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Abstract001

Tabular data contains structural information002
in the form of rows and columns and is uti-003
lized across various industries, including fi-004
nance, government, and science. However, dur-005
ing the Optical Character Recognition (OCR)006
process, table structures can become distorted,007
or cell values may be extracted incorrectly, lead-008
ing to a decline in the performance of sub-009
sequent tasks that rely on tabular data. Exist-010
ing OCR post-processing techniques primarily011
focus on general text recovery, which limits012
their effectiveness in restoring complex table013
structures. To address this issue, we have con-014
structed a large-scale benchmark dataset called015
TabHD for recovering tabular data damaged016
after OCR processing. Using this dataset, we017
systematically evaluate the table restoration per-018
formance of Large Language Models (LLMs).019
This study explores the potential of LLM-based020
table restoration in the OCR post-processing021
pipeline and suggests directions for the devel-022
opment of more sophisticated models in the023
future.024

1 Introduction025

Tabular data consists of rows and columns, incor-026

porating both structural information and semantic027

information based on cell content. It is widely uti-028

lized across various industries, including finance,029

government, and science, for efficient data storage030

and analysis (Shigarov, 2023). With recent advance-031

ments in deep learning technologies, there has been032

increasing research into effectively processing tab-033

ular data.034

Optical Character Recognition (OCR) is the pro-035

cess of converting images into machine-readable036

text and includes document layout analysis (DLA)037

and table data extraction as its primary tasks.038

Through OCR, not only continuous text in images039

but also tabular data can be extracted as text (Patel040

et al., 2012). However, table structures may not al-041

ways be extracted in their original form (Peng et al.,042

2024). For instance, long tables may be split into 043

multiple CSV files, or multiple adjacent tables may 044

be mistakenly recognized as a single table. Addi- 045

tionally, errors frequently occur in cells containing 046

a mix of numerical and natural language data, lead- 047

ing to incorrect value extraction (Patel et al., 2012). 048

Such errors can degrade the performance of down- 049

stream tasks that rely on tabular data. While some 050

post-OCR techniques exist to correct spelling er- 051

rors, there is still a lack of models dedicated to 052

restoring table structures. 053

With the recent advancement of Large Lan- 054

guage Models (LLMs), various text-based tasks 055

can now be performed. LLMs have been utilized 056

for handling tabular data in formats such as HTML, 057

JSON, and CSV, and models like TableLlama and 058

TableGPT have been introduced for table-based 059

tasks, including Table Interpretation, Table Aug- 060

mentation, and Question Answering (Zhang et al., 061

2023). However, LLMs still struggle to fully com- 062

prehend and process structured tabular data. In par- 063

ticular, research on Table Recovery, a complex data 064

restoration task, remains insufficient. 065

To address post-OCR challenges, we propose 066

TabHD, a large-scale benchmark dataset for tabu- 067

lar data recovery. TabHD is constructed based on 068

existing open-source tabular datasets, including the 069

table-to-text (ToTTo) dataset (Parikh et al., 2020), 070

GitTables (Hulsebos et al., 2023), and the BioTable 071

dataset from the Semantic Web Challenge on Tabu- 072

lar Data to Knowledge Graph Matching (SemTab) 073

2021 (Abdelmageed et al., 2021). It is designed to 074

reflect various error scenarios while maintaining 075

the consistency of table structures and cell content. 076

Furthermore, we experimentally validate an ap- 077

proach where table structural information is con- 078

verted into a graph representation and provided 079

as additional input to LLMs. To achieve this, we 080

fine-tuned LLMs on the TabHD dataset through 081

instruction tuning, enabling the model to restore 082

misrecognized table structures and correct incor- 083
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rectly extracted cell values.084

