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Abstract
Large language models (LLMs) necessitate huge
DRAM footprint and memory bandwidth costs,
severely limiting deployment on mobile devices.
This work demonstrates that non-uniform quanti-
zation in one or more dimensions can significantly
ease this memory bottleneck. We provide analysis
and experimental results to show that the model
size versus accuracy trade-off of neural network
quantization markedly improves when increas-
ing the quantization dimensionality. To exploit
this, we propose GPTVQ: an efficient method that
extends GPTQ to non-uniform and vector quanti-
zation (VQ). GPTVQ establishes state-of-the-art
results in model size vs accuracy across a wide
range of LLMs, including Llama-v2/v3 and Mis-
tral. Furthermore, our method is fast: on a single
H100 it takes between 3 and 11 hours to process
Llamav2-70B. Finally, we show that VQ is practi-
cal, by demonstrating simultaneous reduction in
DRAM footprint and latency on a VQ quantized
LLM on a mobile class Arm® CPU, and a desk-
top Nvidia® GPU. Our source code is available
in the supplementary material.

1. Introduction
Large language models (LLMs) have made significant
strides in enabling human-like natural language text genera-
tion with numerous applications, from general AI assistants
like Open AI’s GPT (Achiam et al., 2023), to more special-
ized tasks like coding companions (Roziere et al., 2023) and
medical aides (Tu et al., 2024).

However, the impressive capabilities of LLMs require very
large model sizes, which makes them challenging to deploy
on mobile devices for two reasons. Firstly, the sheer size of
LLMs occupy significant valuable DRAM footprint, which
is hard to accomodate within the typical 8GB total capacity.
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Figure 1. Top: Vector quantization more closely fits 2D normal
data, compared to uniform and non-uniform grids. Bottom:
GPTVQ compared to SOTA uniform quantization (Llamav2-70B).

Secondly, the bottleneck in LLM inference performance
lies in weight movement, since their autoregressive nature
requires the loading of every weight for each generated
token. Reducing the stored model size directly relaxes both
of these challenges.

While low-bit quantization has proven successful in reduc-
ing LLM weights down to 4 bits without substantial accu-
racy loss (Frantar et al., 2022; Lin et al., 2023; Shao et al.,
2023), there are strong incentives to push LLM quantiza-
tion much further. Moving beyond the uniform quantization
methods employed in much of the prior research, we in-
vestigate the potential to achieve even greater compression
by employing non-uniform quantization and subsequently
expanding the dimensionality of the representational grid
through vector quantization (VQ). In vector quantization
Figure 1 shows how multiple weights are quantized together
in VQ, achieving a more flexible quantization grid to align
closely to the weight distribution.

We integrate our findings into a novel algorithm for post-
training quantization called GPTVQ. This method allows
fast non-uniform and vector quantization, improving the
performance-size trade-off significantly compared to prior
state-of-the-art.

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

GPTVQ: The Blessing of Dimensionality for LLM Quantization

The contributions of this work are as follows:

• Our analysis and experimental results show that in-
creasing the dimensionality of quantization improves
the accuracy versus model size trade-offs for many
LLMs.

• We propose a fast and accurate algorithm for post-
training VQ compression, which achieves SOTA size
vs accuracy trade-offs on a wide range of LLMs, while
having a practical run time of only 3 to 11 hours on a
70B parameter model.

• We implement and benchmark VQ decompression on
a mobile Arm® CPU and an Nvidia® GPU. While
VQ leads to significant memory footprint reductions,
our on-device timings also demonstrate that it leads to
improved latency compared to a 4-bit integer baseline.

2. GPTVQ
Previous VQ methods, like (Stock et al., 2019), require end-
to-end fine-tuning and hence do not scale to LLM-sized
models. In this section, we introduce GPTVQ, a novel
method for efficient and accurate vector-quantization of
LLMs. We build on GPTQ (Frantar et al., 2022), a recent
uniform quantization method which interleaves column-
wise quantization with updates to the remaining (unquan-
tized) weights, using information from the Hessian of the
layer output reconstruction MSE. GPTQ provides excellent
performance on uniform quantization of LLMs with up to
hundreds of billions of parameters. Appendices H and I
present further extensions to GPTVQ, including Codebook
SVD and Blockwise Data Normalization.

2.1. Background: GPTQ

A large body of literature exists with methods to alleviate
the effects of quantization noise on model accuracy, see
(Gholami et al., 2022; Nagel et al., 2021) for recent surveys.
A popular and effective approach in post-training quantiza-
tion (PTQ), introduced by AdaRound (Nagel et al., 2020),
is to modify weights to minimize a layer’s output error as
an approximation to the full network’s loss:

E [L(θ + ϵ)− L(θ)] ≈
∑
ℓ

||WℓXℓ − ŴℓXℓ||2F , (1)

where Wℓ is the weight for layer ℓ, Ŵℓ = Wℓ + ϵℓ is the
(quantized) approximation to this weight tensor, and Xℓ of
shape R×N denotes the input data for layer ℓ from a calibra-
tion dataset, with N individual data points of dimensionality
R along its columns.

GPTQ follows Optimal Brain Quantization (OBQ; (Fran-
tar and Alistarh, 2022)), which uses the Hessian of Equa-
tion 1. This Hessian can be efficiently computed as H(ℓ) =

X(ℓ)X(ℓ)T . Like OBQ, GPTQ aims to minimize the Hessian-
weighted error introduced by quantizing weights in W(ℓ):

E =
∑
q

|Eq|22 Eq =
(W:,q − quant(W:,q))

2[
H−1

]
qq

(2)

.

GPTQ extends OBQ in the following ways. First, GPTQ
exploits the fact that H(ℓ) is shared over all rows of W(ℓ)

by quantizing all weights in a column in parallel, from left
to right. This obviates the need for independent Hessian
updates for different rows. After quantizing a column q,
all remaining (unquantized) columns q′ > q are modified
with a Hessian-based update rule δ that absorbs the error
introduced by quantizing column q on the layer’s output:

δ = −W:,q − quant(W:,q)[
H−1

]
qq

H:,(q+1): (3)

For further details on GPTQ we refer the reader to (Frantar
et al., 2022).

2.2. The GPTVQ method

The GPTVQ method generalizes the GPTQ method for non-
uniform and vector quantization.

