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Abstract

Tabular data contains structural information
in the form of rows and columns and is uti-
lized across various industries, including fi-
nance, government, and science. However, dur-
ing the Optical Character Recognition (OCR)
process, table structures can become distorted,
or cell values may be extracted incorrectly, lead-
ing to a decline in the performance of sub-
sequent tasks that rely on tabular data. Exist-
ing OCR post-processing techniques primarily
focus on general text recovery, which limits
their effectiveness in restoring complex table
structures. To address this issue, we have con-
structed a large-scale benchmark dataset called
TabHD for recovering tabular data damaged
after OCR processing. Using this dataset, we
systematically evaluate the table restoration per-
formance of Large Language Models (LLMs).
This study explores the potential of LLM-based
table restoration in the OCR post-processing
pipeline and suggests directions for the devel-
opment of more sophisticated models in the
future.

1 Introduction

Tabular data consists of rows and columns, incor-
porating both structural information and semantic
information based on cell content. It is widely uti-
lized across various industries, including finance,
government, and science, for efficient data storage
and analysis (Shigarov, 2023). With recent advance-
ments in deep learning technologies, there has been
increasing research into effectively processing tab-
ular data.

Optical Character Recognition (OCR) is the pro-
cess of converting images into machine-readable
text and includes document layout analysis (DLA)
and table data extraction as its primary tasks.
Through OCR, not only continuous text in images
but also tabular data can be extracted as text (Patel
et al., 2012). However, table structures may not al-
ways be extracted in their original form (Peng et al.,

2024). For instance, long tables may be split into
multiple CSV files, or multiple adjacent tables may
be mistakenly recognized as a single table. Addi-
tionally, errors frequently occur in cells containing
a mix of numerical and natural language data, lead-
ing to incorrect value extraction (Patel et al., 2012).
Such errors can degrade the performance of down-
stream tasks that rely on tabular data. While some
post-OCR techniques exist to correct spelling er-
rors, there is still a lack of models dedicated to
restoring table structures.

With the recent advancement of Large Lan-
guage Models (LLMs), various text-based tasks
can now be performed. LLMs have been utilized
for handling tabular data in formats such as HTML,
JSON, and CSV, and models like TableLLlama and
TableGPT have been introduced for table-based
tasks, including Table Interpretation, Table Aug-
mentation, and Question Answering (Zhang et al.,
2023). However, LLMs still struggle to fully com-
prehend and process structured tabular data. In par-
ticular, research on Table Recovery, a complex data
restoration task, remains insufficient.

To address post-OCR challenges, we propose
TabHD, a large-scale benchmark dataset for tabu-
lar data recovery. TabHD is constructed based on
existing open-source tabular datasets, including the
table-to-text (ToTTo) dataset (Parikh et al., 2020),
GitTables (Hulsebos et al., 2023), and the BioTable
dataset from the Semantic Web Challenge on Tabu-
lar Data to Knowledge Graph Matching (SemTab)
2021 (Abdelmageed et al., 2021). It is designed to
reflect various error scenarios while maintaining
the consistency of table structures and cell content.

Furthermore, we experimentally validate an ap-
proach where table structural information is con-
verted into a graph representation and provided
as additional input to LLMs. To achieve this, we
fine-tuned LLMs on the TabHD dataset through
instruction tuning, enabling the model to restore
misrecognized table structures and correct incor-



rectly extracted cell values.

The key contributions of this study are as follows:
1. TabHD: We introduce the first large-scale bench-
mark dataset for OCR post-processing. TabHD con-
sists of 42,033 tables encompassing diverse error
scenarios.

2. Systematic evaluation of existing LLMs for
table restoration: We analyze the impact of incor-
porating table structural information on model per-
formance.

2 Related Works
2.1 LLM for Tabular Data

Tables represent structured data, requiring consid-
eration of both textual meaning and positional in-
formation, making table-related tasks highly chal-
lenging. With the recent advancements in Large
Language Models (LLMs), research on enabling
LLMs to perform tasks based on tabular data has
been actively conducted.

Sui et al. designed a benchmark to evaluate
the Structured Understanding Capability (SUC) of
LLMs, analyzing the performance of GPT-3.5 and
GPT-4 across seven tasks, including cell lookup,
row retrieval, and size detection. They reported
performance improvements in various table-based
tasks by optimizing structured prompts using a self-
augmentation technique (Sui et al., 2024a).