The key contributions of this study are as follows:085

1. TabHD: We introduce the first large-scale bench-086

mark dataset for OCR post-processing. TabHD con-087

sists of 42,033 tables encompassing diverse error088

scenarios.089

2. Systematic evaluation of existing LLMs for090

table restoration: We analyze the impact of incor-091

porating table structural information on model per-092

formance.093

2 Related Works094

2.1 LLM for Tabular Data095

Tables represent structured data, requiring consid-096

eration of both textual meaning and positional in-097

formation, making table-related tasks highly chal-098

lenging. With the recent advancements in Large099

Language Models (LLMs), research on enabling100

LLMs to perform tasks based on tabular data has101

been actively conducted.102

Sui et al. designed a benchmark to evaluate103

the Structured Understanding Capability (SUC) of104

LLMs, analyzing the performance of GPT-3.5 and105

GPT-4 across seven tasks, including cell lookup,106

row retrieval, and size detection. They reported107

performance improvements in various table-based108

tasks by optimizing structured prompts using a self-109

augmentation technique (Sui et al., 2024a).110

TableLlama, an LLM built on Llama 2 7B and111

LongLoRA, is designed to handle table-based tasks112

such as Table Interpretation, Table Augmentation,113

and Question Answering (Zhang et al., 2023). Sim-114

ilarly, TableGPT fine-tunes LLMs with external115

functional commands, enabling table-related tasks116

such as Table Question Answering, data manipula-117

tion (e.g., insertion and deletion), and data visual-118

ization (Zha et al., 2023).119

Despite these advancements, LLMs still lack the120

ability to fully comprehend and process structured121

tabular data (Sui et al., 2024b).122

2.2 Graph LLM Fusion123

Graph networks are effective for representing struc-124

tured data, as they can capture both the values of125

individual table cells and their relationships with126

surrounding cells. Recently, there has been a grow-127

ing body of research integrating graph structures128

with language models.129

GraphPrompter is a novel framework that com-130

bines graph neural networks (GNNs) with soft131

prompts to effectively convey graph information to132

LLMs, thereby improving their predictive capabili- 133

ties in graph-related tasks (Liu et al., 2024). Carta 134

et al. propose an innovative approach that leverages 135

generative LLMs, such as GPT-3.5, to address key 136

challenges in knowledge graph construction. Their 137

method enables scalable and flexible automated 138

knowledge graph generation by employing an iter- 139

ative zero-shot prompting strategy while reducing 140

dependency on external knowledge (Carta et al., 141

2023). 142

Graph-ToolFormer explores a learning method 143

in which LLMs leverage external graph reason- 144

ing tools to enhance logical inference over graph 145

data (Zhang, 2023). ProLINK is a framework that 146

enhances pre-trained GNNs by utilizing graph- 147

structured prompts generated by LLMs, signifi- 148

cantly improving low-resource inductive reason- 149

ing performance across various knowledge graphs 150

(KGs) without requiring additional training (Wang 151

et al., 2024a). KGP (Knowledge Graph Prompting), 152

on the other hand, proposes a framework that en- 153

hances LLM performance in multi-document ques- 154

tion answering (MD-QA) by utilizing KG-based 155

prompts to effectively structure and explore logi- 156

cal relationships between documents (Wang et al., 157

2024b). 158

While these studies share the common goal of in- 159

tegrating LLMs with graph information to enhance 160

structured data processing and reasoning capabili- 161

ties, they differ in their approach. GraphPrompter 162

and ProLINK focus on graph-based reasoning us- 163

ing GNNs, Carta et al.’s method and KGP empha- 164

size knowledge graph generation and utilization 165

via LLMs, and Graph-ToolFormer highlights the 166

collaboration between LLMs and external graph 167

reasoning tools(Liu et al., 2024; Carta et al., 2023; 168

Zhang, 2023; Wang et al., 2024b). 169

3 TabHD Benchmark 170

3.1 Dataset Collection 171

To create the TabHD benchmark, we collected a 172

total of three open-source tabular datasets. The first 173

dataset is the table-to-text (ToTTo) dataset, which 174

contains over 120,000 English tables (Parikh et al., 175

2020). It was originally collected for the purpose of 176

generating descriptive text for tabular data, where 177

each table is paired with corresponding text. How- 178

ever, in this study, we used only the tabular data. 179

The second dataset is GitTables, an open-source 180

dataset that consists of approximately one million 181

CSV tables collected from GitHub (Hulsebos et al., 182
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Dataset Table Count
ToTTo 128461
GitTables 350584
BioTable 110

