is not able to obtain the same F1 measure as LSE (in
either tuning.) In addition, the LSE model from the original tuning outperforms the other models in
WP+F1. Also note that the DHN model improves substantially on the removal of Hard Negatives,
however it still remains the worst performing algorithm of the four.

We also use this experiment to perform an ablation study, see Table 6. DHN is most competitive
when hard negatives are removed, achieving the highest WP (but still lowest F1.) It is also this
case where we see LSE achieve a Recall of 0.54 – this metric is essentially traded-off for Precision

12



Under review as a conference paper at ICLR 2021

Table 5: 20-Epoch Models on OSCAR Dataset with Various Tuning Criteria
Tuning Criteria Model K β λ Tr. Prec. Tr. Rec Tr. F1 WP

Max WP

DHN 12 1 0.0 0.018 0.003 0.004 0.047
COS 16 2 0.3 0.269 0.154 0.196 0.291
DCH 8 8 1.0 0.141 0.174 0.156 0.304
LSE 8 4 0.3 0.409 0.196 0.265 0.310

Max F1

DHN 12 1 0.3 0.027 0.004 0.008 0.046
COS 16 1 0.3 0.218 0.195 0.206 0.260
DCH 4 2 3.0 0.259 0.198 0.225 0.250
LSE 8 2 0.3 0.295 0.250 0.271 0.230

Max WP+F1

DHN 12 1 0.3 0.027 0.004 0.008 0.046
COS 16 2 0.3 0.269 0.154 0.196 0.291
DCH 4 4 3.0 0.335 0.153 0.210 0.290
LSE 8 4 0.3 0.409 0.196 0.265 0.310

(Hard Negative β) Max WP+F1

DHN 12 0 0.03 0.109 0.088 0.098 0.241
COS 12 1 0.3 0.279 0.153 0.197 0.306
DCH 4 2 1.0 0.238 0.197 0.215 0.305
LSE 8 2 0.3 0.272 0.260 0.266 0.285

Table 6: Ablation Study of 20-Epoch Models on OSCAR Dataset (Hard Negative β formulation)
Ablated Paramater Model K β λ Tr. Prec. Tr. Rec Tr. F1 WP

Hard Negative Weight β

DHN 12 0 0.03 0.109 0.089 0.098 0.241
COS 8 0 0.10 0.137 0.263 0.178 0.162
DCH 2 0 3.00 0.156 0.366 0.219 0.076
LSE 8 0 0.30 0.139 0.541 0.221 0.078

Quantization Weight λ

DHN 12 0.00 0 0.098 0.062 0.076 0.218
COS 8 0.25 0 0.156 0.086 0.111 0.264
DCH 4 4.00 0 0.224 0.075 0.112 0.267
LSE 12 8.00 0 0.163 0.091 0.117 0.275

Concentration K

DHN 1 0.0 0.03 0.004 0.001 0.001 0.107
COS 1 0.0 0.00 0.006 0.005 0.005 0.141
DCH 1 0.5 1.00 0.121 0.061 0.082 0.218
LSE 1 0.0 0.03 0.005 0.021 0.008 0.097
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and WP when increasing the negative weight. All methods have comparable performance when the
quantization loss is removed. And finally, DCH performs the best when K = 1.

A.2 PROOFS

Theorem 1. Let B(qi) = N(δ, qi, 1 − s) denote a ball around qi with radius δ under the 1 − s
distance. For an arbitrary point qj ∈ B(qi), we can consider the probability qj and qi will collide
under SimHash – denote this with Ps(δ). Then,

1. (LSE) Pψ(δ) ≥ 1− δ

2. (COS) Psc(δ) ≥ 1− 2
√
δ

π −O(δ
3
2 )

3. (DCH) Psh(δ) ≥ 1−
(

4γδ
π2d(1−δ)

) 1
2 −O(δ

3
2 )

Proof. (1): 1− ψ(qi, qj) ≤ δ by definition, so Pψ(δ) ≥ 1− δ.

For each of the following, we will use the expansion via the Frobenius method: cos−1(1 − δ) =√
2δ +O(δ

3
2 ).

(2): 1 − sc(qi, qj) ≤ δ. Substituting qTi qj
||qi||||qj || = cos(π(1 − ψ(qi, qj))) in sc and rearranging gives

(note cos−1 is monotonically decreasing on (0, 1))

1− sc(qi, qj) =
1

2

(
1− qTi qj
||qi||||qj ||

)
≤ δ

cos(π(1− ψ(qi, qj)) ≥ 1− 2δ

1− ψ(qi, qj) ≤
1

π
cos−1(1− 2δ) =

2
√
δ

π
+O(δ

3
2 ).

(3): 1− sh(qi, qj) ≤ δ. Proceeding as above

1− sh(qi, qj) = 1− γ

γ + d
2

(
1− qTi qj

||qi||||qj ||

) ≤ δ
cos(π(1− ψ(qi, qj)) ≥ 1− 2γδ

d(1− δ)

1− ψ(qi, qj) ≤
1

π
cos−1

(
1− 2γδ

d(1− δ)

)
=

(
4γδ

π2d(1− δ)

) 1
2

+O(δ
3
2 ).

