

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

WHEN SHIFT HAPPENS - CONFOUNDING IS TO BLAME

Anonymous authors

Paper under double-blind review

ABSTRACT

Distribution shifts introduce uncertainty that undermines the robustness and generalization capabilities of machine learning models. While conventional wisdom suggests that learning causal-invariant representations enhances robustness to such shifts, recent empirical studies present a counterintuitive finding: (i) empirical risk minimization (ERM) can rival or even outperform state-of-the-art out-of-distribution (OOD) generalization methods, and (ii) OOD generalization performance improves when all available covariates, including non-causal ones, are utilized. We present theoretical and empirical explanations that attribute this phenomenon to hidden confounding. Shifts in hidden confounding induce changes in data distributions that violate assumptions commonly made by existing approaches. Under such conditions, we prove that generalization requires learning environment-specific relationships, rather than relying solely on invariant ones. Furthermore, we explain why models augmented with non-causal but informative covariates can mitigate the challenges posed by hidden confounding shifts. These findings offer new theoretical insights and practical guidance, serving as a roadmap for future research on OOD generalization and principled covariate-selection strategies.

1 INTRODUCTION

Generalization—the ability to draw reliable conclusions about unseen data based on observed data—is central to numerous scientific fields. In medicine and the social sciences, it is embodied as *external validity*, ensuring findings from one population are applicable to a different population (Campbell & Stanley, 2015); in ecology, it supports *space-for-time substitutions*, where spatial variation is used as a proxy for temporal change to infer long-term ecological patterns (Pickett, 1989); and in engineering, it drives *robust control*, where models must maintain performance in the presence of unmodeled disturbances (Khalil et al., 1996). In recent years, machine learning has become a powerful tool for learning generalizable models (Zhou et al., 2022; Wang et al., 2022; Liu et al., 2021).

To generalize well, machine learning models must be robust to distribution shifts between training and test data. For example, a model trained to predict *food stamp recipiency* based on *household attributes* in one region should be capable of adapting and performing well when deployed in another region. A model is said to achieve *out-of-distribution (OOD) generalization* when it maintains its performance on both *in-distribution (ID)* data (from which training data are sampled) and OOD test data. Over the last decade, various families of methods such as domain generalization (Muandet et al., 2013; Heinze-Deml et al., 2018; Zhao et al., 2022; Singh et al., 2024), domain adaptation (Zhao et al., 2019; Long et al., 2018; Xu et al., 2020; Sun & Saenko, 2016a), and robust learning (Levy et al., 2020; Sagawa et al., 2019) have been proposed to achieve provable OOD generalization under specific assumptions. However, under careful model selection, models based on standard *empirical risk minimization (ERM)* (Vapnik, 1999) often achieve competitive OOD generalization performance across a range of real-world applications (Gulrajani & Lopez-Paz, 2021; Krueger et al., 2021; Liu et al., 2023; Nastl & Hardt, 2024; Rosenfeld et al., 2022; Vedantam et al., 2021). Moreover, a recent empirical study (Nastl & Hardt, 2024) on 16 real-world tabular datasets has concluded that incorporating all available covariates when predicting the outcome, regardless of whether they directly affect the outcome, can improve OOD generalization performance. These findings challenge prevailing assumptions in the field and motivate a deeper investigation into the mechanisms underlying OOD generalization.

Distribution shifts are commonly observed when data originate from different environments (Schölkopf, 2022). For example, *food stamp recipiency* may differ across states, because each state operates under different eligibility rules, leading to distinct, environment-specific distributions. In such data, certain statistical relationships between covariates and the outcome may stay consistent

054 across all environments, referred to as *invariant relationships* (Arjovsky et al., 2019). Identifying
 055 and learning such invariant relationships ensures OOD generalization (Arjovsky et al., 2019; Peters
 056 et al., 2016; Rojas-Carulla et al., 2018; Muandet et al., 2013; Quinza et al., 2024). A special kind of
 057 invariance is known as *causal invariance*, where the causal relationships in the data stay invariant
 058 across environments (Schölkopf, 2022; Peters et al., 2016; Arjovsky et al., 2019). However, in many
 059 real-world settings, not all relevant covariates required for predicting an outcome are observed, due
 060 to limitations in data collection, privacy constraints, or measurement errors (Carroll et al., 2006;
 061 Louizos et al., 2017; Dwork et al., 2014; Little & Rubin, 2019). Their absence disrupts the invariant
 062 relationships needed for models to achieve generalization. This issue is further compounded when the
 063 unobserved variables are confounders that influence both the observed covariates and the outcome. In
 064 practice, such hidden confounders are pervasive, and shifts in their distributions correspond to distinct
 065 environments. Ignoring these shifts not only undermines generalization performance (Landeiro &
 066 Culotta, 2018; Alabdulmohsin et al., 2023; Tsai et al., 2024; Prashant et al., 2025), but can also lead
 067 to learning incorrect relationships between observed covariates and the outcome.

068 *Despite its importance and the recent progress on achieving generalization under hidden confounding
 069 shifts (Alabdulmohsin et al., 2023; Tsai et al., 2024; Prashant et al., 2025), how hidden confounding
 070 shift affects generalization and how informative covariates help in generalization remains poorly
 071 understood. Our work aims to bridge this gap by providing theoretical and empirical explanations.*

072 Our contributions are as follows:

- 073 • We motivate the need for studying confounding shift in OOD generalization from a causal perspective (§ 3) and explain why adding informative, non-causal covariates can improve performance.
- 074 • While invariant representations alone, while sufficient, are challenging to achieve under the hidden
 075 confounding shift. We show that maximizing predictive information between model predictions and true outcomes demands explicitly learning environment-specific relationships. (§ 4.1, § 4.2).
- 076 • We demonstrate that variables informative of either outcome or hidden confounders help in improving predictive information between model predictions and true outcomes. This explains the
 077 importance of principled covariate selection in the presence of hidden confounding shift (§ 4.3).
- 078 • Our experiments on both real-world and synthetic datasets provide evidence that (i) hidden confounding is prevalent in real-world tabular benchmark data, (ii) learning environment-specific
 079 relationships correlates positively with ID and OOD test accuracy, and (iii) incorporating informative, non-causal covariates improves generalization (§ 5).

086 2 RELATED WORK

087 Out-of-distribution (OOD) generalization encompasses various facets, with notable examples including domain generalization (Zhou et al., 2022; Wang et al., 2022), domain adaptation (Zhao et al., 2019; Sun & Saenko, 2016b; Long et al., 2018; Xu et al., 2020), robust learning (Levy et al., 2020; Sagawa et al., 2019), federated learning (Li et al., 2023), and OOD detection (Lee et al., 2018; Hendrycks & Gimpel, 2017). Domain adaptation assumes access to unlabeled data from the test set, whereas domain generalization relies on environment labels during training. Federated learning adopts a collaborative learning framework, tackling constraints such as communication efficiency and privacy when data originates from multiple environments. OOD detection focuses on identifying samples that differ significantly from the training distribution. A common goal of many of these methods is to learn invariant relationships. However, recent work suggests that additional inductive biases beyond invariance are required for improved generalization (Lin et al., 2022; Schrouff et al., 2022; Ye et al., 2021). Ye et al. (2021) argue that invariance of features is necessary but not sufficient for generalization and discuss the importance of *informativeness* of features for generalization. We explain how informativeness plays a crucial role in generalization under hidden confounding shifts.

