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ABSTRACT
LLMs have demonstrated remarkable performance across various fields, prompting data centers to use high com-
putation cost accelerators like GPUs and NPUs for model training and inference. However, the immense size
of these models and key-value (KV) caches poses substantial memory capacity challenges. While offloading-
based approaches utilize CPU memory to store model weights and KV caches—enabling deployment of mod-
els exceeding GPU memory capacity—they often suffer from performance degradation due to PCIe transfer
bottlenecks. To address the performance limitations of existing offloading-based LLM inference in CPU and
memory-limited single GPU systems, this paper proposes FlexInfer. FlexInfer uses a performance estimator to
dynamically select the most appropriate execution policy for each phase—prefill and decode—based on hard-
ware configurations and runtime parameters such as sequence length and batch size. Our evaluation results show
that by selecting optimal policies for these phases, FlexInfer can significantly reduce end-to-end latency by 75%
and 76% on average across two different server configurations, when compared to FlexGen, a state-of-the-art
offload-based LLM inference technique.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) have
demonstrated remarkable performance across various
tasks, ushering in a new era of generative AI. These
LLMs are now widely deployed in numerous applications,
including text generation, machine translation, and be-
yond (Zhang et al., 2022; Touvron et al., 2023; Brown
et al., 2020; Amodei et al., 2016). To meet the sub-
stantial computational demands of LLMs, companies have
introduced specialized units in their existing processors,
such as NVIDIA’s Tensor Cores (Markidis et al., 2018)
in GPUs, Intel’s TMUL unit (Nassif et al., 2022) in
CPUs, or even custom AI offload accelerators such as
Meta’s MTIA (Firoozshahian et al., 2023) or Google’s
TPU (Jouppi et al., 2023). Modern data centers are increas-
ingly adopting these accelerators to efficiently handle LLM
training and inference workloads (Hu et al., 2024b).

Despite these advancements, serving LLMs remains ex-
pensive, primarily due to their high memory require-
ments (Kwon et al., 2023; Sheng et al., 2023; Aminabadi
et al., 2022). As model sizes continue to grow to achieve
higher accuracy based on the scaling law (Kaplan et al.,
2020), the number of parameters increases significantly,
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demanding substantial memory just to store the model
weights. For instance, even with the FP16 data type, re-
cent models such as GPT-175B (Brown, 2020) require 350
gigabytes of memory for storing weights alone, which can
necessitate five expensive NVIDIA H100 GPUs. Further-
more, models used in industry, such as GPT-4 (Achiam
et al., 2023) are known to be even larger (Achiam et al.,
2023; Chowdhery et al., 2023; Dubey et al., 2024). In ad-
dition to model weights, the KV cache used to optimize
repetitive computations in LLM inference also incurs sig-
nificant memory challenges because the size of the KV
cache scales with the sequence length, batch size, and num-
ber of model layers. For example, for OPT-66B with a se-
quence length of 4096 and a batch size of 32, the KV cache
can consume as much as 288 GB of memory. Therefore,
the memory capacity requirements for the combination of
model weights and KV cache presents a considerable chal-
lenge for LLM inference serving systems.

To handle LLMs exceeding GPU memory capacity, recent
studies (Sheng et al., 2023; Zhang et al., 2024; Aminabadi
et al., 2022) have proposed offloading-based LLM infer-
ence serving techniques, where model weights, activations,
and KV cache are stored in CPU memory and transferred
one layer at a time via the CPU-GPU interconnect, typi-
cally PCIe, during the previous layer’s computation on the
GPU. While offloading enables handling larger models, it
introduces significant PCIe data transfer overhead. With
limited PCIe bandwidth, these transfers become a major
bottleneck. To address this, prior studies have aimed to
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improve the performance of offloading-based LLM infer-
ence by reusing model weights across batches and overlap-
ping data transfers with layer computation (Sheng et al.,
2023; Aminabadi et al., 2022). However, since LLM layer
computation times are much shorter than PCIe transfer
times, these systems still face I/O bottlenecks. For instance,
when using FlexGen (Sheng et al., 2023), a state-of-the-art
offloading-based inference framework, we observe the ex-
posed PCIe data transfer time accounted for about 96-98%
of the total execution time. This demonstrates that while
offloading-based LLM inference can handle larger models,
addressing PCIe transfer overhead is crucial for achieving
better performance. An alternative solution using multiple
GPUs with model parallelism could address the memory
constraints, but this approach substantially increases de-
ployment costs, and well-optimized implementations are
not readily available (Narayanan et al., 2021; 2019).

Recent studies demonstrate that CPUs with dedicated
GEMM accelerators like Intel AMX can be effective at
LLM inference, sometimes outperforming GPU-based so-
lutions (Na et al., 2024; Kim et al., 2024). While most im-
plementations offload execution to GPUs and leave CPU
computation resources largely idle, these findings suggest
that for LLM inference, performing some computation on
the CPU is a viable option. Based on these observations,
we explore efficient ways to utilize both CPU and GPU
resources for LLM inference, considering how to parti-
tion work between a CPU and GPU and how to man-
age CPU-GPU communication. While modern CPUs offer
significant memory capacity and dedicated GEMM hard-
ware, their computational throughput lags GPUs. There-
fore, careful workload distribution based on phase charac-
teristics is essential for optimal performance.