Table 1: Collected Table Dataset Count

2023). Finally, we utilized the BioTable dataset183

from the Semantic Web Challenge on Tabular Data184

to Knowledge Graph Matching (SemTab) 2021185

(Abdelmageed et al., 2021). The number of tables186

in each dataset is shown in Table 1, and a subset of187

these datasets was used to construct TabHD.188

3.2 Task Formulation and TabHD189

Construction190

Most existing datasets are designed for question-191

answering tasks based on tabular data. However,192

TabHD was created with a different objective: to193

determine whether LLMs can restore damaged tab-194

ular data in text format. To achieve this, we defined195

four tasks: 1) Table Merge, 2) Table Split, 3) Table196

Cell Imputation, and 4) Table Cell Correction. The197

collected datasets were preprocessed to align with198

these four defined tasks, forming the TabHD bench-199

mark. The number of datasets used for each task200

is shown in Table 2, with approximately 50,000201

tables allocated per task.202

3.2.1 Table Merge203

Most tabular data appears in documents alongside204

various layouts, including text and images. Due205

to this, length limitations may cause table data to206

be truncated. When a table is split across different207

pages, OCR tends to recognize each fragment as an208

independent table. To utilize the original, undam-209

aged tabular data, it is necessary to restore these210

fragmented tables to their original structure. If only211

a single table exists in a document, simply merging212

the fragments is sufficient. However, if multiple213

fragmented tables exist within the same document,214

a criterion is needed to determine which table frag-215

ments should be merged. Therefore, we define the216

Table Merge task to recover tables that have been217

divided into multiple fragments.218

To implement the Table Merge task, we used219

a total of 61,645 tables. To simulate fragmented220

table data, we split 30,844 tables into two parts and221

30,801 tables into three parts. When splitting the222

tables, half of them were divided randomly based223

on rows, while the other half were divided based224

on columns.225

For the tables that were split into two parts, we 226

created three different input settings for the lan- 227

guage model. In 5,144 cases, only one table frag- 228

ment was provided as input. In 10,280 cases, both 229

fragments of a split table were included as input. In 230

15,420 cases, three separate table fragments were 231

provided simultaneously as input. This setup was 232

designed to evaluate the model’s ability to deter- 233

mine which table fragments should be correctly 234

merged when multiple fragmented tables exist in a 235

single document. 236

Similarly, for the tables split into three parts, 237

5,136 cases contained a single table fragment as 238

input, 10,266 cases included two fragments, and 239

15,399 cases provided all three fragments simulta- 240

neously as input to the language model. 241

3.2.2 Table Split 242

Another issue that arises when extracting tabular 243

data from documents using OCR is that multiple 244

adjacent tables may be mistakenly recognized as 245

a single table. If several tables are placed closely 246

together, OCR often merges them into one. For 247

example, if three tables are arranged on a single 248

page for numerical comparison, OCR may interpret 249

them as a single table. To address this issue, we 250

define the Table Split task, which aims to determine 251

whether merged tables can be correctly separated 252

into their original independent forms. 253

To implement the Table Split task, we used a 254

total of 51,839 tables. To simulate cases where mul- 255

tiple tables are incorrectly recognized as one, we 256

merged 25,851 tables into pairs, combining them 257

into a single table. Half of these were merged verti- 258

cally, while the other half were merged horizontally. 259

Additionally, 15,988 tables were grouped into sets 260

of three and merged into a single table. 261

3.2.3 Table Cell Imputation 262

There are various factors that contribute to the 263

degradation of OCR performance, including font 264

style and image quality. If the OCR model encoun- 265

ters an unfamiliar font or if the text is difficult to 266

recognize, missing values may occur in the table’s 267

cells. Tabular data consists of multiple cells, each 268

containing not only its own content but also struc- 269

tural information related to its rows and columns. 270

Therefore, when missing values occur in table cells, 271

it can lead to issues in downstream tasks such as 272

numerical prediction and categorical classification. 273

To address this, we define the Table Cell Imputa- 274

tion task, which aims to determine whether missing 275
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Task Sub-Task Category Sub-Task Table Count

