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ABSTRACT

To deploy reinforcement learning (RL) systems in real-world scenarios we need
to consider requirements such as safety and constraint compliance, rather than
blindly maximizing for reward. In this paper we develop a lookahead shielding
framework for RL with regular safety properties, which on the contrary to prior
shielding methodologies requires minimal prior knowledge. At each environment
step our framework aims to satisfy the regular safety property for a bounded hori-
zon with high-probability, for the tabular setting we provide provable guarantees.
We compare our setup to some common algorithms developed for the constrained
Markov decision process (CMDP), and we demonstrate the effectiveness and scal-
ability of our framework by extensively evaluating our framework in both tabular
and deep RL environments.

1 INTRODUCTION
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The field of safe reinforcement learning (RL) (Garcia & Fernandez,
20155 /Amodei et al., 2016) has gained increasing interest, as practi-
tioners begin to understand the challenges of applying RL in the
real world (Dulac-Arnold et al., 2019). There exist several dis-
tinct paradigms in the literature, including constrained optimization
(Chow et al.,2018;|Liang et al., 2018} |Tessler et al., 2018; |Ray et al.|
2019;|Achiam et al., 2017} Yang et al.,|2020), logical constraint sat-
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isfaction (Voloshin et al.| [2022; [Hasanbeig et al., 2018; [2020ajb;
De Giacomo et al.l 2020} |Cai et al.l 2021])), safety-critical control
(Mcllvanna et al., 2022} |[Cheng et al.| [2019; Brunke et al.| [2022),
all of which are unified by prioritizing safety- and risk-awareness
during the decision making process.
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Figure 1: Diagrammatic rep-

resentation of runtime verifi-
cation and shielding.

Constrained Markov decision processes (CMDP) (Altman, [1999) have emerged as a popular frame-
work for modelling safe RL, or RL with constraints. Typically, the goal is to obtain a policy that
maximizes reward while simultaneously ensuring that the expected cumulative cost remains below
a pre-defined threshold. A key limitation of this setting is that constraint violations are enforced in
expectation rather than with high probability, the constraint thresholds also have limited semantic
meaning, can be very challenging to tune and in some cases inappropriate for highly safety-critical
scenarios (Voloshin et al.}|2022). Furthermore, the cost function in the CMDP is typically Markovian
and thus fails to capture a significantly expressive class of safety properties and constraints.

Regular safety properties (Baier & Katoen, |2008)) are interesting because for all but the simplest
properties the corresponding cost function is non-Markov. Our problem setup consists of the stan-
dard RL objective with regular safety properties as constraints, we note that there has been a sig-
nificant body of work that combines temporal logic constraints with RL (Voloshin et al., 2022}
Hasanbeig et al.| 2018;2020a:bj |De Giacomo et al., [2020; [Cai et al., [2021]), although many of these
do not explicitly separate reward and safety in the same way that we do.

Our approach relies on shielding (Alshiekh et al.l 2018), which is a safe exploration strategy that
ensures the satisfaction of temporal logic constraints by deploying the learned policy in conjunc-
tion with a reactive system that overrides any unsafe actions. Most shielding approaches typically
make highly restrictive assumptions, such as knowledge of the environment dynamics, or at the very
least the safety-relevant dynamics of the environment (Alshiekh et al., [2018} [Jansen et al.l 2020;
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Konighofer et al., [2023)), full knowledge of the topology of the MDP (Carr et al., |2023), or access
to a perfect generative model (Giacobbe et al., 2021), although there has been recent work to relax
these restrictions (Goodall & Belardinelli, 2023} [He et al., [2022} Xiao et al.,[2023). In this paper, we
opt for minimal prior knowledge, where the dynamics of the environment are unknown, and runtime
verification of the agent is realized by finite horizon model checking with a learned approximation of
the environment dynamics. However, in principle our framework is flexible enough to accommodate
more standard model checking procedures as long as certain assumptions are met.

Our approach can be summarised as an online shielding approach (see Figure[I), that dynamically
identifies unsafe actions during training and deployment, and deploys a learned safe ‘backup policy’
when necessary. We summarise the main contributions of our paper as follows:

(1) We develop a lookahead shielding framework for RL with regular safety properties as constraints,
which requires minimal prior knowledge; unknown transition dynamics and no a priori access to a
safe ‘backup policy’.

(2) We compare our setup to the CMDP framework and for the tabular setting we provide provable
step-wise and episodic safety guarantees, by leveraging ideas such as probabilistic safe sets and
irrecoverable actions.

(3) We detail two possible instantiations of our framework for both the tabular and deep RL settings,
and we empirically demonstrate the effectiveness of our framework across a variety of environments
with different regular safety properties. We compare our approach to projection-based and Lagrange
relaxation-based CMDP algorithms.

2 PRELIMINARIES

For a finite set S, let Pow(S) denote the power set of S. Also, let Dist(S) denote the set of
distributions over S, where a distribution i : S — [0, 1] is a function such that )} ¢ uu(s) = 1. Let
S* and S denote the set of finite and infinite sequences over S respectively. The set of all finite and
infinite sequences is denoted S = §* U §“. We denote as |p| the length of a sequence p € S,
where |p| = 0o if p € §*. We also denote as pl[i] the ¢ + 1-th element of a sequence, when i < |p|,
and we denote as p). = p[|p| — 1] the last element of a sequence, when p € S*. A sequence p; is a
prefix of po, denoted p; < pa, if |p1] < |p2| and p1[i] = p2i] forall 0 < i < |p1]. A sequence p; is
a proper prefix of pg, denoted p1 < po, if p1 =X p2 and py # pa.

Labelled MDPs and Markov Chains. An MDP is a tuple M = (S, A, P, Py, R, AP, L), where
S and A are finite sets of states and actions resp.; P : S x A — Dist(S) is the transition function;
Po € Dist(S) is the initial state distribution; R : S x A — [0,1] is the reward function; AP
is a set of atomic propositions, where ¥ = Pow(AP) is the alphabet over AP;and L : § — ¥
is a labelling function, where L(s) denotes the set of atoms that hold in a given state s € S. A
memory-less (stochastic) policy is a function 7 : S — Dist(A) and its value function, denoted
Vr + & = Ris defined as the expected discounted reward from a given state under policy T, i.e.,
Va(s) = E,r[z;‘r:(] YR (s¢,a¢)|so = s], where T is a fixed episode length and + is the discount
factor. Furthermore, denote as M, = (S, Py, Py, AP, L) the Markov chain induced by a fixed
policy 7, where the transition function is such that P (s'|s) = > ., P(s'|s,a)w(als). A path
p € 8§ through M is a finite (or infinite) sequence of states. Using standard results from measure
theory it can be shown that the set of all paths {p € S“ | ppres < p} with a common prefix pprey is
measurable (Baier & Katoen| 2008)).

Probabilistic CTL. (PCTL) (Baier & Katoen| 2008) is a branching-time temporal logic for speci-
fying properties of stochastic systems. A well-formed PCTL property can be constructed with the
following grammar,

O =true |a| D | PAD | Puply]

0 =X | U | DU="D
where a € AP, < € {<,>,<, >} is a binary comparison operator, and p € [0, 1] is a probability.
Negation — and conjunction A are the familiar logical operators from propositional logic, and next
X, until U and bounded until US" are the temporal operators from CTL (Baier & Katoen) [2008).

We make the distinction here between state formula ® and path formula . The satisfaction rela-
tion for state formula & is defined in the standard way for Boolean connectives. For probabilistic
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quantification we say that s |= Puq,[¢] iff Pr(s | ¢) := Pr(p € S¥ | p[0] = s,p E @) < p.
Let Proq(s |= @) be the probability w.r.t. the Markov chain M. For path formula ¢ the satisfaction
relation is also defined in the standard way for temporal logics, see |Baier & Katoen| (2008) . We
also note that the important temporal operators ‘eventually’ ¢ and ’always’ [J, and their bounded
counterparts $=" and (J=" can be derived in a familiar way, i.e., 0 ® ::= true U®, I ® ::= =)~ P,
resp. OSM P = true US"D, OS" P ::= )OS,

Regular Safety Property. A linear time property Py, C 3 over the alphabet X is a safety property
if for all words w € X \ Py, there exists a finite prefix wy,e; of w such that Py, N {w’ € ¢ |
Wpref = w'} = @. Any such sequence Wpres 1s called a bad prefix for Py, a bad prefix wpres
is called minimal iff there does not exist w” < wprcs such that w” is a bad prefix for Pyp. Let
BadPref( Pyyp) and MinBadPref( Py, ) denote the set of of bad and minimal bad prefixes resp.

A safety property Py, € X¢ is regular if the set BadPref( P, ) constitutes a regular language. That
is, there exists some deterministic finite automata (DFA) that accepts the bad prefixes for P,z (Baier
& Katoenl 2008), that is, a path p € S is ‘unsafe’ if the trace trace(p) = L(p[0]), L(p[1]),... € ¥
is accepted by the corresponding DFA.

Definition 2.1 (DFA). A deterministic finite automata is a tuple D = (Q, X, A, Qq, F), where Q
is a finite set of states, X is a finite alphabet, A : Q x ¥ — Q is the transition function, Qy is the

initial state, and F C Q is the set of accepting states. The extended transition function A* is the
total function A* : Q x ¥* — Q defined recursively as A*(q,w) = A(A*(q,w \ wl),w]). The
language accepted by DFA D is denoted L(D) = {w € £* | A*(Qp,w) € F}.

Furthermore, we denote Pf;;e C X as the corresponding finite-horizon safety property for N € Z,
where for all words w € X \ Py, there exists wyre; < w such that [wye| < N and wypes €
BadPref( Py,p.). We model check regular safety properties by synchronizing the DFA and Markov
chain in a standard way, by computing the product Markov chain.

Definition 2.2 (Product Markov Chain). Let M = (S, P, Py, AP, L) be a Markov chain and D =
(9,5, A, Qy, F) be a DFA. The product Markov chain is M @D = (S x Q,P’, P}, {accept}, L"),
where L'((s,q)) = {accept} if ¢ € F and L'((s,q)) = & ow, Py((s,q)) = Po(s) if
q = A(Qo, L(s)) and 0 o/w, and P'({s',q')|(s,q)) = P(s'|s) if ¢ = A(q,L(s")) and 0 o/w.