Note that for the logistic based similarity, Psσ (δ) is only well defined for α > | log(δ)− log(1− δ)|
(otherwise 1− sσ cannot be below δ.) Any analysis here requires choosing a rate for α.
Lemma 1. Let b(qi) be the vector indicating signs of qi, that is b(qi)m := 1[qim > 0]. Denote the
Hamming distance of the sign vectors as ρH(qi, qj) := ||b(qi)− b(qj)||1 which defines a semimetric
on Rd. Take R as a uniformly random orthogonal matrix. Then

1− ψ(qi, qj) =
1

d
ER[ρH(Rqi, Rqj)]. (12)

Proof. Consider a modified SimHash algorithm where z′ is taken uniformly at random from the
standard basis vectors {em}m∈[1,...d] and let h̄(qi) := 1[qTi z

′ > 0] denote this hash. The collision
probability is simply the chance that two given embeddings share the same sign for a randomly
chosen dimension, so

Pr[h̄(qi) = h̄(qj)] = Em∼(1,...,d) [1[qim = qjm]] = 1− ρH(qi, qj)

d
. (13)
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Let z0 ∈ Rd be a vector with independent standard Normal entries, and take z = z0
||z0|| , which

is equal in distribution to the uniform distribution on the unit sphere. Thus Rz′ d= z. The original
SimHash function h(qi) = 1[qTi z0 > 0] = 1[qTi z > 0], and so h(qi)

d
= h̄(Rqi), and thus

ψ(qi, qj) = Pr[h(qi) = h(qj)] = ER
[
1− ρH(Rqi, Rqj)

d

]
. (14)

A.3 EVALUATION METRICS

• Precision - Retrieve all items with the same hash, and compute precision
• Recall - Retrieve all items with the same hash, and compute recall
• F1 - Compute F1-measure using the above Precision and Recall
• WP - Wu-Palmer similarity measure for evaluation of semantic quality of hash groups. Wu-

Palmer similarity (Wu & Palmer (1994)) is computed on WordNet (WN) (Miller (1995);
Fellbaum et al. (1998)). We take all nouns, verbs and adjectives from the WordNet corpus
and remove all words with no hypernyms (these are typically isolated nodes in the WordNet
graph for which WP values are not available.) The intersection with the 660K OSCAR
vocabulary leaves 46K words, which we index based on the semantic hashing models. For
each query word w and its retrieved set V (w), the average WP similarity is computed
across all pairs w, v with v ∈ V (w). Self-pairs are removed, and empty V (w) are given 0
values. This WP measure is bounded between 0 and 1, with higher values indicating more
semantically meaningful clusters.
• HR@n - HitRatio score on the heldout (test) 4600 pairs, where all colliding words for a

query are retrieved, and if the target word appears in the top n items ranked by cosine sim-
ilarity (of the dense embeddings,) the query achieves a HR of 1. This is the only measure
in the OSCAR experiment to use the dense embeddings.
• Mean Average Precision (MAP) - Consider rank position of each relevant retrieved item

(in top R) based on Hamming distance - K1,K2, . . . ,KR. First calculate precision @ k by
setting a rank threshold k ≤ R and then ratio of relevant in top k divided by k (ignoring the
ranked lower than k). Next step is to calculate average of precision at 0 < r ≤ R. Finally
mean average precision is calculated by taking mean of average precision over all queries.
• Recall@2 - Retrieve everything within hamming distance 2 and calculate recall

A.4 QUALITATIVE PLOTS AND TABLES

Table 7 shows example hash factors retrieved in the OSCAR model for a set of queries. These are
constructed from exact hash collisions only – no search or ANN is performed in either the binary
representation space or the dense embeddings space. Figures 5, 6 and 7 show TSNE plots for the
dense embeddings on the WordNet set. Figures 8 and 9 show TSNE plots for the dense embeddings
associated with the single hash that resembles a ”Generic Food” cluster. These figures demonstrate
there is significant structure remaining in the dense version of the embeddings that is semantically
meaningful.
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Figure 5: TSNE on the LSE 100 Epoch model on WordNet
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Figure 6: TSNE clusters from the WordNet set
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Figure 7: TSNE clusters from the WordNet set
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Figure 8: TSNE subclusters from the “Generic Food” Cluster
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Figure 9: TSNE subclusters from the “Generic Food” Cluster
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Query Cluster Siblings Cluster Size Author Annotations

succulent stonecrop, sedums, crassula, sempervivum, ... 10 Succulent Plants
succulent 1
succulent battered, tossing, tenderized, spareribs, ... 7 Enticing Food Terms
parser sax2, lalr, fixpoint, xerces, gson, ... 22 Parser Instances
parser fastboot, lwo, eml, compute, osgi, ... 732 Generic Technology
parser tokenizer, javacc, tokenizes, jtb, lexer 6 Java Tree Builder
lazarette amidship, starboard, portside 4 Ship Locations
lazarette cockpit, coaming 3 Ship Components
lazarette coatroom, garran, carrels, stowage, locker, ... 12 Storage
vegan basil, honey, vinegary, ribeye, grilling, ... 1134 Generic Food
vegan vegatarian 2 Portmanteau
vegan veganism, cleaneating, vegano, plantpower, ... 28 Vegan Terms
coral scleractinia, pertusa, pistillata, acropora, hystrix, ... 14 Coral Species
coral yellow, root, crocheted, soles, linen, ... 1208 Generic Fashion
coral 1
bronchitis eyedrops, fever, myalgia, sinusitis, fasciculations, ... 187 Generic Health
bronchitis 1
bronchitis pneumonia 2 Respiratory Infections
split 1
split subsections, empirical, broader, alexa, cafes, ... 5455 Generic English
split ubli, imotski, zlatni, milna, dalmatia, ... 55 Croatian Locations

Table 7: Example Retrieved Hash Clusters
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