TableLlama, an LLLM built on LLlama 2 7B and
LongLoRA, is designed to handle table-based tasks
such as Table Interpretation, Table Augmentation,
and Question Answering (Zhang et al., 2023). Sim-
ilarly, TableGPT fine-tunes LLMs with external
functional commands, enabling table-related tasks
such as Table Question Answering, data manipula-
tion (e.g., insertion and deletion), and data visual-
ization (Zha et al., 2023).

Despite these advancements, LLMs still lack the
ability to fully comprehend and process structured
tabular data (Sui et al., 2024b).

2.2 Graph LLM Fusion

Graph networks are effective for representing struc-
tured data, as they can capture both the values of
individual table cells and their relationships with
surrounding cells. Recently, there has been a grow-
ing body of research integrating graph structures
with language models.

GraphPrompter is a novel framework that com-
bines graph neural networks (GNNs) with soft
prompts to effectively convey graph information to

LLMs, thereby improving their predictive capabili-
ties in graph-related tasks (Liu et al., 2024). Carta
et al. propose an innovative approach that leverages
generative LLMs, such as GPT-3.5, to address key
challenges in knowledge graph construction. Their
method enables scalable and flexible automated
knowledge graph generation by employing an iter-
ative zero-shot prompting strategy while reducing
dependency on external knowledge (Carta et al.,
2023).

Graph-ToolFormer explores a learning method
in which LLMs leverage external graph reason-
ing tools to enhance logical inference over graph
data (Zhang, 2023). ProLINK is a framework that
enhances pre-trained GNNs by utilizing graph-
structured prompts generated by LLMs, signifi-
cantly improving low-resource inductive reason-
ing performance across various knowledge graphs
(KGs) without requiring additional training (Wang
et al., 2024a). KGP (Knowledge Graph Prompting),
on the other hand, proposes a framework that en-
hances LLM performance in multi-document ques-
tion answering (MD-QA) by utilizing KG-based
prompts to effectively structure and explore logi-
cal relationships between documents (Wang et al.,
2024b).

While these studies share the common goal of in-
tegrating LLMs with graph information to enhance
structured data processing and reasoning capabili-
ties, they differ in their approach. GraphPrompter
and ProLINK focus on graph-based reasoning us-
ing GNNs, Carta et al.’s method and KGP empha-
size knowledge graph generation and utilization
via LLMs, and Graph-ToolFormer highlights the
collaboration between LLMs and external graph
reasoning tools(Liu et al., 2024; Carta et al., 2023;
Zhang, 2023; Wang et al., 2024b).

3 TabHD Benchmark

3.1 Dataset Collection

To create the TabHD benchmark, we collected a
total of three open-source tabular datasets. The first
dataset is the table-to-text (ToTTo) dataset, which
contains over 120,000 English tables (Parikh et al.,
2020). It was originally collected for the purpose of
generating descriptive text for tabular data, where
each table is paired with corresponding text. How-
ever, in this study, we used only the tabular data.
The second dataset is GitTables, an open-source
dataset that consists of approximately one million
CSYV tables collected from GitHub (Hulsebos et al.,



Dataset Table Count
ToTTo 128461
GitTables 350584
BioTable 110

Table 1: Collected Table Dataset Count

2023). Finally, we utilized the BioTable dataset
from the Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab) 2021
(Abdelmageed et al., 2021). The number of tables
in each dataset is shown in Table 1, and a subset of
these datasets was used to construct TabHD.

3.2 Task Formulation and TabHD
Construction

Most existing datasets are designed for question-
answering tasks based on tabular data. However,
TabHD was created with a different objective: to
determine whether LLMs can restore damaged tab-
ular data in text format. To achieve this, we defined
four tasks: 1) Table Merge, 2) Table Split, 3) Table
Cell Imputation, and 4) Table Cell Correction. The
collected datasets were preprocessed to align with
these four defined tasks, forming the TabHD bench-
mark. The number of datasets used for each task
is shown in Table 2, with approximately 50,000
tables allocated per task.

3.2.1 Table Merge

Most tabular data appears in documents alongside
various layouts, including text and images. Due
to this, length limitations may cause table data to
be truncated. When a table is split across different
pages, OCR tends to recognize each fragment as an
independent table. To utilize the original, undam-
aged tabular data, it is necessary to restore these
fragmented tables to their original structure. If only
a single table exists in a document, simply merging
the fragments is sufficient. However, if multiple
fragmented tables exist within the same document,
a criterion is needed to determine which table frag-
ments should be merged. Therefore, we define the
Table Merge task to recover tables that have been
divided into multiple fragments.