101 **Proxy variable adjustment:** When confounding variables are observed during training and unobserved at test time, Landeiro & Culotta (2018) propose adjusting for confounding shifts to improve
 102 classifier performance. Building on proxy-based adjustment methods for causal effect estimation
 103 (Miao et al., 2018; Kuroki & Pearl, 2014), recent domain adaptation methods rephrase the
 104 problem of unknown distribution shifts as a causal effect identification problem (Alabdulmohsin
 105 et al., 2023; Tsai et al., 2024). Recently, OOD generalization under hidden confounding shift has
 106 been considered under the assumption of overlapping confounder support (Prashant et al., 2025). In
 107 contrast to these approaches, we *explain how proxy variables enhance OOD generalization*.

108 **All variable models vs causal models.** Recently, [Nastl & Hardt \(2024\)](#) introduced a benchmark
 109 study where covariates are categorized into four groups: causal (conservatively chosen), arguably
 110 causal, anti-causal, and other spurious covariates. They show that across 16 benchmark datasets,
 111 models using all covariates Pareto-dominate those using only causal or arguably causal subsets on
 112 both ID and OOD data. However, there is limited theoretical work explaining these results. We
 113 present scenarios and arguments to explain their experimental findings. For linear causal models,
 114 anchor regression ([Rothenhäusler et al., 2021](#)) introduces a framework that balances between two
 115 estimation paradigms: models that include all observed covariates and models that focus solely on
 116 causal covariates. We aim to explain the impact of adding more covariates that are not necessarily
 117 causal under a hidden confounding shift. [Eastwood et al. \(2023\)](#) show that unstable covariates can
 118 boost performance when they carry information about the label, provided they are conditionally
 119 independent of the stable covariates given the label. They propose to adjust the distribution shift by
 120 looking at the test domain without labels. However, when applied to a medical real-world dataset not
 121 constructed for this particular problem ([Bandi et al., 2019](#)), ERM still remains competitive with their
 122 method, in line with the findings of [Nastl & Hardt \(2024\)](#). This reflects the broader insight that, under
 123 well-specified covariate shifts, maximum likelihood estimation (MLE) achieves minimax optimality
 124 for OOD generalization ([Ge et al., 2024](#)). Yet, real-world settings are rarely well-specified due to
 125 hidden confounding shift, which is the main focus of this work.

3 MANIFESTATIONS OF HIDDEN CONFOUNDING SHIFT

We now provide background on hidden confounding shift and motivate the need to address it.

Types of distribution shifts. For covariates \mathbf{X} and target Y , one may observe several distribution shifts between two environments e and e' as shown in Table 1. These distribution shifts usually result from a shift in the distribution $\mathbb{P}(U)$ of an unobserved covariate U that causes either \mathbf{X} or Y or both (see Figure 1). The shifts in $\mathbb{P}(U)$ lead to shifts in observed distributions involving only \mathbf{X} and Y . For instance, we can write: $\mathbb{P}(\mathbf{X}) = \sum_U \mathbb{P}(U) \mathbb{P}(\mathbf{X} | U)$. Thus, when $\mathbb{P}^e(U) \neq \mathbb{P}^{e'}(U)$ and $U \rightarrow \mathbf{X}$, we observe $\mathbb{P}^e(\mathbf{X}) \neq \mathbb{P}^{e'}(\mathbf{X})$. Similar arguments can be made about the distribution shifts of $\mathbb{P}(Y)$, $\mathbb{P}(\mathbf{X} | Y)$, $\mathbb{P}(Y | \mathbf{X})$, $\mathbb{P}(\mathbf{X}, Y)$.

Existing methods for OOD generalization assume certain causal relationships among U, \mathbf{X}, Y that guarantee specific invariances. For instance, when $U \rightarrow Y \rightarrow \mathbf{X}$ (Figure 1 (a)), since $\mathbb{P}(\mathbf{X}, Y) = \mathbb{P}(Y) \mathbb{P}(\mathbf{X} | Y)$, a shift $\mathbb{P}^e(\mathbf{X}, Y) \neq \mathbb{P}^{e'}(\mathbf{X}, Y)$ is observed due to label shift, i.e., $\mathbb{P}^e(Y) \neq \mathbb{P}^{e'}(Y)$, but conditional covariate distribution stays invariant i.e., $\mathbb{P}^e(\mathbf{X} | Y) = \mathbb{P}^{e'}(\mathbf{X} | Y)$ because $\mathbb{P}(\mathbf{X} | Y, U) = \mathbb{P}(\mathbf{X} | Y)$ ([Wu et al., 2021](#); [Tachet des Combes et al., 2020](#); [Garg et al., 2020](#); [Alexandari et al., 2020](#)). Similarly, when $U \rightarrow \mathbf{X} \rightarrow Y$ (Figure 1 (b)), a shift $\mathbb{P}^e(\mathbf{X}, Y) \neq \mathbb{P}^{e'}(\mathbf{X}, Y)$ is observed due to covariate shift, i.e., $\mathbb{P}^e(\mathbf{X}) \neq \mathbb{P}^{e'}(\mathbf{X})$, but the conditional distribution $\mathbb{P}(Y | \mathbf{X})$ stays invariant i.e., $\mathbb{P}^e(Y | \mathbf{X}) = \mathbb{P}^{e'}(Y | \mathbf{X})$ ([Schneider et al., 2020](#); [Sugiyama & Kawanabe, 2012](#); [Gretton et al., 2009](#)). These invariances may not hold in many scenarios because U usually causes both \mathbf{X} and Y (Figure 1 (c)) ([Liu et al., 2023](#); [Alabdulmohsin et al., 2023](#); [Landeiro & Culotta, 2018](#); [Tsai et al., 2024](#); [Prashant et al., 2025](#); [Reddy et al., 2022](#); [Reddy & N Balasubramanian, 2024](#)). In this case, when $\mathbb{P}(U)$ shifts between environments, label shift, covariate shift, conditional covariate shift, and concept shift can all occur simultaneously. Nevertheless, confounding shift induces an invariance: $\mathbb{P}^e(\mathbf{X}, Y | U) = \mathbb{P}^{e'}(\mathbf{X}, Y | U)$ referred to as *stable confounding shift* ([Tsai et al., 2024](#); [Alabdulmohsin et al., 2023](#)). Since U is unobserved, this invariance is absent from the observed data.

Information-theoretic measures: Following [Federici et al. \(2021\)](#), we use mutual information to quantify distribution shifts. That is, we use $I(\mathbf{X}; E)$, $I(Y; E)$, $I(\mathbf{X}; E|Y)$, $I(Y; E|\mathbf{X})$, $I(\mathbf{X}, Y; E)$ to measure the shifts in $\mathbb{P}(\mathbf{X})$, $\mathbb{P}(Y)$, $\mathbb{P}(\mathbf{X} | Y)$, $\mathbb{P}(Y | \mathbf{X})$, $\mathbb{P}(\mathbf{X}, Y)$ respectively across the

Table 1: A summary of different distribution shifts.

Type of Shift	Mathematical Expression
Label	$\mathbb{P}^e(Y) \neq \mathbb{P}^{e'}(Y)$
Covariate	$\mathbb{P}^e(\mathbf{X}) \neq \mathbb{P}^{e'}(\mathbf{X})$
Conditional Covariate	$\mathbb{P}^e(\mathbf{X} Y) \neq \mathbb{P}^{e'}(\mathbf{X} Y)$
Concept	$\mathbb{P}^e(Y \mathbf{X}) \neq \mathbb{P}^{e'}(Y \mathbf{X})$
Dataset	$\mathbb{P}^e(\mathbf{X}, Y) \neq \mathbb{P}^{e'}(\mathbf{X}, Y)$

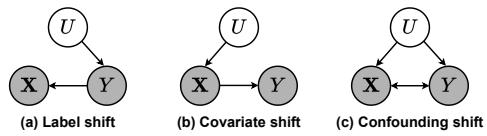
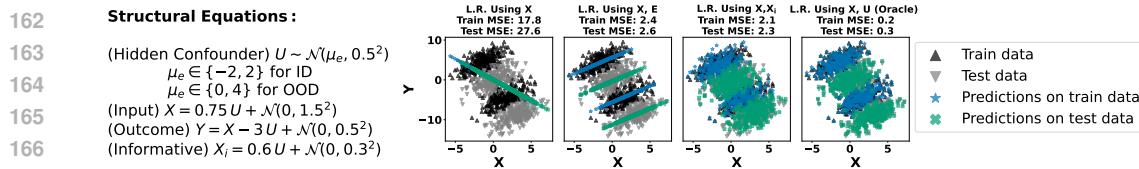


Figure 1: Causal graphs underlying distribution shifts.



