Not all representations are equal: Comparing protein
language models for antibody thermostability
prediction
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Abstract

Predicting antibody thermostability is an important and challenging task in com-
putational antibody design. Antibodies which are not thermostable may be in-
compatible with mass production and distribution. To this end, we assess how
different protein language model (pLM) representations affect performance in the
downstream task of predicting antibody thermostability. Our findings demonstrate
that the choice of pLM has a large effect on predictor performance, even when data,
model size, and hyperparameters are held stable. We also show that a performance
boost may be obtained by combining pLM representations.

1 Introduction

The development of therapeutic antibodies has
; Treigabte revolutionized modern medicine, with appli-
D cations spanning oncology, immunology, and
infectious diseases. A critical challenge in an-
tibody engineering is ensuring that candidate
molecules possess favorable biophysical prop-
erties, such as high thermostability, which is di-
H rectly linked to manufacturability, formulation
stability, and shelf-life. Accurate prediction of
antibody thermostability from sequence alone
remains a central goal in the field, enabling
Figure 1: Schematic of predictor module rapid in silico screening and optimization dur-

ing early-stage drug discovery.
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Traditionally, computational models for antibody thermostability prediction have relied on hand-
crafted features derived from sequence and structural representations. These features typically encode
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amino acid composition, physicochemical and region-specific attributes such as complementarity-
determining region (CDR) lengths or net charge. While these approaches have yielded useful insights
and moderate predictive power, they are inherently limited by the need for domain expertise and may
fail to capture higher-order dependencies and context within antibody sequences.

Recent advances in deep learning and natural language processing have led to the development of
large-scale protein language models, which are trained on millions of protein sequences to learn rich,
context-dependent representations. These models, including the ESM family [15, 8], ProtBert [1],
and antibody-specific variants such as AbBERT [29], generate embeddings that encode both local and
global sequence features without requiring explicit feature engineering. Emerging evidence suggests
that such embeddings can capture subtle determinants of protein function, structure, and stability
[4, 10]. Recent works have investigated the use of pLM embeddings as input to classifiers and other
predictors [25, 34, 33, 20], as well as the capacity of pLMs themselves to identify potentially helpful
or deleterious mutations in amino acid sequences [ 16, 3, 19], with promising results.

In this study, we systematically evaluate the use of pLM embeddings as input features for machine
learning models aimed at predicting antibody thermostability. We compare the performance of several
state-of-the-art protein language models against traditional engineered feature sets, using a curated
dataset of antibody sequences with experimentally determined thermostability values. Our results
demonstrate that embedding-based representations consistently outperform conventional approaches,
particularly when using antibody-specialized models. These findings highlight the potential of pLMs
to accelerate and enhance the developability assessment of therapeutic antibodies.

2 Protein Language Models

Transformer-based architectures [30] have been successfully applied to protein folding [14, 12], de-
novo protein design [3 1], and in the prediction of mutations needed for improved binding affinity [28].
These protein language models (pLM) typically fall under one of two categories: (i) auto-encoding or
BERT-based [28, 29, 1, 14], which capture the context of the entire sequence; and (ii) autoregressive
or GPT-based [6], which predict next word/character based on the previous ones. Next, we briefly
describe the models compared in the current study.

BERT-based pLMs

These transformer-based [30] auto-encoder [9] models predominantly use a masked language model-
ing approach for prediction. We chose 2 pLMs trained on protein sequences and 3 pLMs fine-tuned
on antibody sequences. In all these models, we use the embedding produced by the encoder as the
representation of the antibody sequences. ProtBERT [1] is a deep learning model specifically de-
signed for understanding protein sequences. This model is trained on massive protein sequences from
datasets UniRef100 [26] and BFD [ 1 1]. They utilize masked language modeling objective, and are
trained in a self-supervised fashion. We use the pre-trained model from HuggingFace [32], consisting
of 419 million parameters. ESM2 (Evolutionary Scale Modeling 2) [14] is a BERT type pLM which
is trained on Uniref-50. This model is trained with an MLM objective to learn protein representations,
which we will use for our downstream task. ESM?2 is a suite of pLMs of various sizes ranging from
8 million to 15 billion. We use two ESM2 models, with 8 million (ESM2-8M) and 150 million
parameters (ESM2-150M). AbBERT [29] is an antibody specific pLM built by fine-tuning ProtBERT
on a large antibody sequence dataset (up to 20 million unpaired heavy/light chain sequences) from
the Observed Antibody Space database (OAS) [21]. AbBERT is trained using a multi-unmask scoring
procedure to learn which mutations to CDRs are more or less usual. This enables the model to
successfully predict the humanness of an input sequence. AbBERT demonstrates particularly high
accuracy in predicting complementarity-determining regions (CDRs). The architecture is identical to
that of ProtBERT. AbLang?2 [28] is another antibody-specific language model designed to address
the “germline bias” in antibody sequence prediction. This model focuses on accurately predicting
non-germline residues crucial for antibody binding affinity and specificity. The model is trained
on a vast dataset of antibody sequences, including both unpaired and paired heavy and light chain
sequences from OAS. We use the pre-trained model [32], consisting of 45 million parameters. AbESM
is an in-house antibody-specific model with identical architecture as ESM2-150M and fine-tuned on
paired antibody sequences from OAS. This model is trained to unmask CDRs.