To implement the Table Merge task, we used
a total of 61,645 tables. To simulate fragmented
table data, we split 30,844 tables into two parts and
30,801 tables into three parts. When splitting the
tables, half of them were divided randomly based
on rows, while the other half were divided based
on columns.

For the tables that were split into two parts, we
created three different input settings for the lan-
guage model. In 5,144 cases, only one table frag-
ment was provided as input. In 10,280 cases, both
fragments of a split table were included as input. In
15,420 cases, three separate table fragments were
provided simultaneously as input. This setup was
designed to evaluate the model’s ability to deter-
mine which table fragments should be correctly
merged when multiple fragmented tables exist in a
single document.

Similarly, for the tables split into three parts,
5,136 cases contained a single table fragment as
input, 10,266 cases included two fragments, and
15,399 cases provided all three fragments simulta-
neously as input to the language model.

3.2.2 Table Split

Another issue that arises when extracting tabular
data from documents using OCR is that multiple
adjacent tables may be mistakenly recognized as
a single table. If several tables are placed closely
together, OCR often merges them into one. For
example, if three tables are arranged on a single
page for numerical comparison, OCR may interpret
them as a single table. To address this issue, we
define the Table Split task, which aims to determine
whether merged tables can be correctly separated
into their original independent forms.

To implement the Table Split task, we used a
total of 51,839 tables. To simulate cases where mul-
tiple tables are incorrectly recognized as one, we
merged 25,851 tables into pairs, combining them
into a single table. Half of these were merged verti-
cally, while the other half were merged horizontally.
Additionally, 15,988 tables were grouped into sets
of three and merged into a single table.

3.2.3 Table Cell Imputation

There are various factors that contribute to the
degradation of OCR performance, including font
style and image quality. If the OCR model encoun-
ters an unfamiliar font or if the text is difficult to
recognize, missing values may occur in the table’s
cells. Tabular data consists of multiple cells, each
containing not only its own content but also struc-
tural information related to its rows and columns.
Therefore, when missing values occur in table cells,
it can lead to issues in downstream tasks such as
numerical prediction and categorical classification.
To address this, we define the Table Cell Imputa-
tion task, which aims to determine whether missing



Task Sub-Task Category Sub-Task Table Count
1 table fragment 5144
Merging a table split into two | 2 table fragments 10280
. 3 table fragments 15420
Table Merging

1 table fragment 5136
Merging a table split into three | 2 table fragments 10266
3 table fragments 15399
Table Splitting Splitting a merged table Spl%tt%ng ?nto two tables 25851
Splitting into three tables 25988
10% missing 18248
. L o 30% missing 18239

Table Cell Completion | Filling missing values o
50% missing 18249
10% affected 5245
Fixing ambiguous characters 30% affected 5300
50% affected 5291
10% affected 5173
Table Cell Correction | Restoring truncated text 30% affected 5010
50% affected 5090
10% aftected 5237
Restoring reordered text 30% affected 5120
50% affected 5132
Total 214818

Table 2: Table task distribution with sub-task categories and table counts.

values in tabular data can be effectively restored.

To implement the Table Cell Imputation task, we
utilized a total of 54,736 tables. Based on the pro-
portion of missing values per table, 18,248 tables
were assigned a 10 percent missing rate, 18,239
tables were assigned a 30 percent missing rate, and
18,249 tables were assigned a 50 percent missing
rate.

3.2.4 Table Cell Correction

Despite significant advancements in OCR technol-
ogy, certain characters are still prone to recogni-
tion errors. For example, OCR often misinterprets
"B’ as ’8” or ’0’ as ’O’, leading to recognition in-
accuracies for visually similar characters (refer-
ence needed). Additionally, as the length of text
increases, OCR performance tends to decline (ref-
erence needed). A common issue with long text
strings is that OCR may alter the order of mid-
dle characters or omit certain characters. How-
ever, when tabular data is used after OCR process-
ing, damaged cell content can lead to performance

degradation in downstream tasks. To address this
issue, we define the Table Cell Correction task,
which aims to determine whether corrupted cell
content can be accurately restored.

For the Table Cell Correction task, we used a
total of 46,598 tables. Among these, 15,836 tables
were modified by replacing characters that OCR
frequently misrecognizes. The specific characters
with low OCR recognition accuracy used in this
task are shown in Table 2 (table reference needed).

