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Abstract

Training Transformer-based models demands001
a large amount of data, while obtaining paral-002
lel aligned and labelled data in multimodality003
is rather cost-demanding, especially for audio-004
visual speech recognition (AVSR). Thus it005
makes a lot of sense to make use of unlabelled006
uni-modal data. On the other side, although007
the effectiveness of large-scale self-supervised008
learning is well established in both audio and009
visual modalities, how to integrate those pre-010
trained models into a multimodal scenario re-011
mains underexplored. In this work, we suc-012
cessfully leverage uni-modal self-supervised013
learning to promote the multimodal AVSR. In014
particular, we first train audio and visual en-015
coders on a large-scale uni-modal dataset, then016
we integrate components of both encoders017
into a larger multimodal framework which018
learns to recognize paired audio-visual data019
into characters through a combination of CTC020
and seq2seq decoding. We show that both021
components inherited from uni-modal self-022
supervised learning cooperate well, resulting023
in that the multimodal framework yields com-024
petitive results through fine-tuning. Our model025
is experimentally validated on both word-level026
and sentence-level AVSR tasks. Especially,027
even without an external language model, our028
proposed model raises the state-of-the-art per-029
formances on the widely accepted Lip Reading030
Sentences 2 (LRS2) dataset by a large margin,031
with a relative improvement of 30%.032

1 Introduction033

Audio-Visual Speech Recognition (AVSR) is a034

speech recognition task that leverages both an au-035

dio input of human voice and an aligned visual036

input of lip motions. It has been one of the success-037

ful application fields that involve multiple modal-038

ities in recent years. Due to the limited amount039

of labeled, multi-modal parallel data and the diffi-040

culty of recognition from the visual inputs (i.e., lip041

reading), it is a challenging task to tackle.042

Existing AVSR models tend to use extra data to 043

increase the performance of the system, in a form of 044

inserting an extra supervised learning stage in the 045

training process. For example, many existing meth- 046

ods rely on an extra sequence level classification to 047

bootstrap its learning on visual features. Petridis 048

et al. (2018); Zhang et al. (2019) train their visual 049

front-end on LRW (Chung and Zisserman, 2016) 050

before learning on the AVSR task. Afouras et al. 051

(2018a,b) chunks the MV-LRS data (Chung and 052

Zisserman, 2017) into pieces of words and pre-train 053

the model through classification. VoxCeleb (Chung 054

et al., 2018) are also used in Afouras et al. (2020) 055

for the same purpose. Learning an effective visual 056

front-end could still be notoriously hard, even with 057

these extra supervised learning tasks. Sometimes 058

curriculum learning is required to adapt the learned 059

visual front-end into AVSR task (Afouras et al., 060

2018a). End-to-end learning of large-scale AVSR 061

data hasn’t been successful until recently (Ma et al., 062

2021). 063

Although self-supervised learning could enable 064

leveraging unlabelled or even non-parallel data, 065

it hasn’t been adequately explored on this task. 066

Shukla et al. (2020) is among the few attempts 067

in this facet, in which it predicts lip motions from 068

audio inputs. Their proposed learning schemes 069

yield strong emotion recognition results but are 070

relatively weak in speech recognition. Moreover, 071

since in AVSR it is the lip shape and motions be- 072

tween frames rather than the objects in a single 073

image that matters for recognizing speech con- 074

tents, if pre-trained visual models tailored for tasks 075

targeting at single frame images could work for 076

AVSR remains unknown. In another scenario, self- 077

supervised learning in uni-modality has been well 078

established as a paradigm to learn general repre- 079

sentations from unlabelled examples, such as in 080

natural language processing (Brown et al., 2020; 081

Devlin et al., 2018), speech recognition (Baevski 082

et al., 2020), and computer vision (He et al., 2019; 083
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Chen et al., 2020a; Grill et al., 2020).084