Definition 2.3 (Satisfaction probability for Py.). Let M = (S, P, Py, AP, L) be a Markov chain
andlet D = (Q,%, A, Qy, F) be the DFA such that L(D) = BadPref(Psy). For apath p € S¥
in the Markov chain, let trace(p) = L(p[0]), L(p[1]),... € E¥ be the corresponding word over
Y = Pow(AP). From a given state s € S the satisfaction probability for Py, is defined as follows,

Pr (s = Pug) i= Prag(p € 8% | pl0] = s, trace(p) & L(D))
Perhaps more importantly, we note that this satisfaction probability can be written as the following
reachability probability in the product Markov chain,

Prp(s = Puae) = Prmep((s, ¢s) = Qaccept)

where q; = A(Qp, L(s)) and Qaccept is a probabilistic CTL path formula that reads, ‘eventually
accept’ (Baier & Katoen, |2008).

The finite-horizon satisfaction probability of Py, can be equated to the to the satisfaction probability

of the corresponding finite horizon safety property Pf(:}e as follows.

Proposition 2.4 (Finite-horizon satisfaction probability for Pyy). Let M and D be defined as in
Defn. For a path p € 8%, let tracen (p) = L(p[0]), L(p[1]) ..., L(p[N]) be the corresponding
finite word over ¥ = Pow(AP). For a given state s € S the finite horizon satisfaction probability
for Py is given by,

Pram(s R%ce) =Pryp(p € 8| pl0] = s,tracen(p) ¢ L(D))

where N € Z is some fixed model checking horizon. Similar to before, we show that the finite
horizon satisfaction probability can be written as the following bounded reachability probability,

Pra(s = Page) = Praen((s, s) = 0=V accept)

where g, = A(Qy, L(s)) is as before and O=Naccept is the corresponding step-bounded proba-
bilistic CTL path formula that reads, ‘eventually accept in N timesteps’.
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3 LOOKAHEAD SHIELDING

Our goal is to synthesize a safe policy, 7wy, : S x Q — Dist(.A), by dynamically integrating two
sub-policies, the ‘task policy’, denoted 7,. : S — Dist(.A) and the ‘backup policy’ 7, : S X Q —
Dist(A). Control of the agent is given to one of these sub-policies depending on the current state
of the agent and the desired safety-threshold. The ‘task policy’ 7, is trained with RL to maximize
reward, i.e., max, V;. On the other hand the ‘backup policy’ 7 is (usually) a low-reward policy,
specifically designed to keep the agent within a probabilistic safe set of states. In some simple
instances the ‘backup policy’ may constitute a simple rule-based policy that is guaranteed to be safe
before training. However, since we assume minimal prior knowledge, the ‘backup policy’ will need
to be trained online with RL similar to the ‘task policy’.

From a given product state (s, ¢) € S x Q, we dynamically switch between 7, and 7, by evaluating
the N-step conditional action reachability probability, defined as follows,

Definition 3.1 (/V-step conditional action reachability probability). Let a € A be an action, let
M = (S, A,P,Py,R,AP, L) be an MDP and let D = (Q,%, A, Qy, F) be the DFA such that
L(D) = BadPref(Psf). The N-step conditional action reachability probability, is computed
from the MDP by first resolving the non-determinism of the MDP with action a and then with m,
thereafter, this is denoted, Pry, ((s,q) = 0=Naccept).

In our case, we estimate the N-step conditional action reachability probability Pry, ((s,q) =
O=Naccept) by rolling-out a learned dynamics model for N timesteps. If this probability does
not exceed some step-wise safety-threshold ; then the action a is permissible, otherwise the action
a is rejected and a safe action a’ is sampled from the 7. Thus, the ‘shielded policy’ 7y, has the
following form,

mals.a)a) = {

The safety of 7, relies on the fact that the ‘backup policy’ 7, can keep the agent within a proba-
bilistic safe set, and that for any irrecoverable action a the lookahead or model checking horizon N
is sufficiently large. We will formalize both these ideas later on in Section[3.5]

(8, a) if Pry, ((s,q) = O=Naccept) < &
m((s,q),a) otherwise

(D

Thus 7, provides a step-wise safety guarantee of £; which is in line with similar shielding ap-
proaches (Wabersich et al., 2021} Bastani et al., 2021). For the satisfaction of Py, for an entire
fixed episode length 7', we can use a conservative union bound to derive a probability lower bound,
Pra(s = Pge) > 1 — € or equivalently, Praep((s, ¢s) = Qaccept) < e, where ¢ = ZtT:O Et.
Unfortunately, we cannot immediately derive an infinite horizon guarantee, without for example, ei-
ther assuming the existence of and being able to identify safe end components (Haddad & Monmege,
2018 |Brazdil et al.| | 2024)), or assuming deterministic dynamics (Berkenkamp et al., 2017)).

3.1 TRAINING THE BACKUP POLICY

As we alluded to above, in all but the simplest cases the ‘backup policy’ 7, will need to be trained
online with RL. To construct an effective ‘backup policy’ we introduce the following cost function,

Definition 3.2 (Cost function). Let Py, be a regular safety property and let D be the DFA such that
L(D) = BadPref(Piy), the cost function is an w-automaton (or Biichi automaton) that simulates
the DFA D and then resets after reaching an accepting state (i.e. for all ¢ € F, ¢ — Qp), the cost
Sfunction C is then defined as follows:

(s = {

where L' is the labelling function defined in Deﬁnition

1 ifaccept € L'({s,q))
0 otherwise

The ‘backup policy’ 7, can then be trained with standard RL techniques (e.g. Q-learning) to the
minimize the expected discounted cost, i.e. Ex[Y ;=7 C(st, qt)].

!"The probability here is taken under the product M, @D with the first timestep replaced by the conditional
action matrix P(%), this value is well-defined and can be computed exactly (see Algorithm.
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Remark 3.3. It is important to note that for regular safety properties the corresponding cost function
is defined over the product states and is thus non-Markov. As a result the ‘backup policy’ is also
defined over the product states, which can pose an issue, particularly for larger automata, as the rate
of convergence will be much slower than expected. To eliminate this issue we leverage counterfactual
experiences (CFE) ([carte et al.} 2022} |2018) — a method originally used for reward machines which
generates additional experience for the policy, by simulating automaton transitions.

3.2 COMPARISON TO CONSTRAINED MDP

We now provide a comparison to the CMDP framework (Altman, [1999; Ray et al., 2019), where
typically the constraints are specified as expected cumulative cost constraints at the trajectory level.

Problem 3.4 (Expected Cumulative Cost Constraint).
max V; subjectto E [ZZ;O C({st, qt>)} <C 2)
where C : S x Q — R is the cost function from Definition[3.2land C > 0 is the cost threshold.

To guarantee the satisfaction of Py, with probability at least 1 — ¢ for the entire fixed episode length
T, the cost threshold C' needs to be set to a prohibitively small value (namely ¢), which algorithms
developed to tackle CMDPs, like PPO-Lagrangian (PPO-Lag) (Ray et al., |2019) and Constrained
Policy Optimization (CPO) (Achiam et al.,|2017) are not always suited for.

3.3 TABULAR RL

For tabular RL it is most natural to use tabular Q-learning (QL) for training both the ‘task policy’
and ‘backup policy’. The update rule for the ‘task policy’ 7, is modified slightly, to give zero reward
to actions that are not permissible,
A o [R(st,ar) +vmaxe{Q,(si11,a if Prat ((s, O=Naccept) < e
Qr(staat)<_{ (st,at) +7 {Qr(st41,0)} (s, q) B pt) < & 3)

0 otherwise
where +*— denotes an in-place update with learning rate o.. This modification prevents the shielded
policy from ‘getting stuck’ proposing possibly high-reward but unsafe actions and should reduce the

number of times the ‘task policy’ is overridden. The ‘backup policy’ 7, is updated with the standard
QL update rule, but with penalties supplied by the cost function from Definition 3.2}

Qv (51, g1, ar) < ngx{Qb(StH, gi+1,0)} — C((S¢,q¢)) 4

For dynamics learning, we estimate the transition probabilities by using the empirical transition
probabilities P(s" | s,a) = #(s', s,a)/#(s,a), where #(s,a) and #(s', s, a) are the visit counts
for (s,a) and (s', s, a) respectively. The full algorithm is detailed in Appendix [A.1}

3.3.1 DEEPRL

For our deep RL experiments we use DreamerV3 (Hafner et al.l 2023) for both dynamics learn-
ing and policy optimization. DreamerV3 is based on the Recurrent State Space Model (RSSM)
(Hafner et al., 2019), a special type of sequential Variational Auto-encoder (VAE) (Kingma &
Welling, 2013), which learns a latent representation and dynamics model of the environment from
observations. The model consists of the following key components: sequential model h; =
fo(ht—1,2t—1,a:—1), observation encoder z; ~ qp(2¢ | 0, ht), transition predictor 2; ~ pg(Z¢ | he),
observation decoder 6; ~ pg(0¢ | he, 21 ), reward predictor 7y ~ pg(7¢ | he, z¢) and termination pre-
dictor 4; ~ pg(H: | he, 2¢). Our implementation is build upon approximate model-based shielding
(AMBS) (Goodall & Belardinellil 2023)) which additionally uses a cost predictor & ~ pg(é; | he, 2¢)
to predict state-dependent costs. Since DreamerV3 encodes the observation and action history in the
latent vectors (h, z;) we can use the same cost predictor to learn the cost function C((s¢, ¢;)) from
Definition [3.2] we back-propagate the cost predictor gradients through the RSSM, with the hope
that the necessary temporal dependencies for predicting the cost are captured in the latent space. We
can then estimate Pryy ((s, q) = 0= accept) by rolling out the latent dynamics model pg, summing
the predicted costs along the trajectories and average the result over multiple trajectories sampled in
parallel. The full algorithm is detailed in Appendix
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3.4 MODEL CHECKING

We now detail several model checking paradigms that can be ‘plugged’ into our framework for
computing the finite-horizon satisfaction probability of the regular safety property Py

Exact model checking. If we have access to the transition matrix P of the MDP then we can exactly
compute the (finite horizon) satisfaction probability of Py, in the Markov chain M induced by
the fixed policy 7 in time O(poly(size(M,®D))- N) (Baier & Katoen, [2008) by O(N') matrix mul-
tiplications, where D is the DFA such that £(D) = BadPref(Psyf) and N is the model checking
horizon. If the size of the product M, ® D is too large then exact model checking is impractical.