Following the GPTQ framework we perform quantization of
the weight tensor in a greedy manner starting from the first
column. The details of the method are given in Algorithm 1.
Given the VQ dimensionality d, we quantize d columns at a
time. In the case of scalar quantization, the optimal Hessian-
weighted quantization of a single columnn was achieved
by rounding to nearest. However, in the case of vector
quantization, simply choosing the nearest centroid might be
suboptimal as error in each of d coordinates is weighted dif-
ferently. If we denote the inverse of the diagonal part of the
inverse Hessian as D = diag

(
1/[H−1]11, . . . , 1/[H

−1]cc
)
,

the following rule is used for choosing the optimal assign-
ment j for a data point x(i) and the corresponding subset of
D(i):

j = argmin
m

(
x(i) − c(m)

)T

D(i)
(

x(i) − c(m)
)
. (4)

After quantizing d columns, we update the remaining
weights using the update rule 3. We accumulate the update
along d coordinates and apply it to the remaining weights
as a single operation. To further minimize quantization er-
ror, we use several codebooks per layer, each assigned to a
group of weights (see Algorithm 1). We use group sizes of
at most 256 columns, to ensure codebook initialization can
capture the updates of Eq. 3. E.g., a group of 2,048 weights
is 8 rows by 256 columns.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
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Codebook initialization To initialize the codebook for
a group of weights, we propose the following variant of
the EM algorithm. Given the set of d-dimensional vectors
x(i), our goal is to find k centroid vectors c(m) and the
corresponding sets of assignments Im, i.e. the list of indices
of vectors assigned to the centroid m. The objective is the
following sum of weighted distance functions:

min
I,c(0),...,(k)

k∑
m=0

∑
i∈Im

(
x(i) − c(m)

)T

D(i)
(

x(i) − c(m)
)
,

(5)
where D(i) is a d× d subset of D corresponding to the data
point xi. E.g. for 2D vector quantization, these matrices are
share among pairs of columns. For the case of D(i) equal
to identity, the clustering method is equivalent to K-means.
The objective can be minimized using E- and M-steps as
follows.

E-step: find the assignment j for each unquantized d-
dimensionl vector x(i) that minimizes the objective (4). Us-
ing this distance function assigns optimal centroids based
on the data-aware loss.

M-step: find the centroid value c(m) that minimizes

c(m) = argmin
c(m)

∑
i∈Im

(
x(i) − c(m)

)
D(i)

(
x(i) − c(m)

)
.

(6)
This objective is a quadratic form w.r.t c(m). The
optimal value is computed in a closed form as

c(m) =
(∑

i∈Im
D(i)

)+ (∑
i∈Im

D(i)x(i)
)

, where (·)+ is
a Moore–Penrose pseudoinverse. During the vector quan-
tization operation on line 4 in Algorithm 2, we use the
assignment step defined in Equation 4 as well. Practically,
we find no performance difference between using the inverse
Hessian diagonal, or the full d-dim inverse sub-Hessian.

Codebook update After the procedure in Algorithm 1 is
complete, we found that the output reconstruction error can
be further reduced through a codebook update. Recall that,
in line 4 of Algorithm 2, Q is incrementally constructed
from the elements of C. Since this construction constitutes
a lookup of values in C, the layer-wise objective can still
be minimized w.r.t C. The objective is a quadratic program
and is convex:

min
C0,...,CN

||WX−QX||2F , (7)

where Q(C0, . . . ,CN ) is a look-up operation, reconstruct-
ing the quantized weights from the centroids. The gradient
of Q w.r.t. C can be defined simply, as constructing Q only
involves a look-up operation. In each GD step, the values in
C are updated, and Q is reconstructed using the new values
in C, keeping the assignments fixed.

Total bits per value As a measure of total model size,
we compute bits per value (bpv), given by log2(k)/d +
kdbc/l , where k is the number of centroids, d is the V Q
dimensionality, bc is the codebook bit-width, and l is the
group size, i.e., the number of weights sharing a codebook.
We choose values for k s.t. log2(k) is an integer.

3. Experiments and results
In this section we evaluate GPTVQ and compare the per-
formance of vector quantization in 1, 2 and 4 dimensions
against uniform quantization baseline methods. We follow
the experimental setup of (Shao et al., 2023) in terms of cal-
ibration dataset evaluation. Further details on experimental
setup, datasets, and baselines can be found in Appendix A.
Ablations on various model choices can be found in Ap-
pendix G.

Codebook overhead For a given bits per index b and VQ
dimensionality d, we set group size l to reach an overhead
of 0.125 bits per value for all values of b, and additionally
consider an overhead 0.25 bits per value for b = 2. These
are chosen to match the overhead incurred by a 16-bit quan-
tization scale for the commonly used group size of 128 (e.g.,
(Frantar et al., 2022)) and the group size of 64 used by (Shao
et al., 2023).

Main results Table 1 summarizes results for GPTVQ,
where we report WikiText 2 perplexity and an average over
zero-shot task scores for the PIQA, BoolQ, ARC-easy, ARC-
challenge, HellaSwag and WinoGrande tasks. We include
all Llama-v2 models, Mistral-7B-v0.1 and Mixtral-8x7B-
v0.1. More results can be found in Appendix E: Table 7 and
Table 8 contain individual scores for the zero-shot tasks, Ta-
ble 5 contains WikiText2 perplexity for all Llama-v1 models,
and Table 6 shows perplexity on 4 bit quantization. A sepa-
rate comparison to AQLM can be found in Appendix B.1.
Full VQ configurations can be found in Table 4.

Table 1 shows that non-uniform quantization using GPTVQ
generally yields improved results over uniform PTQ meth-
ods. This gap becomes especially large at low bitwidths and
for very large models. For example, comparing GPTVQ
2D on Llamav2-70B to OmniQuant W2@g128, we see an
improvement of nearly 2 perplexity points. Furthermore, in
nearly all cases, 2D VQ outperforms 1D VQ, while 4D VQ
shows even more significant improvements.

