
GSGAN: Adversarial Learning for
Hierarchical Generation of 3D Gaussian Splats

Sangeek Hyun
Sungkyunkwan University

Jae-Pil Heo∗

Sungkyunkwan University

Abstract

Most advances in 3D Generative Adversarial Networks (3D GANs) largely depend
on ray casting-based volume rendering, which incurs demanding rendering costs.
One promising alternative is rasterization-based 3D Gaussian Splatting (3D-GS),
providing a much faster rendering speed and explicit 3D representation. In this
paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its
efficient and explicit characteristics. However, in an adversarial framework, we
observe that a naïve generator architecture suffers from training instability and
lacks the capability to adjust the scale of Gaussians. This leads to model divergence
and visual artifacts due to the absence of proper guidance for initialized positions
of Gaussians and densification to manage their scales adaptively. To address these
issues, we introduce GSGAN, a generator architecture with a hierarchical multi-
scale Gaussian representation that effectively regularizes the position and scale of
generated Gaussians. Specifically, we design a hierarchy of Gaussians where finer-
level Gaussians are parameterized by their coarser-level counterparts; the position
of finer-level Gaussians would be located near their coarser-level counterparts, and
the scale would monotonically decrease as the level becomes finer, modeling both
coarse and fine details of the 3D scene. Experimental results demonstrate that ours
achieves a significantly faster rendering speed (×100) compared to state-of-the-art
3D consistent GANs with comparable 3D generation capability. Project page:
https://hse1032.github.io/gsgan.

1 Introduction

Figure 1: Generated examples from the proposed method (FFHQ-512, AFHQ-Cat-512). Ours
synthesize multi-view consistent images with a significantly faster rendering speed by leveraging 3D
Gaussian representation. We represent a 3D scene as a composite of hierarchical Gaussians, where
each level of Gaussian depicts coarse and fine details corresponding to its level. To visualize the
effects of individual Gaussian, the right-most images are rendered by reducing the scale of Gaussians.

The research field of 3D generative models has recently emerged and shows impressive generation
capability in various domains such as text-to-3D [1–7] and image-to-3D [8–10]. Among them,

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://hse1032.github.io/gsgan

3D Generative Adversarial Networks [11–16] are an adversarial learning framework between a
3D generator and a 2D discriminator, capable of synthesizing 3D models solely by training with
collections of 2D images or with the additional use of their corresponding camera poses. Specifically,
the generator synthesizes a 3D model and renders it as a 2D image using given camera parameters,
and then the 2D discriminator determines its realness and its match to the given camera pose.

The generally used volume rendering in 3D GANs is ray casting [17], which is widely adopted in
NeRF literature [18–21]. Ray casting-based rendering demonstrates its prominent capability to model
a 3D scene in various domains of research; however, it is also known for its excessive computational
costs. Specifically, it requires (H ×W ×D) point sampling for rendering an image from a single
camera view, where H,W,D denotes height, width, the number of sampled points on a ray (depth).
This demanding computational cost hinders previous methods in 3D GANs from performing the
rendering process at higher resolutions [12] or forces them to use architectures optimized for efficient
3D representation, leading to degraded generation quality [13, 15].

Recently, 3D Gaussian Splatting (3D-GS) [22] has been introduced for the 3D reconstruction task.
This method represents a 3D scene as a composition of 3D Gaussians, projecting and α-blending
these Gaussians to render images. This rasterization-based method notably enhances rendering speed.
Despite this innovative progress in the 3D reconstruction task, its application in 3D generative models
has not yet been studied. One important challenge is the training algorithm of 3D-GS. Unlike the
scene-independent and fully differentiable training of NeRFs, 3D-GS requires additional constraints
such as the proper initialization of Gaussian positions for a given scene by SfM [23] and densification
that heuristically manages the scale and number of Gaussians. Since 3D GANs deploy a single
generator trained by gradient descent to model the distribution of 3D data, these non-differentiable
and scene-dependent characteristics of 3D-GS restrict its application in 3D GANs.

In this paper, we extend the application of 3D Gaussian representation with rasterization to 3D GANs,
leveraging its efficient rendering speed for high-resolution data. In an adversarial learning framework,
we observe that a naïve generator architecture, which simply synthesizes a set of Gaussians without
any constraints, suffers from training instability and imprecise adjustment of the scale of Gaussians.
For example, at the early stage of training, all the Gaussians disappear in the rendered images, or
there are visual artifacts created by long-shaped Gaussians despite its convergence.

To address these training difficulties, we devise a method to regularize the Gaussian representation
for 3D GANs, focusing particularly on the position and scale parameters. To this end, we propose a
generator architecture with a hierarchical Gaussian representation. This hierarchical representation
models the Gaussians of adjacent levels to be dependent, encouraging the generator to synthesize the
3D space in a coarse-to-fine manner. Specifically, we first introduce a locality constraint whereby
the positions of fine-level Gaussians are located near their coarse-level counterpart Gaussians and
are parameterized by them, thus reducing the possible positions of newly added Gaussians. Then,
we design the scale of Gaussians to monotonically decrease as the level of Gaussians becomes finer,
facilitating the generator’s ability to model the scene in both coarse and fine details. Based on this
representation, we propose a generator architecture that effectively implements the hierarchy of
Gaussians. With additional architectural details, we validate that the proposed generator successfully
synthesizes realistic 3D models (Fig. 1) with stabilized training and enhanced generation quality.

Our contributions are summarized as follows:

- We firstly exploit a rasterization-based 3D Gaussian representation for efficient 3D GANs.
- We introduce GSGAN, a hierarchical 3D Gaussian representation that regularizes the pa-

rameters of Gaussians by building dependencies between Gaussians of adjacent hierarchies,
stabilizing the training of Gaussian splatting-based 3D GANs.

- The proposed method achieves a significantly faster rendering speed compared to state-of-
the-art 3D GANs while maintaining comparable generation quality and 3D consistency.

2 Related works

2.1 3D Generative Adversarial Networks

3D GANs [11, 16] learn the 3D representation from a collection of 2D images with corresponding
camera parameters. Recent progress mostly focuses on generator architecture, especially for enhanc-

2

ing efficiency. For example, EG3D [12] introduces the tri-plane representation with an additional
upsampling 2D image after volume rendering. Differently, there is another stream that directly renders
a high-resolution image without a 2D upsampler. For instance, GRAM [13] learns the iso-surfaces for
efficient sampling of points on a ray, based on an implicit-network generator [11]. Additionally, Vox-
graf [24] exploits the sparse voxel grid instead of feature fields to represent the 3D scene. Epigraf [15]
introduces a patch-wise training scheme to reduce the computational cost of volume rendering at high
resolution (e.g., 512×512) during the training phase. Differently, Mimic3D [25] proposes a method
to learn 3D representation at high resolution by distilling the 2D upsampling result of EG3D into the
high-resolution tri-plane. Most recently, WYSIWIG [26] proposes SDF representation-based GANs
for reducing the number of sampling points on rays in a high-resolution 3D representation.