In this paper, we propose FlexInfer, a system designed to
minimize LLM inference latency in memory-constrained
system environments by effectively leveraging both CPU
and GPU computation. FlexInfer offers three key execution
policy options: (1) CPU computation, (2) offloading-based
GPU execution, and (3) CPU-GPU static partitioning ex-
ecution. While this study focuses on these three policies,
the framework can be extended to incorporate additional
execution strategies as needed. The system dynamically
selects the optimal execution policy using an estimator that
considers the system’s CPU and GPU performance, CPU-
GPU communication capability, as well as user-specified
parameters such as input sequence length, output sequence
length, and batch size. The estimator considers the prefill
and decode phases of LLM inference separately. It predicts
and uses the best policy for each phase, optimizing perfor-
mance in different stages of the inference process.

Our experimental results show that FlexInfer significantly
improves performance over existing state-of-the-art of-
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Figure 1. Transformer-based LLM architecture.

floading techniques, reducing average end-to-end latency
by 75% and 76% on two different server configurations.
These results demonstrate that our approach performs con-
sistently well across different hardware environments.

We summarize the contributions of this paper as follows:

• We identify and analyze key performance bottlenecks in
existing GPU offloading-based approaches as they relate
to the prefill and decode phases of modern LLMs.

• We explore the potential of CPU computation in LLM
inference and identify trade-offs between various execu-
tion policies for hybrid CPU-GPU execution.

• We propose FlexInfer, a new approach that uses an esti-
mator to select execution policies for the prefill and de-
code phases based on phase-specific characteristics.

• We demonstrate that FlexInfer can significantly reduce
LLM inference latency by 75% and 76% on two different
server configurations across various models.

2 BACKGROUND

2.1 Large Language Model (LLM) Inference

LLM architecture: Recent LLMs (Brown, 2020; Dubey
et al., 2024) employ decoder-based transformer models that
generate tokens in an autoregressive manner, as illustrated
in Figure 1. The transformer architecture includes multi-
ple decoder blocks (Vaswani, 2017) with two key compo-
nents: a Multi-Head Attention cell that uses an attention
mechanism to understand relationships between tokens and
a Feed-Forward layer that performs nonlinear transforma-
tions to refine the sequence representations.

LLM inference phases and characteristics: LLM infer-
ence consists of two phases, prefill and decode, as illus-
trated in Figure 1. In the prefill phase, the model takes in
the input prompt and generates one new token. This phase
is computationally intensive as it requires computing hid-
den representations for the entire input sequence simultane-
ously with an attention mechanism that has quadratic com-
plexity over sequence length.In the decode phase, LLMs
iteratively generate one token at a time until they reach a
predefined sequence length or end-of-sequence token. The
decode phase generally involves KV caching, an optimiza-
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Schemes Tensor CPU Flexible
Offload Computation Execution Policy

Accelerate (Wolf, 2019) ✓ ✗ ✗
DeepSpeed-ZeRO (Aminabadi et al., 2022) ✓ ✗ ✗

FlexGen (Sheng et al., 2023) ✓ ▲ ✗
HeteGen (Xuanlei et al., 2024) ✓ ✓ ✗

FlexInfer (Ours) ✓ ✓ ✓

(▲: Only used for attention score operation)

Table 1. Comparisons with prior offloading techniques

tion to eliminate redundant computation of key-value ma-
trix contents across iterations. This typically makes the de-
code phase memory-bound.

2.2 Offloading-based LLM Inference

The large memory footprint of LLM inference, caused by
model weights and the KV cache, often exceeds the mem-
ory capacity of recent GPUs. To address this limitation,
several offloading techniques have been proposed (Wolf,
2019; Aminabadi et al., 2022; Sheng et al., 2023; Xuanlei
et al., 2024). Table 1 compares the characteristics of pre-
vious offloading-based LLM inference techniques. These
techniques reduce the GPU memory requirements by stor-
ing model weights and the KV cache in CPU memory or
on disk. While enabling large models to run on modest
capacity GPUs, these approaches introduce significant per-
formance overhead due to data transfers over the slow PCIe
bus. For example, despite attempts to overlap transfers with
computation, PCIe bandwidth limitations still result in sub-
stantial transfer time, underutilizing GPU resources.

To mitigate performance degradation due to I/O bottle-
neck, recent research has explored incorporating CPU com-
putation into offloading-based LLM inference. For in-
stance, FlexGen (Sheng et al., 2023) partially leverages
CPU computation for attention score calculations in the
decode phase, while HeteGen (Xuanlei et al., 2024) em-
ploys CPU-GPU tensor parallelism—using CPU-based op-
erations (e.g., linear layers)—to exploit both CPU and GPU
while hiding data transfer overhead. However, these solu-
tions often rely on limited CPU utilization or adopt fixed
execution policies that do not consider varying runtime pa-
rameters and hardware configurations. In particular, the
benefits of CPU-GPU tensor parallelism can diminish at
larger batch sizes or with longer input sequences, where
CPU throughput becomes a bottleneck.

In contrast, FlexInfer dynamically determines the most
suitable execution strategy for each phase, taking into ac-
count runtime parameters and hardware configurations.
This flexible execution policy more effectively balances
work between CPU and GPU, reducing PCIe transfer over-
head and minimizing offloading-based LLM inference la-
tency on GPUs with limited memory.
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Figure 2. Overview of Intel AMX architecture (Intel, 2023).
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Figure 3. Offloading-based LLM inference execution time break-
down analysis for larger models (OPT-66B and LLaMA-2 70B)
on A100 and H100 GPU using FlexGen (Sheng et al., 2023)

2.3 Matrix Multiplication Accelerators on CPUs

Recent CPUs include dedicated matrix multiplication hard-
ware to meet the demands of machine-learning applica-
tions. Leading CPU vendors have introduced specialized
hardware extensions: Intel’s Advanced Matrix Extensions
(AMX) (Nassif et al., 2022), IBM’s Matrix Multiply As-
sist (MMA) (de Carvalho et al., 2022), and Arm’s Scalable
Matrix Extension (SME) (Weidmann, 2021). Intel’s AMX,
introduced with Sapphire Rapids (SPR) processors (Nas-
sif et al., 2022), consists of two key components shown
in Figure 2: Tile Matrix Multiply Units (TMUL), which
accelerate matrix operations on BF16 and INT8 data for-
mats (Nassif et al., 2022; Jeong et al., 2021; 2023), and
Tiles, which are 2D registers for matrix storage.