4 IMPACT OF HIDDEN CONFOUNDING SHIFTS ON OOD GENERALIZATION

In this section, we theoretically explain how hidden confounding shifts impact various aspects of OOD generalization. Let $\hat{Y} = (f \circ \phi)(\mathbf{X})$ be the predicted label for an input \mathbf{X} , where f is a classifier and ϕ is a feature extractor or transformation function. $H(X) = -\mathbb{E}_X[\log(\mathbb{P}(X))]$ denotes entropy and $I(X; Y) = \mathbb{E}_{X,Y}[\log \frac{\mathbb{P}(X,Y)}{\mathbb{P}(X)\mathbb{P}(Y)}]$ denotes mutual information. The risk of the predictor $(f \circ \phi)$ in an environment e is defined as: $\mathcal{R}^e(f \circ \phi) = \mathbb{E}_{(\mathbf{X}, Y) \sim \mathbb{P}_{\mathbf{X}, Y}}[\ell((f \circ \phi)(\mathbf{X}), Y)]$ where $\ell(\cdot, \cdot)$ is a loss function. The goal in OOD generalization is to learn a predictor $(f \circ \phi)$ that performs well on both ID and OOD data. To this end, various objectives have been considered in the literature. Robust optimization-based methods (Ben-Tal & Nemirovski, 2002; Sinha et al., 2017; Sagawa et al., 2019) aim to minimize the worst risk across all training environments: $\mathcal{R}^{\text{Rob}}(f \circ \phi) = \max_{e \in \mathcal{E}_{tr}} \mathcal{R}^e(f \circ \phi)$ where \mathcal{E}_{tr} denotes the set of training environments. Invariant risk minimization (IRM) (Arjovsky et al., 2019) aims to minimize $\sum_{e \in \mathcal{E}_{tr}} \mathcal{R}^e(f \circ \phi)$ with the constraint that f is a simultaneously optimal classifier across all environments. Empirical risk minimization (ERM) based methods simply pool data from all training environments and minimize the empirical risk on the pooled data (Arjovsky et al., 2019; Krueger et al., 2021). That is, ERM minimizes $\mathcal{R}^{\text{ERM}}(f \circ \phi) = \sum_{e \in \mathcal{E}_{tr}} \mathcal{R}^e(f \circ \phi)$.

To understand how hidden confounding shift impacts traditional objective functions, we explore different aspects of maximizing predictive information: $I(Y; \hat{Y})$ where $\hat{Y} = (f \circ \phi)(\mathbf{X})$. $I(Y; \hat{Y})$ quantifies how informative the prediction \hat{Y} is about the true label Y , making it a natural and meaningful objective for many tasks. We start by defining two key properties of $\phi(\mathbf{X})$ —*informativeness* and *invariance*—both of which are crucial for OOD generalization (Ye et al., 2021).

216 **Definition 4.1** (Informativeness and Conditional Informativeness). *The informativeness of features $\phi(\mathbf{X})$ for predicting Y is defined as $\text{INF}(\phi(\mathbf{X}), Y) = I(\phi(\mathbf{X}); Y)$. The conditional informativeness of features $\phi(\mathbf{X})$ for predicting Y conditioned on environment variable E is defined as $\text{CINF}(\phi(\mathbf{X}), Y, E) = I(\phi(\mathbf{X}); Y|E)$.*

217 Conditional informativeness measures the information $\phi(\mathbf{X})$ provides about Y within each environment. Minimizing CINF implies information loss, and maximizing CINF can be undesirable in 218 applications such as algorithmic fairness, as $\phi(\mathbf{X})$ may exploit sensitive or biased information within environments, leading to unfair predictions. While such biased representations can be avoided by 219 minimizing $I(\phi(\mathbf{X}); E)$, it may reduce predictive performance, as we show in § 4.2. Considering the 220 setting where no sensitive information is associated with E , we adopt the perspective that maximizing 221 CINF can improve generalization performance, a view we follow and substantiate in § 4.1.

222 **Definition 4.2** (Variation and Invariance). *For a given label Y , the variation in the features $\phi(\mathbf{X})$ 223 across environments E is defined as $\text{VAR}(\phi(\mathbf{X}), Y, E) = I(\phi(\mathbf{X}); E|Y)$. For a given label Y , the 224 invariance of the features $\phi(\mathbf{X})$ across environments E is defined as the negative of the variation i.e., 225 $\text{INV}(\phi(\mathbf{X}), Y, E) = -\text{VAR}(\phi(\mathbf{X}), Y, E) = -I(\phi(\mathbf{X}); E|Y)$*

226 Invariance quantifies how consistent the representation $\phi(\mathbf{X})$ is across different environments for 227 a given label Y . Minimizing invariance can lead to overfitting by preserving environment-specific 228 information in $\phi(\mathbf{X})$, whereas maximizing invariance helps eliminate environment-specific dependencies, 229 promoting invariant learning. Extending the information-theoretic measures from § 3, we use 230 $I(\phi(\mathbf{X}); E)$ and $I(Y; E | \phi(\mathbf{X}))$ to quantify *feature shift* and *concept shift* respectively. Depending 231 on the context, we use the term *concept shift* to denote either $I(Y; E | \mathbf{X})$ or $I(Y; E | \phi(\mathbf{X}))$.

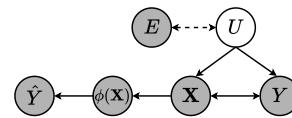
232 4.1 A GENERAL DECOMPOSITION OF PREDICTIVE INFORMATION

233 We begin with a few causal-graph preliminaries. A causal graph \mathcal{G} consists of nodes representing 234 random variables, and directed edges indicating direct causal influences between nodes. A *path* 235 between two nodes X_i and X_j is a sequence of unique nodes connected by edges. A *directed path* 236 from X_i to X_j with $i < j$ is one where all arrows point toward X_j , i.e., $X_i \rightarrow X_{i+1} \rightarrow \dots \rightarrow X_{j-1} \rightarrow X_j$. In such a directed path, X_i is called the *parent* of X_{i+1} , X_{i+1} is the *child* of X_i , X_i an 237 *ancestor* of X_j , and X_j is a *descendant* of X_i . Paths decompose into three fundamental structures: a 238 *chain* $X_i \rightarrow X_j \rightarrow X_k$, a *fork* $X_i \leftarrow X_j \rightarrow X_k$, and a *collider* $X_i \rightarrow X_j \leftarrow X_k$. In both chains and 239 forks, X_i and X_k are marginally dependent yet become conditionally independent upon conditioning 240 on the intermediate node X_j , i.e. $X_i \not\perp\!\!\!\perp X_k$ and $X_i \perp\!\!\!\perp X_k | X_j$. In a collider, X_i and X_k are 241 marginally independent but become conditionally dependent when conditioning on X_j or any of its 242 descendants, i.e. $X_i \perp\!\!\!\perp X_k$ and $X_i \not\perp\!\!\!\perp X_k | X_j$. A path between X_i and X_k is said to be *blocked* by 243 a conditioning set \mathcal{S} if and only if either (i) the path contains a chain or fork whose middle node lies 244 in \mathcal{S} , or (ii) it contains a collider such that neither the collider nor any of its descendants belongs to \mathcal{S} . 245 If all paths from X_i to X_k are blocked by \mathcal{S} , then $X_i \perp\!\!\!\perp X_k | \mathcal{S}$. A path is open if it is not blocked.