While previous methods use ray casting as a volume rendering method with demanding rendering
costs, we exploit efficient rasterization by adopting 3D Gaussians as a 3D representation.

2.2 Gaussian splatting for 3D representation

3D Gaussian Splatting (3D-GS) [22] represents a 3D scene as a composition of 3D Gaussians. This
approach is known for its fast rendering speed, which rasterization-based rendering leads to, as well
as its prominent reconstruction quality and faster convergence. Recently, various domains of research
utilize 3D-GS, such as human avatar modeling[27–29], facial editing [30], text-to-3D synthesis [1–7],
and image-to-3D synthesis [8–10]. These approaches typically substitute the neural radiance field
with a Gaussian representation to leverage its efficient characteristics.

The research efforts also try to apply 3D Gaussian representation to an adversarial learning framework,
especially with structural prior such as the human body and facial template. For example, Gaussian
Shell Maps [31] focus on the task of 3D human generation based on SMPL template [32] with an
adversarial learning framework. Given a human body template, the generator learns to synthesize
multiple shell maps containing Gaussian parameters, achieving 3D consistent generation with faster
rendering speed. Similarly, GGHead [33] focuses on 3D face generation using FLAME template [34].
Similar to Gaussian Shell Maps, they synthesize texture maps containing Gaussian parameters and
position offsets by 2D generator based on StyleGAN2 [35]. However, these methods largely depend
on the pre-defined template as structural prior.

Differently, in this paper, we focus on extending the application of 3D-GS to Generative Adversarial
Networks without any geometric prior such as SfM that 3D-GS traditionally requires.

3 Proposed method

3.1 Preliminaries

3D Generative Adversarial Networks 3D GANs [16, 11, 12] is an adversarial learning framework
between the 3D generator g(z, θ) and 2D discriminator d(I). Specifically, for a given randomly
sampled latent code z ∈ Rdz ∼ pz and camera pose θ ∈ Rdθ ∼ pθ, the generator g(z, θ) synthesizes
a 3D scene and renders it to a 2D fake image If ∈ RH×W×3 based on the given camera pose.
Then, the discriminator learns to discriminate the real image Ir ∈ RH×W×3 and the fake image
If , while the generator learns to deceive the discriminator. In addition, the discriminator often uses
the camera pose to encourage d to be aware of 3D information by making d estimate the camera
parameter [13, 36] or performing conditional adversarial loss [12].

3D Gaussian splatting 3D Gaussian representation for 3D modeling is recently introduced by 3D
Gaussian Splatting [22]. It represents a scene as a composition of anisotropic 3D Gaussians estimated
by multi-view images and their corresponding camera poses. This Gaussian representation contains
parameters such as a position µ ∈ R3, a scale s ∈ R3, a quaternion q ∈ R4, an opacity α ∈ R1, and
a color c ∈ R3. In world space, Gaussian is defined as follows:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), Σ = RSSTRT , (1)

where R ∈ R4×4 and S ∈ R4×4 are a rotation matrix and a scaling matrix obtained from a quaternion
q and scale s, and x is a world coordinate.

3

𝜇𝑙 = 𝜇𝑙−1 + 𝑅𝑙−1𝑆𝑙−1 ො𝜇𝑙

𝑠𝑙 = 𝑠𝑙−1 + Ƹ𝑠𝑙 + Δ𝑠

𝑞𝑙 = 𝑞𝑙−1 + ො𝑞𝑙

𝑐𝑙 = 𝑐𝑙−1 + Ƹ𝑐𝑙

𝛼𝑙 = 𝛼𝑙−1 + ො𝛼𝑙

World coordinate system

Finer-level Gaussian 𝐺𝑙

Coordinate system of coarser-level Gaussian 𝐺𝑙−1

Parameterization of
hierarchical Gaussians

𝐺𝑙−1

= (𝜇𝑙−1, 𝑠𝑙−1, 𝑞𝑙−1, 𝑐𝑙−1, 𝛼𝑙−1)

𝐺𝑙 =
(𝜇𝑙 , 𝑠𝑙 , 𝑞𝑙 , 𝑐𝑙 , 𝛼𝑙)

Coarser-level Gaussian 𝐺𝑙−1

densify(𝐺𝑙−1, ෠𝐺𝑙)

෠𝐺𝑙 = (ො𝜇𝑙 , Ƹ𝑠𝑙 , ො𝑞𝑙 , Ƹ𝑐𝑙 , ො𝛼𝑙)

(a) Illustration of hierarchical representation of Gaussians

Level = 3Level = 0 Level = 1 Level = 2

Level = 4 Level = 5 Full

(b) Example of generated Gaussians of
various hierarchy levels

Figure 2: Illustration and examples of hierarchical Gaussian representation. (a) We parameterize the
finer-level Gaussians by the parameters of coarser-level counterparts for regularizing the scale and
position of synthesized Gaussians. (b) Example of synthesized Gaussians across multiple hierarchy
levels. Gaussians represent coarse or fine details according to its hierarchy level.

To render the image, the color of each pixel C is determined by blending the contributions of all N
3D Gaussians that overlap with the pixel as follows:

C =

N∑
i=1

ciα
′
i

i−1∏
j=1

(1− α′
j), (2)

where ci is the color of each Gaussian, and α′ is blending weight of 2D projection of Gaussian
multiplied by a per-point opacity α. The order of Gaussians is sorted by their depth.

3.2 Hierarchical 3D Gaussian representation

Our focus is on utilizing Gaussians as the 3D representation of the generator in 3D GANs. We
begin with a simple generator that takes a randomly sampled latent code z as input and outputs N
Gaussians, without any restrictions. However, in this scenario, we observe that this naïve application
suffers from training instability and fails to properly manage the position µ and scale s, as shown in
examples in Fig. 8. Therefore, we concentrate on guiding the position and scales that the generator
synthesizes.