In this work, we rely on a simple but effective085

approach, which is to utilize unlabelled uni-modal086

data by using pre-trained models that are trained087

in single-modality through self-supervised learn-088

ing. Specifically, we use Baevski et al. (2020) pre-089

trained on the large LibriLight (Kahn et al., 2020)090

dataset as our audio front-end. For visual front-end,091

we found that it is not as straight-forward for it to092

leverage pre-trained models, as we have to substi-093

tute the first ResNet block in MoCo v2 (Chen et al.,094

2020b) by 3-D convolution layer and fine-tune it095

through LRW. In total, our approach doesn’t re-096

quire a curriculum learning stage, and the overall097

training time has been decreased.098

Experimental results show that our new front-099

ends significantly outperform previous ones by a100

big margin in both audio-only and visual-only set-101

tings, and a new state-of-the-art has been achieved102

in the final AVSR setting. To our best knowl-103

edge, this is the first work that successfully ap-104

plies uni-modal pre-trained models in the multi-105

modal setting of AVSR. We also ensure this re-106

search is reproducible by publishing our codes at107

anonymized_url.108

2 Related Work109

2.1 Audio-Visual Speech Recognition110

The earliest work on AVSR could be dated back to111

around two decades ago, when Dupont and Luet-112

tin (2000) showed hand-crafted visual feature im-113

proves HMM-based ASR systems. The first mod-114

ern AVSR system is proposed in Afouras et al.115

(2018a) where deep neural networks are used. The116

field has been rapidly developing since then. Most117

of the works are devoted into the architectural im-118

provements, for example, Zhang et al. (2019) pro-119

posed temporal focal block and spatio-temporal120

fusion, and Lee et al. (2020a) explored to use cross-121

modality attentions with Transformer.122

The other line of research focuses on a more123

diversified learning scheme to improve AVSR per-124

formance. Li et al. (2019) uses a cross-modal125

student-teacher training scheme. Paraskevopoulos126

et al. (2020) proposes a multi-task learning scheme127

by making the model to predict on both character128

and subword level. Self-supervised learning has129

also been explored in Shukla et al. (2020), where130

the cross-modality setting is utilized by predicting131

frames of videos from audio inputs.132

The end-to-end learning of AVSR systems are133

first seen in Tao and Busso (2020), albeit in a much 134

simpler dataset than LRS2. More recent work (Ma 135

et al., 2021) has made end-to-end learning on LRS2 136

possible by using a Conformer acoustic model and 137

a hybrid CTC/attention decoder. 138

2.2 Self-Supervised Learning 139

Self-supervised learning has been chased in recent 140

years since its ability to learn general representa- 141

tions of data through simple tasks that don’t require 142

labeling. Contrastive learning (Hadsell et al., 2006) 143

has become the most impactful learning scheme in 144

this field. In natural language processing, uni-or 145

bi-directional language modelling (Brown et al., 146

2020; Devlin et al., 2018) have been used to sig- 147

nificantly increase performances on various tasks. 148

In audio speech processing, contrastive predictive 149

coding (Baevski et al., 2020) has been proven to 150

be powerful in speech recognition. In the visual 151

domain, Earlier works create self-supervised tasks 152

through image processing based methods, such as 153

distortion (Gidaris et al., 2018),colorization (Zhang 154

et al., 2016) and context prediction (Doersch et al., 155

2015). More recently, contrastive learning emerged 156

as a paradigm of self-supervised learning, which 157

results in a group of more expressive general visual 158

representations, such as MoCo (He et al., 2019; 159

Chen et al., 2020b), SimCLR (Chen et al., 2020a), 160

BYOL (Grill et al., 2020), etc. 161

3 Architecture 162

The overall architecture of our model is shown in 163

Fig. 1. The audio-visual model is comprised of four 164

components, the front-ends and back-ends for both 165

modalities, the fusion module, and the decoders. 166

3.1 Front-ends 167

Visual Front-end: Visual front-end serves as a 168

component to capture the lip motion and reflect 169

the lip position differences in its output represen- 170

tations. A naive way to apply pre-trained models 171

in the visual front-end is to directly feed the RGB 172

channels of each frame as input. However, since 173

frames within a same clip in AVSR are largely 174

similar in their contents while most pre-trained 175

models in vision target at learning general repre- 176

sentations reflecting the content of the whole image, 177

this approach will result in similar outputs for all 178

the frames, collapsing the informative lip position 179

differences between frames. 180

To overcome the aforementioned problem while 181
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Figure 1: Overall architecture of our AVSR model.
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Figure 2: Training pipeline of the model. Yellow blocks represent new parameters that are randomly initialized,
while Blue blocks represent parameters that are inherited from last training stage.

still being able to utilize the pre-trained model, we182

truncate the first convolutional layer in MoCo v2183

(Chen et al., 2020b), which is pre-trained on Ima-184

geNet (Deng et al., 2009), and replace it by a layer185

of 3-D convolution. The outputs of 3-D convolu-186

tion layer are intentionally made identical to the187

input of the first ResBlock in MoCo v2 (see Table188

1), thus providing a compatible interface to transfer189

higher layers of MoCo v2 into this task. On the190

other hand, we also adopt the common practice to191

convert the RGB input image to gray-scale before192

feeding it into the model, as it prevents the model193

from learning chromatic aberration information.194

Audio Front-end: The audio front-end is rather195

straight-forward. We use wav2vec 2.0 (Schnei-196

der et al., 2019) pre-trained on Libri-Light (Kahn197

et al., 2020), like it is normally used for ASR tasks,198

both the 1-D convolution layers and the stacked199

Transformer encoder layers are transferred into our200

audio front-end. The audio front-end takes as input201

raw audio wave of 16kHz, and produces one vec-202

tor representation every 20ms. The audio feature203

dimensions are shown in Table 2.204

3.2 Back-ends205

Since the visual frames are in 25 FPS and the206

wav2vec 2.0 outputs are around 49 Hz1, one should207

1The odds are due to the larger receptive fields of wav2vec
2.0 1-D convolution layers, which we circumvent by properly
prefixing and suffixing the audio sequence and truncate the
trailing audio vector. Thus a perfect 1:2 ratio of visual frames