Table Merging

Merging a table split into two
1 table fragment 5144
2 table fragments 10280
3 table fragments 15420

Merging a table split into three
1 table fragment 5136
2 table fragments 10266
3 table fragments 15399

Table Splitting Splitting a merged table
Splitting into two tables 25851
Splitting into three tables 25988

Table Cell Completion Filling missing values

10% missing 18248
30% missing 18239
50% missing 18249

Table Cell Correction

Fixing ambiguous characters
10% affected 5245
30% affected 5300
50% affected 5291

Restoring truncated text
10% affected 5173
30% affected 5010
50% affected 5090

Restoring reordered text
10% affected 5237
30% affected 5120
50% affected 5132

Total 214818

Table 2: Table task distribution with sub-task categories and table counts.

values in tabular data can be effectively restored.276

To implement the Table Cell Imputation task, we277

utilized a total of 54,736 tables. Based on the pro-278

portion of missing values per table, 18,248 tables279

were assigned a 10 percent missing rate, 18,239280

tables were assigned a 30 percent missing rate, and281

18,249 tables were assigned a 50 percent missing282

rate.283

3.2.4 Table Cell Correction284

Despite significant advancements in OCR technol-285

ogy, certain characters are still prone to recogni-286

tion errors. For example, OCR often misinterprets287

’B’ as ’8’ or ’0’ as ’O’, leading to recognition in-288

accuracies for visually similar characters (refer-289

ence needed). Additionally, as the length of text290

increases, OCR performance tends to decline (ref-291

erence needed). A common issue with long text292

strings is that OCR may alter the order of mid-293

dle characters or omit certain characters. How-294

ever, when tabular data is used after OCR process-295

ing, damaged cell content can lead to performance296

degradation in downstream tasks. To address this 297

issue, we define the Table Cell Correction task, 298

which aims to determine whether corrupted cell 299

content can be accurately restored. 300

For the Table Cell Correction task, we used a 301

total of 46,598 tables. Among these, 15,836 tables 302

were modified by replacing characters that OCR 303

frequently misrecognizes. The specific characters 304

with low OCR recognition accuracy used in this 305

task are shown in Table 2 (table reference needed). 306

For 15,273 tables, we simulated scenarios where 307

OCR truncates longer text by cutting off text or nu- 308

merical values when they exceeded four characters 309

in length. 310

For 15,489 tables, we implemented cases where 311

the character order was altered, reflecting common 312

OCR errors in handling long text strings. 313

For all three scenarios, the number of tables was 314

evenly divided into three groups, with 10 percent, 315

30 percent, and 50 percent of the cell content inten- 316

tionally corrupted. 317
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4 Experiments318

