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Abstract

To gain a better understanding of the linguis-001
tic information encoded in character-based lan-002
guage models, we probe the multilingual con-003
textual CANINE model. We design a range of004
phonetic probing tasks in six Nordic languages,005
including Faroese as an additional zero-shot006
instance. The results show that phonetic infor-007
mation such as consonant voicing and vowel008
roundness are indeed encoded in the charac-009
ter representations and that this information is010
transferred to a similar zero-shot language.011

1 Introduction012

Subword and character sequence information is013

crucial in state-of-the-art neural language models014

(Sennrich et al., 2016; Kudo, 2018) because it im-015

proves their generalization and robustness capabili-016

ties (Xue et al., 2022; Tay et al., 2021). Addition-017

ally, character-level features are beneficial for mor-018

phologically rich and low-resource languages (Pa-019

pay et al., 2018; Riabi et al., 2021). However, there020

is a lack of interpretability methods for character-021

based models. Only a few approaches have tried022

to understand the linguistic information encoded in023

character embeddings and cross-lingual approaches024

must be evaluated more rigorously by consider-025

ing typology and linguistic distance (Artetxe et al.,026

2020). Therefore, in this work, we analyze how027

much phonetic information is encoded in contextu-028

alized multilingual character embeddings from the029

CANINE language model (Clark et al., 2022).030

Based on six Nordic languages, we extract pho-031

netic features for characters in context through un-032

supervised grapheme-to-phoneme alignment and033

design a set of probing tasks. We explore the char-034

acter representations in two different evaluation035

scenarios, a traditional train/test split scenario and036

a leave-one-letter-out scenario. We find that pho-037

netic information on a global level (e.g., vowel038

and consonant detection) is encoded accurately039

in the character representations and more mixed040

results are achieved on lower-level probing tasks 041

such as consonant voicing and manner, or vowel 042

height and roundness. We also see that this informa- 043

tion is transferred to the related zero-shot language 044

Faroese. Our code is available online1. 045

2 Related Work 046

We discuss previous work in this area by focusing 047

on existing multilingual character language models 048

and the interpretability of these models. 049

Building Character-Level Models Subword 050

and character-level information is exhibiting 051

great benefits for computational language models 052

(Bostrom and Durrett, 2020; Zhang et al., 2021). 053

With the rise of multilingual models, pre-trained si- 054

multaneously on 100+ languages, these are also be- 055

ing adapted for and augmented with character-level 056

information (Xue et al., 2022; Tay et al., 2021). We 057

choose to work with the CANINE model by Clark 058

et al. (2022), because it is a strongly performing 059

neural encoder which operates directly on charac- 060

ter sequences, i.e., without explicit tokenization or 061

vocabulary, and incorporates a pre-training strategy 062

operating directly on characters. 063

Understanding Character-Level Models While 064

a wide range of probing tasks have been stud- 065

ied for contextualized word representations (e.g. 066

Liu et al. 2019), there is limited work on directly 067

probing character representations. Recent work 068

probes word-level representation with respect to 069

their knowledge about characters. For instance, 070

Kaushal and Mahowald (2022) predict the pres- 071

ence of a particular character in a token showing 072

that large models robustly encode this informa- 073

tion across various scripts. Additionally, Itzhak 074

and Levy (2021) test the "spelling abilities" of lan- 075

guage models showing that the embedding layers 076

of RoBERTa and GPT-2 learn the internal char- 077

1URL omitted for anonymity.