note that there is 2x difference in the frequency 208

of frame-wise visual and audio representations at 209

the output of their front-ends. In the back-end, we 210

use 1-D convolution layers on the time dimension 211

combined with Transformer encoder layers to pro- 212

vide single modality temporal modeling, as well as 213

adjusting the features to have the same frequency. 214

Visual Back-end: The incoming MoCo v2 output 215

to the visual back-end has a feature dimension of 216

2048, at a frequency of 25 vectors per second. In 217

the visual backend, we keep this frequency while 218

reducing the feature size to 512. See Table 1. For 219

positional encodings of the Transformer, we use 220

fixed positional encoding in the form of sinusoidal 221

functions. 222

Stage Modules
Image sequence
(Tf × 1122 × 1)

Front-end
3-D convolution (Tf × 282 × 64)

MoCo v2 (Tf × 2048)

Back-end
1-D convolution (Tf × 512)

Transformer Encoder (Tf × 512)

Table 1: The feature dimension of visual stream. The
dimensions of features are denoted by {temporal size×
spatial size2 × channels}. Tf denotes the number of
visual frames.

Audio Back-end: In the audio back-end, the in- 223

coming wav2vec 2.0 outputs have a feature size of 224

and audio front-end outputs are ensured.
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1024, at a frequency of 50 vectors per second. We225

downscale the frequency by setting the stride of 1-226

D convolution layer to 2. The Transformer encoder227

layers have the identical size to that of the visual228

back-end, while using a separate set of parameters.229

Table 2 shows a clearer picture of audio front- and230

back-end dimensions.231

Stage Modules Audio waveform
(Ts × 1)

Front-end wav2vec 2.0 (Tf × 1024)

Back-end
1-D convolution (

Tf

2
× 512)

Transformer Encoder (
Tf

2
× 512)

Table 2: The feature dimension of audio stream. The
dimensions of features are denoted by {temporal size×
channels}. Ts and Tf denote the number of sampled
audio input and audio frames, respectively.