For 15,273 tables, we simulated scenarios where
OCR truncates longer text by cutting off text or nu-
merical values when they exceeded four characters
in length.

For 15,489 tables, we implemented cases where
the character order was altered, reflecting common
OCR errors in handling long text strings.

For all three scenarios, the number of tables was
evenly divided into three groups, with 10 percent,
30 percent, and 50 percent of the cell content inten-
tionally corrupted.



4 [Experiments

Tables extracted through OCR often fail to preserve
their original structure, leading to various issues in
subsequent data utilization processes. To address
these challenges, this study proposes a table restora-
tion model that integrates LL.Ms and GNNs and
aims to validate its effectiveness through experi-
ments.

This study conducts two main experiments. The
first experiment evaluates the basic capability of
LLMs to independently correct OCR errors. The
second experiment examines how incorporating a
GNN, which captures the structural information
of tables, improves restoration performance. By
comparing the performance of the standalone LLM
approach with the GNN-LLM hybrid approach, this
study aims to analyze the importance of structural
information in table data restoration.

4.1 Experiment 1: Can LLMs Independently
Correct OCR Errors?

4.1.1 Objective and Necessity of the
Experiment

OCR technology plays a crucial role in converting
text from documents into digital data. However, it
often introduces several issues. First, text loss and
distortion frequently occur, such as truncated long
sentences or reordered characters. Second, charac-
ter misrecognition can lead to typographical errors,
where visually similar characters like ‘O’ and ‘0’ or
‘B’ and ‘8’ are confused. Third, structural inconsis-
tencies may arise, where multiple adjacent tables
are mistakenly merged into one, or a single table
is split into multiple parts, disrupting the original
table structure.

Traditionally, OCR errors have been corrected
manually or using rule-based algorithms. However,
these methods require predefined rules tailored to
specific datasets, limiting their generalizability. Re-
cently, large language models (LLMs) have demon-
strated outstanding performance in various text-
based restoration tasks. Given their ability to handle
structured text, they hold potential for correcting
OCR errors in tabular data. The first experiment in
this study aims to evaluate how effectively an LLM
can independently compensate for OCR deficien-
cies without additional structural information.

4.1.2 Experimental Setup

In this experiment, we evaluate the performance
of LLMs using GPT, Gemini, and Gemma models.

The experimental dataset consists of OCR-error
samples extracted from TabHD. The evaluation
metrics include Precision, Recall, F1-score, and
Table Accuracy, comparing the accuracy of the cor-
rected data against the original OCR-extracted data.

4.1.3 Expected Results and Hypothesis

We hypothesize that LLMs will outperform rule-
based OCR post-processing methods in correcting
text errors. However, we also anticipate that LLMs
will face limitations in fully restoring table struc-
tures, as they may struggle to consider structural
relationships such as logical row-column connec-
tions and cell merging.

4.2 Experiment 2: Evaluating the
Effectiveness of the Graph-Enhanced
LLM Approach

4.2.1 Objective and Necessity of the
Experiment

The first experiment confirmed that LLMs can par-
tially correct OCR errors. However, it remains un-
certain whether they can fully restore the structural
integrity of tables. Unlike plain text data, tabular
data requires maintaining the semantic relation-
ships between rows and columns, necessitating an
approach that goes beyond simple text-based meth-
ods.

Therefore, in the second experiment, we applied
a method that converts table data into a graph struc-
ture and incorporates extracted graph information
into the prompt. The primary objective of this study
is to evaluate whether additional graph-based infor-
mation contributes to enhancing the performance
of LLMs.

4.2.2 Experimental Setup

The first experiment showed that the Gemini model
performed best in correcting OCR errors. There-
fore, in this second experiment, we focused on ana-
lyzing potential performance improvements based
on Gemini. We compared three different mod-
els. First, we evaluated the OCR error correction
performance of a standalone LLM model (Gem-
ini). Second, we applied a fine-tuned LLM model
(Finetuned Gemini) that had been trained on spe-
cific table restoration tasks, to assess the impact
of domain-specific data training on performance.
Third, we experimented with a graph-augmented
Gemini model, where table data was converted into
a graph structure, and the extracted graph infor-
mation was added to the prompt. This experiment



aimed to determine whether leveraging graph in-
formation could improve performance (Tang et al.,
2024).