3 MOTIVATION

3.1 Offloading LLM Inference Analysis

To analyze offloading-based LLM inference perfor-
mance, we conduct experiments on two different servers,
with different generations of CPUs (ICL/SPR), GPUs
(A100/H100), and PCIe interconnects (PCIe 4.0/5.0). De-
tailed server configurations are described in Section 6.

Execution time breakdown result: Figure 3 shows
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(a) Execution time comparison when the input length is set
to 128 and the output length to 32.
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(b) Execution time comparison when the input length is set
to 1024 and the output length to 32.

Figure 4. End-to-end latency comparison with varying batch sizes
for OPT-66B and LLaMA2-70B models. Figure (a) shows the
results for an input length of 128, while Figure (b) presents the
results for an input length of 1024.

the execution time breakdown of running OPT-66B and
LLaMA2-70B models using FlexGen on A100 and H100
GPUs with an input length of 1024 while generating out-
puts of length 32, across batch sizes ranging from 1 to 32.
In this setup, the model weights and KV cache are stored
in CPU memory, and the system overlaps the computation
of the current layer with the loading of the next layer’s
weights and KV cache via PCIe to minimize idle GPU time.
Using NVIDIA’s Nsight profiling tool (NVIDIA, 2025), we
analyze the detailed execution timeline and break down the
total execution time into two components: exposed PCIe
data transfer time that could not be fully overlapped (Data
Load) and GPU computation time (GPU compute).

We observe that as batch size increases, the amount of com-
putation grows and the system attempts to overlap compu-
tation with communication. However, data transfer time
still dominates the total execution time across all configu-
rations. On the A100 GPU, PCIe data transfers dominate
the execution time, ranging from 91.6% to 97.6% of the
total runtime for the OPT-66B model and from 89.2% to
97.3% for the LLaMA2-70B model. Similarly, even on the
H100 GPU server with higher PCIe bandwidth, PCIe data
transfers still consume from 87% to 96.2% of the execu-
tion time for the OPT-66B model and from 86.3% to 95.8%
for the LLaMA2-70B model. These results highlight that
even with state-of-the-art GPU hardware, the limited PCIe
bandwidth incurs a severe bottleneck for offloaded LLM
inference.

3.2 Opportunities for Exploiting CPU Computation

Given the PCIe data transfer overhead in offloading-based
LLM inference, the emergence of GEMM accelerators in

recent CPUs, and the larger memory capacity compared to
GPU, we investigate the potential of exploiting CPU com-
putation in LLM inference. We conduct experiments using
two Intel Xeon CPUs: the 6454S (SPR) with AMX support
and the 8352Y (ICL) without AMX. For CPU-based LLM
inference, we use Intel Extension for PyTorch (Intel, 2020),
which provides CPU-specific kernel optimizations. These
include AMX-based optimizations tailored for SPR CPUs
and AVX-512 optimizations for ICL CPUs.

End-to-end latency comparison: Figure 4 compares the
execution time of LLM inference directly on the CPU with
FlexGen for OPT-66B and LLaMA2-70B, normalized to
FlexGen running on the H100 GPU. As batch size and in-
put sequence length increase, the computation required for
both prefill and decode phases grows, resulting in a per-
formance decline for the CPU compared to the GPU, since
compute throughput is much higher on the GPU. This is
especially noticeable with larger batch sizes or longer in-
put sequences, underscoring the CPU’s limitations in these
scenarios.

As shown in Figure 4(a), for short inputs, the ICL CPU
outperforms GPU-based FlexGen at small batch sizes (up
to 8 for OPT-66B and LLaMA-70B), with execution times
ranging from 5% to 42.1% faster for OPT-66B and from
7.4% to 39.2% faster for LLaMA-70B. However, for larger
batch sizes, the ICL CPU is slower than the GPU, by 1.3×
to 2× for OPT-66B and 1.3× to 2× for LLaMA2-70B. The
SPR CPU with AMX shows superior performance across
most batch sizes, with execution times ranging from 16.5%
to 68.2% faster for OPT-66B and from 28.3% to 70% faster
for LLaMA2-70B.

Figure 4(b) shows the results for an input length of 1024
and an output length of 32. With this increased input
length, the ICL CPU experiences a slowdown ranging from
1.3× to 6.4× for the OPT-66B model and from 1.1× to
6.6× for the LLaMA2-70B model compared to GPU of-
floading, starting from batch size 2. For the SPR CPU,
execution time begins to increase from batch size 8 on-
ward, with slowdowns ranging from 1.1× to 2.3× for OPT-
66B and 1.3× to 2.6× for LLaMA2-70B, highlighting the
impact of larger input sequence lengths on CPU perfor-
mance. These results show that while CPUs have poten-
tial for handling models that exceed GPU memory capac-
ity, their lower computation throughput limits their perfor-
mance, especially with larger batch sizes and longer input
sequences.