3.3 Fusion Module232

Features from both the audio and visual modalities233

are fused together in this section, forming vector234

representation of 1024 dimensions at a relatively235

low rate of 25 Hz. We use LayerNorm (Ba et al.,236

2016) separately on each of the modalities before237

concatenating them on the feature dimension. The238

LayerNorm is required since it avoids one modality239

overtaking the whole representation with larger240

variance. Similar 1-D convolution layers and a241

subsequent Transformer encoder block of 6 layers242

take the fused representations as input, and encode243

them for the two decoders.244

3.4 Decoder245

Following the setting of Petridis et al. (2018), there246

are two decoders trained simultaneously based on247

the same encoder output in the fusion module.248

The first is a Transformer seq2seq decoder, a249

canonical Transformer decoder with 6 layers is250

used, and we perform teacher forcing at charac-251

ter level by using ground truth characters as input252

during training.253

The second one is arguably a decoder since it254

yields character probabilities for each timestep and255

relies on the CTC loss in training. 4 extra 1-D256

convolution layers with ReLU activation are used257

on top of the last Transformer encoder layer output.258

We also include LayerNorm between each of the259

layers.260

3.5 Loss Functions 261

In this work, we use a so called hybrid CTC/atten- 262

tion loss (Watanabe et al., 2017) for our training 263

process. Let x = [x1, · · · , xT ] be the input frame 264

sequence at the input of Transformer encoder in 265

the fusion module and y = [y1, · · · , yL] being the 266

targets, where T and L denote the input and target 267

lengths, respectively. 268

The CTC loss assumes conditional independence 269

between each output prediction and has a form of 270

pCTC(y|x) ≈
T∏
t=1

p(yt|x) (1) 271

On the other hand, an auto-regressive decoder 272

gets rid of this assumption by directly estimating 273

the posterior on the basis of the chain rule, which 274

has a form of 275

pCE(y|x) =
L∏
l=1

p(yl|y<l,x) (2) 276

The overall objective function is computed as 277

follows: 278

L = λ log pCTC(y|x)+(1−λ) log pCE(y|x) (3) 279

where λ controls the relative weight between 280

CTC loss and seq2seq loss in the hybrid CTC/atten- 281

tion mechanisms. The weight is needed not only 282

when integrating the two losses into one training 283

loss, but also fusing the two predictions during 284

decoding, which we will revisit in the following 285

subsections. 286

3.6 Training Pipeline 287

The final AVSR model is achieved through a 288

pipeline of training stages. 289

For audio modality, the audio front-end is first 290

pre-trained through self-supervised learning, which 291

is done by wav2vec 2.0. Then the audio back- 292

end is trained through the audio-only (AO) setting, 293

together with a dedicated decoder. 294

For the visual modality, we first pre-train the 3- 295

D convolution layer and visual back-end through 296

sequence classification at word level video clips 297

in LRW data. After that, the visual front-end are 298

inherited by the visual-only (VO) model, where 299

dedicated visual back-end and decoder are used. 300

The final AVSR model can be trained after the 301

audio-only and visual-only models have converged. 302
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Due to computational constraints, we pre-compute303

the audio and visual back-end outputs, and only304

learn the parameters in the fusion model and de-305

coder part in this final stage. A detailed visualiza-306

tion of our training pipeline is depicted in Figure307

2.308

3.7 Decoding309

Decoding is performed using joint CTC/attention310

one-pass decoding (Watanabe et al., 2017) with311

beam search. We apply shallow fusion to incorpo-312

rate CTC and seq2seq predictions:313

ŷ = argmax
y∈Ŷ

{α log pCTC(y|x)

+ (1− α) log pCE(y|x)}
(4)314

where Ŷ denotes predictions set of target symbols,315

while α is the relative weight that tuned on valida-316

tion set.317

4 Experiments318

In this section, we will first introduce the datasets319

and various settings we used in each component of320

our model. Then we will present results of audio-321

only, visual-only and audio-visual settings. We also322

present a breakdown of the relative contribution of323

every component through ablation study.324

4.1 Dataset325

We use the large-scale publicly AVSR dataset, the326

Lip Reading Sentences 2 (LRS2) (Chung et al.,327

2017) as our main testbed. During training, we also328

use the Lip Reading in the Wild (LRW) (Chung329

and Zisserman, 2016) as a word-level video classi-330

fication task to pre-train our visual encoder.331

LRS2 consists of 224 hours of aligned audio332

and videos, with a total of 144K clips from BBC333

videos, the clips are at a length of sentence level.334

The training data contains over 2M word instances335

and a vocabulary of over 40K. The dataset is very336

challenging as there are large variations in head337

pose, lighting conditions, genres and the number338

of speakers.339

LRW is a word-level dataset, consisting of 157340

hours of aligned audio and videos, totalling 489K341

video clips from BBC videos, each containing the342

utterance of a single word out of a vocabulary of343

500. The videos have a fixed length of 29 frames,344

the target word occurring in the middle of the345

clip and surrounded by co-articulation. All of the346

videos are either frontal or near-frontal. In our ex- 347

periment, we only use the visual modality from this 348

dataset to train our visual front-end. 349

4.2 Experimental Settings 350

We use character level prediction with an output 351

size of 40, consisting of the 26 characters in the al- 352

phabet, the 10 digits, the apostrophe, and special to- 353

kens for [space], [blank] and [EOS/SOS]. 354

Since the transcriptions of the datasets do not con- 355

tain other punctuations, we do not include them in 356

the vocabulary. 357

Our implementation is based on the Pytorch 358

library (Paszke et al., 2019) and trained on four 359

NVIDIA A100 GPUs with a total of 160GB mem- 360

ory. The network is trained using the Adam op- 361

timiser (Kingma and Ba, 2014) with β1 = 0.9, 362

β2 = 0.999 and ε = 10−8 and an initial learn- 363

ing rate of 10−4. We use label smoothing with a 364

weight set to 0.01, learning rate warm up and re- 365

duce on plateau. The relative weight in CTC loss 366

and seq2seq loss λ is set to 0.2. When decoding, 367

we set α to 0.1. The samples in the pre-train set are 368

cropped by randomly sampling a continuous range 369

of 1/3 words of the whole utterances, in order to 370

match the length of clips in the train set. Over- 371

length samples are further truncated at 160 frames 372

to reduce memory occupation. 373

Preprocessing: We detected and tracked 68 facial 374

landmarks using dlib (King, 2009) for each video. 375

To remove differences related to face rotation and 376

scale, the faces are aligned to a neural reference 377

frame using a similarity transformation following 378

(Martinez et al., 2020). Interpolation and frame 379

smoothing with a window width of 12 frames are 380

used to deal with the frames that dlib fails to detect. 381

Then a bounding box of 120× 120 is used to crop 382

the mouth ROIs. The cropped frame is further con- 383

verted to gray-scale and normalized with respect to 384

the overall mean and variance of the train set. Each 385

raw audio waveform is normalized to zero mean 386

and unit variance following (Baevski et al., 2020). 387

Data Augmentation: Following (Ma et al., 2021), 388

random cropping with a size of 112 × 112 and 389

horizontal flipping with a probability of 0.5 are per- 390

formed consistently across all frames of a given im- 391

age sequence when training visual-only and audio- 392

visual models. For each audio waveform, additive 393

noise is performed in the time domain following 394

(Afouras et al., 2018a) during training audio-only 395

and audio-visual models. Babble noise are added 396
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to the audio stream with 5dB SNR and probability397