3.1. On-device VQ inference evaluation and comparison

To investigate the effect of VQ quantized models on model
DRAM footprint and latency, we implemented optimized
kernels for both Arm® mobile CPU and Nvidia® GeForce
RTX 3080 GPU.
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Table 1. Weight-only quantization results of Llama-v2/v3, Mistral, and Mixtral-MoE Models. We report WikiText2 perplexity and
average zero-shot accuracy; Models marked L2 denote Llama-v2, L3 denote Llama-v3, M denotes Mistral, and 8x7B denotes Mixtral-MoE
8x7B. Numbers marked in bold are SOTA or surpass it, numbers underlined are on par with or outperform at least one VQ variant. *
Following (Huang et al., 2024), Llama3-8B zeroshot average omits BoolQ.

WikiText2 perplexity ↓ Zeroshot avg acc. ↑
L2-7B L2-13B L2-70B L3-8B L3-70B M-7B 8x7B L2-7B L2-13B L3-8B∗ M-7B 8x7B

FP16 5.47 4.88 3.31 6.1 2.9 5.25 3.84 70.5 73.2 68.6 75.7 75.9

2.125
W2

g128

RTN 4e3 122 27.3 2e3 5e5 1e3 4e3 36.9 42.1 36.0 37.8 38.3
GPTQ 36.8 28.1 6.74 2e2 11.9 15.7 14.1 41.4 46.6 36.2 41.9 44.5
AWQ 2e5 1e5 - 2e6 2e6 - - - - - - -
OQ 11.1 8.26 6.55 - - - - - - - - -
Ours 1D 12.2 7.40 5.03 15.9 9.37 14.0 8.37 47.8 61.8 41.1 42.8 54.9
Ours 2D 7.77 6.52 4.72 11.3 7.37 7.53 5.92 58.6 64.5 53.9 64.5 64.4
Ours 4D 7.18 6.07 4.44 9.94 6.59 6.89 5.28 60.5 65.7 57.3 65.7 68.7

2.25
W2
g64

RTN 432 26.2 10.3 - - 71.5 156 42.4 46.4 - 44.8 46.9
GPTQ 20.9 22.4 NAN - - 14.2 10.1 47.5 54.2 - 51.8 48.8
AWQ 2e5 1e5 - - - - - - - - - -
OQ 9.62 7.56 6.11 - - - - - - - - -
Ours 1D 10.1 6.99 4.85 14.1 8.31 9.69 7.75 52.8 63.3 57.3 56.3 57.4
Ours 2D 7.61 6.41 4.58 10.8 6.83 7.24 5.58 61.5 64.8 60.3 65.3 65.7
Ours 4D 6.99 5.98 4.36 9.59 6.21 6.66 5.16 62.9 67.5 62.3 68.2 69.3

3.125
W3

g128

RTN 6.66 5.51 3.97 27.9 11.8 6.15 5.18 67.3 70.8 40.2 71.8 72.4
GPTQ 6.29 5.42 3.85 8.2 5.2 5.83 4.71 66.2 71.4 61.7 72.2 72.7
AWQ 6.24 5.32 - 8.2 4.8 - - - - - - -
OQ 6.03 5.28 3.78 - - - - - - - - -
Ours 1D 5.95 5.19 3.64 7.29 4.29 5.79 4.59 66.9 71.4 65.7 71.0 73.5
Ours 2D 5.83 5.12 3.58 7.00 4.04 5.51 4.27 68.3 71.2 66.1 73.9 75.1

The Arm® CPU kernel employs the table lookup (TBL)
instruction to translate an index of (at most) 5 bits to an 8 bit
integer, with two TBL instructions chained for 2D VQ. On
GPU, we use native CUDA vector types to load and unload
data quickly from GPU memory into the registers and back,
such as char4/uchar4, and custom agglomerations of
those, up to char128. The code for these kernels will be
made available in the future.

We measure the time to transfer and unpack/decode the
weights of a Llamav2-7B gate_proj layer (11008 ×
4096), for VQ and to uniformly quantized data, and also
FP16 on GPU. Furthermore, we integrate our Arm® kernel
with a matmul operation for an end-to-end token generation
experiment on Llamav2-7B quantized using 1D VQ.

Table 2 shows that for both data transfer and token gen-
eration, VQ can achieve significant footprint reductions,
with strictly positive latency impact on Arm® CPU, and
negligible to positive latency impact on Nvidia® GPU.

4. Conclusions
In this work, we have shown that vector quantization in one
or more dimensions progressively improves quantized large
language model accuracy. We introduced GPTVQ, a fast
method for post-training quantization of LLMs using VQ.

Table 2. Measured VQ data transfer/decoding, and LLM token
generation on mobile device. Exp: experiment, Data Transfer
(T) or Token Generation (G). Ptfm: platform, Arm® CPU or
NVIDIA® GPU. Format: either Uniform or VQ. Rel. FP: relative
footprint. Rel. lat: relative latency.

Exp Ptfm bpv Format d Rel. FP ↓ Rel. lat. ↓
T CPU 4 Unif 1D 1.00× 1.00×
T CPU 8 Unif 1D 2.00× 1.93×
T CPU 3 VQ 2D 0.75× 0.98×
T CPU 2.75 VQ 2D 0.69× 0.96×
T CPU 2.25 VQ 2D 0.56× 0.87×
G CPU 3.125 VQ 1D 0.78× 0.96×

T GPU 4 Unif 1D 1.00× 1.00×
T GPU 8 Unif 1D 2.00× 1.47×
T GPU 16 FP 1D 4.00× 2.72×
T GPU 2.125 VQ 2D 0.53× 1.03×
T GPU 2.125 VQ 4D 0.53× 0.71×
T GPU 3.125 VQ 2D 0.78× 1.06×

GPTVQ achieves SOTA model size vs accuracy trade-offs
on a wide range of LLMs and zero-shot tasks. Finally, we
have shown that VQ can be efficiently on Arm® CPU and
Nvidia® GPU platforms, with negligible to positive impact
on token generation speed.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

GPTVQ: The Blessing of Dimensionality for LLM Quantization

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

David Arthur and Sergei Vassilvitskii. K-means++ the
advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035, 2007.

Christopher M Bishop. Pattern recognition and machine
learning. Springer google schola, 2:1122–1128, 2006.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. Piqa: Reasoning about physical commonsense in
natural language. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 7432–7439,
2020.

Minsik Cho, Keivan A Vahid, Saurabh Adya, and Moham-
mad Rastegari. Dkm: Differentiable k-means clustering
layer for neural network compression. arXiv preprint
arXiv:2108.12659, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom
Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural
yes/no questions. In NAACL, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering?
try arc, the ai2 reasoning challenge. arXiv:1803.05457v1,
2018.