Prefill and decode phase comparison: As discussed in
Section 2, LLM inference consists of two phases: prefill
and decode. We evaluate phase-specific performance using
two standard metrics (Gim et al., 2024; Patel et al., 2024):
Time to First Token (TTFT) for the prefill phase and Time
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(a) TTFT and TPOT comparison when the input length
is set to 128 and the output length to 32.
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(b) TTFT and TPOT comparison when the input length
is set to 1024 and the output length to 32.

Figure 5. TTFT and TPOT comparison for OPT-66B.

Per Output Token (TPOT) for the decode phase.

Figure 5 presents TTFT and TPOT measurements for the
OPT-66B model normalized to FlexGen on H100, varying
input length and batch size, while keeping the output length
fixed at 32. The prefill phase is computationally intensive
as it processes all input tokens, while the decode phase is
memory-bound, processing one new token per sequence at
a time using the KV cache. Despite transferring weights
and KV caches from CPU memory, the TTFT is much bet-
ter for the GPU execution with offloading in most cases due
to its higher computational throughput. The ICL CPU sees
a slowdown of 2× to 28.2× for an input length of 128 and
a slowdown of 13.5× to 45.1× for an input length of 1024.
The SPR CPU shows 39% faster TTFT due to its dedicated
hardware for GEMM operations when input length is 128
with batch size 1, but it is still slower by 1.1× to 10.1×
for an input length of 128 from batch size 2, and 7.8× to
15.5× for an input length of 1024.

For the decode phase, CPU execution benefits from hav-
ing all required data (weights, activations, and KV cache)
in memory, while GPU execution with offloading, despite
overlapping PCIe transfers with computation, still experi-
ences significant overhead due to data movement during
each layer’s processing. As a result, as shown in Fig-
ure 5, both the ICL CPU and SPR CPU show lower TPOT
than the H100 GPU. For the ICL CPU, TPOT is 29.5% to
50.5% lower for an input length of 128 and 30.3% to 50.7%
lower for an input length of 1024. The SPR CPU demon-
strates even better performance, with TPOT values 62.9%
to 70.3% lower for an input length of 128 and 59.4% to
70.8% lower for an input length of 1024.

In summary, GPUs outperform CPUs in the compute-
intensive prefill phase despite data transfer overhead,
whereas CPUs achieve better performance in the decode
phase due to lower computational demands of the decode
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phase and the lack of PCIe data transfers.

4 BASELINE EXECUTION POLICIES IN
CPU-GPU SYSTEMS

In this section, we outline the various execution policies
that might be used with our proposed FlexInfer approach
in a CPU-GPU system. As shown in Figure 6, a policy de-
termines the distribution of model layers between the CPU
and GPU. The effectiveness of a policy depends on several
factors such as input length, batch size, and the computa-
tional throughput of the CPU and GPU.

4.1 CPU-only

In the CPU-only execution policy, all computation is per-
formed on the CPU, utilizing its large memory capacity to
store model weights, activations, and the KV cache. Given
the CPU’s relative weakness in computation throughput,
this policy favors memory-bound scenarios, i.e., larger
models and longer output sequences. Furthermore, this
policy is more effective for the decode phase, which is less
compute intensive, as discussed in Section 3.1.

4.2 GPU with Tensor Offloading (FlexGen)

GPU with tensor offloading involves transferring the model
weights and KV cache that reside in CPU memory to the
GPU via PCIe for computation. In this work, we use Flex-
Gen (Sheng et al., 2023) as our offloading baseline. Flex-
Gen overlaps the execution of layer i (tcompute gpu i) and the
loading of layer i + 1 (tload i) so that the latency per layer
is max(tcompute gpu i, tload i) as illustrated in Figure 6. If
data transfers are slower than the computation on the GPU
(tcompute gpu i < tload i), they will be the bottleneck and
can actually dominate execution time. This is more likely
when computation is small, e.g., in the decode phase, as
discussed in Section 3.2.
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4.3 CPU-GPU Static Partitioning (SplitGen)

In addition to the CPU-only and GPU with offloading ap-
proaches, we explore a hybrid execution policy we call
“SplitGen” where the model is split statically between CPU
and GPU. As shown in Figure 6, with this execution pol-
icy the first N −M layers are assigned to the CPU and the
remaining M layers are assigned to the GPU.

To determine M , SplitGen considers the GPU memory
size and tries to fit as many layers as possible on the
GPU. To minimize the overall latency, during the prefill
phase, SplitGen overlaps the CPU execution of the first
N −M layers (tcompute cpu n-m) and the loading of the final
M layers (tload m) as illustrated in the figure. The prefill
phase latency is max(tcompute cpu n-m, tload m) + ttransfer +
tcompute gpu m where tcompute gpu m is the execution time of
the last M layers on the GPU and ttransfer is the time to
transfer the output of the last layer computed on the CPU
to the GPU. During the decode phase, we do not need to
re-transfer the last M layers to the GPU because SplitGen
keeps them in GPU memory without eviction. As such,
this is especially helpful in prefill phases with short input
sequences and in the decode phase as it minimizes CPU-
GPU communication.

4.4 Limitations of Homogeneous Execution Policies
in LLM inference

LLM inference performance can be significantly affected
by runtime parameters such as input length, output length,
and batch size, as well as hardware capabilities including
CPU/GPU compute throughput and memory/interconnect
bandwidth. Depending on these factors, different execution
strategies—CPU-only, GPU with offloading, and CPU-
GPU static partitioning—can yield varying performance.
To minimize LLM inference latency, it is crucial to dynam-
ically select execution policies that consider both the dis-
tinct characteristics of prefill and decode stages, as well as
runtime parameters and hardware configurations.