of pn = 0.25. The babble noise is synthesized by398

mixing 20 different audio samples from LRS2.399

Methods WER

Visual-only

LIBS (Zhao et al., 2020) 65.3

TM-CTC* (Afouras et al., 2018a) 54.7

Conv-seq2seq (Zhang et al., 2019) 51.7

TM-seq2seq* (Afouras et al., 2018a) 50.0

KD-TM (Ren et al., 2021) 49.2

LF-MMI TDNN* (Yu et al., 2020) 48.9

E2E Conformer* (Ma et al., 2021) 42.4

E2E Conformer** (Ma et al., 2021) 37.9
Our Model 43.2

Audio-only

TM-CTC* (Afouras et al., 2018a) 10.1

TM-seq2seq* (Afouras et al., 2018a) 9.7

CTC/attention* (Petridis et al., 2018) 8.2

LF-MMI TDNN* (Yu et al., 2020) 6.7

E2E Conformer** (Ma et al., 2021) 3.9

Our Model 2.7

Audio-Visual

TM-DCM (Lee et al., 2020b) 8.6

TM-seq2seq* (Afouras et al., 2018a) 8.5

TM-CTC* (Afouras et al., 2018a) 8.2

LF-MMI TDNN* (Yu et al., 2020) 5.9

E2E Conformer** (Ma et al., 2021) 3.7

Our Model 2.6

Table 3: Audio-only, visual-only and audio-visual re-
sults of word error rate (WER) tested on LRS2. Mod-
els with an * denote that results are using an exter-
nal language model, which indicates an advantage over
our model during evaluation. Models denoted with **
means that it uses a more powerful Transformer lan-
guage model.

Evaluation: For all experiments, word error rate400

(WER) are reported which is defined as WER =401

(S + D + I)/N . The S, D and I in the formula402

denotes the number of substitutions, deletions and403

insertions respectively from the reference to the404

hypothesis, and N is the number of words in the405

inference. The babble noise added to the audio406

waveform during evaluation is generated using the407

same manner as training, while we set a different408

seed to avoid model fit to a specific generated noise.409

Decoding is performed using joint CTC/attention410

one-pass decoding (Watanabe et al., 2017) with411

beam width 5 (the values were determined on the412

held-out validation set of LRS2). We don’t use an 413

external language model in our experiments. 414

4.3 Results 415

We present results for all experiments in Table 3, 416

reporting WERs on audio-only, visual-only and 417

audio-visual models. Note that many of the mod- 418

els listed here are also using extra training data in 419

different stages of training pipeline, such as MV- 420

LRS (Chung and Zisserman, 2017), LRS3 (Afouras 421

et al., 2018b), LibriSpeech (Panayotov et al., 2015) 422

and LRW. 423

Audio-visual Setting: In the main audio-visual 424

(AV) setting, the pre-train and train sets in LRS2 are 425

used as train set in the final training stage. Our pro- 426

posed audio-visual model achieves a WER of 2.6% 427

without the help of an external language model, 428

which improves by 1.1% over the current state-of- 429

the-art (Ma et al., 2021). This is rather a big im- 430

provement, with a relative improvement of around 431

30%. 432

Audio-only Setting: The training data used for 433

training audio-only model consists of 224 hours 434

labelled data from LRS2, as well as the 60K hours 435

unlabelled data from LibriLight (Kahn et al., 2020) 436

that are indirectly used through inheriting wav2vec 437

2.0 parameters. Our model also achieves a WER of 438

2.7%, which reduces the WER of the current state- 439

of-the-art (Ma et al., 2021) by 1.2%, indicating a 440

relative improvement of 30%. 441

Visual-only Setting: The visual-only model uses 442

labelled LRS2 data in its pre-train and train sets, 443

the LRW for supervised pre-training, and indirectly 444

using the 1.28M unlabelled images from ImageNet 445

through MoCo v2. The visual-only model achieves 446

a WER of 43.8%, lagging behind the current state- 447

of-the-art (E2E Conformer) with 5.3%. Compared 448

to E2E Conformer, the main difference is that a big 449

Transformer language model is used during decod- 450

ing, which itself brings a 4.5% difference compared 451

with a normal RNN language model in their abla- 452

tion study (Ma et al., 2021). The gap between our 453

visual-only model and the E2E Conformer model 454

with a RNN language model is 0.8%, which resides 455

in a quite reasonable range. Additionally, we use 456

a 6-layers Transformer encoder for temporal mod- 457

elling instead of a 12-layers conformer encoder, 458

which resulted in a smaller model size. 459

If we consider a fairer comparison by only look- 460

ing at benchmarks without using an external lan- 461
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guage model, the best-reported benchmark is Ren462