To this end, we propose a hierarchical structure of Gaussians to effectively regularize the position and
scale of Gaussians, as illustrated in Fig. 2. Firstly, we define the hierarchy level l ∈ {0, ..., L− 1},
from coarse to fine levels, where each level contains a set of Gaussian parameters. In detail, we
establish a dependency between the Gaussian parameters of adjacent levels. For simplification, we
explain the dependency between two hierarchically adjacent Gaussians, Gl and Gl−1, where Gl

originates fromGl−1. We aim to model the 3D representation in a coarse-to-fine manner, by assigning
coarser- and finer-level Gaussians Gl−1 and Gl to be responsible for coarser and finer details of the
3D scene, respectively.

For the position parameter, we impose a locality constraint that bounds the position µl of the finer-
level GaussianGl with its correspondingGl−1. Specifically, we introduce the local position parameter
µ̂l defined in the local coordinate system, which is centered, rotated, and scaled by the position µl−1

and scale sl−1 and quaternion ql−1 of the coarser-level Gaussian Gl−1. Then, the position µl in
world space is formulated by transforming the local position µ̂l as follows:

µl = µl−1 +Rl−1Sl−1µ̂l, (3)

where Rl−1 and Sl−1 are a rotation and scaling matrix obtained from ql−1 and sl−1. This operation
ensures the position of Gaussians at finer levels depends on coarser-level Gaussians, while residing
near the location of coarser-level counterparts.

For the scale parameter, we enforce the scale parameter to monotonically decrease to a certain degree
as its hierarchy level increases. In detail, we define the scale of the finer-level sl using the relative
scale difference ŝl against the coarser-level scale sl−1. Additionally, we restrict this scale difference
ŝl to always be a vector of negative values. Furthermore, we introduce the constant ∆s which further
lowers the scale of the finer-level. This process is defined as follows:

sl = sl−1 + ŝl +∆s, where ŝl,∆s < 0. (4)

4

…

Anchors 𝐴 Gaussians 𝐺

C
o

n
ca

t.

Generated Gaussians
(N + 𝑟𝑁 + ⋯ + 𝑟𝐿−1𝑁)

FC

FC

𝑧 ∼ 𝑁(0, 𝐼)

Style 𝑤

Norm.

Latent code

toGaus0

toGaus1

toGaus2

block2

block1

block0

densify

(eqn. (3, 4, 5))

[෠𝐺0, መ𝐴0]

[෠𝐺1, መ𝐴1]

[෠𝐺2, መ𝐴2]

Gaussians

𝒍 = 0

𝒍 = 1

𝒍 = 2

Const

Generator architecture Hierarchical 3D Gaussians

𝑥0

𝑥1

𝑥2

(a) Illustration of generator architecture with hierarchical 3D Gaussians

+
+

Attention

MLP

AdaIN

Scale (0-init)

AdaIN

Scale (0-init)

Up.
Style

𝑤

(b) block architecture

Figure 3: The architecture of the generator and its block. (a) Generator synthesizes the multiple-level
of anchors and Gaussians, which contains the residual parameters Âl and Ĝl. Anchors are utilized to
regularize the finer-level Gaussians, while Gaussians are used for actual rendering. After generating
these parameters, we combine them with anchors from previous level Al−1 by densify operation, as
defined in eqn. 3, 4, 5 (green arrow). (b) The generator consists of stacks of blocks, each of which is
a sequence of attention and MLP layers. The latent code z is conditioned on the generator through
AdaIN and layerscale, where the modulation and scaling parameters are derived from style code w.

For the other parameters, we additionally define the residual Gaussian parameters α̂l, q̂l, ĉl at level l,
which are added to the Gaussian parameters of the previous level as follows:

αl = αl−1 + α̂l, ql = ql−1 + q̂l, cl = cl−1 + ĉl. (5)

We call this hierarchical relationship between Gl−1 and Gaussians with residual parameters
{µ̂l, ŝl, α̂l, q̂l, ĉl} ∈ Ĝl as densify(Gl−1, Ĝl), and it enables the generator to model the 3D space
in a coarse-to-fine manner, where the fine-level Gaussians depict the detailed part of the coarse-level
counterparts. Importantly, it stabilizes the training of GANs by significantly reducing the possible
positions of Gaussians and encourages the generator to use various scales of Gaussians, thereby
boosting the generation capability to model both coarse and fine details.

3.3 GSGAN; the generator architecture with hierarchical 3D Gaussians

In this section, we propose a generator architecture for leveraging the aforementioned hierarchical
structure of Gaussians (Fig. 3). Basically, we adopt a transformer-based architecture, composed of
stacks of attention and MLP layers, which is a generally used architecture to handle unstructured 3D
point cloud data [37–39].

First of all, we define a generator g(z, θ) as a sequence of generator blocks, where blockl denotes the
generator block at a specific level l. At the coarsest level l = 0, block0 takes input as N learnable
positions const ∈ RN×3 and latent code z, where N is the number initial Gaussians, then outputs
the high-dimensional features x0. Then, for a feature of ith Gaussian x0i , we process the feature x0i
by the output layer toGaus0 to obtain a Gaussian parameter {µ0

i , s
0
i , q

0
i , α

0
i , c

0
i } ∈ G0

i . For arbitrary
level l, blockl takes input as feature xl−1

i from the previous block and latent code z, then outputs
the feature xlj . Importantly, the output block toGausl does not directly synthesize the Gaussian
parameters Gl

j . Instead, the intermediate output Ĝl
j contains the local position µ̂l

j and relative scale
difference ŝlj , as well as the other residual parameters ĉlj , α̂

l
j , q̂

l
j . This intermediate output Ĝl

j is
combined with the corresponding Gaussians Gl−1

i from the previous level to finally synthesize the
Gaussian Gl

j at level l, following the operations in Sec. 3.2. This process, which establishes the
hierarchical dependency between Gaussians of adjacent level Gl−1

i and Gl
j , is defined as follows:

xlj = blockl(xl−1
i , z), Ĝl

j = toGausl(xlj), Gl
j = densify(Gl−1

i , Ĝl
j), (6)

where densify operation denotes the combining process of parameters in hierarchically adjacent
Gl−1

i and Ĝl
j mentioned in eqn. 3, 4, 5.

5

As the fine-level Gaussians have smaller scales compared to the coarse-level ones, the number of
Gaussians should be increased as the hierarchy increases to successfully synthesize the fine details.
Thus, we expand the number of Gaussian parameters Gl

i to have a total of rlN vectors for each
parameter, where r is an upsampling ratio. In other words, we define the GaussianGl

j to be dependent
on Gl−1

i , where j = ri+ k and k ∈ {0, 1, ..., r − 1}.