Juncan Deng, Shuaiting Li, Chengxuan Wang, Hong
Gu, Haibin Shen, and Kejie Huang. LLM-codebook
for extreme compression of large language models,
2024. URL https://openreview.net/forum?
id=nMbWsXPUVL.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias
Frantar, Artem Babenko, and Dan Alistarh. Extreme
compression of large language models via additive quan-
tization. arXiv preprint arXiv:2401.06118, 2024.

Angela Fan, Pierre Stock, Benjamin Graham, Edouard
Grave, Rémi Gribonval, Herve Jegou, and Armand Joulin.
Training with quantization noise for extreme model com-
pression. arXiv preprint arXiv:2004.07320, 2020.

Elias Frantar and Dan Alistarh. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. Advances in Neural Information Processing
Systems, 35:4475–4488, 2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Ja-
son Phang, Laria Reynolds, Hailey Schoelkopf, Aviya
Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben
Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 12 2023. URL
https://zenodo.org/records/10256836.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network infer-
ence. In Low-Power Computer Vision, pages 291–326.
Chapman and Hall/CRC, 2022.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev.
Compressing deep convolutional networks using vector
quantization. arXiv preprint arXiv:1412.6115, 2014.

Babak Hassibi, David G Stork, and Gregory J Wolff. Op-
timal brain surgeon and general network pruning. In
IEEE international conference on neural networks, pages
293–299. IEEE, 1993.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language mod-
els. arXiv preprint arXiv:2106.09685, 2021.

Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng,
Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xian-
glong Liu, and Michele Magno. How good are low-bit
quantized llama3 models? an empirical study. arXiv
preprint arXiv:2404.14047, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Emma Bou Hanna,
Florian Bressand, et al. Mixtral of experts. arXiv preprint
arXiv:2401.04088, 2024.

Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra,
and Choi Yejin. Winogrande: An adversarial winograd
schema challenge at scale. 2019.

5

https://openreview.net/forum?id=nMbWsXPUVL
https://openreview.net/forum?id=nMbWsXPUVL
https://zenodo.org/records/10256836


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

GPTVQ: The Blessing of Dimensionality for LLM Quantization

Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. Advances in neural information processing sys-
tems, 2, 1989.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu
Dang, and Song Han. Awq: Activation-aware weight
quantization for llm compression and acceleration. arXiv
preprint arXiv:2306.00978, 2023.

Julieta Martinez, Jashan Shewakramani, Ting Wei Liu,
Ioan Andrei Bârsan, Wenyuan Zeng, and Raquel Urtasun.
Permute, quantize, and fine-tune: Efficient compression
of neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15699–15708, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models, 2016.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos
Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In Inter-
national Conference on Machine Learning, pages 7197–
7206. PMLR, 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad,
Yelysei Bondarenko, Mart Van Baalen, and Tijmen
Blankevoort. A white paper on neural network quan-
tization. arXiv preprint arXiv:2106.08295, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu
Liu, Tal Remez, Jérémy Rapin, et al. Code llama:
Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao,
Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally
calibrated quantization for large language models. arXiv
preprint arXiv:2308.13137, 2023.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient
second-order approximation for neural network compres-
sion. Advances in Neural Information Processing Sys-
tems, 33:18098–18109, 2020.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin
Graham, and Hervé Jégou. And the bit goes down: Revis-
iting the quantization of neural networks. arXiv preprint
arXiv:1907.05686, 2019.

Xiaohu Tang, Yang Wang, Ting Cao, Li Lyna Zhang,
Qi Chen, Deng Cai, Yunxin Liu, and Mao Yang. Lut-nn:
Empower efficient neural network inference with centroid
learning and table lookup. In Proceedings of the 29th
Annual International Conference on Mobile Computing
and Networking, pages 1–15, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Tao Tu, Anil Palepu, Mike Schaekermann, Khaled Saab,
Jan Freyberg, Ryutaro Tanno, Amy Wang, Brenna Li,
Mohamed Amin, Nenad Tomasev, et al. Towards conver-
sational diagnostic ai. arXiv preprint arXiv:2401.05654,
2024.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni,
François Yvon, et al. Bloom: A 176b-parameter open-
access multilingual language model. arXiv preprint
arXiv:2211.05100, 2022.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and
Jian Cheng. Quantized convolutional neural networks for
mobile devices. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4820–
4828, 2016.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi,
and Yejin Choi. Hellaswag: Can a machine really fin-
ish your sentence? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
2019.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

GPTVQ: The Blessing of Dimensionality for LLM Quantization

Table 3. Perplexity, zeroshot average and decode latency comparison for GPTVQ and AQLM.
WikiText2 perplexity ↓ Zeroshot avg acc. ↑ GPU rel. latency ↓

L2-7B L2-13B L2-70B L2-7B L2-13B L2-7B

FP16 5.12 4.57 3.12 62.35 65.38 1×
AQLM ≈2 6.64 5.65 3.94 56.47 60.59 0.76×
Ours (4D) 2.125 6.70 5.71 4.20 56.45 61.35 0.26×
AQLM ≈2.25 6.29 5.41 - 58.57 61.58 N/A
Ours (4D) 2.25 6.52 5.62 4.12 58.08 62.25 N/A

A. Experimental setup
Models We use the Llama-1 (Touvron et al., 2023a), Llama-2 (Touvron et al., 2023b), and Llama-3 as well as Mistral-
7B-v0.1 (Jiang et al., 2023) and Mixtral-MoE-8x7B-v0.1 (Jiang et al., 2024). Additionally, we run a single ablation on
BLOOM-560M (Workshop et al., 2022).

Datasets Following Shao et al. (2023), we use 128 sequences of 2048 tokens from the WikiText2 (Merity et al., 2016)
training set as calibration data for all experiments. We evaluate our models on token perplexity for the WikiText2 validation
set for a sequence length 2048, as well as zero-shot language tasks: PIQA (Bisk et al., 2020), ARC-easy/-challenge (Clark
et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), and WinoGrande (Keisuke et al., 2019). For
Llama3, following (Huang et al., 2024), we omit BoolQ from the zeroshot average to allow fair comparison to the zeroshot
results in (Huang et al., 2024). For all evaluation tasks except WikiText2 perplexity we use the LLM-evaluation-harness
(Gao et al., 2023).