et al. (2021), which achieved a WER of 49.2%,463

lagging behind our model by 6.0%.464

4.4 Ablation Studies465

In this section, we investigate the impact of every466

individual building block by testing them in LRW,467

visual-only and audio-only settings.468

MoCo v2 Contribution in Visual Word Classi-469

fication: Results of visual word classification on470

LRW are shown in Table 4. We first train a model471

by replacing the ResNet-18 front-end in (Stafylakis472

and Tzimiropoulos, 2017) with a ResNet-50 front-473

end, matching the size of MoCo v2 but with fresh474

weights. This results in an absolute improvement475

of 2.1%. Then we initialize the ResNet-50 front-476

end with MoCo v2 weights and a further absolute477

improvement of 2.3% is observed, which implies478

that self-supervised learning is actually functioning479

in better represent the lip movement. Additionally,480

When Using 6 layers of Transformer encoder in-481

stead of TCN as back-end, we can observe another482

absolute improvement of 5.0%. We also noticed483

that using MoCo v2 front-end could significantly484

reduce the training time.485

Method Acc

Baseline(Stafylakis and Tzimiropoulos, 2017) 74.6%
+ ResNet-50 front-end 76.7%

+ MoCo v2 front-end 79.0%
+ Transformer encoder back-end 85.0%

Table 4: Ablation study on visual word classification
performance on LRW.

Performance Breakdown in Audio-only Setting:486

Results of audio-only model on LRS2 are shown487

in Table 5. Starting from (Afouras et al., 2018a),488

we first train a model by replacing the STFT audio489

feature with a wav2vec 2.0 front-end pre-trained490

on LibriSpeech, resulting in an absolute improve-491

ment of 11.1%. Then we use another pre-trained492

model learned on an even larger unlabelled single493

modality dataset Libri-Light, and a further abso-494

lute improvement of 0.6% is observed. We further495

train the model with hybrid CTC/attention decoder496

during the training stage, which results in another497

absolute improvement of 0.9%.498

Performance Breakdown in Visual-only Set-499

ting: Results of the visual-only model on LRS2500

are shown in Table 6. Starting from (Afouras et al.,501

2018a), we first introduce end-to-end training by502

Method WER

Baseline(Afouras et al., 2018a) 15.3%
+ wav2vec 2.0 (LibriSpeech) encoder 4.2%

+ wav2vec 2.0 (LibriLight) encoder 3.6%
+ Hybrid CTC/attention 2.7%

Table 5: Ablation study on audio-only model perfor-
mance on LRS2.

using a hybrid CTC/attention decoder (the front- 503

end is still pre-trained through LRW), resulting in 504

an absolute improvement of 16.0%. Then we ini- 505

tialize the front-end with MoCo v2 weights, a same 506

end-to-end training manner results in a further ab- 507

solute improvement of 5.8%. 508

Method WER

Baseline(Afouras et al., 2018a) 65.0%
+ Hybrid CTC/attention 49.0%

+ MoCo v2 front-end 43.2%

Table 6: Ablation study on visual-only model perfor-
mance on LRS2.

Robustness under Noisy Inputs: To evaluate the 509

model’s tolerance to audio noise, we tested the 510

performance of our model under babble noise with 511

different SNR levels. Our audio-only and audio- 512

visual models reach WERs of 32.5% and 24.5% 513

when the SNR level is 0dB, respectively, which 514

reduce the reported result in (Afouras et al., 2018a) 515

by 25.5% and 9%2. When the SNR level rises to 516

5dB, our audio-only and audio-visual model obtain 517

WERs of 6.8% and 6.3%. 518

Besides achieving significant improvement over 519

the baseline model under babble noise environment, 520

we further investigate the model performance un- 521

der human noise environment. The human noise 522

is extremely challenging cause the noise itself con- 523

tains some words, while the model cannot easily 524

distinguish which audio signal is the one to be 525

recognized. We synthesize the human noise by ran- 526

domly crop many 1 second signals from different 527

audio samples in the LRS2 dataset. As shown in 528

Fig. 3, we conduct experiments varying different 529

levels of human noise, the models are trained using 530

babble noise augmented audio. The WER increases 531

greatly after the SNR level drops down under 0db. 532

It is because the model may not be able to distin- 533

guish the two overlapped spoken words at a low 534

2Ma et al. (2021) also provides a performance under noisy
inputs, however, we are not able to compare with them due to
a lack of necessary details to generate the same noise.
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SNR level.535