Statistical model checking. To address the limitations of exact model checking, we can construct
an estimate of Pr2 ((s,q) = 0="accept) by computing the proportion of accepting paths from a
set of samples generated using the transition matrix of the MDP P. Using statistical bounds, such
as Hoeffding’s inequality (Hoeffding, |1963) or Bernstein-type bounds (Maurer & Pontil, 2009), we
can bound the error of this estimate, with high probability. Since the product states (s,q) € S x Q
can be computed on-the-fly, rather, the time complexity of this approach depends on the horizon N,
the desired level of accuracy €’ and failure probability §’.

Proposition 3.5. Lerc’ > 0, 8 > 0, (s,q) € S x Qand N > 1 be given. By sampling m >
25% log (%) many paths with P, we can obtain an &' -approximate estimate for the probability
Pre ((s,q) | 0=Naccept) with probability at least 1 — §'.

Model checking with approximate models. In the standard RL setting where the transition matrix
‘P is unknown we can instead rely on an empirical estimate of P or an ‘approximate model’, which
can either be constructed ahead of time (offline) or from the experience collected during training.

We can then either exact model check with the empirical probabilities 73, or if the product MC is too
large, we can leverage statistical model checking by sampling paths from the *approximate model’.

Proposition 3.6. Letc’ > 0,8 > 0, s € Sand N > 1 be given. Suppose that for all (s,a) € Sx A,
our empirical estimate P is such that,

Drv (73(- | s,a), P(- | s,a)) <&/N 5)

where Dy denotes the total variation (TV) distanceEl then,

(1) We can obtain an €'-approximate estimate for Pry, ((s, q) = O=Naccept) with probability 1 by
exact model checking with the transition probabilities of P in time O (poly(size(My ® D)) - N).

0=V

(2) We can obtain an €'-approximate estimate for Pry, ((s,q) = accept) with probability at

least 1 — o', by sampling m > 6% log (%) many paths with the ‘approximate model’ P.

It might be interesting to analyze when (3) is satisfied in practice. For the tabular case we provide
this analysis in the proof of Theorem [3.11] stated in the next section. For the deep RL setting, it
becomes very tricky to obtain any guarantees, although we can fall back on the upper bound and
intuition provided by |Goodall & Belardinelli| (2023).

3.5 GLOBAL SAFETY GUARANTEES

In the tabular setting (see Section [3.3)) we can prove that 7y, provides a step-wise safety guarantee
of ¢;. We first provide the following definitions.

Definition 3.7 (Probabilistic Safe Set). For a given policy m defined over the product state space
S x Q, a probabilistic safe set for the fixed episode length T and step-wise safety level €, is defined,

S™(er) = {(s,q) € S x Q: Praq.wn((s,q) = OTaccept) < &} (6)

Definition 3.8 (Irrecoverable). An action a is said to be irrecoverable from a given product state
(s,q) € S x Q, if given a then (s,q) & S™ (&), or in words, a is irrecoverable from (s, q) if given
a the product state (s, q) is not in the (T-step) probabilistic safe set for the ‘backup policy’ y.

2For two discrete probability distributions j¢; and po over the same space X the TV distance is defined as:
Dry (pa(-), p2() = 5 Xpex 1 (z) — pz ()]
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Ideas such as probabilistic safe sets and irrecoverable states/actions have been considered in many
prior works (Abate et al.|, [2008; Hewing & Zeilinger, [2018};|Li & Bastani, |2020; Bastani et al., [2021}
Thomas et al.;[2021)). Intuitively, the ‘backup policy’ m;, is defined by the (1'-step) probabilistic safe
set from which we can obtain a step-wise safety guarantee of ¢, (by using the ‘backup policy’). Thus,
any action a € A which does not keep us within this probabilistic safe set is deemed ‘irrecoverable’.
To complete our proof we need to make the following assumptions.

Assumption 3.9. There exists some N* < T such that for all irrecoverable actions a € A the
conditional action probability Pr7, ((s, q) = O=N"accept) and we have chosen N > N*.

Assumption 3.10. The initial state (sq, L(sq)) is contained in the probabilistic safe set S™ (&;).

Assumption[3.9]is for practical convenience, a similar assumption was made in|[Thomas et al.| (2021)),
it means we can identify irrecoverable actions by only model checking with some fixed horizon N >
N, rather than for the entire episode length 7", which could be either computationally expensive
or incur significant model drift when using the empirical estimates of the transition probabilities.
Assumption [3.10| guarantees that there is a safe strategy from the initial state, this allows us to prove
safety by establishing an invariant: ‘we can always fall back on the backup policy for a step-wise
safety guarantee of ¢, regardless of the previous action’.

In general it is unlikely that Assumption[3.10]and [3.9]are immediately satisfied at the start of training,
however by using RL to train 7, online with penalties provided by the cost function we might expect
T, to converge to a policy satisfying these assumptions. |Abate et al.| (2008) analyse the conditions
for the existence of a maximally safe policy trained solely with a cost function, this is beyond the
scope of our paper, we simply assume that ;, satisfies Assumption [3.10]and [3.9 without necessarily
being maximally safe.

Theorem 3.11. Under Assumption and and provided that every state action pair (s,a) €
2

S x A has been visited at least O (NTLSl log (%)) times. Then the ‘shielded policy’ g, pro-

vides a step-wise safety guarantee of €, and with a step-wise failure probability of §; = 24’

The theory is quite conservative here due to the strong dependence on |\S|, in practice the outermost

|S| can be replaced by the maximum number of successor states k from any given state. Similar
to before, by taking a conservative union bound, we can obtain an ‘episodic’ safety guarantee of

Pra(s = Pyype) > 1 — ¢ with probability 1 — §, where ¢ = Z?:o grand § = ZZ;O Oy

4 EXPERIMENTAL EVALUATION

4.1 TABULAR RL

We evaluate our framework in 4 separate tabular environ-
ments, see Figure[2l We compare our approach to tabular
QL, tabular QL with penalties provided by the cost func-
tion in Definition [3.2] (QL-Cost), and two CMDP-based
approaches PPO-Lag (Ray et al.,[2019) and CPO (Achiam
et al.,[2017). This instantiation of our framework is called
QL-Shield and is detailed in Section[3.3] for model check-
ing we use statistical model checking and we assume no
knowledge of the transition matrix P. We briefly summa-
rize the environments here, however, the full environment
descriptions can be found in Appendix

Inspired by Bura et al.|(2022), the Media Streaming envi-
ronment is a simple environment with 20 state and 2 ac-
tions. The agent is tasked with managing a data-buffer
and the safety property is a simple invariant property:
Ul—empty. Inspired by |[Hasanbeig et al.| (2020a), we test
our approach on a sparse Bridge Crossing environment,
the agent operates in a ‘slippery’ gridworld, the goal is to Figure 2: Gridworld Environments
reach the opposite side of the bride, the safety property

is a simple invariant property: [l—red. We test our approach on two more ‘slippery’ gridworlds,

(c) 15 x 15 gridworld
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a9 x 9 gridworld and a 15 x 15 gridworld with unsafe ‘bomb’ states, we specify the following
three properties in these environments and test them independently, the first (1) is a simple invariant
property (J—B, the second (2) is J((—BX B) — (X B)). In words, (1) specifies that the agent must
avoid ‘bomb’ states (), (2) specifies that the agent must ‘disarm’ ‘bomb’ states (B) by staying on
them for at least 2 timesteps. The third (3) is again more complex, specifying that if a ‘bomb’ state
is reached the agent must navigate to a ‘medic’ state within 10 timesteps and stay there for at least 2
timesteps, this is denoted as (J(B — ¢<1000<2 ).

4.2 DEEPRL

We evaluate our framework on Atari Seaquest, provided as part of the Arcade Learning Environment
(ALE) (Machado et al.,|2018). Our approach in this setting is built upon DreamerV3 (Hafner et al.,
2023)), see Section @] for details. We compare our approach to vanilla DreamerV3 (no costs), a
modified version of DreamerV3 that implements the Augmented Lagrangian (Wright, |2006) very
similar in principle to other works such as Safe-DreamerV3 (Huang et al., [2023) and LAMBDA
(As et al.| 2022)), for a detailed description of the Augmented Lagrangian framework we refer the
reader to Appendix We also run PPO-Lag (Ray et al.,|2019) and CPO (Achiam et al., 2017)
in this setting, however since both these algorithms are model-free and also not suitably adapted to
pixel input, we provide as input, perfect RAM information E] and the current automaton state, this
circumvents the issue of PPO-Lag and CPO having to learn an image feature representation and
provides a more fair comparison.

Atari Seaquest (see Fig. [3) is a partially observable en-
vironment meaning, we do not have direct access to
the underlying state space S, we are however provided
with observations o € O as pixel images which cor-
respond to 64 x 64 x 3 tensors. Fortunately Dream-
erV3 is specifically designed to operate such settings.
The cardinality of the action space is |4| = 18. We
experiment with two different regular safety properties
in this environment, (1) (O-surface — O(surface —
diver)) A (O—out-of-oxygen) A (O—hit), and (2) Odiver A
—surface — Q=3 surface. The first property (1) is aligned
closely with the goal — the agent must only surface with
a diver, not run out of oxygen and not be hit by an enemy. The second property (2) states after
the agent picks up a diver it must return to the surface within 30 timesteps, this property directly
conflicts with the optimal policy. For more details we refer the reader to Appendix [C]

s

Figure 3: Atari Seaquest. The goal is to
rescue divers (small blue people), while
shooting enemy sharks and submarines.

4.3 PRACTICAL CONSIDERATIONS AND LIMITATIONS

A practical comparison between our approach and LTL-based approaches from the literature be-
comes challenging, as many approaches do not separate reward and safety in to two distinct objec-
tives (Hasanbeig et al., 2018};|De Giacomo et al.,[2020; [Cai et al., 2021}, those that do either assume
access to a perfect generative model that can be sampled from any state-action pair |Voloshin et al.
(2022), or assume knowledge of the optimal discount factor v and dual variable A (Shah et al.,[2024;
Voloshin et al.,|2023)). LTL and regular safety constraints are slightly different and care would also
need to be taken to convert the satisfaction condition for Biichi automata to regular safety properties
(or vice versa). In some instances Shah et al., 2024; |Voloshin et al., |2023} an unconstrained objective
with dual variable X is maximized, which is, for the most part, comparable to our baseline QL-Cost,
which also treats the weighting of the cost function as a hyperparameter.