Baselines We compare GPTVQ to various uniform quantization methods with different group sizes, at the same overall
bits-per-value (bpv). We include Round-to-Nearest (RTN) and several recent state-of-the-art PTQ approaches for LLMs:
GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023), and OmniQuant (Shao et al., 2023). We take AWQ and OmniQuant
baseline numbers from (Shao et al., 2023), all Llama3 baseline numbers from (Huang et al., 2024), and generate all other
baseline numbers ourselves. In Appendix B.1 we provide a detailed comparison to AQLM (Egiazarian et al., 2024), recent
work that applies VQ to LLMs in a different manner.

B. Related work
Vector quantization A number of works propose vector quantization of CNN weights (Cho et al., 2021; Fan et al., 2020;
Gong et al., 2014; Martinez et al., 2021;?; Stock et al., 2019; Wu et al., 2016). The most common approach is to reshape the
weights of convolutional or fully connected layers into a matrix, and then apply K-means clustering directly on the columns.
Typically, the clustering is applied on scalars or vectors of dimension 4 or higher. Some of these works consider data-aware
optimization of the quantized weights. Most often, a variant of the EM algorithm is used in order to update centroids and
assignments (Gong et al., 2014; Stock et al., 2019). An alternative approach is using a differentiable K-means formulation,
which enables fine-tuning using SGD with the original loss function in order to recover the network accuracy (Cho et al.,
2021; Fan et al., 2020; Tang et al., 2023).

LLM quantization Applying DNN quantization approaches to recent LLMs often poses significant computational
challenges. Therefore, even uniform post-training quantization methods must be optimized for scalability (Frantar et al.,
2022). Since vector quantization approaches have even higher computational complexity, applying them to LLM weights
compression may be expensive. The most similar to our work is a method (Deng et al., 2024), which uses gradient-based
layer sensitivities to update the codebooks and a reduced complexity LoRA-based approach (Hu et al., 2021) to partially
recover the accuracy.

Hessian-based compression methods Several classical works suggest second-order approximation of the neural network
loss function for accurate unstructured pruning (Hassibi et al., 1993; LeCun et al., 1989). A more recent line of work extends
this family of methods to PTQ (Frantar and Alistarh, 2022; Frantar et al., 2022; Singh and Alistarh, 2020).
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Algorithm 1 GPTVQ algorithm: Quantize a weight tensor W ∈ Rr×c given the inverse Hessian H−1, the block size B,
VQ dimensionality d, the number of centroids k, and the group size l

0: Nb ← c
B {the number of blocks}

0: m← l
r{the number of columns in a group}

0: Q← 0r,c

0: E← 0r,c

0: Ng ← rc
l {the number of groups/codebooks}

0: Ci ← 0d,k, i = 1, . . . , Ng

0: H−1 ← Cholesky(H−1)T

0: for i = 0, B, 2B, . . . , NbB do
0: if i % m = 0 then
0: g ← i

m {the group index}
0: Cg ← init_codebook [W:,i:i+m−1]
0: end if
0: W:,i:i+m−1← QUANTGROUP(W:,i:i+m−1)
0: W:,(i+B) ←W:,(i+B) −E · [H−1]i:(i+B),(i+B):

0: end for=0

B.1. Comparison to AQLM
Additive Quantization for Language Models (Egiazarian et al., 2024) (AQLM) is a recent method that also uses vector
quantization to compress LLMs to very low effective bit widths and achieves impressive bits per value vs accuracy results,
as shown in Table 3 (due to differences in evaluation protocol, we can’t compare to (Egiazarian et al., 2024) directly in
Table 1). While both GPTVQ and AQLM employ VQ for LLM compression, our methods differ in several significant ways,
which affects inference deployment and compression time, as detailed in this section.

AQLM uses larger vector dimension d, with d=8, scale their codebooks exponentially in d, similar to us. E.g., for 2-bit
results AQLM uses codebooks with 215 or 216 8-dimensional entries, where each entry is stored in FP16. While the authors
have shown that these configurations can be employed on Nvidia® GPUs, codebooks of these sizes would be harder to
employ efficiently on Arm® platforms. This is caused by the fact that many calls to the (5-bit) TBL instruction would be
required, leading to significant additional latency during inference time. For example, decoding a single 16-bit index to an
8-bit FP16 would require 2× 8× 211 5-to-8-bit lookup tables (LUTs), where each lookup requires 2× 8× 11 instructions
to decode. Even on GPUs, our configurations have a clear edge over AQLM, as seen in Table 3 and in comparing Table 2 to
Table 4 in (Egiazarian et al., 2024).

The full AQLM algorithm requires significant time to compress models. Compressing Llamav2-7B requires 24 hours
on an A100, while GPTVQ takes between 30 minutes and 3 hours on a single H100 GPU. This is due to the fact that
AQLM requires an expensive beam search and block-wise fine-tuning to achieve good accuracy, which add significantly
to compression time. It should however be noted that our method becomes significantly slower for higher quantization
dimensionality, mainly due to the EM codebook initialization.

The long runtime of AQLM is caused in part by a block-wise fine-tuning step. This step allows the model to correct
intra-layer effects of quantization error. While GPTVQ has no mechanism to correct intra-layer error effects, its results are
competitive with AQLM. AQLM without the additional fine-tuning step (i.e. Table 7 in the Appendix of (Egiazarian et al.,
2024)), achieves a perplexity of 8.18 for the WikiText2 test set on Llamav2-7B, a degradation of nearly 1.5 points compared
to 6.70 for GPTVQ under the same conditions.