Tables extracted through OCR often fail to preserve319

their original structure, leading to various issues in320

subsequent data utilization processes. To address321

these challenges, this study proposes a table restora-322

tion model that integrates LLMs and GNNs and323

aims to validate its effectiveness through experi-324

ments.325

This study conducts two main experiments. The326

first experiment evaluates the basic capability of327

LLMs to independently correct OCR errors. The328

second experiment examines how incorporating a329

GNN, which captures the structural information330

of tables, improves restoration performance. By331

comparing the performance of the standalone LLM332

approach with the GNN-LLM hybrid approach, this333

study aims to analyze the importance of structural334

information in table data restoration.335

4.1 Experiment 1: Can LLMs Independently336

Correct OCR Errors?337

4.1.1 Objective and Necessity of the338

Experiment339

OCR technology plays a crucial role in converting340

text from documents into digital data. However, it341

often introduces several issues. First, text loss and342

distortion frequently occur, such as truncated long343

sentences or reordered characters. Second, charac-344

ter misrecognition can lead to typographical errors,345

where visually similar characters like ‘O’ and ‘0’ or346

‘B’ and ‘8’ are confused. Third, structural inconsis-347

tencies may arise, where multiple adjacent tables348

are mistakenly merged into one, or a single table349

is split into multiple parts, disrupting the original350

table structure.351

Traditionally, OCR errors have been corrected352

manually or using rule-based algorithms. However,353

these methods require predefined rules tailored to354

specific datasets, limiting their generalizability. Re-355

cently, large language models (LLMs) have demon-356

strated outstanding performance in various text-357

based restoration tasks. Given their ability to handle358

structured text, they hold potential for correcting359

OCR errors in tabular data. The first experiment in360

this study aims to evaluate how effectively an LLM361

can independently compensate for OCR deficien-362

cies without additional structural information.363

4.1.2 Experimental Setup364

In this experiment, we evaluate the performance365

of LLMs using GPT, Gemini, and Gemma models.366

The experimental dataset consists of OCR-error 367

samples extracted from TabHD. The evaluation 368

metrics include Precision, Recall, F1-score, and 369

Table Accuracy, comparing the accuracy of the cor- 370

rected data against the original OCR-extracted data. 371

4.1.3 Expected Results and Hypothesis 372

We hypothesize that LLMs will outperform rule- 373

based OCR post-processing methods in correcting 374

text errors. However, we also anticipate that LLMs 375

will face limitations in fully restoring table struc- 376

tures, as they may struggle to consider structural 377

relationships such as logical row-column connec- 378

tions and cell merging. 379

4.2 Experiment 2: Evaluating the 380

Effectiveness of the Graph-Enhanced 381

LLM Approach 382

4.2.1 Objective and Necessity of the 383

Experiment 384

The first experiment confirmed that LLMs can par- 385

tially correct OCR errors. However, it remains un- 386

certain whether they can fully restore the structural 387

integrity of tables. Unlike plain text data, tabular 388

data requires maintaining the semantic relation- 389

ships between rows and columns, necessitating an 390

approach that goes beyond simple text-based meth- 391

ods. 392

Therefore, in the second experiment, we applied 393

a method that converts table data into a graph struc- 394

ture and incorporates extracted graph information 395

into the prompt. The primary objective of this study 396

is to evaluate whether additional graph-based infor- 397

mation contributes to enhancing the performance 398

of LLMs. 399

4.2.2 Experimental Setup 400

The first experiment showed that the Gemini model 401

performed best in correcting OCR errors. There- 402

fore, in this second experiment, we focused on ana- 403

lyzing potential performance improvements based 404

on Gemini. We compared three different mod- 405

els. First, we evaluated the OCR error correction 406

performance of a standalone LLM model (Gem- 407

ini). Second, we applied a fine-tuned LLM model 408

(Finetuned Gemini) that had been trained on spe- 409

cific table restoration tasks, to assess the impact 410

of domain-specific data training on performance. 411

Third, we experimented with a graph-augmented 412

Gemini model, where table data was converted into 413

a graph structure, and the extracted graph infor- 414

mation was added to the prompt. This experiment 415
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aimed to determine whether leveraging graph in-416