The graphs used in the experiment contained
structural relationships within tables and were in-
corporated into prompts to help the LLM better un-
derstand the context of tabular data. The experimen-
tal dataset was sampled from the table restoration
tasks (merge, split, and cell recovery) in TabHD.
The evaluation metrics used were Precision, Recall,
and F1-score, consistent with those in Experiment
1.

4.2.3 Expected Results and Hypothesis

We hypothesize that the graph-augmented Gem-
ini model will outperform the baseline LLM by
better capturing the structural relationships within
tables. Additionally, both the Finetuned Gemini
and Graph-augmented Gemini models have under-
gone task-specific pretraining, which is expected
to enable LLMs to utilize graph information more
effectively. In particular, incorporating structural
information into the prompt is expected to improve
model comprehension in Table Merge and Table
Split tasks.

However, graph information may not guaran-
tee consistent performance improvements across
all tasks, and in certain cases, it might act as re-
dundant or unnecessary information. Another key
factor influencing the experimental results will be
how effectively the LLM can utilize graph-based
information. Further research will be required to
explore these aspects in depth.

5 Results

5.1 Evaluation Metrics

In this study, precision and F1-score were used as
the primary performance metrics to evaluate the
accuracy of OCR post-processing table restoration.
The evaluation was designed to precisely reflect
both the structural information and content of ta-
bles by applying a cell-level comparison approach
rather than an individual word-level assessment.
Specifically, the restored tables generated by the
model and the original tables were converted into
a dataframe format, and precision and recall were
calculated based on the match between individual
cell values. Precision measures the proportion of
correctly restored cells among those generated by
the model, while recall represents the proportion
of correctly recovered cells out of the total cells

in the original table. Based on these two metrics,
the F1-score was computed to assess the overall
performance of the model.

5.2 Experiment 1: Can LLMs Independently
Correct OCR Errors?

The experimental results are shown in Table 3.
Overall, all three models exhibited relatively low
performance, particularly struggling with restoring
structurally complex tables. In the Table Merging
task, the GPT model achieved the highest perfor-
mance with a precision of 0.9249 and an F1-score
of 0.6283. However, its performance dropped sig-
nificantly in other tasks. In contrast, the Gemini and
Gemma models demonstrated more balanced per-
formance across tasks, but neither showed a high
level of restoration capability.

In the Table Splitting task, all three models
recorded low F1-scores. The GPT model, in par-
ticular, had a notably low F1-score of 0.1515, in-
dicating that LLMs struggle to maintain structural
consistency in table-splitting tasks. In the Table
Cell Imputation task, all models achieved an F1-
score in the range of 0.28 to 0.30, suggesting that
missing data recovery remains incomplete.

For the Table Cell Correction task, three sub-
tasks were evaluated: Fixing ambiguous characters,
Restoring truncated text, and Restoring reordered
text. All models demonstrated low overall perfor-
mance. In the Fixing ambiguous characters sub-
task, GPT recorded a relatively higher F1-score of
0.3138. However, in the Restoring reordered text
subtask, all models achieved an F1-score around
0.28, highlighting the difficulty of recovering text
distorted by OCR errors.

When comparing the overall average perfor-
mance, Gemini achieved the highest performance
with a precision of 0.4187 and an Fl1-score of
0.3428, followed by Gemma with a precision of
0.4154 and an F1-score of 0.3371. The GPT model
had the lowest performance, with a precision of
0.4038 and an Fl-score of 0.3267. These results
indicate that a purely LLM-based restoration ap-
proach is insufficient to fully correct OCR errors,
emphasizing the necessity of additional modeling
techniques that incorporate structural information.

5.3 Experiment 2: Evaluating the
Effectiveness of the Graph-Enhanced
LLM Approach

The experimental results are shown in Table 4. The
Finetuned Gemini model demonstrated improved



Table 3: Performance comparison of Gemini, Gemma, and GPT models on various OCR-related tasks.

Task Gemini Gemma GPT
Precision | F1-score | Precision | F1-score | Precision | F1-score
Table Merging 0.8990 0.6541 0.8982 0.6488 0.9249 0.6283
Table Splitting 0.3406 0.2885 0.3319 0.2776 0.3083 0.1515
Table Cell Imputation 0.3017 0.2852 0.3004 0.2821 0.3115 0.2767
Table Cell Correction (Fixing ambiguous characters) 0.2988 0.3040 0.3078 0.3091 0.2861 0.3138
Table Cell Correction (Restoring truncated text) 0.3869 0.3473 0.3668 0.3321 0.3226 0.3511
Table Cell Correction (Restoring reordered text) 0.2849 0.2740 0.2877 0.2728 0.2696 0.2887
Total Average 0.4187 0.3428 0.4154 0.3371 0.4038 0.3267

Table 4: Performance comparison of Gemini, Finetuned Gemini, and Graph-augmented Gemini models on various

OCR-related tasks.