C. GPTVQ Algorithm
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Algorithm 2 QuantGroup: VQ quantization for a group of weights W ∈ Rr×l given the inverse Hessian H−1, the block
size B, VQ dimensionality d

0: function QUANTGROUP(W)
0: for j = 0, d, 2d, . . . , l do
0: P = j, . . . , j + d− 1
0: Q:,P ← VQ_quant [W:,P ,Cg]
0: E:,P ← (W:,P −Q:,P ) [H

−1]P
0: W:,d−1:B ←W:,d−1:B −

∑d−1
p=0 E:,j+p[H

−1]p,d−1:i

0: end for
0: end function=0

Table 4. VQ configurations. Group shape (r × c) indicates (rows×columns)

bpv d b group size group shape codebook bw

2.125 1D 2 256 (1×256) 8
2.125 2D 2 2,048 (4×256) 8
2.125 4D 2 65,536 (256×256) 8

2.25 1D 2 128 (1×128) 8
2.25 2D 2 1,024 (4×256) 8
2.25 4D 2 32,768 (128×256) 8

2.75 2D 2.5 2,048 (4×256) 8
3 2D 2.5 512 (2×256) 8

3.125 1D 3 8,192 (32×256) 8
3.125 2D 3 32,768 (128×256) 8

4.125 1D 4 1,024 (4 ×256) 8
4.125 2D 4 65,536 (256×256) 8

D. VQ Configurations

E. Extended results

F. Mean and standard deviation over multiple runs

Table 9. Mean and standard deviation over 10 random seeds. Setting used: Llamav2-7B, 2D VQ, 8-bit codebook.

BPV Mean and Std. Dev.

3.125 5.82± 0.01
4.125 5.59± 0.01

G. Hyperparameter ablations
EM initialization To find seed centroids for EM initialization, we compare k-Means++ (Arthur and Vassilvitskii, 2007) to
a quick and effective initialization method dubbed Mahalanobis initialization. In the latter method, we initialize EM for
a matrix of N d-dimensional points X by first sorting all points by Mahalanobis distance (Bishop, 2006) to the mean of
the data, then sampling k points spaced ⌊ N

k−1⌉ apart from the sorted list. Intuitively, this method ensures that points are
sampled at representative distances from the mean. Table 10 shows perplexity after GPTVQ for different EM initialization
seed methods, and find that Mahalanobis initialization performs comparably to k-Means++, at increased speed.

EM iterations We explore the effect of the number of EM initialization iterations on the final perplexity of GPTVQ.
Table 11 shows that even up to 100 iterations, results keep improving slightly, therefore we use 100 iterations as default.
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Table 5. Weight-only quantization results of Llama-1, Llama-2, Mistral, and Mixtral-MoE Models. We report WikiText2 perplexity
in this table; lower is better Models marked ‘L1’ or ‘L2’ denote Llama-v1 and Llama-v2, respectively. M denotes Mistral and 8x7B
denotes Mixtral-MoE 8x7B.

L1-7B L1-13B L1-30B L1-65B

FP16 5.68 5.09 4.10 3.53

2.125 bpv
(W2@g128)

RTN 1.9e3 781.20 68.04 15.08
GPTQ 44.01 15.60 10.92 9.51
AWQ 2.6e5 2.8e5 2.4e5 7.4e4
OmniQuant 9.72 7.93 7.12 5.95
GPTVQ 1D (ours) 16.29 6.93 6.04 5.19
GPTVQ 2D (ours) 9.64 6.58 5.63 4.91

2.25 bpv
(W2@g64)

RTN 188.32 101.87 19.20 9.39
GPTQ 22.10 10.06 8.54 8.31
AWQ 2.5e5 2.7e5 2.3e5 7.4e4
OmniQuant 8.90 7.34 6.59 5.65
GPTVQ 1D (ours) 16.64 6.78 5.97 5.05
GPTVQ 2D (ours) 9.90 6.43 5.56 4.86
GPTVQ 4D (ours) 8.76 6.33 5.42 4.74

3.125 bpv
(W3@g128)

RTN 7.01 5.88 4.87 4.24
GPTQ 6.55 5.62 4.80 4.17
AWQ 6.46 5.51 4.63 3.99
OmniQuant 6.15 5.44 4.56 3.94
GPTVQ 1D (ours) 6.60 5.34 4.48 3.85
GPTVQ 2D (ours) 6.32 5.31 4.38 3.79

Table 6. Weight-only 4 bit quantization results of Llama-1, Llama-2, and Mistral-7B models. We report WikiText2 perplexity in this
table; lower is better. Models marked ‘L1’ or ‘L2’ denote Llama-v1 and Llama-v2, respectively. M-7B denotes Mistral.

L1-7B L1-13B L1-30B L1-65B L2-7B L2-13B L2-70B M-7B

FP16 5.68 5.09 4.10 3.53 5.47 4.88 3.31 5.25

4.125 bpv
(W4@g128)

RTN 5.96 5.25 4.23 3.67 5.72 4.98 3.46 5.42
GPTQ 5.85 5.20 4.23 3.65 5.61 4.98 3.42 5.35
AWQ 5.81 5.20 4.21 3.62 5.62 4.97 - -
OmniQuant 5.77 5.17 4.19 3.62 5.58 4.95 - -
GPTVQ 1D (ours) 5.96 5.15 4.18 3.60 5.62 4.97 3.39 5.32
GPTVQ 2D (ours) 5.94 5.20 4.18 3.64 5.59 4.94 3.38 5.32

Codebook compression Compared to FP16 codebooks, quantizing the entries to INT8 allows the group size to be reduced
by half at the same overhead. We find that 8 bit quantization does not harm accuracy, while the smaller group size improves
accuracy, as discussed in Appendix H.

Codebook update Table 12 includes an ablation on including codebook updates as described in Section 2.2. We find
that, in all cases, updating the codebook after running Algorithm 2 improves final perplexity, at the expense of moderately
increased (though still reasonable) run time. We thus include codebook update in all training runs.

Method runtime GPTVQ can quantize large language models efficiently. Exact runtime depends on model, quantization
setting (groupsize, bitwidth, vq dimension), and several hyperparameters (EM iterations, codebook update iterations). As An
indication of realistic run-times on a single H100: Llamav2-7B takes between 30 minutes and 1 hour, while Llamav2-70B
takes between 3 and 11 hours.

H. Further codebook compression
While we find that 8 bit quantization of codebooks provides best results for the same overhead, we explore a different
approach to codebook compression in this section.

For the case where d = 1, we could further compress the codebook C by stacking all codebooks for multiple blocks (e.g.
all blocks in a tensor) and rank-reducing the resulting matrix. For a single tensor, C has shape NG × k, where NG is the
number of groups in the corresponding weight tensor, k is the number of centroids per codebook. We first sort values in
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each codebook in C, and reassign the indices in I accordingly. Then, we perform SVD on C, leading to matrices U, Σ and
V, of shapes NG × k, k × k and k × k, respectively. U′ = UΣ, and reduce the rank of this matrix to r, yielding a NG × r
shaped matrix U′′. We also reduce the rank of V accordingly, yielding r × r matrix V′. Then, we perform gradient descent
(GD) on the loss of equation 7, but with respect to the codebook tensor factors U′′ and V′. In each GD step, Ĉ is created as
Ĉ = U′′V′T , and the rest of the codebook up procedure as described earlier is followed. Lastly, only the codebook tensor
factor U′′ is quantized, as V′ gives very little overhead. During inference, Ĉ is quantized per codebook after construction.