246 Now consider the predictive information $I(Y; \hat{Y})$, where the 247 predictions $\hat{Y} = (f \circ \phi)(\mathbf{X})$ are based on a learned representations $\phi(\mathbf{X})$. We model the underlying causal relationships 248 among $\mathbf{X}, Y, U, \phi(\mathbf{X}), \hat{Y}$ and E as shown in Figure 3. Here, 249 U is a hidden confounding variable. Given either \mathbf{X} or $\phi(\mathbf{X})$, 250 \hat{Y} is redundant for reasoning about Y . That is, $\hat{Y} \perp\!\!\!\perp Y | \mathbf{X}$ 251 and $\hat{Y} \perp\!\!\!\perp Y | \phi(\mathbf{X})$. E denotes an environment variable that 252 captures shifts in $\mathbb{P}(U)$. That is, between any two environments, 253 there is a shift in $\mathbb{P}(U)$. We first present a more general decomposition of predictive information 254 without explicit consideration of how U influences \mathbf{X}, Y . A formal treatment of U 's influence on \mathbf{X} 255 and Y is presented in § 4.2.

256 **Theorem 4.1.** *For a covariate vector \mathbf{X} , label Y , with causal structure $\mathbf{X} \leftrightarrow Y$, i.e., some covariates 257 cause Y and some covariates are caused by Y , environment variable E , a feature extractor ϕ , and 258 prediction \hat{Y} , the predictive information $I(Y; \hat{Y})$ is decomposed as follows:*

$$259 I(Y; \hat{Y}) = \overbrace{I(\phi(\mathbf{X}); Y|E)}^{\text{Cond. informativ.}} - \frac{\overbrace{I(\phi(\mathbf{X}); E|Y)}^{\text{Variation}}}{2} + \frac{\overbrace{I(Y; E)}^{\text{Label shift}}}{2} + \frac{\overbrace{I(\phi(\mathbf{X}); E)}^{\text{Feature shift}}}{2} - \frac{\overbrace{I(Y; E|\phi(\mathbf{X}))}^{\text{Concept shift}}}{2} - \overbrace{I(\phi(\mathbf{X}); Y|\hat{Y})}^{\text{Residual}} \quad (1)$$



260 Figure 3: Bi-directed arrow between 261 \mathbf{X} and Y indicate that some covariates 262 cause Y , and some are caused by Y .

270 where $I(\phi(\mathbf{X}); Y|\hat{Y})$ is the residual information in $\phi(\mathbf{X})$ for inferring Y that is not captured by the
 271 prediction \hat{Y} . The decomposition above also holds when $\phi(\mathbf{X})$ is replaced with \mathbf{X} .
 272

273 Proofs are presented in Appendix § A. Existing methods can be viewed as methods that explicitly
 274 minimize or maximize certain terms in Equation 1. For instance, IRM (Arjovsky et al., 2019) enforces
 275 that a fixed classifier f remains the same across different environments. This is directly related to
 276 maximizing $-I(\phi(\mathbf{X}); E|Y)$ because if $\phi(\mathbf{X})$ were to carry extra environment-specific information
 277 conditional on Y , the fixed classifier would no longer be optimal in all environments. DANN (Ganin
 278 et al., 2016) and the independence criterion for fair classification (Federici et al., 2021) aims to
 279 minimize environment-specific information in $\phi(\mathbf{X})$ by minimizing $I(\phi(\mathbf{X}); E)$. In the context of
 280 domain adaptation, certain properties of features are learned invariant to domains (Sun & Saenko,
 281 2016b; Xu et al., 2020). While minimizing $I(\phi(\mathbf{X}); E)$ may be good for fair classification, it may
 282 degrade predictive performance (Johansson et al., 2019; Federici et al., 2021). This can be seen
 283 from Equation 1, where minimizing $I(\phi(\mathbf{X}); E)$ can reduce $I(Y; \hat{Y})$. In CDAN (Long et al., 2018),
 284 the objective is to obtain $\mathbb{P}^e(\phi(\mathbf{X}), Y) = \mathbb{P}^{e'}(\phi(\mathbf{X}), Y)$. By enforcing this equality, E becomes
 285 independent of the pair $(\phi(\mathbf{X}), Y)$. Consequently, $\mathbb{P}(Y | \phi(\mathbf{X}), E) = \mathbb{P}(Y | \phi(\mathbf{X})) \implies I(Y; E | \phi(\mathbf{X})) = 0$. Thus, although CDAN does not explicitly include $I(Y; E | \phi(\mathbf{X}))$ in its loss, its
 286 joint-distribution alignment objective effectively drives $I(Y; E | \phi(\mathbf{X}))$ to zero. While $I(Y; E)$ is a
 287 constant, there exist methods that are robust to label shift (Sagawa et al., 2019).
 288

289 Recall that Equation 1 is derived without explicitly considering how U influences \mathbf{X}, Y . Knowing
 290 how U influences \mathbf{X} and Y can further guide better understanding of the terms in Equation 1. That
 291 is, if $U \rightarrow Y, U \not\rightarrow \mathbf{X}, Y \rightarrow \mathbf{X}$, then $I(\mathbf{X}; E | Y) = 0$, suggesting that minimizing $I(\phi(\mathbf{X}); E | Y)$
 292 is a principled objective. Similarly, if $U \not\rightarrow Y, U \rightarrow \mathbf{X}, \mathbf{X} \rightarrow Y$, then $I(Y; E | \mathbf{X}) = 0$, thereby
 293 motivating the minimization of $I(Y; E | \phi(\mathbf{X}))$. However, if $U \rightarrow Y$ and $U \rightarrow \mathbf{X}$, the interaction
 294 between the terms in Equation 1 becomes non-trivial, and it remains unclear what constitutes an ideal
 295 strategy for addressing them. We answer this question in the next section.
 296

4.2 PREDICTIVE INFORMATION UNDER HIDDEN CONFOUNDING SHIFT

297 To understand how hidden confounding variable U that cause both \mathbf{X} and Y , impact the predictive
 298 information, we consider *two special cases* of the relationship between \mathbf{X} and Y : (i) $\mathbf{X} \rightarrow Y$ and
 299 (ii) $Y \rightarrow \mathbf{X}$. When $\mathbf{X} \rightarrow Y$, we obtain the inequalities in 2 because conditioning on Y opens the
 300 path $\phi(\mathbf{X}) \leftarrow \mathbf{X} \rightarrow Y \leftarrow U \leftarrow E$ from $\phi(\mathbf{X})$ to E at the collider node Y which results in additional
 301 information flow from $\phi(\mathbf{X})$ to E via Y . In contrast, conditioning on $\phi(\mathbf{X})$ partially blocks the
 302 information flow from Y to E at the node \mathbf{X} as long as $\phi(\mathbf{X})$ encodes some information about \mathbf{X} .
 303

$$(i) \overbrace{I(\phi(\mathbf{X}); E|Y)}^{\text{Variation}} \geq \overbrace{I(\phi(\mathbf{X}); E)}^{\text{Feature shift}} \quad (ii) \overbrace{I(Y; E)}^{\text{Label shift}} \geq \overbrace{I(Y; E|\phi(\mathbf{X}))}^{\text{Concept shift}} \quad (2)$$