Variables Description
N Number of decoder blocks (layers) in model
M Number of layers executed on the GPU

THDevice Compute throughput of the device
BWDevice Memory bandwidth of the device
BWICN interconnect bandwidth
EffDevice Efficiency correction factor for the device
CPrefill Computation amount per decoder block in prefill phase
DPrefill Data amount per decoder block in prefill phase
CDecode Computation amount per decoder block in decode phase
DDecode Data amount per decoder block in decode phase

DKVCache Data amount for KV cache per decoder block
DOutput Data amount for output per decoder block

DCPU→GPU Data transferred from CPU to GPU per decoder block

Table 2. Notations for TTFT and TPOT estimation

5 FLEXINFER DESIGN

5.1 Overview

To overcome the limitations of using a single execution
policy for inference and to effectively minimize LLM in-
ference latency under varying runtime and hardware con-
figurations, we propose FlexInfer. As shown in Figure 7,
FlexInfer comprises two main components: the Execution
Planner and the Inference Executor. The Execution Planner
selects a policy for each of the prefill and decode phases
by analyzing the model architecture, runtime information,
and server hardware configurations. The Inference Execu-
tor performs inference according to the chosen policies.

5.2 Execution Planner

The Execution Planner determines the best execution poli-
cies for the prefill and decode phases based on the specific
LLM, input length, output length, batch size, and hard-
ware configuration (i.e., CPU and GPU compute through-
put, memory bandwidth, and CPU-GPU interconnect band-
width). While the Execution Planner currently focuses on
three baseline policies—CPU-only, GPU with offloading,
and SplitGen—for the prefill and decode phases, it can
be extended to incorporate additional execution strategies
when necessary.

We develop an estimator that uses an analytical model to
predict TTFT and TPOT for each execution policy. The es-
timator first analyzes the workload characteristics, includ-
ing the amount of computation required for each layer’s
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decode block (e.g., Attention and Feed-Forward Network
(FFN) modules), the memory footprint, and the volume of
CPU-GPU data transfers. It then combines that workload
information with the system’s hardware properties, such as
the compute throughput and memory bandwidth of each
component, to predict TTFT and TPOT for each policy.
Additionally, to account for the gap between theoretical
and achievable hardware performance (such as GEMM ac-
celeration hardware not reaching full utilization), we incor-
porate profiling results from an offline phase. These results
provide insights into a component’s actual efficiency across
different input dimensions, allowing the estimator to more
accurately handle variations in throughput.

Table 2 lists the notation used in TTFT and TPOT esti-
mation. Using the notation defined in Table 2, we es-
timate TTFT and TPOT for the three execution policies:
CPU-only execution, GPU with offloading, and SplitGen.
Equations 1-3 demonstrate how to calculate the estimated
TTFT and TPOT for each execution policy. To bridge the
gap between theoretical and actual hardware performance,
we incorporate component-specific efficiency factors (e.g.,
EffCPU Comp, EffGPU Mem, EffICN), which are derived from
offline profiling.

Equation 1 represents the CPU-only execution where all
computations are performed on the CPU. Equation 2 shows
the GPU offloading where the entire model is executed on
the GPU by overlapping the data transfer with the layer
computation. Finally, Equation 3 describes the estimated
TTFT and TPOT for SplitGen policy, where M is the esti-
mated maximum number of layers that loaded on the GPU
and the first (N−M) layers are executed on the CPU while
the final M layers are processed on the GPU.

TTFT =

(
CPrefill

THCPU × EffCPU Comp
+

DPrefill

BWCPU × EffCPU Mem

)
×N

TPOT =

(
CDecode

THCPU × EffCPU Comp
+

DDecode + DKVCache

BWCPU × EffCPU Mem

)
×N

(1)

TTFT = max

(
CPrefill

THGPU × EffGPU Comp
+

DPrefill

BWGPU × EffGPU Mem
,

DCPU→GPU

BWICN × EffICN

)
×N

TPOT = max

(
CDecode

THGPU × EffGPU Comp
+

DDecode + DKVCache

BWGPU × EffGPU Mem
,

DCPU→GPU

BWICN × EffICN

)
×N

(2)

TTFT = max

(
CPrefill

THCPU × EffCPU Comp
+

DPrefill

BWCPU × EffCPU Mem
,

DCPU→GPU

BWICN × EffICN

)
× (N −M)

+
DOutput

BWICN × EffICN
+

(
CPrefill

THGPU × EffGPU Comp
+

DPrefill

BWGPU × EffGPU Mem

)
×M

TPOT = (
CDecode

THCPU × EffCPU Comp
+

DDecode

BWCPU × EffCPU Mem
)× (N −M)︸ ︷︷ ︸

given M layers are already loaded on GPU

+
DOutput

BWICN × EffICN
+

(
CDecode

THGPU × EffGPU Comp
+

DDecode + DKV Cache

BWGPU × EffGPU Mem

)
×M

(3)

5.3 Inference Executor

Once the Execution Planner selects an execution policy for
each phase, the Inference Executor is responsible for car-
rying out the inference process. The Executor manages the
work done by the CPU and GPU, as well as communica-
tion between them. It ensures that each phase is executed
according to the selected policy, whether the phases use
the same policy or different policies. It also manages data
transfers between CPU memory and GPU memory, ensur-
ing that each phase has the necessary data to complete its
computation. Additionally, The Executor handles synchro-
nization between the CPU and GPU, ensuring that data
transfers occur in parallel with computation to minimize
idle time.