1



acter composition of whole words to a surprising078

extent, without seeing the characters coupled with079

the tokens during training.080

Specifically on character-level models, Boldsen081

et al. (2022) compare perceptual representations to082

character embeddings. Their cross-lingual analysis083

shows that character representations correlate with084

phonological representations for languages using085

an alphabetic script and implies a relationship be-086

tween the information encoded in the embeddings087

and the orthographic transparency of the languages.088

Furthermore, Hahn and Baroni (2019) probe char-089

acter models in a cognitively realistic task on data090

with removed word boundaries showing that re-091

current LMs learn morphological, syntactic and092

semantic aspects even on unsegmented text. These093

findings encourage the exploration of character and094

phoneme-level learning.095

3 Contextualized Character Embeddings096

We extract character embeddings (in the context097

of full words) from the CANINE model. In this098

section, we present the multilingual data and the099

embedding extraction.100

Data Since character-level features are impor-101

tant for morphologically rich and low-resource102

languuages (Lauscher et al., 2020; Garrette and103

Baldridge, 2013), we choose a set of six Nordic lan-104

guages for our experiments: Danish (da), Swedish105

(sv), Norwegian (nb), Finnish (fi), Icelandic (is)106

and Faroese (fo). Five of the languages are included107

in the training data of the character language model108

(da sv, nb, fi and is). Additionally, we use Faroese109

to test performance of multilingual zero-shot em-110

beddings. The starting point for extracting charac-111

ter embeddings is a frequency list for each language112

(see Table 1). We select the 10000 most frequent113

words of every language and then randomly sample114

3000 of these words and retrieve embeddings for115

all characters in these 3000 words. This implies116

that more frequent characters in a given language117

will be better represented in the embeddings. Note118

that word length will affect the number of character119

embeddings extracted.120

Model We extract contextualized embeddings121

from the CANINE model (Clark et al., 2022). CA-122

NINE is a neural encoder which operates directly123

on character-level without requiring an explicit to-124

kenization strategy or a pre-defined vocabulary.125

We choose this model since it showed superior126

performance on multilingual downstream tasks. 127

CANINE has been trained on data from 104 lan- 128

guages.2 While it performs well on NLP tasks, it 129

has not yet been explored which type of linguistic 130

information is encoded in these pre-trained char- 131

acter representations. We use the HuggingFace 132

checkpoint of the CANINE model with autoregres- 133

sive character loss.3 We input words to the model, 134

and use the last hidden state of a character in the 135

context of the word it occurs in as a contextualized 136

character embedding (d = 768). 137

4 Phonetic Feature Extraction 138

In order to extract phonetic features from charac- 139

ters, we need to know how a specific letter should 140

be pronounced. We do that by aligning the charac- 141

ters with the string of phones as given by Wikipron. 142

As the number of letters and phones may not match, 143

we align them using m2m-aligner (Jiampoja- 144

marn et al., 2007), an unsupervised model that is 145

based on Expectation-Maximization. Then, we use 146

the ipapy toolkit to obtain phonetic features for 147

each phone. We describe this process below. 148

Pipeline We use the aligner to obtain phonetic 149

features for characters in all six languages. First, 150

we obtain a dictionary for each language from 151

Wikipron (Lee et al., 2020),4 and then, we align 152

graphemes to phones using m2m-aligner.5 153

Wikipron includes both phonemic and phonetic 154

representations of words, which they refer to broad 155

and narrow, respectively. As the model for extract- 156

ing features works at a phonetic level, we use the 157

phonetic representations (narrow). In the next step, 158

we use the ipapy6 toolkit to extract phonetic fea- 159

tures for each phone. 160

Finally, the IPA features are merged with the 161

CANINE character representations. This process 162

results in one dataset per language, consisting of 163

6067 characters in 899 words for Danish, 700 char- 164

acters in 135 words for Faroese, 4698 characterss 165

in 745 words for Finnish, 268 characters in 43 166

words for Icelandic, 302 characters in 57 words 167

2The CANINE model is pretrained on on the multilingual
Wikipedia data of mBERT.

3https://huggingface.co/google/
canine-c

4Please find the size of the dictionaries in Appendix A.2.
5We evaluated the alignments of m2maligner by using

a manually aligned dictionary. This is available for the Danish
language (Juul, 2010), where ∼ 42, 000 words and their pho-
netic transcriptions are aligned. Results show that the word
error rate is below < 2.5%.

6https://github.com/pettarin/ipapy
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Figure 1: Weighted F1-scores for two global features:
vowel prediction (top) and consonant predictions (bot-
tom). Exact numbers in Appendix A.4.