Task Gemini Finetuned Gemini | Graph-augmented Gemini

Precision | F1-score | Precision | F1-score | Precision F1-score
Table Merging 0.8990 0.6541 0.9125 0.6692 0.8801 0.6204
Table Splitting 0.3406 0.2885 0.3582 0.3101 0.3156 0.2457
Table Cell Imputation 0.3017 0.2852 0.3204 0.3003 0.2898 0.2709
Table Cell Correction (Fixing ambiguous characters) 0.2988 0.3040 0.3078 0.3091 0.2964 0.3037
Table Cell Correction (Restoring truncated text) 0.3869 0.3473 0.3668 0.3321 0.3742 0.3458
Table Cell Correction (Restoring reordered text) 0.2849 0.2740 0.2877 0.2728 0.2815 0.2701
Total Average 0.4187 0.3428 0.4422 0.3656 0.4063 0.3260

performance in table structure-related tasks (Ta-
ble Merging, Table Splitting, and Table Cell Im-
putation). In particular, in the Table Merging task,
its precision increased to 0.9125 compared to the
baseline Gemini model, and in the Table Splitting
task, its performance also showed a slight improve-
ment (F1-score 0.3101). These results suggest that
pretraining on table structure recovery tasks con-
tributed to enhancing the model’s performance.

On the other hand, the Graph-augmented Gem-
ini model exhibited an overall decrease in perfor-
mance for table structure-related tasks. In the Table
Merging task, its F1-score dropped to 0.6204, and
a performance decline was also observed in the Ta-
ble Splitting task (F1-score 0.2457). This indicates
that additional graph information may introduce
confusion rather than aiding the model’s learning
process.

Meanwhile, in the Cell Content Correction tasks
(Fixing ambiguous characters, Restoring truncated
text, and Restoring reordered text), all models per-
formed similarly. Both the Finetuned Gemini and
Graph-augmented Gemini models recorded nearly
identical F1-scores to the baseline Gemini model,
implying that neither graph information nor pre-
training had a significant impact on text-based error
correction tasks.

When comparing the overall average perfor-

mance, the Finetuned Gemini model achieved
the highest results, with a precision of 0.4422
and an F1-score of 0.3656. However, the Graph-
augmented Gemini model showed a slight decrease
in performance compared to the baseline Gemini
model (Precision 0.4063, F1-score 0.3260). These
results suggest that graph information may not con-
sistently improve table structure recovery and, in
some cases, may even hinder the model’s predic-
tions. Therefore, future research should focus on en-
hancing LLMs’ ability to effectively utilize graph-
based information to maximize its benefits in table
restoration tasks.

6 Conclusion

In this study, we proposed TabHD, a large-scale
benchmark dataset for restoring OCR-damaged ta-
ble data, and evaluated LL.M-based approaches.
While traditional OCR post-processing focuses on
text correction with limited table structure restora-
tion, our experiments showed that LLMs can par-
tially recover both table structures and cell con-
tents.

The results indicated that standalone LLMs excel
in text recovery but struggle with structural restora-
tion. Fine-tuned LLMs improved performance in
tasks like Table Merging and Table Splitting. We
also tested a Graph-augmented LLM approach, in-



corporating table structure as graph-based prompts,
but observed inconsistent improvements, highlight-
ing the need for better graph utilization.

7 Limitations

While this study represents a significant attempt to
explore the potential of LLMs for table restoration
in OCR post-processing, several limitations remain.
First, the benchmark dataset TabHD, constructed in
this study, reflects various OCR errors but does not
encompass all possible transformations present in
real-world data. Therefore, future research should
focus on expanding the dataset to include a wider
range of domains and layouts.

Second, the proposed methods rely on com-
putationally expensive LLMs, which necessitate
optimization strategies for real-time OCR post-
processing applications. Developing lightweight
models or methodologies that minimize latency
will be an important direction for future research.

To address these limitations, future studies will
consider developing specialized models trained on
OCR error patterns, exploring effective methods for
utilizing graph-based information, expanding the
benchmark dataset to include diverse domain data,
and designing more efficient LLM architectures.
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