For higher dimensions, Tucker factorization could be employed. However, in this case there is no natural ordering in which
to sort the elements of each codebook.

In table 15 we compare the effect of either rank reducing by 50%, or quantizing the codebook to 8-bit (our default approach),
to keeping the codebook in FP16 and increasing the group size. In all three settings the overhead of the codebook is the
same. We see that, for the same overhead, quantization gives best results. For this reason, and because codebook SVD does
not easily apply to d > 1, we have not explored codebook SVD further, and instead use INT8 quantization as our default
approach.

I. Blockwise data normalization
In order to lower the error of vector quantization, we apply blockwise data normalization to the data before the codebook
initialization. For each group corresponding to a new codebook we perform element-wise division Wi ⊘ Si of the weight
sub-matrix matrix Wi by the corresponding scales Si. The scale is computed block-wise for every sub-row of Wi, e.g. for
a block size of 16, 32, or 64.

Given a set of blocks (sub-rows) w(i), the scale s(i) for each of them is computed as s(i) = maxj |w(i)
j |. In order to

minimize the overhead, the scales are quantized to 4-bit integer.

We found that it is beneficial to perform quantization in log-scale to capture several orders of magnitudes in weights. The
quantized scales are computed as s

(i)
int = ⌈ log2[s

(i)]−z
a ⌋a, where a is the quantization scale shared among the group of

weights. In order to accurately represent zero in log-space which corresponds to unit scaling, we use the floating point
offset z. In practice the value of z is shared within the columns of W and thus has negligible overhead. Finally the scaled
sub-row is normalized as w · 2−asint−s0 , where s0 = log2(z). The scaled data is used for codebook initialization. The
inverse scaling is applied at VQ decoding step.
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Table 7. LM-eval results of quantized Llama-v2 7B and 13B, and Llama-v3 8B models.
#Bits Method PIQA ARC-e Arc-c BoolQ HellaSwag Winogrande Avg.↑

Llama-v2-7B

FP16 79.11 74.58 46.25 77.74 75.99 69.14 70.47

2.125 bpv
(W2@g128)

RTN 51.09 27.95 25.00 41.13 26.57 49.88 36.94
GPTQ 54.84 30.64 25.09 53.43 33.09 51.54 41.44
VQ-1D 61.21 38.76 24.66 62.78 45.78 53.83 47.84
VQ-2D 71.33 57.41 32.94 65.60 59.85 64.72 58.64
VQ-4D 73.34 60.44 34.39 65.50 63.99 65.04 60.45

2.25 bpv
(W2@g64)

RTN 58.76 36.66 24.83 41.87 40.38 51.93 42.40
GPTQ 60.83 39.02 25.17 59.33 45.82 55.49 47.61
VQ-1D 64.80 49.33 28.24 65.87 53.37 54.93 52.76
VQ-2D 72.36 63.47 35.41 72.14 60.92 64.72 61.50
VQ-4D 73.99 64.73 36.77 71.19 64.84 65.75 62.88

3.125 bpv
(W3@g128)

RTN 76.77 70.50 42.92 71.71 73.96 67.64 67.25
GPTQ 77.37 68.14 40.70 71.04 72.50 67.25 66.16
VQ-1D 77.86 68.64 40.96 73.85 72.29 67.80 66.90
VQ-2D 77.64 73.15 43.17 74.22 72.61 69.06 68.31

Llama-v2-13B

FP16 80.52 77.53 49.23 80.52 79.38 72.14 73.22

2.125 bpv
(W2@g128)

RTN 58.43 32.32 25.51 47.86 39.40 48.86 42.06
GPTQ 59.52 40.15 27.65 57.06 41.56 53.43 46.56
VQ-1D 73.23 64.10 35.75 71.38 60.71 65.43 61.77
VQ-2D 75.24 68.27 38.99 69.91 65.81 68.98 64.53
VQ-4D 75.46 71.93 42.92 67.86 69.26 66.93 65.73

2.25 bpv
(W2@g64)

RTN 61.59 41.58 25.43 49.79 48.24 51.85 46.41
GPTQ 70.13 56.65 31.57 51.10 56.62 58.88 54.16
VQ-1D 72.36 67.63 37.37 74.13 62.89 65.27 63.28
VQ-2D 74.97 67.63 40.53 69.24 67.11 69.30 64.80
VQ-4D 76.66 69.87 43.00 74.68 70.81 69.69 67.45

3.125 bpv
(W3@g128)

RTN 78.89 74.28 46.76 77.25 76.51 70.80 70.75
GPTQ 79.33 75.84 47.01 78.90 77.16 70.40 71.44
VQ-1D 78.94 75.04 46.76 79.42 75.85 72.45 71.41
VQ-2D 79.27 74.33 46.67 77.40 77.21 72.45 71.22

Llama-v3-8B

FP16 79.9 80.1 50.4 - 60.2 72.8 68.6

2.125 bpv
(W2@g128)

RTN 53.1 24.8 22.1 - 26.9 53.1 36.0
GPTQ 53.9 28.8 19.9 - 27.7 50.5 36.2
VQ-1D 56.58 35.10 18.26 60.00 38.25 57.06 41.05
VQ-2D 69.48 62.58 29.01 72.29 43.05 65.51 53.93
VQ-4D 71.93 69.19 32.68 69.45 45.62 67.17 57.32

2.25 bpv
(W2@g64)

VQ-1D 71.16 70.24 34.04 74.13 45.71 65.27 57.29
VQ-2D 74.27 71.30 37.54 69.24 49.07 69.30 60.30
VQ-4D 75.68 72.60 41.04 74.68 52.22 69.69 62.25

3.125 bpv
(W3@g128)