for Norwegian, and 312 character in 58 words for168

Swedish. The reason for the drastic decrease in169

samples for some of the language is the small size170

of the pronunciation dictionaries.171

5 Probing172

In this section, we describe the probing tasks and173

the evaluation scenarios that we devise to test the174

extracted character embeddings.175

We design 23 tasks to investigate the phonolog-176

ical knowledge encoded in the multilingual char-177

acter representations. The tasks are split into three178

categories: global features (e.g., is this character179

a vowel or not?), consonant features (e.g., is the180

manner of articulation of this consonant plosive181

or not?7, and vowel features (e.g., is this vowel182

pronounced as a rounded vowel?8183

The probing tasks have the structure F : X →184

Y , where given a set of character representations185

X , we want to find the best mapping F that relates186

X to a set of target features Y using a supervised187

Logistic Regression classification model.188

As discussed by Hewitt and Liang (2019), it is189

important to take into account the expressivity of a190

probing task, since overly expressive probes, i.e.,191

too many possible mappings for F : X → Y , does192

not reveal much about the internal feature represen-193

tations. Therefore, we test the all probing classifiers194

in two evaluation scenarios: (i) 80/20, a random195

80% training and 20% test split of the data, and196

(ii) LOLO, a leave-one-letter-out training and test197

7In Danish, "b" in peber ( [’phew5]) vs. åben ( [’O:b
˚
m
"
])

8In Danish, "o" as in ballon ([b
˚
a’l2N]) (unrounded) vs. blod

([’b
˚
loDP])(rounded)

split. The 80/20 setup implies that the same charac- 198

ters (in different contexts) can appear train and test 199

split, resulting in a simpler probing task, whereas 200

the LOLO setup ensures zero-shot learning for the 201

specific character of which all representations in 202

all contexts are held out during training. 203

6 Results 204

To understand the implicit phonetic information 205

encoded in contextual representations, we present 206

weighted F1-scores for a selection of features.9 207

Most of the individual probing tasks show F1- 208

scores above 0.5, which means that the models 209

generally perform better than a random baseline. 210

In Figure 1, we observe the results for two global 211

features, where we predict whether a character is 212

a vowel (top) and whether a letter is a consonant 213

(bottom). In each plot, we report the results of both 214

evaluation scenarios. Faroese performs very similar 215

to Danish, even though the CANINE training data 216

does not include any Faroese data. Furthermore, 217

Norwegian and Swedish are the languages with 218

the smallest difference between different validation 219

methodologies (80/20 vs. LOLO). 220

Figure 2 shows the LOLO performance of 221

each model for all characters and languages. 222

The models were trained to predict whether the 223

contextual character embedding had the label 224

global_type_vowel, meaning that the char- 225

acter in this specific context is pronounced as a 226

vowel. Taking a closer look at Danish and Nor- 227

wegian, for instance, the F1-scores are relatively 228

similar. This was expected given the similarities 229

between the two languages in the written form. Al- 230

though the results are similar, if we zoom in to spe- 231

cific character, we observe that the performance for 232

vowels is systematically worse for Danish, which is 233

reasonable given the complex nature of the Danish 234

vowel system (Trecca et al., 2018). 235

Figure 3 shows the weighted F1-scores of pre- 236

dicting whether a character in a given context is a 237

plosive or not. This figure shows that our LOLO 238

evaluation methodology is suitable, but we must 239

consider certain aspects. We should strive for bal- 240

anced training sets—meaning that the number of 241

both positive and negative instances should be rel- 242

atively similar— in order to get interpretable, and 243

not misleading, results. The figure shows some 244

characters for which the F1-scores are low for most 245

languages. These are cases in which certain letters 246

9See Appendix A.4 for the full results.
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Figure 2: Heatmap for global type vowel. The barplot shows the frequency of the given character.
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Figure 3: Heatmap for consonant manner plosive. The barplot shows the frequency of the given character.