306 Similarly, when $Y \rightarrow \mathbf{X}$, we obtain the inequalities in 3 because conditioning on Y blocks the
 307 information flow from $\phi(\mathbf{X})$ to E at the node Y and conditioning on $\phi(\mathbf{X})$ opens the path $Y \rightarrow$
 308 $\mathbf{X} \leftarrow U \leftarrow E$ from Y to E at the node \mathbf{X} because $\phi(\mathbf{X})$ is the child of \mathbf{X} and conditioning on the
 309 child of a collider opens a path via that collider (Pearl, 2009) (recall the preliminaries in § 4.1).
 310

$$(i) \overbrace{I(\phi(\mathbf{X}); E)}^{\text{Feature shift}} \geq \overbrace{I(\phi(\mathbf{X}); E|Y)}^{\text{Variation}} \quad (ii) \overbrace{I(Y; E|\phi(\mathbf{X}))}^{\text{Concept shift}} \geq \overbrace{I(Y; E)}^{\text{Label shift}} \quad (3)$$

313 Using the inequalities in 2, 3, we refine the predictive information decomposition as follows.
 314

315 **Theorem 4.2.** For a covariate vector \mathbf{X} , label Y , an environment variable E , a feature extractor ϕ ,
 316 the prediction \hat{Y} , and an unobserved confounding variable U that cause both \mathbf{X} and Y , and if either
 317 (i) $\mathbf{X} \rightarrow Y$ or (ii) $Y \rightarrow \mathbf{X}$, the predictive information $I(Y; \hat{Y})$ can be decomposed as follows:
 318

$$I(Y; \hat{Y}) = \overbrace{I(\phi(\mathbf{X}); Y|E)}^{\text{Cond. informativeness}} - \overbrace{I(\phi(\mathbf{X}); Y|\hat{Y})}^{\text{Residual}} \quad (4)$$

321 In Theorem 4.2, we consider the two cases: $\mathbf{X} \rightarrow Y$ and $Y \rightarrow \mathbf{X}$ separately. However, the causal
 322 relationship $\mathbf{X} \rightarrow Y$ is more prevalent in real-world tabular prediction tasks. For instance, 11 out of
 323 16 datasets considered in recent benchmark studies (Nastl & Hardt, 2024; Liu et al., 2023; Gardner
 324 et al., 2023) follow the causal structure $\mathbf{X} \rightarrow Y$. In the remaining 5 out of 16 datasets, the number
 325

324 of covariates that are caused by Y is much smaller than the number of covariates that cause Y . We
 325 present the key understanding from Theorem 4.2 below.
 326

327 Compared to the decomposition in 1, the decomposition in 4 (which is obtained for the special
 328 cases: (i) $U \rightarrow \mathbf{X}, U \rightarrow Y, \mathbf{X} \rightarrow Y$, (ii) $U \rightarrow \mathbf{X}, U \rightarrow Y, Y \rightarrow \mathbf{X}$) is free from the terms:
 329 *variation, label shift, feature shift, and concept shift*. That is, under hidden confounding
 330 shift, when either $\mathbf{X} \rightarrow Y$ or $Y \rightarrow \mathbf{X}$, the predictive information is equal to the difference:
 331 *conditional informativeness – residual*.
 332

333 **Remarks on conditional informativeness:** In a very recent work, [Prashant et al. \(2025\)](#) proposed
 334 a mixture of experts (MoE) model for OOD generalization under hidden confounding shift, where
 335 each expert corresponds to a specific hidden confounder assignment. That is, each expert focuses
 336 on maximizing the performance within the environment corresponding to a particular value of the
 337 hidden confounder. Thus, learning MoE models aligns with the goal of maximizing the conditional
 338 informativeness $I(\phi(\mathbf{X}); Y|E)$. Equation 4 provides theoretical justification for the use of MoE-type
 339 models. Beyond supporting such models, the Equation 4 also highlights the need for methods that
 340 operate under more general confounding shift settings. For instance, the method proposed by [Prashant](#)
 341 [et al. \(2025\)](#) assumes overlapping confounding support i.e., $\text{supp}(\mathbb{P}(U|\mathcal{E}_{te})) \subseteq \text{supp}(\mathbb{P}(U|\mathcal{E}_{tr}))$, and
 342 the proxy variables to be discrete-valued.
 343

344 The results in Figure 2 illustrate that, in a simple setting without confounding overlap and
 345 with a continuous-valued proxy, a linear regression model can successfully recover the correct
 346 causal relationship between observed covariates and the target across environments when
 347 provided with environment-specific information. We theoretically explain in § 4.3 why
 348 environment-specific informative covariates help improve generalization performance.
 349

350 **Remarks on residual:** The residual term $I(\phi(\mathbf{X}); Y | \hat{Y})$ quantifies how much additional information
 351 $\phi(\mathbf{X})$ provides about the true label Y beyond what is already contained in the prediction
 352 \hat{Y} . The residual term can be expressed as: $I(\phi(\mathbf{X}); Y | \hat{Y}) = H(Y | \hat{Y}) - H(Y | \phi(\mathbf{X}), \hat{Y})$. The
 353 conditional entropy $H(Y | \hat{Y})$ is related to the expected cross-entropy loss as: $\mathbb{E}_{Y, \hat{Y}}[\ell_{\text{CE}}(Y, \hat{Y})] =$
 354 $H(Y | \hat{Y}) + \text{calibration error}$ ([Bröcker, 2009](#); [Berta et al., 2025](#)). Here $H(Y | \hat{Y})$ is known as the
 355 *refinement error* that measures the model's ability to distinguish between classes.
 356

357 4.3 IMPACT OF ADDITIONAL INFORMATIVE COVARIATES

358 In § 4.2, we present the desiderata for generalization under hidden confounding shifts. In practice,
 359 we sometimes have access to proxies for the hidden confounding variable ([Alabdulmohsin et al.,](#)
 360 [2023](#); [Tsai et al., 2024](#); [Prashant et al., 2025](#)), which can be leveraged to substitute for the hidden
 361 confounding variable. We now explain how adding such non-causal but informative covariates
 362 improves predictive information.

363 **Definition 4.3** (Informative Covariates). *A set of covariates \mathbf{X}_I that are not causally related to Y i.e.,*
 364 *neither ancestors nor descendants of Y are in \mathbf{X}_I , are said to be informative to Y if \mathbf{X}_I and Y are*
 365 *not independent of each other given other causally related covariates \mathbf{X} and E i.e., $Y \not\perp\!\!\!\perp \mathbf{X}_I | \mathbf{X}, E$.*
 366

367 Since $U \rightarrow Y$, any covariate that is informative to U , is also informative to Y and vice-versa. *Causal*
 368 *graphs that show informative covariates \mathbf{X}_I have the structure $U \leftrightarrow \mathbf{X}_I; Y \leftrightarrow \mathbf{X}_I$ in addition*
 369 *to the causal relationships shown in Figure 3.* From the predictive information decomposition in
 370 Equation 1, to maximize $I(Y; \hat{Y})$, it is required to minimize the concept shift $I(Y; E | \phi(\mathbf{X}))$. [Liu](#)
 371 [et al. \(2023\)](#) suggest based on their empirical analysis that collecting additional covariates \mathbf{X}_I such
 372 that $\mathbb{P}(Y|\mathbf{X}, \mathbf{X}_I)$ is more stable across environments i.e., reducing concept shift, improves the OOD
 373 test accuracy. We theoretically show that utilizing more informative variables helps maximizing
 374 predictive information by maximizing or minimizing certain terms in Equation 1.