After synthesizing the Gaussian parameters of every level, we use all of them for generating the
image (i.e. total (N + rN + ...+ rL−1N) Gaussians are used for rendering). For rendering, we use
a tile-based rasterizer following 3D-GS [22].

Anchor Gaussians to decompose Gaussians for regularization and rendering In the aforemen-
tioned architecture, Gaussians are used not only to represent a 3D scene but also to regularize their
coarser-level Gaussian counterparts. This means Gaussians must be trained to precisely guide the
parameters of finer-level Gaussians while simultaneously depicting the sharp details in real-world
images. However, achieving both of these objectives can be challenging. For instance, we observe
that the scale of Gaussians can become nearly zero along a specific axis, leading to excessively strong
regularization on the position of finer-level Gaussians. To handle this issue, we introduce an auxiliary
set of Gaussians that only contributes to regularization, instead of actual rendering.

Specifically, we introduce an anchor Gaussian Al for a specific level l, which has identical parameter-
ization to Gl. However, this type of Gaussian is only used for regularization by deploying it as the
input of densify, especially for the coarser-level Gaussian input. Therefore, an anchor Gaussian
Al−1

i only learns to guide the parameters of their finer-level counterpart Gl
j , so its usage relieves the

effects of strong regularization caused by zero variance. To generate it, we simply make toGausl
synthesize two sets of Gaussians, Ĝl

j and Âl
j , for a given feature xlj . This process is achieved by

re-defining the eqn. 6 as follows:

[Ĝl
j , Â

l
j] = toGausl(xlj), Gl

j = densify(Al−1
i , Ĝl

j), Al
j = densify(Al−1

i , Âl
j). (7)

As the Gaussians of coarsest level l = 0 does not have their coarser-level counterparts, we define
A0

i = Â0
i and G0

i = densify(A0
i , Ĝ

0
i).

Architectural details Following the conditioning convention of previous GANs [35, 40], we utilize
the mapping network to modify the latent code z into the style code w. Then, the style code affects
the synthesis process by AdaIN [41]. As noted, the generator block is a stack of attention and
MLP layers, then we replace the layer norm in attention and MLP by AdaIN, following generally
used approach for transformer-based GANs [42, 43]. For blocks of coarser levels, we utilize the
general self-attention without positional encoding as the attention mechanism, whereas we use local
attention [44] for finer levels, as the interaction between rl−1N points is computationally demanding.
For expanding the features in generator blocks after the coarsest level, we simply use the subpixel
operation [45] with skip connection and repeat Gaussians Gl in r times.

One important architectural design is the usage of layerscale [46], which is a learnable vector that
adjusts the effects of the residual block by multiplying it by the output of the residual block. Typically,
it is initialized by a zero-valued vector, removing the effects of layers in the early stage of training.
We observe it is essential for stabilizing the position of Gaussians in early iterations. In addition, we
use the adaptive version of layerscale [47] conditioned by latent code z on every attention and MLP
layer in the generator.

Also, we use the camera direction as a condition for the color layer in toGaus to model the view-
dependent characteristics and employ the background generator, which resembles the generator
architecture but with reduced capacity and results in the Gaussians located within a sphere of a radius
of 3, while the foreground resides in the [-1, 1] cube. For further details, we elaborate on them in the
Appendix A.1.

3.4 Training objectives

Similar to previous 3D GANs [12], we adopt the non-saturating adversarial loss [48] with R1
regularization [49]. Formally, these objective functions are defined as follows:

Ladv = Ez∼Pz,θ∼Pθ
[f(d(g(z, θ)))] + EIr∼PIr

[f(−d(Ir)) + λ||∇d(Ir)||2], (8)

6

Table 1: Quantitative comparison on FFHQ and AFHQ-Cat datasets in terms of FID-50K-full and
rendering time. We mainly compare ours with the 3D consistent models, except EG3D utilizing the
2D upsampler. FID scores are taken from previous work [25]. Rendering time is measured on a
single RTX A6000 GPU. ∗The rendering time of EG3D at 512 resolution consists of the time for
volume rendering at 128 resolution and 2D upsampling operations.

3D FFHQ AFHQ-Cat Rendering time (ms)
Methods consistency 256×256 512×512 256×256 512×512 256×256 512×512

EG3D [12] 4.80 4.70 3.41 2.72 - 15.5∗

GRAM [13] ✓ 13.8 - 13.4 - - -
GMPI [54] ✓ 11.4 8.29 - 7.67 - -

EpiGRAF [15] ✓ 9.71 9.92 6.93 - - -
Voxgraf [24] ✓ 9.60 - 9.60 - - -

GRAM-HD [55] ✓ 10.4 - - 7.67 173.0 197.9
Mimic3D [25] ✓ 5.14 5.37 4.14 4.29 106.8 402.1

GSGAN (Ours) ✓ 6.59 5.60 3.43 3.79 2.7 3.0

where f(t) = −log(1 + exp(−t)) is a softplus function and λ is R1 regularization strength.

We additionally guide the 3D information to the discriminator and generator by introducing contrastive
learning between pose embedding obtained from the images and camera parameters. Specifically, the
discriminator has a pose branch dp that estimates the pose embedding pI from an input image. Then,
we introduce a pose encoder that consists of MLP layers and encodes the camera parameter θ into
the pose embedding pθ. Similar to previous work [36], we utilize the contrastive objective which
enhances similarity between corresponding pI and pθ. Formally, this objective is defined as follows:

Lpose = −log(
exp(sim(pI , p

+
θ)/τ)∑B

b=1(exp(sim(pI , pbθ)/τ))
), (9)

where sim(·, ·) is a cosine similarity andB is a batch size and p+θ is a positive sample corresponding to
a pose embedding pI from the image, and τ is a temperature scaling parameter. For the discriminator,
we calculate Lpose using real data, while using fake data for training the generator.

Furthermore, we introduce two losses to regularize the position of anchor Gaussians in the coarsest
level, µ0

A. We first regularize the averaged position of µ0
A to be zero for encouraging the center of

Gaussians residing near the origin of the world space. Secondly, we reduce the distance between the
positions of the K nearest anchor Gaussians to prevent anchor Gaussians from falling apart from the
others. These two regularization losses are defined as follows:

Lcenter =
1

N
||

N∑
j=1

µ0
A,j ||2, Lknn =

1

NK

N∑
j=1

||
K∑

k=1

(µ0
A,j − KNN(µ0

A,j , k))||2, (10)

where KNN(µ0
A,j , k) is the position of kth nearest neighbor of jth anchor Gaussian of µ0

A.