GPT-based pLM

ProtGPT2 [6] is a GPT2-based [22] pLM designed for de novo protein sequence generation. It
was trained on the UniRef50 protein sequence database in an autoregressive manner. This model is
primarily trained to generate de-novo protein sequences. For our purpose of predicting thermostability
of an antibody sequence, we use the representation generated from this GPT based model. This
model consists of 738 million parameters.

3 Predicting Thermostability

Our thermostability prediction pipeline utilizes pre-trained protein language models (pLMs) to
generate informative representations of antibody sequences. These embeddings serve as input
features for lightweight machine learning classifiers, specifically multi-layer perceptrons (MLPs),
which are trained to predict thermostability. Importantly, the pLMs are kept frozen during MLP
training; only the classifier parameters are updated. This design choice is motivated by several
factors: (i) Limited downstream data: The available thermostability-labeled datasets are relatively
small, making it impractical to fine-tune large pLMs with millions of parameters without risking
overfitting; (ii) Generalizability: Pre-trained pLMs, trained on large and diverse protein sequence
corpora (including paired antibody sequences), are expected to capture broadly useful sequence
features. We hypothesize that these features are sufficiently informative for downstream developability
predictions, allowing effective training of a lightweight MLP head without further updating the pLM;
and (iii) Scalability and maintainability: Using a frozen, task-agnostic pLM with task-specific MLP
classifiers simplifies model maintenance and deployment. This modular approach is more scalable
than training separate, end-to-end models for each prediction task. Below we describe in further
details the 3 steps of our thermostability prediction pipeline:

Step 1: pLM embedding generator: For each =
antibody sequence consisting of a paired heavy 25000 = Thermolabile
and light chains, we compute embeddings from a
trained pLM for the variable region of each chain
independently. This will generate an embedding
of dimension [ x d for chain, where d is the di-
mension of the embedding of the pLM and [ is
the length of the longest antibody sequence in the
training set. Step 2: pLM embedding aggrega- 5000 “ ‘ ‘
tor: For each chain, with a [ x d embedding, we | || |
average over the sequence length (I), such that the 0

embedding for chain of a given antibody sequence
is of length d. Finally, we concatenate the heavy
and light embeddings (in the order) resulting in an
embedding vector of length 2d. Step 3: MLP classifier head: The aggregated embedding vector
of length 2d is first subjected to PCA as a linear dimensionality reduction followed by three hidden
layers with LeakyReL U [17] and LayerNorm [2] in between. We chose the number of principal
components (nPC) to yield at least 90% of the explained variance. The number of hidden dimension
of MLP is chosen as [nPC//2, nPC//4, 20]. We use focal-loss [13] as our choice of loss function
with « and ~ as tunable hyper-parameters. Due to the task being class-imbalanced (more in the
following section), the choice of the hyper-parameters is important. We also varied batch size and
use Adam optimizer with cosine learning rate decay with varying learning rate. A schematic of our
thermostability predictor module is shown in Fig. 1.
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Figure 2: Class distribution



Cross-Validation Strategy To ensure robust and real-
istic evaluation of model performance, we adopted a
cross-validation strategy based on heavy chain V gene:
clades rather than conventional random partitioning.
In antibody sequences, the variable (V) gene segment
encodes the majority of the variable region, which is
the primary focus of our modeling efforts. Due to the
high degree of sequence conservation within clades
and the potential for significant sequence overlap, ran-
dom cross-validation can result in substantial data
leakage between training and test sets. This leakage
often fails to reflect the true generalizability.

Figure 3: Visualization of pLM embeddings

To address this, we partitioned the dataset so that all
sequences from the same heavy chain V gene clade were grouped in the same fold. In each round, one
clade was held out for testing while the model was trained on the remaining clades. This approach
minimizes overlap between training and test data, providing a more stringent and conservative
assessment of model performance. As a result, our clade-based cross-validation yields performance
estimates that are likely to be a lower bound for real-world deployment, increasing confidence that
actual performance will meet or exceed what is observed during validation.