Our approach, is not without its limitations, in particular choosing the model checking horizon N is
imperative for safety performance. In principle, any N = T should suffice for episodic guarantees,
however large IV can incur significant overhead at each decision making step, due repeated model
checking. Assumption[3.9tells us that N > N* is enough, but there is not a practical way choosing
N without knowing something about the environment, e.g. for Atari Seaquest it takes at least 25
timesteps, to reach the surface from the bottom of the sea, so NV = 30 was chosen.

3The perfect RAM input & corresponds to the features identified in (Anand et al.l[2019) and the one-step
deltas Az which encodes the necessary temporal information for effective learning.



Under review as a conference paper at ICLR 2025

——
W T
— QL QL-Cost —— QL-Shield —— PPO-Lag —— CPO
H 819
20 S .
L, S N Lo 1o 00 =
© 05 1o 15 20 25 © 05 1o 15 20 25 F <@
step e step <ot 08 08 2300
(a) Media streaming (reward, cost) o 406 5

H § $200
Zos 04 H

100

of 00,
00 05 10 15 20 25 39 00 05 1o 15 20 25 30 00 05 1o 15 20 25 30
step x10° step X104 step X104

(b) Bridge crossing (reward, cost, epsiode length)
N g a
51 N \ g \
o oo UV
@ o7 ws_us o8 1y @ o2 oi_Us o8 1y GO0 02 0405 08 1o
Step. *x10° Step x10% Step x10°
3 .
(d) 9 x 9 property (1) (reward, cost, epsiode length)
. B
/ 08 )
-4 £
s ( EDE ] &
H Soal g \
Y 5
02
10 00
32 % o 02 o4_ 06 08 10 65 02 04_ 06 08 10 66 o0z 04_ 06 08 10
H ] step A step e sep e
| f 1/ (f) 9 x 9 property (2) (reward, cost, episode length)
%\gx’j&

of of
00 05 10 15 20 25 39 00 05 10 15 20 25 30
step x10° 3

§

of of
0% 05 10 15 20 25 39 00 o5 10 15 20 25 30
step x10° Step x10°

(c) 15 x 15 property (1) (reward, cost) gos )

Reward
cost

of
0% 05 10 15 20 25 39 00 o5 10 15 20 25 30
step x10° step x10°

(e) 15 x 15 property

>l

(2) (reward, cost)

(g) 15 x 15 property (3) (reward, cost)

Figure 4: Learning curves for tabular gridworld environments.

4.4 DISCUSSION T e a0 — proimg e T
The media streaming environment is more of a sanity LM
check, the environment is very quickly solved and in all | e
cases the safety-aware algorithms quickly converge to the e e o
optimal reward of roughly —22.0, although PPO-Lag and (a) Property (1) (reward, cost rate)

o

CPO exhibit slightly slower convergence. For the bridge

crossing environment both QL-Shield and QL-Cost are »MW
able to reliably find the path across the bridge, notice that

this is a hard exploration challenge, and without penal- e gpo1soam w o5 g1
ties QL is unable to find the path across the bridge, both (b) Property (2) (reward, cost rate)

PPO-L d CPO also struggle with exploration.
ag an also stuggle with exploration Figure 5: Learning curves for Seaquest.

For property (1) in the 9 x 9 gridworld, QL-shield is

slightly more reliable than QL-Cost, as it converges to the shortest safe route more quickly, QL finds
the shortest route very quickly, however this route is unsafe. For property (2) QL-Shield converges
much more quickly than QL-Cost, this is likely because QL-Cost tries to find an overly conservative
route that avoids any ‘bomb’ states, when in actuality it is allowed to step on ‘bomb’ states as long
as it ‘disarms’ them. Note that PPO-Lag and CPO seem to do much better than for property (2)
compared to property (1), as the safety criteria is not as strict.

For property (1) in the 15 x 15 gridworld QL-Shield and QL-Cost have a similar performance in
terms of safety and reward, although QL-Shield is quite noisy, which suggests additional tuning of
the step-wise safety rate ¢, and m could be useful. For property (2) QL-Shield converges quickly to
a stable policy in contrast to QL-Cost, again this is likely because the QL-Cost is overly conservative
tries to completely avoid bomb states. For property (3) QL-Shield does much better in terms of safety
and QL-Cost doesn’t appear to converge to a stable policy. Property (3) requires more effective
exploration to find both the ‘coloured’ and ‘medic’ states, QL-Cost likely struggles to balance these
two objectives with just one policy. Notice that PPO-Lag and CPO struggle here for all the properties
as the problem requires much more effective exploration. For additional results see Appendix

For both property (1) and (2) in the Atari Seaquest environment our approach clearly outperforms
the baselines in terms of reward and does well across the board in terms of safety performance.
DreamerV3 (LAG) slightly outperforms our approach in terms of safety performance for property
(2), however this is at the cost of much worse task performance (reward). Perhaps by using a stricter
step-wise safety parameter €; we could bring DreamerV3-Shield in line with DreamerV3 (LAG) for
this property. PPO-Lag and CPO appear to do rather poorly in comparison, highlighting the poor
sample complexity of model-free algorithms and demonstrating the difficulty with tuning the cost
threshold C' and initial Lagrange multiplier A;,;.
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5 RELATED WORK

Safety Paradigms in Reinforcement Learning. The most common paradigm is constrained MDPs
(CMDP) for which, several constrained optimization algorithms have been developed, most are
gradient-based methods built upon Lagrange relaxations of the constrained problem (Chow et al.,
2018 |Liang et al., 2018} Tessler et al.L|2018; Ray et al.,|2019) or projection-based local policy search
(Achiam et al.|[2017;|Yang et al.| |2020). Model-based approaches to CMDP (As et al.|[2022;|Huang
et al.}2023;|Thomas et al.,[202 1} Berkenkamp et al.,|2017) have also gathered recent interest as they
enjoy better sample complexity than their model-free counterparts (Janner et al., [ 2019).

Linear Temporal Logic (LTL) constraints (Voloshin et al., [2022; Hasanbeig et al.| [2018; [2020azbj
De Giacomo et al.,[2020; Cai et al.,|2021)) for RL have been developed as an alternative to CMDPs to
specify stricter and more expressive constraints. The LTL formula is typically treated as the entire
task specification, although some works have aimed to separate LTL satisfaction and reward into
two distinct objectives (Voloshin et al., [2022; 2023; Shah et al.| 2024). The typical procedure in
this setting is to identify end components of the MDP that satisfy the LTL constraint and construct a
corresponding reward function such that the optimal policy satisfies the LTL constraint with maximal
probability. Formal PAC-style guarantees have been developed for this setting (Fu & Topcul, 2014}
Wollf et al., | 2012; |Voloshin et al.| [2022; Hasanbeig et al., 2018) although they often rely on non-
trivial assumptions (e.g. access to a perfect generative model).

More rigorous safety-guarantees can be obtained by using shielding (Alshiekh et al. 2018), con-
trol barrier functions (CBF) (Ames et al.l 2019), and model predictive safety certification (MPSC)
(Wabersich & Zeilinger, 2018}, [2021). To achieve zero-violation training, these methods typically
assume that the dynamics of the system are known and thus they are typically restricted to low-
dimensional systems. Recent works have aimed to scale the concept of shielding to more general
settings, relaxing the prerequisite assumptions for shielding, by either only assuming access to a per-
fect generative model for planning (Giacobbe et al., 2021), or learning a world model from scratch
(Goodall & Belardinellil 2023 [He et al., 2022; Xiao et al.,|2023)). Notable works that can be viewed
as shielding include, MASE (Wachi et al.| 2018) — a safe exploration algorithm with access to an
‘emergency reset button’, and Recovery-RL (Thananjeyan et al.l 2021)). A simple form of shielding
with LTL specifications has also been considered (Mitta et al., 2024}, although this approach makes
use of informative priors over the transition dynamics. Shielding approaches most similar in spirit
to our approach, include (Jansen et al., 2020; Konighofer et al., [2021}[2023)), these approaches also
consider finite-horizon satisfaction probabilities, although they assume a priori access to the safety
dynamics and cannot provide episodic guarantees in the same way that we can.

Learning Over Regular Structures. RL and regular properties have been studied in conjunction
before, perhaps most famously as ‘Reward Machines’ (Icarte et al., 2018} 2022) — a type of finite
state automaton that specifies a different reward function at each automaton state, however reward
machines do not explicitly deal with safety. In addition, regular decision processes (RDP) (Brafman
et al.| 2019) are a specific class non-Markov DPs (Bacchus et al.l [1996)) that have also been studied
in several works (Brafman et al., 2019;|Ronca & De Giacomo, 2021;Majeed et al.,[2018}; Toro Icarte
et al., 2019; (Cipollone et al., [2024). Most of these works are theoretical and slightly out-of-scope
for this paper, as RDPs capture both non-Markov rewards and transition probabilities.

6 CONCLUSION

The separation of reward and safety objectives into two distinct policies has been demonstrated as
an effective strategy towards safety-aware decision making (Goodall & Belardinelli, [2023}; |Jansen
et al., 2018} [Thananjeyan et al., 2021} |Alshiekh et al. [2018), in many cases the safety objective is
simpler and can be more quickly learnt (Jansen et al., [2018). In this paper we have demonstrated
that this is an effective framework for dealing with regular safety properties, an important class of
temporal properties where the corresponding cost function is non-Markov. We detail two possi-
ble instantiations of our framework for the tabular and deep RL environments, and we provide a
thorough experimental evaluation including a comparison to CMDP-based approaches. Beyond our
empirical results we provide safety guarantees in the tabular setting, that hold under reasonable as-
sumptions. Future work includes, further investigation into the scenarios where it is appropriate and
beneficial to leverage shielding as an approach to safe RL.