do not have certain phonological features.247

7 Conclusions & Future Work248

In this work, we design a probing mechanism to249

better understand information encoded in contex-250

tual character representations, for which we use251

two validation mechanisms. The first one, where252

the training data is divided into training and testing253

set, and the second one where we train one model254

for each character. The reasoning behind this is255

that a letter representation, even though it occurs in256

a different context, would have a similar represen-257

tation and therefore, it would involve a kind of data258

leakage to the testset. We can imagine the example259

of the letter "a" in the words "tram" and "gas" in260

English. The contexts are rather different, but we261

would expect the representation of the letter "a" to262

be relatively similar, as it is pronounced similarly.263

Therefore, the LOLO evaluation allows us to test264

the representations of a character in any context in265

a zero-shot scenario.266

We use Wikipron data as linguistic knowledge 267

and we align graphs and phones using an automatic 268

aligning mechanism. We validate the aligner for 269

Danish on manually aligned data, but other lan- 270

guages may have their own specific challenges. We 271

use a wide range of phonetic probing tasks to ac- 272

commodate language-specific particularities. 273

It is crucial that the number of positive and neg- 274

ative instances is checked when probing each pho- 275

netic feature. As expected, many pronunciation- 276

related features do not occur in specific languages, 277

and thus, this results in phonetic features with 278

only one class, which will not shed any light on 279

such phonetic properties. Hence, future research 280

should address the design of these probing tasks 281

as much as the results. Finally, since some of the 282

datasets were relatively small, using a grapheme- 283

to-phoneme model could increase the number of in- 284

stances. Besides, these analyses could be extended 285

to more languages to cover the full spectrum of 286

orthographic depth. 287
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A Appendix 440

A.1 Frequency Lists 441

Table 1 contains the details about the frequency lists used for each language. 442

Language Reference & Source

Danish DSL frequency list by Jørg Asmussen
Faroese Sosialurin corpus by Hansen et al. (2004)
Finnish Parole corpus frequency list by the Institure for the Languages of Finland
Icelandic Icelandic Corpus for Academic Words by Ólafsdóttir et al. (2022)
Norwegian Kelly List by Kilgarriff et al. (2014)
Swedish Kelly List by Kilgarriff et al. (2014)

Table 1: Data sources of the frequency lists for all six languages.

A.2 Pronunciation Dictionaries 443

Table 2 shows the size (word count) of the pronunciation dictionaries used in this work to train the 444

m2n-aligner in all six languages. 445

Language Words

Danish 8,219
Faroese 1,118
Finnish 80,377
Icelandic 464
Norwegian (bokmål) 604
Swedish 372

Table 2: Pronunciation dictionary size for all six languages, obtained from Lee et al. (2020).

A.3 Average word length and standard deviation 446

Table 3 shows the average word length and standard deviation for each language in the CANINE 447

embeddings. 448

Language mean std.

Danish 7.5398 3.0756
Faroese 7.8557 3.6023
Finnish 7.7544 2.8365
Icelandic 8.4372 3.4093
Norwegian 7.0766 2.8401
Swedish 7.5166 3.3496

Table 3: Mean word length and standard deviation for each language in the CANINE embeddings.
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A.4 Full Results449

Table 4 presents the LOLO results (F1 scores) for all probing tasks and all languages.450

Feature no da sv fa fi is

global_type_consonant 0.88 0.81 0.95 0.83 0.86 0.82
global_type_vowel 0.87 0.81 0.91 0.81 0.89 0.86
global_type_diacritic 0.87 0.56 0.80 0.96 0.78 0.86
global_type_suprasegmental 0.82 0.92 0.71 0.86 0.77 0.81

consonant_voicing_voiced 0.57 0.64 0.59 0.43 0.43 0.67
consonant_voicing_voiceless 0.57 0.65 0.66 0.39 0.43 0.50
consonant_place_alveolar 0.46 0.74 0.63 0.58 0.69 0.66
consonant_place_bilabial 0.83 0.83 0.82 0.85 0.86 0.85
consonant_place_labio-dental 0.89 0.90 0.87 0.88 0.94 0.87
consonant_place_palatal 0.92 0.96 0.96 0.95 0.95 0.89
consonant_place_velar 0.86 0.92 0.85 0.90 0.86 0.90
consonant_manner_approximant 0.86 0.86 0.96 0.91 0.87 0.95
consonant_manner_nasal 0.72 0.78 0.83 0.69 0.73 0.84
consonant_manner_non-sibilant-fricative 0.89 0.75 0.85 0.86 0.94 0.73
consonant_manner_plosive 0.64 0.57 0.62 0.52 0.67 0.54

vowel_height_close 0.63 0.77 0.89 0.82 0.48 0.84
vowel_height_close-mid 0.81 0.72 0.74 0.90 0.92 0.83
vowel_backness_front 0.51 0.54 0.41 0.37 0.33 0.53
vowel_backness_back 0.71 0.65 0.61 0.71 0.33 0.81
vowel_roundness_rounded 0.80 0.71 0.67 0.83 0.67 0.77
vowel_roundness_unrounded 0.80 0.72 0.70 0.81 0.67 0.83

Table 4: LOLO results (F1 scores, weighted) for all probing tasks and all languages.
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