Thermostability dataset: The dataset was extracted from a subset of a naive single-chain variable
fragment (scFv) antibody library derived from healthy donors [24]. Following cloning into yeast, the
library was sorted for surface display and binding to protein L, a bacterial protein that recognizes
most subtypes of kappa variable light chains.

Embedding dstance corelations  The sorted population was exposed to heat stress (60C

for 10 minutes), then cooled. After treatment, cells were

os assessed for continued binding to protein L. Thermolabile

scFv fragments (non-binders) were separated from ther-

* mostable fragments (binders) using flow cytometry, and

_,, the resulting populations were sequenced using PacBio

~ long-read sequencing. After quality filtering to retain

~s only sequences with Phred scores greater than 50, the

final dataset comprised 128,268 scFv fragments, 42,438

-0s classified as thermolabile and 85,830 as thermostable.

Antibody heavy chain V gene germline and clade assign-

" ments were performed using ANARCI [5], which aligns

.. ach sequence to its closest germline V gene and assigns

standardized clade classifications. This dataset consists

.2 of 6 clades labeled as IGHV1, IGHV2, IGHV3, IGHV4,

IGHVS, IGHV6. Fig. 2 shows the class (thermolabile vs
POBERT  ESH2-6M ESH2-150M ADBERT  Ablang2  ADESM  PoiGPT2 thermostable) distribution across clades.
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Figure 4: Correlation across pLMs
4 Experimental Results

As the pLMs are trained on different large-scale datasets, we visualized their embeddings using
UMAP [18], coloring points by V gene clade. This allows us to assess how well each pLM preserves
clade structure. Fig. 3 shows BERT-based pLMs preserve clade information likely due to their
architecture’s capacity to capture global sequence context.



Comparison of various pLMs: We compared the predictive

performance of models using embeddings from various pLMs * { I I
(Fig. 5). The evaluation follows the cross-validation strategy de- ., I I
scribed earlier; error bars indicate performance variation across L
six held-out clades. As a baseline, we used a model based on *

physicochemical features extracted with TAP [23] and FEA-¢,,

TURE [7]. These types of hand-engineered features are com-Z
monly used in protein classification tasks and thus serve as a
strong baseline. To ensure a fair comparison, we applied the
same classification pipeline as described above. Our results
show that models using pLM embeddings consistently outper- *
form those based on physicochemical features, consistent with
previous findings [4, 10]. ESM2-8M outperforms competitors, " &7 A
suggesting that larger pLMs do not necessarily generalize better. S

Model
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Correlation among various pLM embeddings: The strong
performance of ESM2-8M relative to other pLMs prompted us
to further examine the similarity between the embeddings generated by different models. To quantify
this, we computed the distance correlation [27] between the embeddings from each pLM (Fig. 4).
The results reveal that BERT-based models capture representations distinct from those of the GPT-
based ProtGPT?2, as indicated by consistently low distance correlation values between ProtGPT2
and the other models. Additionally, within the BERT-based group, AbLang?2 exhibits relatively low
correlation, suggesting that it encodes complementary information. Given the superior performance
of ESM2-8M, we explored whether combining its embeddings with those from AbLang2 could
further improve predictive accuracy. We implemented a stacking approach, in which predictions from
classifiers trained on each embedding type were combined and used as input to a meta-classifier,
which yields a modest but consistent improvement over individual models (Fig. 5).

Figure 5: Comparative performance

5 Conclusion

In this study, we systematically evaluated the effectiveness of various pLM embeddings for antibody
stability classification, benchmarking them against traditional hand-engineered features. Our results
demonstrate that pLM-based representations, particularly those from ESM2-8M, substantially out-
perform models relying on conventional features, highlighting the transformative potential of ML
in protein informatics. Furthermore, our analysis of embedding similarity revealed that different
pLM architectures capture complementary aspects. By leveraging this diversity through a stacking
ensemble of ESM2-8M and AbLang?2, we achieved further gains, highlighting the value of integrating
uncorrelated representations. Taken together, our findings emphasize the importance of both model
selection and the strategic combination of diverse embeddings for optimal performance in antibody
classification. As pLMs continue to evolve, we anticipate that ensemble approaches and deeper
analyses of embedding complementarity will play an increasingly central role in advancing the field.
Future work may extend these insights to other developability-related predictions and explore the
integration of structural or evolutionary information with LLM embeddings.
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