10
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A  ALGORITHMS

A.1 QL-SHIELD

Algorithm 1 QL-Shield (Regular Safety Property)
Input: DFAD = (Q, %, A, Qq, F), labelling function L, model checking parameters (¢, &', ', N),
temperature 7 > 0, cost coefficient ¢ > 0 and fixed episode length T’
Initialize: (Q-table) Q,.(s,a) < 0Vs € S,a € A
Initialize: (Q-table) Qy(s,¢,a) « 0Vs € S,q€ Q,ac A
Initialize: (Transition probabilities) P=1I (identity)
for each episode do
Observe sg, L(sg) and qo < A(Qo, L(so))
fort =0,...,7T do
// Sample an action from the ‘task policy’ and override if necessary
Sample action a with the Boltzmann policy derived from QT (st, ) and temp. 7.
override + Shield(es, &', ', N, (st,qt),a,mp, L, D, P, type = statistical)
a; < argmax, Qp(s¢, a) if override else a; + a
Play action a; and observe s;11, L(s;+1) and 7.
// Update the ’task policy’ and empirical probabilities
Update Q,(st, a;) with experience (s¢, at, 7+, St+1), see Eq.
Update P with experience (s¢, at, St+1), see Section
// Counterfactual experiences ([carte et al.| 2022)
// Generate synthetic data by simulating all automaton transitions
for g € Q do
Compute ¢’ < A(q, L(St4+1))
Compute cost ¢’ < ¢ - 1[¢’ € F]
// Q-learning step
Update Qb(8t7 q, at) with experience (<8t7 q>7 Qt, <St+17 q/>7 C/), see EqE
Compute g1 < A(g:, L(s¢+1)) and continue

A.2 MODEL CHECKING

Algorithm 2 Shield (fype = statistical)

Input: model checking parameters (¢, €' 0’, N), state (s, ¢), action a, ‘backup policy’ 7, labelling
function L, DFA D = (Q, X, A, Qo, F) and (approximate) transition probabilities P.
Choose m > 2/(¢"?)1log(2/6")
fori=1,...,mdo
Set sg < s,q0 < qand ag + a
// Sample a path through the model
forj=1,...,Ndo
Sample next state s; ~ P(- | sj_1,a;-1),
Compute g; = A(g;-1, L(s;)),
Sample action a; ~ (- | (s;,q;))
// Check if the path is accepting
Let X; < 1[qm € F]
// Compute the probability estimate
Let X + % Z;’il X,L
//If X is below the step-wise threshold we don’t need to override
return False if X < ¢; — £’ else return True
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Algorithm 3 Shield (fype = exact)

Input: model checking parameters (g, €', 6’ = 0 IN), state (s, ¢), action a, ‘backup policy’ ,
labelling function L, DFA D = (Q, X, A, Qq, F) and (approximate) transition probabilities P.
Compute the product MC: M, @ D = (S x Q, P, Pj, {accept}, L’).
Compute the probability matrix: P < (P’(s,t))s t¢accept
Compute the probability vector: p < (P’(s, accept))sgaccept
Compute the conditional action matrix: P < (P(s,t))s t¢accept

(P(a))(s,q) — (P)<s,q>7a -7T'(Cl ‘ <57Q>)
Compute the conditional action vector: p(®) (P'(s, accept)) sgaccept
(p(a))(s,q) «— (P)(s,q),a : 77(0' | <57 Q>)
// Iterate over the model checking horizon
Initialize zero vector x() «— 0 with size |S| x | Q)|
fori=1,...,N—1do

Compute x() = Px(=1 4 p
// Final update with the conditional action
Compute X(N) — P(a)x(Nfl) _|_ p(a)
// Get the corresponding probability
Let X « xV)

(s.q)
/If X is below the step-wise threshold we don’t need to override
return False if X < ¢; — ¢’ else return True

A.3 DREAMERV3-SHIELD

Algorithm 4 DreamerV3-Shielding (Regular Safety Property)

Input: DFA D = (Q, X, A, Qp, F), labelling function L, model checking parameters
(e¢,€’y,m, N), cost coefficient ¢ > 0 and fixed episode length T, roll-out horizon H.
Initialize: replay buffer D, DreamerV3 parameters 6, ‘task policy’ 7, and ‘backup policy’ mp.

for each episode do
Observe 0g, L(sp) and gg < A(Qo, L(so))
fort=1,...,Tdo

// Shielding with the latent world model

Sample action a ~ T, from the ‘task policy’.

Sample m sequences ({6y.1/4+ N, Fr 4N, Cvr 4N }) g ~ Do With 7y, and a.

// Compute the probability estimate

X LS clip (Zﬁ,“v e, 0.0, 1.0)

override < False if X < ¢; — ' else True

a; ~ m, if override else a; < a

Play action a; and observe 0411, L(s;41) and 7y

Compute qi+1 < A(qt, L(st+1)),

Compute cost ¢ - ¢; < 1[gt41 € F]

Append (o¢, at, 74, ¢t, 0p41) to the replay buffer D

if update then
// World model learning
Sample a batch B of transition sequences {(oy, ay,re, ¢y, 00 41)} ~ D.
Update DreamerV3 parameters 6 with maximum likelihood (Hafner et al., [2023]).
// Task policy optimization
Sample sequences {0y .4/ 4 p, Per.7 4+ 1, Coropr 41 + ~ Do With the ‘task policy’ 7,
Update the ‘task policy’ 7, with RL (to maximize reward).
Update the corresponding value critics with maximum likelihood
// Backup policy optimization
Sample sequences {044 p1, P/t 4+ 11, Coop -1 ~ Do With the ‘backup policy”
Update the ‘backup policy’ 7, with RL (to minimize cost)
Update the corresponding value critics with maximum likelihood
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B PROOFS

B.1 PROOF OF PROPOSITION[3.3]

Proposition 3.5 (restated). Lerc’ > 0, 6’ > 0, (s,q) € S x Qand N > 1 be given. By sampling
m > 25% log y) many paths with P, we can obtain an '-approximate estimate for the probability
Pry ((s,q) = O=Naccept) with probability at least 1 — §'.

Proof. In words, we estimate Pry ((s,q) = 0= accept) by sampling m paths with P, first using
the action a to resolve the non-determinism of the MDP and then using the fixed policy m;, thereafter.
We can simply label each path as satisfying or not and return the proportion of satisfying traces as
our estimate for Pr? ((s,q) = 0= accept).

We proceed as follows, let p1, ... pn, be a sequence of paths sampled from the MDP as described
above and let trace(p1), . . . trace(py,,) be the corresponding traces. Furthermore, let X1, ..., X,, be
indicator r.v.s such that,

1 iftrace(p; O=Ngccept,
X, = (pi) = P o
0 otherwise
Note that trace(p;) = O=Naccept can be easily checked in time O(N). Now let,
% = LS, where BLX] = P, ((0) - 0V aceep) ®
= i Where = Pry, ((s,q accep
i=1
then by Hoeffding’s inequality (Hoeffding} |1963),
P[|X —E[X]| > ¢'] <2exp (—2m5'2) )
Bounding the RHS from above by ¢’ and rearranging gives the desired result. O
B.2 PROOF OF PROPOSITION [3.6]
We start by introducing the following lemma.
Lemma B.1 (Error amplification for trace distributions). Let P ~ P be such that,
Dry (77( | s,a),ﬁ(~ | s,a)) <aV(s,a)e Sx A (10)

Let the start state so € S be given, let the policy m be given and let PL(-) and 73;() denote the path

distribution (at time t) for the two Markov chain transition probabilities P, and Py respectively.
Then the total variation distance between the two path distributions (at time t) is bounded as follows,

Dpy (Pﬁ(-),ﬁ;(-)) < at Vi (11)

Proof. We will prove this fact by doing an induction on ¢. We recall that P%(-) and PL(-) denote the

path distribution (at time ¢) for the two transition probabilities P, and P, respectively. Formally we
define them as follows,

Pr(p) = Pr(so,--..50 2 p| s0=s,Pxr) (12)
PL(p) =Pr(so,....51 < p| 50 =5,P) (13)
These probabilities read as follows, ‘the probability of the sequence sg,...,s; = p at time t’, or
similarly ‘the probability that the sequence sy, ..., s; is a prefix of p at time ¢’ Since the start state

sp € S is given we note that,

PAU) =P (14)
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Before we continue with the induction on ¢ we make the following observation, for any path p € S
we have by the triangle inequality,

PLp) = PL(p)| = [Palse | s0-1)PL () = Prlse | s0-1)PL ()| (15)
< PEHP) [Palsi | st-1) = Prls | si-0)| + Palsi | se-1) [PE(p) = PE(p)
(16)
Now we continue with the induction on ¢,
2Dy (PL(), P = Y |[P(p) = Phip) a7
pESY
< Y PP [Palst | 1-1) = Prlsi | 50-)
peESY - ~ (18)
+ Y Palst | 51 [P o) = P (o)
peESW
<Y PENp @)+ Y [P0 P ) a9)
peESY peESY
=20+ 2Dy (P (), P! () (20)
< 2at (21)

The final result is obtained by an induction on ¢ where the base case comes from P2(-) = 732 (). O

Proposition [3.6] (restated). Let e’ > 0,6’ > 0, s € Sand N > 1 be given. Suppose that for all
(s,a) € S x A, our empirical estimate P is such that,

Dry (P(-|5,),P(-| 5,0)) < /N (22)

where Dy, denotes the total variation (TV) distance, then,

O=Naccept) with probability 1 by

(1) We can obtain an €'-approximate estimate for Pry, ((s,q) =
exact model checking with the transition probabilities of P in time O (poly(size(My ® D)) - N).

0=V

(2) We can obtain an €'-approximate estimate for Pry, ((s,q) = accept) with probability at

least 1 — 0', by sampling m > E% log (%) many paths with the ‘approximate model’ P.

Proof. We start by proving statement (1) and then statement (2) will follow quickly. First let
Pry ((s,q) = O=Naccept) and P12 ((s,q) = OEN accept) denote the conditional action prob-
abilities for the two transition probabilities P and P respectively. We also let g(-) and g(-) denote
the average trace distribution (over the next N timesteps) for the two transition probabilities P and
‘P respectively, where,

1 N
9(p) = 5 D_Pr,(p) (23)
t=1
1A
o) =5 >_Pr(p) (24)
t=1

Abusing notation slightly (by dropping a), we note that in both instances the action a is first used
to resolve the non-determinism of the MDP and 7}, thereafter. Before we continue with the proof of
(1) we make the following observations,

—

» max P17 ((s,q) = 0=Naccept) — Pry, ((s,q) = 0=Naccept)| <1

(s.q)

e Let f(z) : ® € X — [0, 1] be a real-valued function. Let P;(-) and P2 (-) be probability
distributions over the space X, then.

oy ()l (@)] = Bonpy () [f (@)]] < Drv (P1(), Pa())
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We continue by showing the following,

Pry ((s,q) )=<>§Naccept) — P/rzb(<s, q) E OSNaccept)‘ (25)
= ‘EPNQ [1[(s,q) = 0=Naccept]] —E g [1 [(s,q) E 0=Naccept]] ’ (26)
< Drv (9(-),9(-)) 27)

1 .
=5 2 lale) —4(p) (28)
peESY
1 al N
=55 2 |2 Pee) =Pl (29)
peESY |[t=1
1 N
<on 2| 2 Prle) = Pilp) (30)
t=1 |peSw
| A
< W;N(a /N) 31)
=€'/2 (32)
(33)

The first inequality comes from our earlier observations. The second inequality is straight-
forward and the final inequality is obtained by applying Lemma [B.T]and our initial assumption
in @ We note that this result is closely related to the simulation lemma (Kearns & Singhl 2002,
which has been proved many times for several different settings (Kakade et al.,|2003; /Abbeel & Ng,
20055 Brunskill et al., |2009; Rajeswaran et al., [2020).