And the overall performance under each SNR536

level is worse than babble noise, indicating that537

noise with specific information is harder than dis-538

organized babble noise.539

Modality Model 0dB 5dB clean

AO
Afouras et al. (2018a) 58.0% - 10.5%

Our model 32.5% 6.8% 2.7%

AV
Afouras et al. (2018a) 33.5% - 9.4%

Our model 24.5% 6.3% 2.6%

Table 7: Word error rate (WER) under different SNR
levels. The noises are synthesized babble noises.

5 0 5 10 15 20
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Figure 3: Word error rate (WER) under different SNR
levels. The noises are human speech sampled from
LRS2. AO: Audio-Only model, VO: Visual-Only
model, AV:Audio-Visual model

Recognition under Low Resource: A significant540

benefit of using self-supervised pre-trained mod-541

els is that only a small amount of labelled data is542

needed for training a model. To further investigate543

the models’ performance in low resource environ-544

ment, we use the 28 hours train set of LRS2 to545

train an audio-only and a visual-only model. The546

results are shown in Table 8. The audio-only model547

trained with 28 hours data achieves a WER of 3.4%,548

which is a little bit worse than the one trained with549

224 hours data. The result indicates that for the550

audio-only model, the self-supervised model pre-551

trained on a large-scale single modality dataset can552

significantly reduce the demands of data. While553

the visual-only model trained with 28 hours data554

has a great gap with the one trained with 224 hours555

data, the reason can be that the visual-only model556

is harder to train and demands a larger amount of557

data.558

Model Training data (Hours) WER (%)

audio-only LRS2 (224) 2.7

LRS2 train set (28) 3.4 (+0.7)

visual-only LRS2 (224) 43.2

LRS2 train set (28) 68.9 (+25.7)

Table 8: Performance of audio-only and visual-only
models using different training data.

4.5 Discussion and Conclusion 559

In this work, we propose to utilize self-supervised 560

learning for AVSR by simply incorporating the pre- 561

trained model trained in massive unlabelled sin- 562

gle modality data. Although the visual pre-trained 563

models are not straight-forward to be transplanted 564

into visual front-end, we still manage to integrate 565

pre-trained models in both modalities for the AVSR 566

task. Experimental results are impressive, resulting 567

in a 30% relative improvement. 568

It’s interesting to observe that self-supervised 569

model in audio modality has an even larger im- 570

provement than that of the visual counterpart. We 571

believe the reasons can be listed as follows: 572

• The training data scale of audio modality is 573

significantly larger than that of visual modal- 574

ity, with the Libri-Light dataset used for pre- 575

training wav2vec 2.0 consists of 60K hours au- 576

dio signals, the ImageNet dataset, on the con- 577

trary, has only 1.28M images, roughly equiva- 578

lent to 14 hours silent video under 25 FPS. 579

• The MoCo v2 model is pre-trained on images 580

to better represent frame-level contents, while 581

there are no pre-training steps to model the 582

temporal correlation between frames. In con- 583

trast, the wav2vec 2.0 model is pre-trained on 584

consistent audios, thus having a better tempo- 585

ral modelling ability. 586

As there has not emerged a dominating cross- 587

modality self-supervised learning approach in the 588

field of AVSR, in future work, we are going to ex- 589

plore two more directions in the self-supervised 590

learning scenario based on this work. The first is 591

utilizing the temporal correlations within the visual 592

domain, while the other is the cross-modal corre- 593

lations between the audio and visual modality. We 594

hope this work could pave the way towards mul- 595

timodality self-supervised learning, especially for 596

various aspects in audio-visual speech recognition. 597
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A Decoding Algorithm803

Algorithm 1 Hybrid CTC/attention one-pass de-
coding adapted from (Watanabe et al., 2017). Nota-
tion: X is the speech input; Lmax is the maximum
length of the hypotheses to be searched, we set
it to T ; C is the decoded symbol sequence; [b]
denotes [blank].
Input: X,Lmax
Output: C
1: Ω0 = {[SOS]}
2: Ω̂ = ∅
3: γ(b)

0 ([SOS]) = 1
4: for t = 1, · · · , T do
5: γ

(n)
t ([SOS]) = 0

6: γ
(b)
t ([SOS]) =

t∏
τ=1

γ
(b)
τ−1([SOS]) ·p(zτ = [b]|X)