For instance, if the Execution Planner selects GPU with of-
floading for the prefill phase and the SplitGen policy for
the decode phase, as shown in Figure 7 (Scenario 1), the
Executor overlaps layer computation with the loading of
weights for the next layer during the prefill phase. In the de-
code phase with SplitGen, the Execution Planner executes
the first N-M layers on the CPU, transfers the final output
activation from the CPU to the GPU, and runs the last M
layers on the GPU. To prepare for this, the Executor stores
the last M layers in GPU memory during the prefill phase,
along with any key-value cache generated for these M lay-
ers, while all other layers’ weights and key-value caches
are stored in CPU memory.

5.4 Implementation

We extended the HuggingFace (Wolf, 2019) library to sup-
port all of our execution policies and to allow different
policies for the prefill and decode phases. Additionally,
we modified the Intel Extension for PyTorch (IPEX) (In-
tel, 2020), which originally supports only CPU execution,
to enable selective execution of certain layers or operations
(e.g., Attention and FFN in the decode block) on the GPU.
For communication, we overlap CPU-GPU data transfers
with computation using a separate CUDA stream. For lay-
ers executed on the CPU, we leverage IPEX-optimized ker-
nels to improve performance. Currently, FlexInfer supports
the LLaMA (Touvron et al., 2023; Dubey et al., 2024) and
OPT (Zhang et al., 2022) model families. However, it can
be extended to support other models compatible with the
HuggingFace library and the IPEX framework.
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Server 1 Server 2

CPU 2× Xeon 8352Y 2× Xeon 6454S

GPU NVIDIA A100 NVIDIA H100

CPU Throughput (BF16)1 9.0 TFLOPS 144.2 TFLOPS

CPU Memory 256 GB 512 GB

CPU Memory Bandwidth 2 311.8 GB/s 407.8 GB/s

GPU Throughput (BF16)3 312 TFLOPS 756 TFLOPS

GPU Memory 40 GB 80 GB

GPU Memory Bandwidth4 1299.9 GB/s 1754.4 GB/s

CPU-GPU Interconnect PCIe 4.0, 32 GB/s PCIe 5.0, 64 GB/s

Table 3. Server configurations.

6 EVALUATION

6.1 Evaluation Methodology

Experimental setup: We evaluate the performance of
FlexInfer on two different servers: Server 1 with an Ice-
Lake CPU (no AMX) and A100-40GB GPU connected via
PCIe 4.0 (32 GB/s per direction), and Server 2 with a Sap-
phire Rapids CPU (with AMX) and H100-80GB GPU con-
nected via PCIe 5.0 (64 GB/s per direction). Table 3 pro-
vides the details for these servers. For code running on
the CPU, we utilize the Intel Extension for PyTorch frame-
work (Intel, 2020) to execute kernels optimized for each
CPU.

Models: We use OPT (Zhang et al., 2022) (30B, 66B),
LLaMA-2 (Touvron et al., 2023) (70B), and LLaMA-
3 (Dubey et al., 2024) (70B) models. Unless otherwise
specified, we use an input sequence length of 512, an out-
put sequence length of 32, and vary the batch size from 1
to 32. In Sections 6.4 and 6.5, we further explore the per-
formance impact of varying the input and output sequence
lengths.

Metrics: To measure performance, we use widely used
metrics from prior studies (Kwon et al., 2023; Sheng et al.,
2023; Zhang et al., 2024): (1) end-to-end latency (E2E la-
tency), the total time to generate the output sequence; (2)
the time to first token (TTFT), the time to generate the first
token; and (3) the time per output token (TPOT), the aver-
age time per token during the decode phase.

Baselines: We compare the performance of FlexInfer with
several approaches: (1) CPU-only inference (on ICL or
SPR CPU), (2) FlexGen (Sheng et al., 2023), a state-of-the-
art offloading-based technique, (3) FlexGen Opt5, which

1At CPU base frequency.
2Measured on 64 cores with the STREAM benchmark. (Mc-

Calpin, 2006).
3Dense tensor core compute throughput.
4Measured with the STREAM benchmark. (McCalpin, 2006).
5Initial weight loading time is included in all measurements.

strategically allocates portions of model weights, activa-
tions, and KV cache to GPU memory based on available
capacity, and (4) SplitGen, which splits model layers be-
tween CPU and GPU. In FlexGen configuration, all model
weights and KV cache are stored in CPU memory, with the
required data transferred from CPU to GPU memory for
each layer computation.

6.2 Performance Results

End-to-end latency comparison: Figure 8 shows the
end-to-end latency for our evaluated models across various
execution policies on each server. In this evaluation, we
vary batch size from 1 to 32 and each result is normalized
to FlexGen. As shown in the graph, FlexInfer achieves the
lowest LLM inference latency across all evaluated models
and configurations on both servers. On average, compared
to FlexGen, FlexInfer reduces end-to-end latency by 75%
and 76% on Servers 1 and 2, respectively. This demon-
strates that FlexInfer can select the efficient execution pol-
icy for the prefill and decode phases and it is beneficial to
reduce LLM inference latency significantly.