375 **Proposition 4.1.** *If $\phi_1(\cdot), \phi_2(\cdot)$ are invertible functions and if \mathbf{X}_I are informative variables such that*
 376 *$Y \not\perp\!\!\!\perp \mathbf{X}_I | \mathbf{X}, E$, then we have the following inequalities:*

$$(i) I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); Y|E) > I(\phi_1(\mathbf{X}); Y|E) \quad (ii) I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); E) > I(\phi_1(\mathbf{X}); E) \quad (5)$$

$$(iii) I(Y; E|\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\})) < I(Y; E|\phi_1(\mathbf{X})) \quad (iv) I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); E | Y) > I(\phi_1(\mathbf{X}); E | Y)$$

378 Table 2: Quantifying distribution shifts. Mean \pm standard deviation is computed over 10 random
 379 subsets of 40,000 samples. Statistical significance against a mean of zero is assessed via one-sample
 380 t-tests ($\alpha = 0.05$), confirming all measures are significantly different from zero (p-value ≈ 0).
 381

382 Dataset	383 Conditional Covariate Shift $I(\mathbf{X}; E Y)$	384 Label shift $I(Y; E)$	385 Covariate Shift $I(\mathbf{X}; E)$	386 Concept shift $I(Y; E \mathbf{X})$
387 Readmission	388 0.107 ± 0.002	389 0.068 ± 0.002	390 0.097 ± 0.002	391 2.032 ± 0.000
392 Food stamps	393 0.126 ± 0.004	394 0.030 ± 0.003	395 0.108 ± 0.001	396 2.118 ± 0.001
397 Income	398 0.168 ± 0.002	399 0.075 ± 0.003	400 0.147 ± 0.001	401 2.059 ± 0.002
402 Public coverage	403 0.231 ± 0.002	404 0.412 ± 0.006	405 0.222 ± 0.002	406 1.945 ± 0.001
407 Unemployment	408 0.117 ± 0.001	409 0.019 ± 0.002	410 0.114 ± 0.002	411 2.010 ± 0.003
412 Diabetes	413 0.032 ± 0.002	414 0.048 ± 0.001	415 0.022 ± 0.002	416 2.132 ± 0.001
417 Hypertension	418 0.090 ± 0.002	419 0.183 ± 0.003	420 0.037 ± 0.001	421 1.883 ± 0.004
422 ASSISTments	423 0.293 ± 0.002	424 0.260 ± 0.001	425 0.306 ± 0.002	426 0.367 ± 0.004

390
 391 Proposition 4.1 shows that adding informative covariates increases conditional informativeness (5.i)
 392 and feature shift (5.ii), while reducing concept shift (5.iii). However, adding informative covariates
 393 also amplifies variation (5.iv), which may necessitate dedicated strategies to control the variation.
 394 However, from our experimental results, we observe that the reduction of concept shift leads to
 395 significant improvement in the performance of models compared to minimizing variation.
 396

397 5 EXPERIMENTAL RESULTS

398 We conduct experiments on both real-world and synthetic datasets to analyze: (i) the presence of
 399 hidden confounding shift in real-world data, (ii) how the components of the decomposition in 1 affect
 400 OOD generalization under hidden confounding shifts, and (iii) the role of informative covariates in
 401 improving generalization. We consider eight real-world tabular benchmark datasets: *Food stamps*,
 402 *Readmission*, *Income*, *Public coverage*, *Unemployment*, *Diabetes*, *Hypertension*, and *ASSISTments*.
 403 These datasets and corresponding domain splits are adopted from *TableShift* benchmark (Gardner
 404 et al., 2023). We use ID test and OOD test accuracies to measure the performance of models. We
 405 perform experiments on two ERM-based methods: XGBoost (XGB) (Chen & Guestrin, 2016) and
 406 multi-layer perceptron (MLP), two domain generalization methods: IRM (Arjovsky et al., 2019),
 407 VREX (Krueger et al., 2021), and one robust learning based method: Group DRO (GDRO) (Sagawa
 408 et al., 2019).

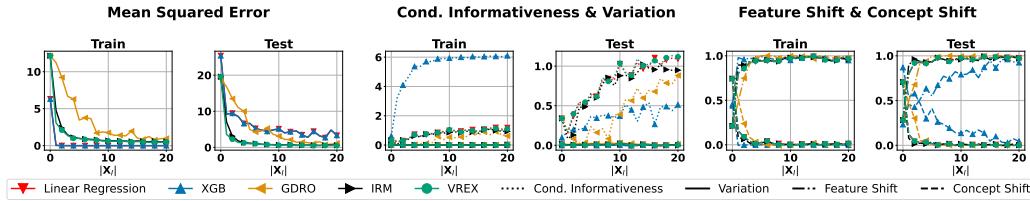
409 We use Non-Parametric Entropy Estimation toolbox (NPEET) for estimating mutual information (MI)
 410 via Kraskov-Stögbauer-Grassberger (KSG) estimator (Kraskov et al., 2004; Steeg & Galstyan, 2011;
 411 2013). Following (Gardner et al., 2023), we evaluate mutual information using both in-distribution
 412 (ID) test data (from training domains) and out-of-distribution (OOD) test data (from test domains).
 413 Additional details of the experimental setup are provided in Appendix § B. The code and instructions
 414 to reproduce the results are provided in the supplementary material.
 415

416 **Hidden confounding shift:** Recall that hidden confounding shifts induce observable shifts in the
 417 distributions $\mathbb{P}(\mathbf{X})$, $\mathbb{P}(\mathbf{X} | Y)$, $\mathbb{P}(Y)$, and $\mathbb{P}(Y | \mathbf{X})$. Results in Table 2 show that label shift, covariate
 418 shift, conditional covariate shift, and concept shift are all present in real-world datasets, indicating the
 419 presence of hidden confounding shifts. For the qualitative understanding, we query GPT-4o (Achiam
 420 et al., 2023) to list potential hidden confounders for several benchmark datasets (Gardner et al., 2023;
 421 Nastl & Hardt, 2024). These results are presented in Appendix § E. For instance, in the *food stamps*
 422 dataset, unmeasured factors such as *economic policies* specific to each state may influence both
 423 *household* income and *food stamp recipiency*. *GPT-4o returned results are solely meant for semantic*
 424 *insight and are not implicitly or explicitly used in other experiments*.

425 **Conditional informativeness vs. accuracy:** From Theorem 4.2, under hidden confounding shift,
 426 maximizing the difference *conditional informativeness – residual* is essential for maximizing predic-
 427 tive information. We observe that the difference *conditional informativeness – residual* is positively
 428 correlated with ID test and OOD test accuracies, as measured using the Spearman rank correlation
 429 coefficient (ρ) between accuracy and the difference: *conditional informativeness – residual*. For the
 430 results on five methods and eight datasets, we obtain $\rho = 0.93$ with respect to ID test accuracy, and
 431 $\rho = 0.80$ with respect to OOD test accuracy. As shown in the dataset-wise results in Appendix C, we
 432 observe that sum $-\text{variation}/2 + \text{label shift}/2 + \text{feature shift}/2 - \text{concept shift}/2$ is closer zero
 433 under due to hidden confounding shift (Theorem 4.2).

432 Table 3: For all methods, sign consistency value is high for concept shift (CS). However, the sign consistency
 433 metric for conditional informativeness (CI) is crucial for generalization according to Theorem 4.2, and XGB
 434 excels at this. **Res:** residual, **Var:** variation, **FS:** feature shift, **C:** causal, **AC:** arguably causal, **A:** all.