7: end for
8: for l = 1 · · ·Lmax do
9: Ωl = ∅

10: while Ωl−1 6= ∅ do
11: g = HEAD(Ωl−1)
12: DEQUEUE(Ωl−1)
13: for each c ∈ U do
14: h = g · c
15: if c = [EOS] then
16: log pctc(h|X) = log{γ(n)

T (g) + γ
(b)
T (g)}

17: else
18: if g = [SOS] then
19: γ

(n)
1 (h) = p(z1 = c|X)

20: else
21: γ

(n)
1 (h) = 0

22: end if
23: γ

(b)
1 (h) = 0

24: Ψ = γ
(n)
1 (h)

25: for t = 2 · · ·T do
26: if last(g) = c then
27: Φ = γ

(b)
t−1(g)

28: else
29: Φ = γ

(b)
t−1(g) + γ

(n)
t−1(g)

30: end if
31: γ

(n)
t (h) = (γ

(n)
t−1(h) + Φ)p(zt = c|X)

32: γ
(b)
t (h) = (γ

(b)
t−1(h) + γ

(n)
t−1(h))p(zt =

[b]|X)
33: Ψ = Ψ + Φ · p(zt = c|X)
34: end for
35: log pctc(h|X) = log(Ψ)
36: end if
37: log p(h|X) = α log pctc(h|X)

+(1− α) log patt(h|X)
38: if c = [EOS] then
39: ENQUEUE(Ω̂, h)
40: else
41: ENQUEUE(Ωl, h)
42: end if
43: end for
44: end while
45: Ωl = TOPK(Ωl,W )
46: end for
47: return arg maxC∈Ω̂ log p(C|X)

Algorithm 1 describes the hybrid CTC/attention804

decoding procedure. The CTC prefix probability805

is defined as the cumulative probability of all label806

sequences that have h as their prefix: 807

pctc(h|X) =
∑

v∈(U)+
pctc(h · v|X) (5) 808

where v denotes all possible symbol sequences 809

except the empty. The CTC probability can be 810

computed by keeping the forward hypothesis prob- 811

abilities γ(n)t and γ(b)t , where the superscripts (n) 812

and (b) represents all CTC paths end with a non- 813

[blank] or [blank] symbol, respectively. 814

The decoding algorithm is also a beam search 815

with width W and hyperparameter α control the 816

relative weight given to CTC and attention decod- 817

ing. U is a set of symbols excluding [blank], 818

and a same token is used to represent [SOS] and 819

[EOS] in our implementation. 820

B Decoding Examples 821

AO: WHATEVER YOU ASK

AV: WHATEVER YOU ARE

AO: TRAVEL THREE MILES URBER WEST AND
YOU DO GET MORE FOR YOUR MONEY HERE

AV: TRAVEL THREE MILES FURTHER WEST AND
YOU DO GET MORE FOR YOUR MONEY HERE

AO: IT COULD BE YOUR PASSPORT FOR A SMALL
FORTUNE

AV: IT COULD BE YOUR PASSPORT TO A SMALL
FORTUNE

AO: WHAT TO THINK FOR THEMSELVES

AV: NOT TO THINK FOR THEMSELVES

AO: NOT THE SUBJECT MATTERING

AV: NOT FOR SUBJECT MATTER

AO: I WOULDN’T SAY I’M THE STAR

AV: I WOULDN’T SAY I’M A STAR

AO: CRISPAS PUDDING THAT NOBODY REALLY
LIKES

AV: CHRISTMAS PUDDING THAT NOBODY RE-
ALLY LIKES

AO: BUT AT THE SAME TIME

AV: AT THE SAME TIME

AO: BEING ON MY OWN

AV: BEING MY OWN

AO: SO AT ONE POINT

AV: AT ONE POINT

Table 9: AO (audio-only) and AV (audio-visual) decod-
ing examples. Underline denotes substitutions and in-
sertions error; Strikethrough denotes deletions error.

Table 9 is examples of sentences that audio-only 822

model fails to predict while audio-visual model 823
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(a) Landmarks detected by dlib. Green dots are 68 landmarks, frames without landmarks are ones that dlib fail to detect.

(b) Landmarks after linear interpolation.

(c) Faces smoothed with a window width of 12 and aligned to a neural reference frame using a similarity transformation.

(d) Mouth ROIs cropped using a bounding box of 120× 120.

Figure 4: Preprocessing example to illustrate the process to generate mouth ROIs.

correctly predicts. The visual modality enhances824

the model from a wide range of error cases.825

C Preprocessing Example826

The input images are sampled at 25 FPS and resized827

to 224× 224 pixels. We crop a 120× 120 mouth828

ROI from each frame. Fig. 4 shows the process to829

generate.830
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