FlexGen Opt and SplitGen both provide better perfor-
mance than FlexGen by leveraging GPU memory to re-
duce PCIe traffic. FlexGen Opt, which maximizes weights
and KV cache placement in GPU memory, reduces latency
by 23% and 50% on Servers 1 and 2, respectively. Sim-
ilarly, SplitGen, which utilizes both CPU and GPU, re-
duces latency by 37% and 61.7% on Servers 1 and 2, re-
spectively. However, these policies both have limitations
when compared to FlexInfer. FlexGen Opt reduces ex-
posed PCIe transfer time proportionally to the fraction of
model weights and KV cache that fits within GPU memory
capacity. For Server 1, which has insufficient GPU mem-
ory for the large OPT-66B, LLaMA2-70B, and LLaMA3-
70B models, this results in only marginal performance im-
provements over FlexGen. Additionally, during the decode
phase, FlexGen Opt still needs to transfer model weights
and KV caches over PCIe. SplitGen always leverages CPU
computation, which causes performance degradation in
compute-intensive prefill phases, particularly with longer
sequences and larger batch sizes. As a result, compared to
FlexGen, its inference latency increases by up to 2.1× on
Server 1 and up to 1.6× on Server 2.

TTFT and TPOT comparison: Figure 9 compares TTFT
and TPOT for the OPT-66B model on Servers 1 and 2
across batch sizes of 1, 4, and 16, where the input sequence
length is set to 512 and the output sequence length is set to
32. All results are normalized to the corresponding Flex-
Gen result on the same server. FlexInfer consistently se-
lects the optimal execution policy for both metrics, reduc-
ing TPOT by 77.7% and 79.6% on Servers 1 and 2, respec-
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(a) End-to-end latency comparison result for Server 1.
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(b) End-to-end latency comparison result for Server 2.

Figure 8. End-to-end latency comparison results for OPT-30B, OPT-66B, LLaMA2-70B, and LLaMA3-70B with an input length of 512,
an output length of 32, and batch sizes ranging from 1 to 32.
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(a) TTFT and TPOT comparison result for OPT-66B on
Server 1.
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(b) TTFT and TPOT comparison result for OPT-66B on
Server 2.

Figure 9. TTFT and TPOT comparison results for OPT-66B, with
an input length of 512, an output length of 32, and batch sizes of
1, 4, and 16.

tively. For TTFT, it achieves a 6.6% reduction on Server
2 while matching FlexGen on Server 1, where the limited
compute throughput of ICL CPU makes GPU offloading
more efficient during prefill phase.

In contrast, schemes that apply the same execution pol-
icy to both the prefill and decode phases (i.e., CPU-only,
FlexGen, FlexGen Opt, and SplitGen) show either limited
benefits or performance degradation in TTFT and TPOT.
For instance, with SplitGen, CPU becomes a bottleneck
as batch size increases, leading to an average increase in
TTFT by 7.7× and 2.6× on Servers 1 and 2. For Flex-
Gen Opt, each layer’s model weight is stored in GPU mem-

ory as much as capacity allows. On Server 1, with limited
GPU memory and PCIe bandwidth, TPOT decreases by
only 7.7%, whereas on Server 2, with larger memory and
higher bandwidth, it improves by 49.1% on average. On
the other hand, FlexInfer dynamically selects optimal poli-
cies for each phase based on runtime parameters and hard-
ware configurations, highlighting the importance of adap-
tive policy selection.

6.3 PCIe Traffic Analysis

Figure 11 analyzes PCIe traffic between CPU and GPU
for different execution policies when running OPT-66B on
each server. CPU-only execution eliminates PCIe transfers
entirely as all model components remain in CPU mem-
ory. SplitGen minimizes transfer volume by only mov-
ing the outputs from the last CPU-executed layer to GPU,
minimizing CPU-GPU data transfer. FlexGen generates
the highest traffic from weight and KV cache transfers,
while FlexGen Opt reduces this by storing partial data in
GPU memory. FlexInfer dynamically selects optimal poli-
cies based on runtime parameters and hardware configura-
tions—using FlexGen for compute-intensive prefill phase
and SplitGen for memory-bound decode phase. This ap-
proach leverages GPU acceleration where beneficial while
minimizing PCIe transfers, significantly improving perfor-
mance compared to other methods.

6.4 Performance Impact of Input Sequence Length

Figure 10 compares performance across execution policies
and models on both servers with batch size 16, varying in-
put sequence lengths from 128 to 1024. Compared to Flex-
Gen, CPU-only and SplitGen show significant performance
degradation as input sequence length increases. This trend



FlexInfer: Flexible LLM Inference with CPU Computations

128 256 512 1024

OPT-30B

0

1

2

N
o
rm

. 
E
2

E
 L

a
te

n
c
y

128 256 512 1024

OPT-66B

0

1

2

N
o
rm

. 
E
2

E
 L

a
te

n
c
y

128 256 512 1024

LLaMA2-70B

0

1

2

N
o
rm

. 
E
2

E
 L

a
te

n
c
y

128 256 512 1024

LLaMA3-70B

0

1

2

N
o
rm

. 
E
2

E
 L

a
te

n
c
y

ICL_CPU FlexGen FlexGen_Opt SplitGen FlexInfer (Ours)

(a) End-to-end latency comparison result for Server 1.
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Figure 10. End-to-end latency comparison for OPT-30B, OPT-66B, LLaMA2-70B, and LLaMA3-70B models with batch size 16, output
length of 32, and input sequence length ranging from 128 to 1024.
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(a) PCIe data traffic for OPT-66B on Server 1.

SP
R_C

PU

Fl
ex

G
en

Fl
ex

G
en

_O
pt

Sp
lit

G
en

Fl
ex

In
fe

r
0

100

200

P
C

Ie
 T

ra
ff

ic
 (

G
B

) 
p
e
r 

to
k
e
n

Prefill

0.0

140.4 140.4

26.8

140.4

SP
R_C

PU

Fl
ex

G
en

Fl
ex

G
en

_O
pt

Sp
lit

G
en

Fl
ex

In
fe

r
0

100

200

P
C

Ie
 T

ra
ff

ic
 (

G
B

) 
p
e
r 

to
k
e
n

Decode

0.0

141.5

49.0

0.3MB 0.3MB

(b) PCIe data traffic for OPT-66B on Server 2.