This concludes the proof of statement (1), since we have shown that Pry, ((s,q) = 0=V

is an ¢’ /2-approximate estimate of Pry, ((s,q) = 0=Naccept), under the our initial assumption in

(22).
The proof of statement (2) follows quickly. We have established that,

P12, ((s,q) | O=Naccept) — Prl, ((s.q) = 0=Naccept)| < ¢'/2 (34)

accept)

It remains to obtain an ¢’ /2-approximate estimate of Pr% ((s,q) = 0=Naccept). By using the
same reasoning as in the proof of Proposition We can obtain an &’/2-approximate estimate

of ﬁfib A( (s,q) = O=Naccept) by sampling m paths, p1, ... pm, from the approximate dynamics
model P. Then provided,

2 2
m > = log (5’) 35)

with probability 1 — ¢’ we can obtain ¢’ /2-approximate estimate of P/rzb«s, q) = 0=Naccept)
and by extension an &’-approximate estimate of Pry, ((s,q) = 0=Naccept). This concludes the
proof. O

B.3 PROOF OF THEOREM[3.11]

Theorem [3.11| (restated). Under Assumption 3.9 and and provided that every state action

pair (s,a) € S x A has been visited at least O (% log (l’ﬂﬁ)) times. Then the ‘shielded

policy’ my, provides a step-wise safety guarantee of €, and with a step-wise failure probability of
(St = 26/

Proof. We split the proof up into three parts (1), (2), (3).

(1) We first show that the following holds with probability at least 1 — &,

Dry (P(-| 5,0),P(: | 5,0)) <&'/N (36)
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when every state action pair (s,a) € S x A has been visited at least,

N8| (ALS
o (e (57))

times. First we let #(s, a) denote the total number of times that (s, a) has been observed, similarly
we let #(s’, s,a) denote the total number of times that (s, s, a) has been observed. The maximum
likelihood estimate for the unknown probability P(s’ |, s,a) is P(s" | s,a) = #(¢, s,a)/#(s,a).
Let us fix some (s,a) € S x A, leveraging the well-established inequality for the L1 deviation
from the empirical distribution (Weissman et al., [2003), we can bound the TV distance between

P(-|,s,a) and P(- | s, a) as follows,

R g S| _mE/Q
P [HP(. | s,a) — P(- | s,a)Hl > N} < (251 —9) eXp( o ) (37)
Bounding the RHS from above by ¢’ /(| A||S|) and rearranging gives the following lower bound for
m,
2N? |S[141(2"51 - 2) NZ|S| |S11A]
m > o log ( 5 =0 o log 5 (38)

Taking a union bound over all (s,a) € S x A, then for all state action pairs (s,a) € S x A we have
the following with probability at least 1 — 4.

Drv (PG 15,0, P s, )) =5 3 [P 5,0) = P’ | 5,0)] (39)
s’'es

< % HP( | s,a) —P(- | s,a)H1 (40)

<& /N (41)

This completes the proof for part (1).

(2) Now by using Assumption [3.9]and [3.10] we can reason about the safety of the system. Suppose
firstly that we can exactly compute the conditional action probability Pr%, ((s,q) = 0=Naccept)
and without any failure probability — this corresponds to exact model checking with the transition
probabilities P.

Under Assumption the initial state (so, L(sg)) is contained in the probabilistic safe set S™ (g+)
meaning that by following the ‘backup policy’ 7, we can satisfy the safety property Py, for the
entire episode length with probability at least 1 — &;.

The ‘shielded policy’ 7y, is constructed such that an action a proposed by the ‘task policy’ . is
only permissible if Pry, ((s,q) = 0=Naccept) < e,

(s, a) if Pry ((s,q) = 0=Naccept) < &

m((s,q),a) otherwise (42)

ol aha) = {

Under Assumption [3.9] any permissible action a proposed by the ‘task policy’ m, is ‘safe’ in the
sense that (s, q) will be contained in the probabilistic safe set S™ (g;). The reasoning for this is
straightforward proof by contradiction, assume Pr2 ((s, q) = 0=Naccept) < &, and Pr2 ({s,q) =

O=<Taccept) > ¢; then by definition the action a is irrecoverable and so by Assumption we
must have P13, ((s, q) = O=N"accept) > &;, however since N > N* then certainly Pri ((s,q) =
O=Naccept) > Pry, ((s,q) = O=N"accept) > e; which is a contradiction.

Thus if a permissible action a proposed by the ‘task policy’ 7, is committed in the environment
then we know that the current state (s, g) is contained in the probabilistic safe set S™ (¢;) and thus

we have established the following invariant: ‘we can always fall back on the backup policy for a
step-wise safety guarantee of €, regardless of the previous action’.

(3) We we make a similar argument for exact model checking with the empirical probabilities

P, where we can only obtain an &’-approximate estimate of the conditional action probability
Pry ((s,q) = O0=Naccept). The key to this part of the proof is to only allow actions proposed

by the ‘task policy” 7, we know for certain satisfy Pry, ((s, q) = 0= accept) < &;.
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In particular an action a proposed by the ‘task policy’ 7, is only permissible if our estimate for
Pry ((s,q) | 0=Naccept) denoted Pry, ((s,q) = OSNacc/egt), is less than €; — £/, this decision
is reflected in both Algorithm [3| and [2{in Appendix |A| If Pre ((s,q) | 0=Naccept) < e, — ¢’
then Pry ((s,q) = O=Naccept) < &, the proof of this statement is a straightforward proof by

contradiction, assume that ﬁl?;b ((s,q) = O=Naccept) < e, —¢" and Pry, ((s,q) = 0=Naccept) >
&4, then we have |P/rzb(<s,q) E 0=Naccept) — Pry ((s,q) = O0=Naccept)| > €’ which is a
contradiction as we have established in Proposition (3.6| that P/rib ((s,q) = O=Naccept) is an &'
approximate estimate of Pr% ((s, q) = 0=Naccept) when (36) is satisfied.

Putting it all together. Part (1) of our proof establishes that with probability at least 1 — ¢’ the total

variation distance between P and P is upper bounded, see . Part (3) then establishes how we can
use the ’-approximate estimate of the conditional action probability Pry, ((s, q) = 0= accept) to
only let permissible actions be used by the ‘shielded policy’, this in conjunction with the invariant
established in part (2) completes the proof for exact model checking. We finally need to deal with
the failure probability associated with statistical model checking. In particular, at each timestep we
fix a failure probability of ¢, taking a union bound with part (1) of the proof gives us a step-wise
failure probability of §; = 24’. The completes the proof. O

C ENVIRONMENT DESCRIPTIONS

In this section we provide more complete descriptions of the environments considered in the main
paper.

Media streaming. Inspired by Bura et al.|(2022), The agent is tasked with managing a data-buffer,
packets leave in the data-buffer according to a Bernoulli process with rate (i, the agent has two
action A = {fast, slow} which add new packets to the data-buffer according to a Bernoulli process
with rates figg = 0.9 and pig,, = 0.1 respectively. The agent receives a negative reward of —1.0 for
choosing the fast rate, the goal is to maximize reward during the fixed episode length 7" = 40, while
ensuring the data-buffer is never empty. The safety property is a simple invariant property, Ll—empty
(with PCTL-style notation). The number of automaton states is |D| = 2, the safety threshold (for
QL-Shield) is set to £; = 0.001 and the cost threshold for PPO-Lag and CPO is set to C' = 0.01
respectively. The model checking horizon we use here is N = 5. For further hyperparameter details
please refer to Appendix [E.3]

Bridge crossing. Inspired by |Hasanbeig et al.[(2020a)), the agent operates in a 20 x 20 ‘slippery’
gridworld where there is a 0.04 chance that the agent’s action is ignored and another action is uni-
formly sampled. From the green start state the goal is to reach the safe terminal yellow states, which
provide a reward +1. The unsafe red states are also terminal (providing no reward). The safety
property is a simple invariant [J—red(with PCTL-style notation). The number of automaton states is
|D| = 2, the safety threshold (for QL-Shield) is set to £, = 0.05 and the cost threshold for PPO-Lag
and CPO is set to C' = 0.15. The model checking horizon we use here is N = 5.

9 x 9 gridworld. The agent operates in a 9 x 9 ‘slippery’ gridworld where there is a 0.1 chance that
the agent’s action is ignored. From the start state S' the goal is to reach either the blue, pink or yellow
states which are terminal and provide a reward of +1. For this environment we use the following two
properties the first (1) is a simple invariant property (- B, the second (2) is O((—BX B) — (X B)).
In words, (1) specifies that the agent must avoid ‘bomb’ states (B), (2) specifies that the agent must
‘disarm’ ‘bomb’ states (B) by staying on them for at least 2 timesteps. For (1): |D| = 2 and
g¢ =0.01,C =0.0land N = 3,for 2): |D| =4ande; =0.12,C =0.12and N = 5.

15 x 15 gridworld. The agent operates in a 15 x 15 ‘slippery’ gridworld where there is a 0.1 chance
that the agent’s action is ignored. The goal is to reach either the blue, pink, yellow, red or green
states (providing a reward of +1) from any of the starting states (S). In this environment the goal
states are no longer terminal and reaching a goal state transitions the agent to a new start state (.5)
sampled uniformly at random. The agent’s goal is to collect as much reward in the fixed episode
length of T' = 250. For this environment we experiment with three properties. Property (1) and (2)
are identical to the 9 x 9 gridworld (see above). The third property (3) specifies that if the agent
reaches a ‘bomb’ state (B) then must reach and stay in a ‘medic’ state (M) for two timesteps, within
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10 timesteps, with PCTL-style notation this is denoted as [J(B — (<1°00<2M). For (3) we have
ID| = 22 and &; = 0.001, €' = 0.01 and N = 13.