Method	Sign Consistency Metric (\uparrow)					ID-Test Accuracy (\uparrow)			OOD-Test Accuracy (\uparrow)		
	CI	Var	FS	CS	Res	C	AC	A	C	AC	A
XGB	0.92	0.56	0.35	0.79	0.15	78.91	81.96	82.31	64.35	72.80	72.90
MLP	0.65	0.60	0.21	0.85	0.42	77.56	78.86	80.16	62.03	67.92	66.93
GDRO	0.69	0.50	0.25	0.90	0.35	77.87	80.15	76.20	61.95	66.64	65.87
IRM	0.71	0.58	0.23	0.88	0.31	61.68	63.38	64.67	61.14	61.18	62.75
VREX	0.52	0.71	0.19	0.85	0.58	58.74	64.69	62.75	60.40	65.57	65.21



442 Figure 4: Adding more proxy variables \mathbf{X}_I of U that are informative to Y helps in reducing MSE, increasing
 443 conditional informativeness and feature shift while reducing concept shift.

444 **Informative covariates vs. accuracy:** We now study how inclusion of informative covariates
 445 helps in achieving better OOD generalization. To this end, we adopt the covariate partitioning
 446 from (Nastl & Hardt, 2024), where all available covariates are grouped into three nested covariate
 447 subsets: *causal covariates* \subseteq *arguably causal covariates* \subseteq *all covariates* (see Appendix § B). We
 448 evaluate how the terms in the decomposition in 1 affect ID and OOD performance when going from
 449 one covariate subset to another covariate subset. To this end, we use what we call the *sign consistency*
 450 *metric*, which works as follows. When we move from one covariate set to a larger covariate set,
 451 for any term in 1 with a positive coefficient, such as conditional informativeness, we count how
 452 often its value rises when accuracy improves. For negatively weighted terms, such as concept shift,
 453 we count how often its value decreases when accuracy improves. The metric is the fraction of
 454 observations where a term’s change aligns with its *beneficial* direction, thus capturing how reliably
 455 it contributes to better generalization. See Appendix § B for the formal definition. Table 3 shows
 456 that both conditional informativeness and concept shift exhibit high sign consistency with accuracy
 457 gains. While reducing concept shift is crucial, XGB further enhances conditional informativeness
 458 compared to other methods, yielding additional performance improvements. Dataset-specific results
 459 are presented in Appendix § C.

460 Note that in real-world datasets, it is often challenging to verify whether *all available covariates*
 461 include *every relevant or sufficiently informative* variable. To further test our hypothesis that informative
 462 covariates enhance generalization, we conduct experiments on synthetic data with a known causal
 463 structure: $U \rightarrow X, U \rightarrow Y, X \rightarrow Y$, and $U \rightarrow \mathbf{X}_I$, where \mathbf{X}_I denotes informative covariates caused
 464 by the hidden confounder U . We observe that including \mathbf{X}_I leads to improvements in conditional
 465 informativeness and feature shift, while reducing concept shift, as shown in Figure 4. The synthetic
 466 data generation process and additional results are provided in Appendix § D.

475 6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

476 We decompose the predictive information between model outputs and true outcomes to explain the
 477 factors limiting OOD generalization under the hidden confounding shift. We explain why simple
 478 methods such as XGBoost work better than invariance-based OOD generalization methods. We
 479 also explain how the addition of non-causal informative covariates helps improve the generalization
 480 performance of any method. Our goal is to explain these phenomena but not to provide any solution
 481 to the problems posed by the hidden confounding shift. By highlighting the inevitability of hidden
 482 confounding and the need to address it directly, our work lays a foundation for future work: (i)
 483 understanding the role of environments in maximizing conditional informativeness (ii) quantifying
 484 the cost-accuracy trade-off of acquiring non-causal informative covariates, (iii) handling entangled
 485 shifts without relying on untestable proxy assumptions, and (iv) modeling ambiguity from unobserved
 486 confounders to inspire new OOD-robust paradigms.

486 ETHICS AND REPRODUCIBILITY STATEMENT
487488 All authors have read and agree to adhere to the ICLR Code of Ethics. This work complies with all
489 ethical guidelines outlined therein. Proofs of the theoretical results are presented in the appendix.
490 The code and instructions to reproduce the results are provided in the supplementary material.
491492 REFERENCES
493494 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
495 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
496 *arXiv preprint arXiv:2303.08774*, 2023.497 Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A
498 reductions approach to fair classification. In *International conference on machine learning*, pp.
499 60–69. PMLR, 2018.
500501 Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario Marchand. Domain-
502 adversarial neural networks. *arXiv preprint arXiv:1412.4446*, 2014.503 Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D’Amour, Arthur Gretton, Sanmi Koyejo, Matt J.
504 Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, and Katherine Tsai. Adapting
505 to latent subgroup shifts via concepts and proxies. In *Proceedings of The 26th International
506 Conference on Artificial Intelligence and Statistics*, volume 206 of *Proceedings of Machine
507 Learning Research*, pp. 9637–9661. PMLR, 25–27 Apr 2023.
508509 Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar. Maximum likelihood with bias-corrected
510 calibration is hard-to-beat at label shift adaptation. In *International Conference on Machine
511 Learning*, pp. 222–232. PMLR, 2020.512 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
513 *arXiv preprint arXiv:1907.02893*, 2019.
514515 Peter Bandi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke
516 Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong,
517 Quanzheng Li, Farhad Ghazvinian Zanjani, Svitlana Zinger, Keisuke Fukuta, Daisuke Komura,
518 Vlado Ovtcharov, Shenghua Cheng, Shaoqun Zeng, Jeppe Thagaard, Anders B Dahl, Huangjing
519 Lin, Hao Chen, Ludwig Jacobsson, Martin Hedlund, Melih Cetin, Eren Halici, Hunter Jackson,
520 Richard Chen, Fabian Both, Jorg Franke, Heidi Kusters-Vandervelde, Willem Vreuls, Peter Bult,
521 Bram van Ginneken, Jeroen van der Laak, and Geert Litjens. From detection of individual metas-
522 tases to classification of lymph node status at the patient level: The CAMELYON17 challenge.
523 *IEEE Trans Med Imaging*, 38, 2019.
524524 Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and applications. *Math-
525 ematical programming*, 92:453–480, 2002.
526527 Eugene Berta, David Holzmüller, Michael I Jordan, and Francis Bach. Rethinking early stopping:
528 Refine, then calibrate. *arXiv preprint arXiv:2501.19195*, 2025.
529530 Jochen Bröcker. Reliability, sufficiency, and the decomposition of proper scores. *Quarterly Journal
531 of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology
532 and physical oceanography*, 135:1512–1519, 2009.
533533 Donald T Campbell and Julian C Stanley. *Experimental and quasi-experimental designs for research*.
534 Ravenio books, 2015.
535536 Raymond J Carroll, David Ruppert, Leonard A Stefanski, and Ciprian M Crainiceanu. *Measurement
537 error in nonlinear models: a modern perspective*. Chapman and Hall/CRC, 2006.
538539 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
2016.

540 Mathieu Chevalley, Charlotte Bunne, Andreas Krause, and Stefan Bauer. Invariant causal mechanisms
 541 through distribution matching. *arXiv preprint arXiv:2206.11646*, 2022.

542

543 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations*
 544 and *Trends® in Theoretical Computer Science*, 9:211–407, 2014.

545 Cian Eastwood, Shashank Singh, Andrei L Nicolicioiu, Marin Vlastelica Pogančić, Julius von
 546 Kügelgen, and Bernhard Schölkopf. Spuriousity didn't kill the classifier: Using invariant predictions
 547 to harness spurious features. *Advances in Neural Information Processing Systems*, 2023.

548

549 Marco Federici, Ryota Tomioka, and Patrick Forré. An information-theoretic approach to distribution
 550 shifts. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in*
 551 *Neural Information Processing Systems*, 2021.