Figure 11. PCIe data traffic between CPU and GPU comparison
for OPT-66B with an input length of 512, output length of 32, and
batch size of 16.

occurs because longer inputs increase the proportion of
time spent in the compute-intensive prefill phase. FlexIn-
fer achieves the lowest end-to-end latency across all input
lengths and models, significantly outperforming FlexGen.
On average, FlexInfer reduces LLM inference latency by
72.9% on Server 1 and 70.2% on Server 2. This improve-
ment is attributed to its flexibility in selecting the optimal
policy for each phase.

6.5 Performance Impact of Output Sequence Length

Figure 12 shows performance results for different execu-
tion strategies running the OPT-66B model on each server
as the output length increases from 128 to 1024, while
maintaining a fixed input length of 512 and batch size
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(a) End-to-end latency comparison result for OPT-
66B on Server 1.
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(b) End-to-end latency comparison result for OPT-
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Figure 12. End-to-end latency comparison for OPT-66B model
with an input sequence length of 512, batch size of 16, and output
sequence length ranging from 128 to 1024.

of 16. As output sequence length increases, the decode
phase dominates the end-to-end latency. FlexGen and Flex-
Gen Opt exhibit proportional latency increases due to PCIe
data transfers for each generated token. In contrast, CPU-
only computation (which eliminates data transfers entirely)
and approaches that minimize data movement such as Split-
Gen and FlexInfer demonstrate lower end-to-end latency
as output length grows. FlexInfer consistently achieves the
lowest latency, reducing inference time by 73.3% on Server
1 and 70.5% on Server 2 compared to FlexGen by dynam-
ically selecting optimal policies that minimize PCIe bottle-
necks during inference.
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7 RELATED WORK

7.1 Deep Learning Acceleration on CPUs

Prior studies have explored CPU-specific optimizations for
deep learning workloads (Liu et al., 2019; Shen et al.,
2023; Georganas et al., 2018; Heinecke et al., 2016; Gong
et al., 2022). NeoCPU (Liu et al., 2019) accelerates
CNN inference through graph-level optimizations, while
Graphite (Gong et al., 2022) enhances GNN performance
through hardware-software co-design. RASA (Jeong et al.,
2021) and VEGETA (Jeong et al., 2023) improve deep
learning operations with specialized matrix multiplication
engines. Recent works (Shen et al., 2023; He et al., 2024)
enable efficient CPU-based LLM inference through weight
quantization and optimized kernels.

7.2 LLM Inference Optmizations

Offloading-based LLM Inference: Several studies (Am-
inabadi et al., 2022; Wolf, 2019; Sheng et al., 2023; Xuanlei
et al., 2024) have proposed offloading-based techniques to
handle LLMs that exceed GPU memory capacity by utiliz-
ing CPU memory and disk storage. FlexGen (Sheng et al.,
2023), DeepSpeed-ZeRO (Aminabadi et al., 2022) and
HuggingFace Accelerate (Wolf, 2019) reduce GPU mem-
ory usage by offloading model weights to CPU memory
and disk. Recent works have explored CPU computation
for offloading-based LLM inference (Song et al., 2024; Xu-
anlei et al., 2024; Park & Egger, 2024). PowerInfer (Song
et al., 2024) leverages activation sparsity by processing hot
tensors on GPU and cold tensors on CPU, though primarily
works under sparse activation assumptions. HeteGen (Xu-
anlei et al., 2024) applies tensor-parallelism across CPU
and GPU, but becomes less effective with increasing batch
sizes or model scales due to CPU computational limita-
tions. In contrast, FlexInfer dynamically selects optimal
execution policies based on phase characteristics, hardware
capabilities, and runtime parameters. Park and Egger (Park
& Egger, 2024) enhance LLM throughput by offloading at-
tention blocks and portions of linear layers to CPU while
optimizing data transfers. While their approach excludes
CPU computation during the prefill phase, our FlexInfer
demonstrates that leveraging high-throughput CPUs with
AMX during prefill is also beneficial for maximizing over-
all inference performance.

Disaggregated LLM Inference: Recent studies have pro-
posed executing prefill and decode phases on separate
GPUs to exploit their distinct characteristics (Patel et al.,
2024; Hu et al., 2024a; Zhong et al., 2024). TetriInfer (Hu
et al., 2024a) separates phases to avoid interference, while
Splitwise (Patel et al., 2024) optimizes GPU resource usage
through phase-aware scheduling. DistServe (Zhong et al.,
2024) maximizes performance by tailoring resource allo-

cation and parallelism for each phase. However, these ap-
proaches focus only on GPU execution without utilizing
CPU computation resources, and do not consider phase-
specific execution policies. In contrast, FlexInfer optimizes
performance by selecting suitable policies for each phase
while leveraging both CPU and GPU resources.

8 CONCLUSIONS

This paper presents FlexInfer, a phase-aware LLM infer-
ence system that leverages both CPU and GPU resources
effectively. Unlike prior approaches that suffer from PCIe
bottlenecks and underutilized CPU resources, FlexInfer dy-
namically selects optimal execution policies for each in-
ference phase, resulting in end-to-end latency reductions
of 75% and 76% across different generations of hard-
ware. Importantly, this work demonstrates that existing
approaches for overlapping PCIe data transfer with GPU
computation can be coupled with effective usage of CPU
computation resources to both minimize the amount of data
transfer and to more fully utilize both types of compute ac-
celerators.
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