Seaquest. Seaquest is an Atari 2600 games provided by the Arcade Learning Environment (ALE)
(Machado et al},[2018). Seaquest utilizes the full Atari controller action space (18 distinct actions),
which includes all possible combinations of FIRE, UP, DOWN, LEFT, RIGHT. The observations
provided by the ALE are 210 x 160 x 3 tensors which correspond to the RGB values of each
pixel on the screen. The observations are scaled to 64 x 64 x 3 pixel images with the RGB in-
formation intact. frame_skip=4 (every 4 frames are skipped with the agent’s action repeated)
and sticky_actions=0.25 (there is a 0.25 chance that the agent’s previous action is repeated)
are used, which are in line with the recommended settings for Atari games (Machado et all, [2018).
In Seaquest the goal is to collect reward by rescuing divers and ‘shooting’ enemy sharks and sub-
marines. In addition to collecting reward, the agent must manage its oxygen resources and avoid
being hit by sharks and the enemy submarines which fire back. In our experiments we evaluated two
regular safety properties, “(1) (O-surface — O(surface — diver)) A (O—out-of-oxygen) A (O—hit),
and (2) Odiver N\ —surface — O=3Csurface. The first property (1) is aligned closely with the goal
— the agent must only surface with a diver, not run out of oxygen and not be hit by an enemy. The
second property (2) states after the agent picks up a diver it must return to the surface within 30
timesteps, this property directly conflicts with the optimal policy.” For (1) the size of the DFA is
|D| = 4 and for (2) the size of the DFA is |D| = 30. For both properties the safety threshold (for
DreamerV3-Shield) is set to €, = 0.01 and the cost threshold (for DreamerV3 (Lag), PPO-Lag and
CPO) is setto C' = 1.0.

C.1 ADDITIONAL ENVIRONMENTS

Pacman This environment is inspired by
(2022), see Fig.[f] The agent (red triangle) operates in
a Pacman world, with one ghost and one piece of food
(yellow circle) to collect. A reward of +1 is obtained
by picking up the food, once the food is picked up the
food disappears and the agent must avoid the ghost for
the remainder of the fixed episode length 7' = 100, this
safety property is specified by the simple invariant prop-
erty LJ-ghost (with PCTL-style notation). The size of the
DFA is |D| = 2. Including all possible directions and )
locations for the agent and the ghost, and whether or not Figure 6: Pacman environment from
the food has been picked up yet, there are approximately (Voloshin et al } 2022).

8000 states. The agent can pick one of the following actions UP, DOWN, LEFT, RIGHT, STAY.
Although, note, as in standard Pacman navigation, the the agent can only turn around (180 degrees)
when they are facing a wall, limiting the navigational ability of the agent when compared to stan-
dard gridworld settings. The ghost has the same restrictions, however the ghost chases the agent
(following the shortest path) with probability 0.4 and chooses a random action uniformly from its
available moves with probability 0.6. The environment, is actually more challenging that you might
imagine, due to the random nature of the ghost, it is difficult force the ghost to follow the agent at
which point collecting the food becomes easy. For QL-Shield we use a step-wise safety-threshold
of ¢, = 0.01 and model checking horizon N = 10. For this environment we provide the results in

Appendix D.4]

D ADDITIONAL RESULTS AND ABLATION STUDIES

In this section we conduct a set of ablation studies, in particular, we conduct experiments in the
tabular gridworld environments, where in contrast to QL-Shield, we are given access to the transition
probabilities P and an optimal safe ‘backup policy’ denoted 7, which is constructed with value
iteration before training of the ‘task policy’ .. We also use exact PCTL model checking to compute
the conditional action probability Pr7-((s,q) = O=Naccept) when shielding the ‘task policy’.
Since P and 7 are fixed during learning, we can actually compute an action satisfaction set and
verify that Assumption [3.9]and [3.10]do in fact hold. This gives us a step-wise safety guarantee of &,
at the start of training, which will be reflected in our experimental results.
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We call this instantiation of our framework QL-Exact. The assumption of prior knowledge of P
of course does not fit in to the general RL framework, however it is interesting to see how quickly
QL-Shield (which is compatible with the typical RL framework) converges to the performance of
QL-Exact. We note that for QL-Exact the ‘task policy’ 7, is not ‘pre-trained’ and so the task
performance of QL-Exact is not immediately optimal. We provide the results below; we plot the
reward, the cost, the ‘episodic’ safety rate and the episode length where relevant.
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Figure 7: Ablation study with QL-Exact for Media Streaming.
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Figure 8: Ablation study with QL-Exact for Bridge Crossing.
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Figure 9: Ablation study with QL-Exact for 9 x 9 gridworld property (1) (reward, cost, episodic
safety rate, episode length).
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Figure 10: Ablation study with QL-Exact for 9 x 9 gridworld property (2).
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Figure 11: Ablation study with QL-Exact for 15 x 15 gridworld property (1).
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Figure 12: Ablation study with QL-Exact for 15 x 15 gridworld property (2).
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Figure 13: Ablation study with QL-Exact for 15 x 15 gridworld property (3).

D.1 EXTENDED DISCUSSION

In all cases we see that QL-Shield eventually converges to, or close to the safety and task perfor-
mance of QL-Exact, which provides a step-wise safety guarantee of € at the start of training. How-
ever, we note that this step-wise safety guarantee doesn’t always get us a good episodic guarantee, for
example in the Media Streaming environment, QL-Exact immediately provides a step-wise safety
guarantee of 1 — £, but only provides an ‘episodic’ safety guarantee of around 0.96, this is in line
with our theory which provides an ‘episodic’ safety guarantee of 1 —T"-¢; = 1 —40+0.001 = 0.96.

D.2 REWARD SHAPING AND COUNTERFACTUAL EXPERIENCE

In this section we ablate our approach by removing counterfactual experiences (CFE) from our
methodology. We note, that this only makes a difference for safety properties that are not simple
invariant properties, namely, property (2) and (3) for the 9 x 9 gridworld and 15 x 15 gridworld
environments. We also experiment with different reward shaping approaches (in addition to CFE),
for improving the convergence of the ‘backup policy’ 7. These approaches are detailed below.

Potential-based reward shaping. Potential-based reward shaping is an approach used to typically
deal with sparse or delayed reward environments. Potential-based reward shaping provides interme-
diate rewards of the following form,

T/(Slv S, CI/) = 7,(8/7 S, a’) =+ ’Y(I)(S/) - (I)(S) (43)

where ® : S — R is the potential function. Intuitively this provides the agent with a dense reward
signal for moving to ‘more promising’ states with higher potential values. Note that by discounting
the potential values with the original discount factor ~y this keeps the set of optimal policies that
maximize the original reward function unchanged (Ng et al.,|1999). Then if the potential function is
useful in some sense, this allows us to learn optimal policies more quickly. [[carte et al.| (2022) pro-
posed automated reward shaping (RS) for reward machines (RM). We adopt this same methodology
here. The potential function ® : S x Q@ — R is defined over product states (s,q) € S x Q, each
automaton state ¢ € Q is assigned a potential value v(q) computed by running value iteration over
the DFA D, with a different discount factor v/ < ~y. The cost function for the ‘backup policy’ 7, is

then redefined as,
C'((st;q1)) = C({5¢,q1)) +yv(qe) — v(gi-1) (44)

Cycle-based reward shaping. This approach is inspired by Shah et al.|(2024), although Shah et al.
(2024) is adapted to LTL-constraints which have a different satisfaction criterion to DFAs, we adapt
Shah et al.| (2024) to our setting. In particular, we first compute the length shortest path through
the DFA D, from each automaton state ¢ € Q to the initial state Qy, we implement this using
Breadth-First Search (BFS) in O(|D]). Each automaton state ¢ € Q is assigned a value v(gq) which
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corresponds to the length of the shortest path from g to Qp. This incentivizes the agent to return
the the initial state Qg as quickly as possible, while avoiding the accepting states of the DFA D,
which are sink nodes, i.e. v(q) = oo Vg € F. The cost function for the ‘backup policy’ 7y, is then
redefined as,

C'((s,q:)) = C({51, 1)) +vv(qr) — v(ge—1) (45)

Cycle-based reward shaping is in essence, another instantiation of potential based reward shaping
but with different potential values. In practice, setting v(q) = oo Vg € F is infeasible, rather we
just ignore the shaped cost function when transitioning to or from an accepting state. We provide
the full set of results below; we plot the reward, the cost, the ‘episodic’ safety rate and the episode
length where relevant.
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Figure 14: Reward Shaping and CFE for 9 x 9 gridworld property (2).
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Figure 15: Reward Shaping and CFE for 15 x 15 gridworld property (2).

—— QL-Shield =~ —— QL-Shield (No-CFE) = —— QL-Shield (Potential) QL-Shield (Cycle)

°

3

°
®

2

1

Reward
w 5 &
Cost
Safety rate
o oo
S

00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
Step x10° step x10° Step x10°

Figure 16: Reward Shaping and CFE for 15 x 15 gridworld property (3).

D.3 EXTENDED DISCUSSION (REWARD SHAPING)

In all cases we clearly see that without CFE QL-Shield has very unstable convergence both in terms
of reward and safety, often failing to converge at all to the optimal policy. This demonstrates that
CFE is crucial for efficiently learning the safety objective of the environment, when the safety-
property is more complex. CFE alleviates the issue of slow and unstable convergence, however
for property (2) in both the the 9 x 9 and 15 x 15 gridworld, potential-based reward shaping and
cycle-based reward shaping do seem to improve the performance of the agent, with both approaches
resulting in more stable convergence to the shortest route through the environment for the 9 x 9
gridworld, and an overall higher reward policy for the 15 x 15 gridworld. However, for property
(3) in the 15 x 15 gridworld, both potential-based reward shaping and cycle-based reward shaping
appear to result in slightly unstable learning for the ‘task policy’ 7,.. We note, that for property (3),
cycle-based reward shaping does improve the safety performance compared to the basic QL-Shield
with CFE. More investigation and hyperparameter tuning is likely required to understand which
approach is the de facto ‘best’.
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D.4 ADDITIONAL RESULTS (PACMAN)

In this section we present some additional results, in the Pacman environment from [Voloshin et al.
(2022). In particular, we provide results for QL, QL-Cost, QL-Shield and QL-Exact (defined ear-
lier). In this environment the task (reward) objective is relatively straightforward (41 for food),
however, balancing this with the safety objective [J-ghost is challenging due to the highly stochas-
tic behaviour of the ghost. We provide the results below; we plot the reward, cost and ‘episodic’
safety rate.
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Figure 17: Additional results for Pacman.