formation could improve performance (Tang et al.,417

2024).418

The graphs used in the experiment contained419

structural relationships within tables and were in-420

corporated into prompts to help the LLM better un-421

derstand the context of tabular data. The experimen-422

tal dataset was sampled from the table restoration423

tasks (merge, split, and cell recovery) in TabHD.424

The evaluation metrics used were Precision, Recall,425

and F1-score, consistent with those in Experiment426

1.427

4.2.3 Expected Results and Hypothesis428

We hypothesize that the graph-augmented Gem-429

ini model will outperform the baseline LLM by430

better capturing the structural relationships within431

tables. Additionally, both the Finetuned Gemini432

and Graph-augmented Gemini models have under-433

gone task-specific pretraining, which is expected434

to enable LLMs to utilize graph information more435

effectively. In particular, incorporating structural436

information into the prompt is expected to improve437

model comprehension in Table Merge and Table438

Split tasks.439

However, graph information may not guaran-440

tee consistent performance improvements across441

all tasks, and in certain cases, it might act as re-442

dundant or unnecessary information. Another key443

factor influencing the experimental results will be444

how effectively the LLM can utilize graph-based445

information. Further research will be required to446

explore these aspects in depth.447

5 Results448

5.1 Evaluation Metrics449

In this study, precision and F1-score were used as450

the primary performance metrics to evaluate the451

accuracy of OCR post-processing table restoration.452

The evaluation was designed to precisely reflect453

both the structural information and content of ta-454

bles by applying a cell-level comparison approach455

rather than an individual word-level assessment.456

Specifically, the restored tables generated by the457

model and the original tables were converted into458

a dataframe format, and precision and recall were459

calculated based on the match between individual460

cell values. Precision measures the proportion of461

correctly restored cells among those generated by462

the model, while recall represents the proportion463

of correctly recovered cells out of the total cells464

in the original table. Based on these two metrics, 465

the F1-score was computed to assess the overall 466

performance of the model. 467

5.2 Experiment 1: Can LLMs Independently 468

Correct OCR Errors? 469

The experimental results are shown in Table 3. 470

Overall, all three models exhibited relatively low 471

performance, particularly struggling with restoring 472

structurally complex tables. In the Table Merging 473

task, the GPT model achieved the highest perfor- 474

mance with a precision of 0.9249 and an F1-score 475

of 0.6283. However, its performance dropped sig- 476

nificantly in other tasks. In contrast, the Gemini and 477

Gemma models demonstrated more balanced per- 478

formance across tasks, but neither showed a high 479

level of restoration capability. 480

In the Table Splitting task, all three models 481

recorded low F1-scores. The GPT model, in par- 482

ticular, had a notably low F1-score of 0.1515, in- 483

dicating that LLMs struggle to maintain structural 484

consistency in table-splitting tasks. In the Table 485

Cell Imputation task, all models achieved an F1- 486

score in the range of 0.28 to 0.30, suggesting that 487

missing data recovery remains incomplete. 488

For the Table Cell Correction task, three sub- 489

tasks were evaluated: Fixing ambiguous characters, 490

Restoring truncated text, and Restoring reordered 491

text. All models demonstrated low overall perfor- 492

mance. In the Fixing ambiguous characters sub- 493

task, GPT recorded a relatively higher F1-score of 494

0.3138. However, in the Restoring reordered text 495

subtask, all models achieved an F1-score around 496

0.28, highlighting the difficulty of recovering text 497

distorted by OCR errors. 498

When comparing the overall average perfor- 499

mance, Gemini achieved the highest performance 500

with a precision of 0.4187 and an F1-score of 501

0.3428, followed by Gemma with a precision of 502

0.4154 and an F1-score of 0.3371. The GPT model 503

had the lowest performance, with a precision of 504

0.4038 and an F1-score of 0.3267. These results 505

indicate that a purely LLM-based restoration ap- 506

proach is insufficient to fully correct OCR errors, 507

emphasizing the necessity of additional modeling 508

techniques that incorporate structural information. 509

5.3 Experiment 2: Evaluating the 510

Effectiveness of the Graph-Enhanced 511

LLM Approach 512

The experimental results are shown in Table 4. The 513

Finetuned Gemini model demonstrated improved 514
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Table 3: Performance comparison of Gemini, Gemma, and GPT models on various OCR-related tasks.

Task
Gemini Gemma GPT

Precision F1-score Precision F1-score Precision F1-score
Table Merging 0.8990 0.6541 0.8982 0.6488 0.9249 0.6283
Table Splitting 0.3406 0.2885 0.3319 0.2776 0.3083 0.1515
Table Cell Imputation 0.3017 0.2852 0.3004 0.2821 0.3115 0.2767
Table Cell Correction (Fixing ambiguous characters) 0.2988 0.3040 0.3078 0.3091 0.2861 0.3138
Table Cell Correction (Restoring truncated text) 0.3869 0.3473 0.3668 0.3321 0.3226 0.3511
Table Cell Correction (Restoring reordered text) 0.2849 0.2740 0.2877 0.2728 0.2696 0.2887

Total Average 0.4187 0.3428 0.4154 0.3371 0.4038 0.3267

Table 4: Performance comparison of Gemini, Finetuned Gemini, and Graph-augmented Gemini models on various
OCR-related tasks.