To sum up, the final objective function L is as follows:

L = Ladv + λposeLpose + λcenterLcenter + λknnLknn, (11)

where λpose, λcenter, and λknn are strengths of the corresponding objective function.

4 Experiments

4.1 Experimental settings

Following the experimental settings of previous 3D GANs [12, 25], we use FFHQ [35] and AFHQ-
Cat [50] datasets with 256×256 and 512×512 resolutions. For example, we augment the datasets
with the horizontal flip and additionally use adaptive data augmentation [51] for AFHQ-Cat dataset,
which has a limited size. Camera pose labels are obtained from the official repository of EG3D [12],
which are predicted by off-the-shelf pose estimators [52, 53]. We train the model from scratch on
each dataset. For further implementation details, please refer to Appendix A.1.

7

Figure 4: Qualitative results of the proposed method with truncation psi (ψ = 0.7).

GRAM-HD Mimic3D Ours

F
F

H
Q

A
F

H
Q

Figure 5: Qualitative comparison with 3D consistent methods with truncation psi (ψ = 0.7).

4.2 Experimental results

Quantitative results We mainly compare the proposed method with previous 3D consistent GANs,
in terms of FID. These methods have strict 3D consistency, which directly renders the high-resolution
images from 3D representation without any 2D upsampling operations. As reported in Tab. 1,
we validate that the proposed method surpasses most of the previous methods and also achieves
comparable generation capability compared to the state-of-the-art, Mimic3D. Especially for AFHQ-
Cat dataset, we achieve a much lower FID, even comparable to the non-3D consistent baseline,
EG3D. Next, we evaluate the rendering speed enhancement of the proposed method compared to
baseline methods. To compute it, we first synthesize a 3D representation of each model and measure
the processing time of rendering. As reported, ours shows significantly faster speeds compared to
the baseline methods, achieving more than 100 times faster rendering than Mimic3D in 512×512
resolution. Moreover, it is even faster than non-3D consistent baseline EG3D, which is the model
that exploits 2D upsampling operation for reducing the efficient rendering. In addition, one important
point is that rendering time is almost identical regardless of the image resolution, suggesting that the
proposed method can be more effective at higher resolutions. Additionally, the training time of the
proposed methods is 28 RTX A6000 days, while the state-of-the-art Mimic3D requires 64 A100 days
on the FFHQ-512 dataset. This notable gap in training cost implies that ours can achieve comparable
generation capability efficiently in both rendering and training speed.

Qualitative results We present examples of generated images from the proposed method and
the most recent 3D consistent GANs [25, 55], in Fig. 5. In both datasets, we observe that the
proposed method successfully synthesizes the multi-view consistent images, validating its capability
for synthesizing the realistic 3D scene. Also, we validate ours can generate both coarse and fine
details such as coarse details of skin in human facial images and fine details of fur in cat images.

Level-by-level visualization To further understand how the synthesized Gaussians work, we
visualize the Gaussians from an individual level. As depicted in Fig. 6, we observe that Gaussians
capture the image components from overall structure to fine details as the level increases.

8

𝑙 = 0 𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5 Composited.

Figure 6: Level-by-level visualization of synthesized Gaussians.

Table 2: Comparison of 3D consistency. We compare
ours with the most recent 3D consistent GANs [55,
25]. Faces are segmented by off-the-shelf model [56] to
remove effects of background.

FFHQ-256 FFHQ-512
PSNR SSIM PSNR SSIM

GRAM-HD 34.45 0.9648 32.15 0.9244
Mimic3D 40.36 0.9927 35.95 0.9822
GSGAN 41.69 0.9883 37.85 0.9695

0 5 10 15 20 25
Ticks (4K images per tick)

25

20

15

10

5

0

Fa
ke

 lo
gi

t

No constraints
Clip scale
Ours

Figure 7: Fake logits of ablated models
at the early stage of training.

Comparison with 3D consistency As a 3D generative model, it is important to maintain 3D
consistency across different views. To validate the 3D consistency of the synthesized 3D model, we
measure how well the generated 3D scene is reconstructed by a surface estimation model, following
previous works [25, 55]. Specifically, we fit the surface estimation model to a generated multi-view
image and compute the reconstruction error of the multi-view images used for training. For surface
estimation, we use Neus2 [57], applying a facial segmentation mask estimated from an off-the-shelf
network [56] to eliminate the effects of the background. Furthermore, we utilize only the foreground
generator for our method. As shown in Tab. 2, the proposed method significantly outperforms
GRAM-HD while achieving performance comparable to Mimic3D. This experiment suggests that
our approach generates 3D-consistent results by leveraging the explicit 3D representation provided
by 3D Gaussians.

Training stability at the early stage of training We conduct an experiment to assess the effect of
the proposed method on training stability, particularly at the early stage of training, by observing the
fake logit of the discriminator. As shown in Fig. 7, we observe that the model without any constraints
exhibits rapid divergence, accompanied by a markedly low fake logit, indicating that the discriminator
already distinguishes between real and fake data perfectly. When applying a minimal constraint
that limits the scale to its predefined maximum, the model does not diverge but still suffers from
instability, as evidenced by a large standard deviation of the logit. In contrast, ours demonstrates
stable training compared to other models. Note that, the standard deviation is visualized by 1-σ.

Ablation study We perform an ablation study on the proposed components, particularly focusing
on the proposed hierarchical architecture. When ablating the regularizations, we keep the residual
representation of other parameters, (q, α, c). In the absence of any constraints, the model exhibited an
FID score exceeding 300, signifying a failure to converge, in Tab. 3. With a minimal constraint that
clips scales, the model does not diverge but significantly suffers from its low generation capability.
As we gradually attach the proposed components, we observe enhancements in FID, showing the
effects of the regularization of position and scale and the introduction of anchor Gaussians.

In Fig. 8, we provide visualizations of synthesized Gaussian positions. Initially, a simple clipping
of the scale allow the model to synthesize images, but it leads to visual artifacts due to elongated
Gaussians with large scales. Additionally, many Gaussians remain outside the scene, likely due
to their tendency not to overlap, particularly when large-scale Gaussians exist. After applying
position regularization, Gaussians become more densely located, although visual artifacts and unused

9

Table 3: Ablation study on FFHQ-256.
“Clipping scale" means the model with
the maximum limit of scale.