D.5 EXTENDED DISCUSSION (PACMAN)

As expected, when provided with the transition probabilities P and an optimal safe ‘backup pol-
icy’ 7, QL-Exact achieves the desired level of safety from the beginning of training. We see also
that the shield is not restrictive at all and QL-Exact quickly converges to the optimal reward policy.
QL-Shield also quickly converges, but almost never remains safe for the entire episode duration.
QL-Cost quickly finds an optimal task policy, and slowly starts to converge to the optimal safe pol-
icy, however this convergence is much slower than QL-Shield. We see that QL-Shield converges to
near the desired safety level within 300000 timesteps, however the convergence of the ‘task policy’
appears unstable during training. This environment has ~ 8000 states, making Q-learning challeng-
ing but still feasible. The slow convergence of the ‘safe policy’ is likely impeding the progress of the
‘task policy’; once the ‘safe policy’ has properly converged we might expect that the shield overrides
the ‘task policy’ in a more consistent manner from each state, allowing the ‘task policy’ converge to
the expected performance of QL-Exact. Additional hyperparameter tuning of the learning rate for
the ‘task policy’ might also improve matters.

E HYPERPARAMETERS AND IMPLEMENTATION DETAILS

E.1 ACCESS TO CODE

To maintain a high standard of anonymity we provide code for both the gridworld and Atari Seaquest
experiments in the supplementary material as part of the paper submission. The gridworld environ-
ments are implemented with the OpenAl Gym interface (Brockman et al.,|2016). Tabular Q-learning
is implemented with numpy in Python, the model checking procedures (both exact and statistical)
are implemented with JAX (Bradbury et al., [2018) which supports vectorized computation on GPU
and CPU. The code for Atari Seaquest is our own branch of the code base for AMBS (Goodall &
Belardinelli, [2023)), this also requires JAX among other preliminaries, for setup instructions please
refer to the AMBS code base https://github.com/sacktock/AMBS (MIT License). For
PPO-Lag (Ray et al [2019) and CPO (Achiam et al., 2017), we use the implementations provided
by Omnisafe (Jiaming Ji, 2023), the code for running these benchmarks can also be found in the
supplementary material however, for setup instructions please refer to the Omnisafe code base
https://github.com/PKU-Alignment/omnisafe (Apache-2.0 license).

Training details. For collecting both sets of experiments we has access to 2 NVIDIA Tesla A40
(48GB RAM) GPU and a 24-core/48 thread Intel Xeon CPU each with 32GB of additional RAM.
For the ‘colour’ gridworld experiments each run can take several minutes up to a day depending
on which property is being tested and whether exact or statistical model checking is used.
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For the Atari Seaquest experiments each run can take 8 hours to 1 day depending on the precise
configuration of DreamerV3, in general we see a slow down of x2 when using DreamerV3-Shield
compared to the unmodified DreamerV3 baseline. Memory requirements may differ depending on
the DreamerV 3 configuration used, for the xlarge configuration 32GB of GPU memory will suffice.

Statistical significance. Error bars are provided for each of our experiments. In particular, we
report 5 random initializations (seeds) for each experiment, the error bars are non-parametric
(bootstrap) 95% confidence intervals, provided by seaborn.lineplot with default parame-
ters: errorbar=(‘ci’, 95), n_boot=1000. The error bars capture the randomness in the
initialization of the DreamerV3 world model and policy parameters, the randomness of the environ-
ment and any randomness in the batch sampling.

E.2 THE AUGMENTED LAGRANGIAN

We first define the following objective functions,

T

Jr(r) = E, ZR(st,at)] (46)
t=0
T

Je(m) = Eg ZC(St’at)] 47)
t=0

(48)

The augmented Lagrangian (Wright, 2000) is an adaptive penalty-based technique for the following
constrained optimization problem,

max Jg(m) subjectto Je(m) <d (49)

where d is some cost threshold. The corresponding Lagrangian is given by,

Jr(m) if Jo(m) <d

50
—00 otherwise (50)

max min [Jg(7) — A (Je(n) —d) ]| = Inax{

T A>0 T

The LHS is an equivalent form for the constrained optimization problem (RHS), since if 7 is fea-
sible, i.e. Je(m) < d then the maximum value for A is A = 0. If 7 is not feasible then A can be
arbitrarily large to solve this equation. Unfortunately this form of the objective function is non-
smooth when moving from feasible to infeasible policies, thus we introduce a proximal relaxation
of the augmented Lagrangian (Wright, 2006),

1
mgxr/\nzirol [JR(W) —A(Je(m) —d) + ﬁ()\ - )\k)Q] (51)

where (i, is a non-decreasing penalty multiplier dependent on the gradient step k. The new term
that has been introduced here encourages the ) to stay close to the previous value A, resulting in
a smooth and differentiable function. The derivative w.r.t A gives us the following gradient update
step,

(52)

A\ {)\k—F,uk(Jc(ﬂ')—d) if \p + pr(Je(m) —d) >0
k+1 = .
0 otherwise

At each gradient step, the penalty multiplier uj is updated in a non-decreasing way by using some
small fixed (power) parameter o,

firs1 = max{(pg)' T, 1} (53)
The policy 7 is then updated by taking gradient steps of the following unconstrained objective,

j(ﬂ-a Aka /.Lk) = J’R(ﬂ-) - \I/C(T(', A/m /”'k)
where,

)\k(Jc(ﬂ')*d)+%(Jc(7T)fd)2 if)\k+uk(<]c(71')*d)20
e (m Aes i) =9 (ap)?
24

otherwise

E.3 TABULAR RL
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Table 1: Hyperparameter details for QL, QL-Cost and QL-Shield

Name Symbol Value
Q-Learning

Learning rate « 0.1

Discount factor ¥ 0.95

Exploration type - Boltzmann

Temperature T 0.05

QL-Shield

Model checking type - Statistical

Number of samples m varies

Step-wise safety €t varies

Failure probability ¢ varies

Model checking horizon N varies

Approximation error e’ varies

‘Backup policy’

Learning rate a 0.1

Discount factor % 0.95

Exploration type - Boltzmann

Temperature T 0.01

Cost coefficient c 10.0
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For the hyperparameters that vary we provide the following details. For Media Streaming: m =
8000, e; = 0.001, 6, = 0.01, N = 5, & = 0.02, Bridge Crossing: m = 8000, &; = 0.05,
0y = 0.01, N =5, ¢ = 0.02, 9 x 9 gridworld: property (1): m = 16000, ¢, = 0.01, é; = 0.01,
N = 3, €'t = 0.01, property (2): m = 8000, ¢, = 0.12, §; = 0.01, N = 5, ¢ = 0.02 and for
15 x 15 gridworld: property (3) m = 1000, ¢; = 0.001, 6; = 0.01, N = 13, ¢’ = 0.05.

For PPO-Lag (Ray et al.,|2019) and CPO (Achiam et al.| 2017)) the only hyperparameters that vary
other than the cost threshold C' is the steps per epoch n. For Media Streaming: n = 400, Bridge
Crossing n = 2000, 9 x 9 gridworld » = 1000 and for 15 x 15 gridworld n = 2500.

Table 2: Hyperparameter details for PPO-Lag (Ray et al., 2019) and CPO (Achiam et al., 2017) —
gridworld environments

Name Symbol  Value
Actor learning rate n 0.0003
Discount factor 0% 0.95
Cost coefficient c 1.0
Cost threshold C varies
Cost gamma Ye 0.95
TD-lambda A 0.95
Cost TD-lambda Ae 0.95
Max grad norm - 0.5
Entropy coefficient - 0.0
Steps per epoch n varies
PPO-Lag
Initial Lagrangian multiplier A, 10.0
Update iterations (per epoch) & 40
Epsilon clip Eclip 0.2
Batch size B 64
CPO
Update iterations (per epoch) k 10
Batch size B 128
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E.4 DEEPRL

Table 3: General hyperparameter details for DreamerV3 (Hafner et al., 2023)

Name Symbol Value
Replay capacity D 106
Batch size B 16
Batch length - 64
Number of envs - 8
Train ratio - 64
Number of MLP layers - 5
Number of MLP units - 1024
Activation - LayerNorm + SiLU
World Model
Configuration size - medium
Number of latents - 32
Classes per latent - 32
Number of layers - 3
Number of hidden units - 640
Number of recurrent units - 1024
CNN depth - 48
RSSM loss scales Bpred> Bayns Brep 1.0, 0.5, 0.1
Predictor loss scales Bo, Brs Be, By 1.0,1.0,1.0,1.0
Learning rate - 1074
Adam epsilon €adam 108
Gradient clipping - 1000
Actor Critic
Roll-out horizon H 15
Discount factor ¥ 0.997
TD lambda A 0.95
Critic EMA decay - 0.98
Critic EMA regularizer - 1
Return norm. scale Sreward Per(R,95) — Per(R, 5)
Return norm. limit Lreward 1
Return norm. decay - 0.99
Actor entropy scale Nactor 3-107¢
Learning rate - 3-107°
Adam epsilon €adam 10~°
Gradient clipping - 100
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Table 4: Hyperparameter details for DreamerV3-Lag

Name Symbol  Value
Penalty multiplier I 5-107°
Initial Lagrange multiplier ~ \* 0.01
Penalty power o 1076
Cost coefficient C 1.0
Cost threshold d 1.0

Table 5: Hyperparameter details for DreamerV3-Shield

Name Symbol  Value
Number of samples m 512
Step-wise safety €t 0.01
Failure probability 1 0.01
Lookahead/shielding horizon N {30, 50}
Approximation error e’ 0.01
Cost coefficient (‘backup policy’) ¢ 10

Table 6: Hyperparameter details for PPO-Lag and CPO — Atari Seaquest environment

Name Symbol  Value
Actor learning rate n 0.00003
Discount factor v 0.9967
Initial Lagrangian multiplier Ay 10.0
Cost coefficient c 1.0
Cost threshold C 1.0
Cost gamma Ye 0.95
TD-lambda A 0.95
Cost TD-lambda Ae 0.95
Max grad norm - 40.0
Entropy coefficient - 0.0
Steps per epoch n 20000
PPO-Lag
Update iterations (per epoch) k 40
Epsilon clip Eclip 0.2
Batch size B 64
CPO
Update iterations (per epoch) &k 10
Batch size B 128
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