Task
Gemini Finetuned Gemini Graph-augmented Gemini

Precision F1-score Precision F1-score Precision F1-score
Table Merging 0.8990 0.6541 0.9125 0.6692 0.8801 0.6204
Table Splitting 0.3406 0.2885 0.3582 0.3101 0.3156 0.2457
Table Cell Imputation 0.3017 0.2852 0.3204 0.3003 0.2898 0.2709
Table Cell Correction (Fixing ambiguous characters) 0.2988 0.3040 0.3078 0.3091 0.2964 0.3037
Table Cell Correction (Restoring truncated text) 0.3869 0.3473 0.3668 0.3321 0.3742 0.3458
Table Cell Correction (Restoring reordered text) 0.2849 0.2740 0.2877 0.2728 0.2815 0.2701

Total Average 0.4187 0.3428 0.4422 0.3656 0.4063 0.3260

performance in table structure-related tasks (Ta-515

ble Merging, Table Splitting, and Table Cell Im-516

putation). In particular, in the Table Merging task,517

its precision increased to 0.9125 compared to the518

baseline Gemini model, and in the Table Splitting519

task, its performance also showed a slight improve-520

ment (F1-score 0.3101). These results suggest that521

pretraining on table structure recovery tasks con-522

tributed to enhancing the model’s performance.523

On the other hand, the Graph-augmented Gem-524

ini model exhibited an overall decrease in perfor-525

mance for table structure-related tasks. In the Table526

Merging task, its F1-score dropped to 0.6204, and527

a performance decline was also observed in the Ta-528

ble Splitting task (F1-score 0.2457). This indicates529

that additional graph information may introduce530

confusion rather than aiding the model’s learning531

process.532

Meanwhile, in the Cell Content Correction tasks533

(Fixing ambiguous characters, Restoring truncated534

text, and Restoring reordered text), all models per-535

formed similarly. Both the Finetuned Gemini and536

Graph-augmented Gemini models recorded nearly537

identical F1-scores to the baseline Gemini model,538

implying that neither graph information nor pre-539

training had a significant impact on text-based error540

correction tasks.541

When comparing the overall average perfor-542

mance, the Finetuned Gemini model achieved 543

the highest results, with a precision of 0.4422 544

and an F1-score of 0.3656. However, the Graph- 545

augmented Gemini model showed a slight decrease 546

in performance compared to the baseline Gemini 547

model (Precision 0.4063, F1-score 0.3260). These 548

results suggest that graph information may not con- 549

sistently improve table structure recovery and, in 550

some cases, may even hinder the model’s predic- 551

tions. Therefore, future research should focus on en- 552

hancing LLMs’ ability to effectively utilize graph- 553

based information to maximize its benefits in table 554

restoration tasks. 555

6 Conclusion 556

In this study, we proposed TabHD, a large-scale 557

benchmark dataset for restoring OCR-damaged ta- 558

ble data, and evaluated LLM-based approaches. 559

While traditional OCR post-processing focuses on 560

text correction with limited table structure restora- 561

tion, our experiments showed that LLMs can par- 562

tially recover both table structures and cell con- 563

tents. 564

The results indicated that standalone LLMs excel 565

in text recovery but struggle with structural restora- 566

tion. Fine-tuned LLMs improved performance in 567

tasks like Table Merging and Table Splitting. We 568

also tested a Graph-augmented LLM approach, in- 569

7



corporating table structure as graph-based prompts,570

but observed inconsistent improvements, highlight-571

ing the need for better graph utilization.572

7 Limitations573

While this study represents a significant attempt to574

explore the potential of LLMs for table restoration575

in OCR post-processing, several limitations remain.576

First, the benchmark dataset TabHD, constructed in577

this study, reflects various OCR errors but does not578

encompass all possible transformations present in579

real-world data. Therefore, future research should580

focus on expanding the dataset to include a wider581

range of domains and layouts.582

Second, the proposed methods rely on com-583

putationally expensive LLMs, which necessitate584

optimization strategies for real-time OCR post-585

processing applications. Developing lightweight586

models or methodologies that minimize latency587

will be an important direction for future research.588

To address these limitations, future studies will589

consider developing specialized models trained on590

OCR error patterns, exploring effective methods for591

utilizing graph-based information, expanding the592

benchmark dataset to include diverse domain data,593

and designing more efficient LLM architectures.594
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