FID

No constraints 300∼
+ Clipping scale 95.97
+ Position reg. (eqn. 3) 17.65
+ Scale reg. (eqn. 4) 13.80
+ Background generator 12.61
+ Anchor Gaussian 6.59

+ Anchor Gaussian
(Our full model)

+ Scale reg.

+ Clipping scale + Position reg.

Figure 8: Visual comparison with ablated models.
Points are visualized by the position of Gaussians.

Gaussians persist. Upon introducing scale regularization, the synthesized images no longer exhibit
such artifacts, but the model struggles to capture precise geometries, as evidenced by the point cloud
visualizations. Finally, the model incorporating anchor Gaussians successfully synthesizes realistic
images while accurately estimating Gaussian positions. Note that, we clip the Gaussian positions to
exist within the range of [-1, 1] in the cube.

Additional visualizations We additionally provide 1) additional generated examples, 2) examples
with densely changed camera positions, 3) latent interpolation and w+ inversion, 4) visualization of
anchor Gaussians, and 5) effects of background generator in Appendix A, and code implementation
with additional videos in supplementary zip file, so please refer to them.

5 Broader Impact and Limitations

Broader Impact The proposed method follows the negative social impact of previous 3D generative
models. For example, it may be used for synthesizing fake news or deepfake. Furthermore, since
we boost the rendering speed of 3D GANs, ×100 faster than previous methods, it can encourage the
generation of them by reducing computation cost for rendering the image.

Limitations Different from the 3D-GS, which adaptively removes and introduces Gaussians by
densification, the proposed method synthesizes a fixed number of Gaussians. This lack of adaptivity
in the number of Gaussians remains a limitation, as the number of Gaussians can differ depending on
the scene it makes. Also, the scale in hierarchical Gaussian representation is somewhat dependent on
the hyperparameter such as ∆s. These factors require adjustment of hyperparameters and can affect
the performance of the generator.

6 Conclusion

In this paper, we exploit the 3D Gaussian representation in the domain of 3D GANs, leveraging its fast
rendering speed with explicit 3D representation. To relieve the absence of proper initialization and
densification process of 3D-GS, we propose hierarchical Gaussian representation which effectively
regularizes the position and scale of generated Gaussians. We validate the proposed technique to
stabilize the training of the generator with 3D Gaussians and encourage the model to learn the
precise geometry of 3D scene, achieving almost ×100 faster rendering speed with a comparable 3D
generation capability.

7 Acknowledgements

This work was supported in part by MSIT&KNPA/KIPoT (Police Lab 2.0, No. 210121M06),
MSIT/IITP (No. 2022-0-00680, 2020-0-01821, 2019-0-00421, RS-2024-00459618, RS-2024-
00360227, RS-2024-00437102, RS-2024-00437633), and MSIT/NRF (No. RS-2024-00357729).

10

References
[1] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided object

generation with dream fields. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 867–876, 2022.

[2] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv preprint arXiv:2209.14988, 2022.

[3] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

[4] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer:
High-fidelity and diverse text-to-3d generation with variational score distillation. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[5] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,
Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 300–309,
2023.

[6] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian
chaining: Lifting pretrained 2d diffusion models for 3d generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12619–12629, 2023.

[7] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and appearance
for high-quality text-to-3d content creation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 22246–22256, 2023.

[8] Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer, Nataniel Ruiz, Ben Mildenhall, Shiran Zada, Kfir
Aberman, Michael Rubinstein, Jonathan Barron, et al. Dreambooth3d: Subject-driven text-to-3d generation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2349–2359, 2023.

[9] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen. Make-it-3d:
High-fidelity 3d creation from a single image with diffusion prior. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 22819–22829, 2023.

[10] Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. Realfusion: 360deg reconstruc-
tion of any object from a single image. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8446–8455, 2023.

[11] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic implicit
generative adversarial networks for 3d-aware image synthesis. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 5799–5809, 2021.

[12] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16123–16133, 2022.

[13] Yu Deng, Jiaolong Yang, Jianfeng Xiang, and Xin Tong. Gram: Generative radiance manifolds for
3d-aware image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10673–10683, 2022.

[14] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-based 3d-aware generator
for high-resolution image synthesis. arXiv preprint arXiv:2110.08985, 2021.

[15] Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, and Peter Wonka. Epigraf: Rethinking training of 3d
gans. Advances in Neural Information Processing Systems, 35:24487–24501, 2022.

[16] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. Hologan: Unsuper-
vised learning of 3d representations from natural images. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7588–7597, 2019.

[17] James T Kajiya and Brian P Von Herzen. Ray tracing volume densities. ACM SIGGRAPH computer
graphics, 18(3):165–174, 1984.

[18] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65
(1):99–106, 2021.

11

[19] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P
Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 5855–5864, 2021.

[20] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5470–5479, 2022.

[21] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–15, 2022.

[22] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14, 2023.

[23] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in 3d. In
ACM siggraph 2006 papers, pages 835–846. 2006.

[24] Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao, and Andreas Geiger. Voxgraf: Fast 3d-aware
image synthesis with sparse voxel grids. Advances in Neural Information Processing Systems, 35:33999–
34011, 2022.

[25] Xingyu Chen, Yu Deng, and Baoyuan Wang. Mimic3d: Thriving 3d-aware gans via 3d-to-2d imitation. In
2023 IEEE/CVF International Conference on Computer Vision (ICCV), pages 2338–2348. IEEE Computer
Society, 2023.

[26] Alex Trevithick, Matthew Chan, Towaki Takikawa, Umar Iqbal, Shalini De Mello, Manmohan Chandraker,
Ravi Ramamoorthi, and Koki Nagano. What you see is what you gan: Rendering every pixel for high-
fidelity geometry in 3d gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22765–22775, 2024.

[27] Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Simon Giebenhain, and Matthias
Nießner. Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. arXiv preprint
arXiv:2312.02069, 2023.

[28] Zhe Li, Zerong Zheng, Lizhen Wang, and Yebin Liu. Animatable gaussians: Learning pose-dependent
gaussian maps for high-fidelity human avatar modeling. arXiv preprint arXiv:2311.16096, 2023.

[29] Yuelang Xu, Benwang Chen, Zhe Li, Hongwen Zhang, Lizhen Wang, Zerong Zheng, and Yebin Liu. Gaus-
sian head avatar: Ultra high-fidelity head avatar via dynamic gaussians. arXiv preprint arXiv:2312.03029,
2023.