RTN 62.3 32.1 22.5 - 29.1 54.7 40.2
VQ-1D 77.31 77.90 43.43 79.42 57.28 72.45 65.68
VQ-2D 77.80 76.68 45.14 77.40 58.16 72.45 66.05
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Table 8. LM-eval results of quantized Mistral-7B and Mixtral-8x7B models.
#Bits Method PIQA ARC-e Arc-c BoolQ HellaSwag Winogrande Avg.↑

Mistral-7B

FP16 82.10 79.59 53.92 83.58 81.07 73.88 75.69

2.125 bpv
(W2@g128)

RTN 53.05 29.42 26.62 38.56 29.26 49.57 37.75
GPTQ 57.73 35.65 26.62 46.06 36.06 49.49 41.93
VQ-1D 55.22 35.94 25.51 54.01 34.35 52.01 42.84
VQ-2D 73.78 69.02 37.80 76.57 64.52 65.35 64.51
VQ-4D 75.90 71.63 41.98 69.85 68.59 66.46 65.73

2.25 bpv
(W2@g64)

RTN 60.72 38.47 27.56 44.83 46.10 51.07 44.79
GPTQ 65.83 46.21 30.20 62.11 50.64 55.56 51.76
VQ-1D 67.41 59.01 33.79 67.74 53.80 55.96 56.28
VQ-2D 74.86 69.23 40.53 74.07 65.93 67.40 65.34
VQ-4D 76.61 73.15 42.41 77.95 69.48 69.30 68.15

3.125 bpv
(W3@g128)

RTN 80.79 74.62 48.46 80.00 78.66 68.19 71.79
GPTQ 79.82 75.51 49.40 81.22 77.34 70.17 72.24
VQ-1D 78.84 75.29 47.87 79.57 75.32 69.30 71.03
VQ-2D 81.12 78.70 51.02 82.39 78.05 72.06 73.89

Mixtral-8x7B

FP16 83.46 73.74 55.89 84.74 82.45 75.30 75.93

2.125 bpv
(W2@g128)

RTN 51.90 27.27 25.85 47.98 27.07 49.64 38.29
GPTQ 59.79 35.44 27.30 52.08 41.80 50.83 44.54
VQ-1D 68.93 50.93 33.02 62.51 52.52 61.17 54.85
VQ-2D 76.39 57.87 38.91 74.95 67.03 71.03 64.36
VQ-4D 78.13 65.57 46.42 78.59 72.40 71.11 68.70

2.25 bpv
(W2@g64)

RTN 62.08 38.68 28.41 54.46 44.40 53.12 46.86
GPTQ 66.05 42.93 28.58 50.12 49.59 55.41 48.78
VQ-1D 69.42 50.55 36.09 64.95 59.51 63.93 57.41
VQ-2D 77.42 62.12 42.66 72.39 70.74 68.90 65.71
VQ-4D 79.16 67.68 48.04 76.09 73.43 71.11 69.25

3.125 bpv
(W3@g128)

RTN 81.50 68.77 50.60 80.92 79.71 72.93 72.40
GPTQ 80.85 69.32 52.05 81.35 78.40 74.43 72.73
VQ-1D 80.90 71.34 52.73 84.83 77.62 73.64 73.51
VQ-2D 82.59 72.94 54.86 84.46 80.61 74.82 75.05

Table 10. Effect of EM initialization. Setting used: Llamav2-7B, 2D 3-bit VQ, blocksize 2048.

Lookup method BPV Setting PPL Time (s)

1D 3B 1024 3.125 Mahalanobis 6.05 605
K++ 6.16 3328

2D 3B 16384 3.125 Mahalanobis 5.65 756
K++ 5.63 3168

1D 4B 2048 4.125 Mahalanobis 5.86 1272
K++ 5.88 2116

2D 4B 65536 4.125 Mahalanobis 5.59 3816
K++ 5.57 6644

Table 11. Effect of number of EM interations. Setting used: BLOOM-560m 2D 3-bit VQ with blocksize 4096, perplexity on WikiText2
test set.

EM iterations PPL

10 24.49
30 24.18
50 24.12
75 24.11
100 24.09
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Table 12. Effect of codebook fine-tuning on final PPL for Llamav2-7B.

d b gs Update PPL Runtime (s)

1
2 512 N 43.14 625

Y 14.02 1857

3 1024 N 6.05 712
Y 6.01 1916

2
2 2048 N 8.64 723

Y 8.21 1335

3 8192 N 5.93 1585
Y 5.88 2195

Table 13. Effect of scaling block size on perplexity for Llamav2-7B. d: VQ-dimension; b: VQ bitwidth per dimension; gs: block size;
Codebooks are quantized to 8 bits.

d b gs Scaling BS
None 128 64 32 16 8

1 2 512 14.01 16.74 2744.9 480.8 15.36 13.79
3 1024 6.02 5.97 6.00 5.87 5.82 5.72

2 2 2048 8.23 8.38 8.04 7.97 7.56 6.89
3 8192 5.91 5.82 5.78 5.73 5.74 5.66

Table 14. Effect of scaling on perplexity for different models. Configurations with equal overhead with or without the scaling are
considered. d: VQ-dimension; b: VQ bitwidth per dimension; gs: block size; Codebooks are assumed to be quantized to 8 bit.

d b gs Scale Llamav2-7B Llamav2-13B Mistral-7B Mixtral-8x7B

1
2 256 N 14.01 7.34 15.03 8.56

512 Y 171.29 7.44 87.60 8.11

3 512 N 5.98 5.21 5.76 4.60
1024 Y 6.01 5.17 5.77 4.59

2
2 2048 N 8.23 6.69 10.98 6.73

4096 Y 8.49 6.50 10.28 6.37

3 8192 N 5.91 5.19 8.63 4.52
16384 Y 5.56 5.11 5.53 4.30

Table 15. Choices in experimental setup leading to comparable bits per value. d: VQ-dimension; b: VQ bitwidth per dimension; gs:
block size; Q: 8-bit codebook quantization yes/no; SVD: codebook SVD yes/no. BPV: bits per value.

d b gs Q SVD BPV PPL

1

2
512 N N 2.125 14.01
256 Y N 2.125 11.57
256 N Y 2.125 44.99

3
1024 N N 3.125 6.01
512 Y N 3.125 5.98
512 N Y 3.125 5.98

2
2 4096 N N 2.125 8.37

2048 Y N 2.125 8.23

3 16384 N N 3.125 5.93
8192 Y N 3.125 5.87
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