[30] Zhenglin Zhou, Fan Ma, Hehe Fan, and Yi Yang. Headstudio: Text to animatable head avatars with 3d
gaussian splatting. arXiv preprint arXiv:2402.06149, 2024.

[31] Rameen Abdal, Wang Yifan, Zifan Shi, Yinghao Xu, Ryan Po, Zhengfei Kuang, Qifeng Chen, Dit-Yan
Yeung, and Gordon Wetzstein. Gaussian shell maps for efficient 3d human generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9441–9451, 2024.

[32] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl: A
skinned multi-person linear model. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pages
851–866. 2023.

[33] Tobias Kirschstein, Simon Giebenhain, Jiapeng Tang, Markos Georgopoulos, and Matthias Nießner.
Gghead: Fast and generalizable 3d gaussian heads. arXiv preprint arXiv:2406.09377, 2024.

[34] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier Romero. Learning a model of facial
shape and expression from 4D scans. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 36(6):
194:1–194:17, 2017. URL https://doi.org/10.1145/3130800.3130813.

[35] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
4401–4410, 2019.

[36] Kyungmin Jo, Wonjoon Jin, Jaegul Choo, Hyunjoon Lee, and Sunghyun Cho. 3d-aware generative model
for improved side-view image synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 22862–22872, 2023.

[37] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 16259–16268, 2021.

12

https://doi.org/10.1145/3130800.3130813

[38] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu. Pct:
Point cloud transformer. Computational Visual Media, 7:187–199, 2021.

[39] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system for
generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022.

[40] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8110–8119, 2020.

[41] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normalization.
In Proceedings of the IEEE international conference on computer vision, pages 1501–1510, 2017.

[42] Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, and Ce Liu. Vitgan: Training gans
with vision transformers. arXiv preprint arXiv:2107.04589, 2021.

[43] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang Wen, Yong Wang, and Baining
Guo. Styleswin: Transformer-based gan for high-resolution image generation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 11304–11314, 2022.

[44] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):1–12, 2019.

[45] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1874–1883, 2016.

[46] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper
with image transformers. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 32–42, 2021.

[47] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[48] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

[49] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually
converge? In International conference on machine learning, pages 3481–3490. PMLR, 2018.

[50] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 8188–8197, 2020.

[51] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in neural information processing systems, 33:
12104–12114, 2020.

[52] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia, and Xin Tong. Accurate 3d face reconstruc-
tion with weakly-supervised learning: From single image to image set. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 0–0, 2019.

[53] T. B. Lee. Cat hipsterizer,. https://github.com/kairess/cat_hipsterizer, 2018.

[54] Xiaoming Zhao, Fangchang Ma, David Güera, Zhile Ren, Alexander G Schwing, and Alex Colburn.
Generative multiplane images: Making a 2d gan 3d-aware. In European Conference on Computer Vision,
pages 18–35. Springer, 2022.

[55] Jianfeng Xiang, Jiaolong Yang, Yu Deng, and Xin Tong. Gram-hd: 3d-consistent image generation at high
resolution with generative radiance manifolds. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2195–2205, 2023.

[56] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang. Bisenet: Bilateral
segmentation network for real-time semantic segmentation. In Proceedings of the European conference on
computer vision (ECCV), pages 325–341, 2018.

13

https://github.com/kairess/cat_hipsterizer

[57] Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and Lingjie Liu. Neus2:
Fast learning of neural implicit surfaces for multi-view reconstruction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3295–3306, 2023.

[58] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[59] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the stylegan
latent space? In Proceedings of the IEEE/CVF international conference on computer vision, pages
4432–4441, 2019.

[60] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for latent-based
editing of real images. ACM Transactions on graphics (TOG), 42(1):1–13, 2022.

14

A Appendix

A.1 Implementation details

First of all, please refer to the attached code in supplementary for a more detailed implementation
of the proposed method. For the coefficients of objective functions, we use λ = 1, λpose = 1, and
λknn = 10. We train the model until the discriminator sees 10-15M images. Differently, we use
λcenter = 1, 10 each for FFHQ and AFHQ-Cat datasets. Following prior works [12, 25], we also
generator pose conditioning [12] for modeling pose-specific attributes. Other hyperparameters not
mentioned are identical to EG3D [12].

For the architectural details, we use an upsampling ratio r = 4 and the initial number of Gaussians
N = 256. For the number of hierarchical levels, we adopt L = 5 for the dataset with 256×256
resolution, and L = 6 for 512×512 resolution. We use the stack of 6 blocks at the lowest level and
1 block for the other levels, that is, 87K and 349K Gaussians are used for 256 and 512 resolutions.
The number of channels is [512, 512, 256, 128, 128, 128] for the block of levels [0, 1, 2, 3, 4,
5], respectively. We use equalized learning rate [58] for every layer. Also, we only apply AdaIN
and adaptive layerscale on the layers lower than level 3, as we observe the modulation on higher
levels does not affect the rendering results much. For discriminator architecture, we use StyleGAN2
discriminator following EG3D [12], but with an additional pose embedding layer composed of the
MLP layer.

For the representation of Gaussian parameters, we follow the 3D-GS [22] that uses the exponential
activation function for the scale parameters and normalizes the quaternion to make it valid. As these
operations are performed in the rendering process, we omit them for simplicity.

Attention layer We deploy the attention layer for modeling the interaction between the Gaussians.
For the lowest levels l = 0, we utilize the general self-attention. Since the self-attention on a
large number of Gaussians requires too much computation cost, we use local attention similar to
EdgeConv [44], which computes attention scores against KNN points (k = 16), for the levels l > 0.
As calculating the KNN points also becomes demanding where the number of points to be enlarged,
we model the points to interact with the points from the identical parent point, for levels l > 3, instead
of computing the actual KNN points.

Output layer (toGaus) toGaus layer is basically a set of linear layers that synthesize the Gaussian
parameter. That is, it consists of 5 linear layers which are parallelly computed to output µ̂, ŝ, α̂, q̂, ĉ,
respectively. They have an input as the intermediate feature xl, and an additional camera parameter
θ only for the color ĉ. In addition, the layer for the relative position µ̂ has a tanh function as the
activation to restrict the range of output position, and the layer for the scale difference ŝ has a softplus
function multiplied by -1 as the activation to make it have negative values. Thus, toGaus layer at a
specific level is defined as follows:

pl = Linp(xl), µ̂l = tanh(Linµ̂(xl)), ŝl = −softplus(Linŝ(xl)), ĉl = Linĉ(xl, θ), (12)

where p ∈ {α̂, q̂} and Lin(·) is a linear layer for the Gaussian parameter. Also, we initialize the bias
of linear layers to set the quaternion to be an identity rotation matrix and the opacity to be 0.1 and the
scale to be e−

1√
N .

The constant ∆s reducing the scale along with hierarchy is adjusted by the resolution of the given
data as below:

∆s = − log(
√
H ×W/(L×

√
N)), (13)

where H,W are the height and width of the image, L is the total level of hierarchy, and N is the
initial number of Gaussians at level l = 0.

Background generator The architecture of the background generator is similar to the proposed
generator, but the architecture of block is different. In detail, we do not utilize the attention and
MLP layers, instead using simple linear layers with demod- and modulation [35] to reduce the
computational cost. Also, the position parameters synthesized by the background generator are
normalized to make the generated Gaussians located on the sphere. We set the radius of the sphere as
3.

15

Figure 9: Generated examples on FFHQ-512 and AFHQ-Cat-512

For the hyperparameters, we set the number of initial Gaussians N = 2000, and the number of
hierarchy L = 2 with upsampling factor r = 4 and the channel of every layer as 128. Thus, the
background is composed of 10,000 Gaussians in total.

Training trick for FFHQ dataset We observe that training on the FFHQ dataset lacks the capability
to accurately model the precise structure of 3D scenes, particularly for structures viewed from
different vertical angles. To address this issue, we augment the pose distribution during training.
Specifically, with a probability of 0.5, we sample poses from a pre-defined distribution characterized
by the standard deviation of yaw and pitch (σyaw, σpitch) of the FFHQ dataset. We define the yaw
distribution as N(0, σyaw) and the pitch distribution as U(−3σpitch, 3σpitch), where U represents a
uniform distribution. This oversampling strategy ensures better coverage of images with varied
vertical perspectives.

A.2 Additional examples

We present additional examples generated by our method for the FFHQ and AFHQ-Cat datasets in
Fig. 9, 10. Furthermore, we provide multi-view images synthesized from densely sampled camera
positions in Fig. 11. Specifically, for each 3D scene, we sample yaw angles in the range of [-0.4, 0.4]
radians and pitch angles in the range of [-0.4, 0.1] radians. These multi-view images demonstrate the
3D consistency of our method in a qualitative manner. For every visualization, we use truncation psi
ψ = 0.7 and fix a camera condition as frontal view.

A.3 Latent interpolation

One of the notable characteristics of GANs is a semantic latent space. To validate that the proposed
method also exhibits this characteristic, we synthesize images using linearly interpolated latent codes.
As shown in Fig. 12, the interpolated images gradually transition from the given source to the target
image, demonstrating smooth and coherent transformations. This indicates that our method maintains
a meaningful and semantically rich latent space.

16

FFHQ-256 AFHQ-Cat-256

Figure 10: Generated examples on FFHQ-256 and AFHQ-Cat-256

Figure 11: Examples of multi-view generation. We sample the camera pose of [-0.4, 0.4] radian for a
yaw, and [-0.4, +0.1] for a pitch.

17

Figure 12: Linear interpolation between latent codes (w space)

A.4 w+ Inversion

We perform the w+ inversion [59] from a given single view in-the-wild image and predict novel view
synthesis using the estimated 3D scene. As shown in Fig. 13, the proposed method successfully
inverts the in-the-wild image and synthesizes novel views from it, demonstrating the method’s ability
to generalize and manipulate real-world images. We expect that recent inversion techniques, such as
pivotal tuning [60], could further enhance the quality of the inversion.

A.5 Visualization of anchor Gaussians

We visualize the Gaussians and anchor Gaussians level-by-level in Fig. 14. Note that, we manually
set the opacity of the anchors as sigmoid(1), as they do not have actual opacity for rendering. As
visualized, we observe that the anchors typically have a larger scale compared to the Gaussians. We
also verify it by calculating statistics of the scale of anchors and Gaussians. In detail, the average
scale of anchors is e−5.08 across 100 randomly sampled scenes, while the average scale of Gaussians
is e−7.12. We hypothesize that the Gaussians adjust their scales to represent sharp details in real-world
images, whereas the anchor Gaussians are mainly used to constrain and regularize the parameters of
the coarser-level Gaussians.

A.6 Effect of background generator

We visualize the Gaussians generated from the background generator in Fig. 15. On the left side, we
synthesize the image with and without the background Gaussians. As visualized, the background
Gaussians are responsible for the backgrounds, especially for the blurred area. For more visualization,
we provide an image rendered by a camera far from the world-coordinate origin on the right side.

18

Target Inverted result Novel view synthesis

Figure 13: Novel view synthesis using w+ inversion.

Gaussians 𝐺

Anchors 𝐴

Gaussians 𝐺

Anchors 𝐴

Result

Result

Gaussians 𝐺

Anchors 𝐴 Result

Figure 14: Visualization of Gaussians G and anchor Gaussians A for each level. We set opacity α of
anchors as sigmoid(1) for visualization. From left-to-right, levels of Gaussians and anchors increase
except right-top image, which is a composite of Gaussians from all levels.

19

w/ background

w/o background

Visualization of background Gaussians

Figure 15: Visualization of effects of background generator

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We elaborate on our claims in both abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We refer to the limitation on sec. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

21

Justification: This paper does not contain any theory assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We report the implementation details in sec. A.1 and reference of datasets in
sec. 4.1, and also attach the implementation code in supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22

Answer: [Yes]
Justification: We attach the implementation code in supplementary and will release it.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report the detailed training and test details in appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Multiple runs of training are computationally too demanding in 3D GANs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the training resource in Sec. 4, which is in charge of most of the
computational cost for the experiments in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We review the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We elaborate on the broader impacts in sec. 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not have such risks, as we do not use models and data concerned
about any privacy issues.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We check datasets has license of CC BY-NC-SA 4.0 and CC-BY-NC 4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

25

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not provide new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Related works
	3D Generative Adversarial Networks
	Gaussian splatting for 3D representation

	Proposed method
	Preliminaries
	Hierarchical 3D Gaussian representation
	GSGAN; the generator architecture with hierarchical 3D Gaussians
	Training objectives

	Experiments
	Experimental settings
	Experimental results

	Broader Impact and Limitations
	Conclusion
	Acknowledgements
	Appendix
	Implementation details
	Additional examples
	Latent interpolation
	w+ Inversion
	Visualization of anchor Gaussians
	Effect of background generator