552 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 553 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 554 *Journal of machine learning research*, 17:1–35, 2016.

555

556 Joshua P Gardner, Zoran Popovi, and Ludwig Schmidt. Benchmarking distribution shift in tabular
 557 data with tableshift. In *Thirty-seventh Conference on Neural Information Processing Systems*
 558 *Datasets and Benchmarks Track*, 2023.

559 Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary Lipton. A unified view of label shift
 560 estimation. *Advances in Neural Information Processing Systems*, 33:3290–3300, 2020.

561

562 Jiawei Ge, Shange Tang, Jianqing Fan, Cong Ma, and Chi Jin. Maximum likelihood estimation is all
 563 you need for well-specified covariate shift. In *The Twelfth International Conference on Learning*
 564 *Representations*, 2024.

565 Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
 566 models for tabular data. *Advances in neural information processing systems*, 34:18932–18943,
 567 2021.

568

569 Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, Bernhard
 570 Schölkopf, et al. Covariate shift by kernel mean matching. *Dataset shift in machine learning*, 3(4):
 571 5, 2009.

572 Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In *International*
 573 *Conference on Learning Representations*, 2021.

574

575 Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant causal prediction for
 576 nonlinear models. *Journal of Causal Inference*, 6:20170016, 2018.

577 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 578 examples in neural networks. In *International Conference on Learning Representations*, 2017.

579

580 Fredrik D Johansson, David Sontag, and Rajesh Ranganath. Support and invertibility in domain-
 581 invariant representations. In *The 22nd International Conference on Artificial Intelligence and*
 582 *Statistics*, pp. 527–536, 2019.

583 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
 584 Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information*
 585 *processing systems*, 30, 2017.

586

587 IS Khalil, JC Doyle, and K Glover. *Robust and optimal control*, volume 2. Prentice hall New York,
 588 1996.

589

590 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
 591 *Physical Review E*, 2004.

592

593 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation
 (rex). In *International conference on machine learning*, 2021.

594 Manabu Kuroki and Judea Pearl. Measurement bias and effect restoration in causal inference.
 595 *Biometrika*, 101, 2014.

596

597 Virgile Landeiro and Aron Culotta. Robust text classification under confounding shift. *Journal of*
 598 *Artificial Intelligence Research*, 63:391–419, 2018.

599

600 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 601 out-of-distribution samples and adversarial attacks. *Advances in neural information processing*
 602 *systems*, 31, 2018.

603

604 Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for distributionally
 605 robust optimization. *Advances in Neural Information Processing Systems*, 33:8847–8860, 2020.

606

607 Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adversarial
 608 feature learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 609 pp. 5400–5409, 2018.

610

611 Ying Li, Xingwei Wang, Rongfei Zeng, Praveen Kumar Donta, Ilir Murturi, Min Huang, and
 612 Schahram Dustdar. Federated domain generalization: A survey. *arXiv preprint arXiv:2306.01334*,
 613 2023.

614

615 Yong Lin, Shengyu Zhu, Lu Tan, and Peng Cui. Zin: When and how to learn invariance without
 616 environment partition? *Advances in Neural Information Processing Systems*, 35:24529–24542,
 617 2022.

618

619 Roderick JA Little and Donald B Rubin. *Statistical analysis with missing data*. John Wiley & Sons,
 620 2019.

621

622 Jiashuo Liu, Zheyuan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
 623 out-of-distribution generalization: A survey. *arXiv preprint arXiv:2108.13624*, 2021.

624

625 Jiashuo Liu, Tianyu Wang, Peng Cui, and Hongseok Namkoong. On the need for a language
 626 describing distribution shifts: Illustrations on tabular datasets. In *Thirty-seventh Conference on*
 627 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2023.

628

629 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
 630 domain adaptation. *Advances in neural information processing systems*, 31, 2018.

631

632 Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. Causal
 633 effect inference with deep latent-variable models. *Advances in neural information processing*
 634 *systems*, 30, 2017.

635

636 Wang Miao, Zhi Geng, and Eric J Tchetgen Tchetgen. Identifying causal effects with proxy variables
 637 of an unmeasured confounder. *Biometrika*, 105:987–993, 2018.

638

639 Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
 640 feature representation. In *Proceedings of the 30th International Conference on Machine Learning*,
 641 volume 28 of *Proceedings of Machine Learning Research*, pp. 10–18, 2013.

642

643 Vivian Yvonne Nastl and Moritz Hardt. Do causal predictors generalize better to new domains? In
 644 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

645

646 Judea Pearl. *Causality*. Cambridge university press, 2009.

647

648 Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant
 649 prediction: identification and confidence intervals. *Journal of the Royal Statistical Society Series*
 650 *B: Statistical Methodology*, 78:947–1012, 2016.

651

652 Steward TA Pickett. Space-for-time substitution as an alternative to long-term studies. In *Long-term*
 653 *studies in ecology: approaches and alternatives*, pp. 110–135. Springer, 1989.

654

655 Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep
 656 learning on tabular data. *arXiv preprint arXiv:1909.06312*, 2019.

648 Parjanya Prajaka Prashant, Seyedeh Baharan Khatami, Bruno Ribeiro, and Babak Salimi. Scalable
 649 out-of-distribution robustness in the presence of unobserved confounders. In *The 28th International*
 650 *Conference on Artificial Intelligence and Statistics*, 2025.

651

652 Francesco Quinlan, Cecilia Casolo, Krikamol Muandet, Yucen Luo, and Niki Kilbertus. Learning
 653 counterfactually invariant predictors. *Transactions on Machine Learning Research*, 2024. ISSN
 654 2835-8856.

655 Abbavaram Gowtham Reddy and Vineeth N Balasubramanian. Detecting and measuring confounding
 656 using causal mechanism shifts. *Advances in Neural Information Processing Systems*, 37:61677–
 657 61699, 2024.

658

659 Abbavaram Gowtham Reddy, Benin L Godfrey, and Vineeth N Balasubramanian. On causally
 660 disentangled representations. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 661 volume 36, pp. 8089–8097, 2022.

662 Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models for
 663 causal transfer learning. *Journal of Machine Learning Research*, 19:1–34, 2018.

664

665 Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Domain-adjusted regression or: Erm
 666 may already learn features sufficient for out-of-distribution generalization. *arXiv preprint*
 667 *arXiv:2202.06856*, 2022.

668 Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann, and Jonas Peters. Anchor regression:
 669 Heterogeneous data meet causality. *Journal of the Royal Statistical Society Series B: Statistical*
 670 *Methodology*, 83:215–246, 01 2021.

671

672 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 673 neural networks for group shifts: On the importance of regularization for worst-case generalization.
 674 *arXiv preprint arXiv:1911.08731*, 2019.

675 Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
 676 Bethge. Improving robustness against common corruptions by covariate shift adaptation. *Advances*
 677 *in neural information processing systems*, 33:11539–11551, 2020.

678

679 Bernhard Schölkopf. Causality for machine learning. In *Probabilistic and causal inference: The*
 680 *works of Judea Pearl*, pp. 765–804, 2022.

681 Jessica Schrouff, Natalie Harris, Oluwasanmi O Koyejo, Ibrahim Alabdulmohsin, Eva Schnider,
 682 Krista Opsahl-Ong, Alexander Brown, Subhrajit Roy, Diana Mincu, Chrsitina Chen, Awa Dieng,
 683 Yuan Liu, Vivek Natarajan, Alan Karthikesalingam, Katherine A Heller, Silvia Chiappa, and
 684 Alexander D’Amour. Diagnosing failures of fairness transfer across distribution shift in real-world
 685 medical settings. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
 686 *Advances in Neural Information Processing Systems*, 2022.

687 E. H. Simpson. The interpretation of interaction in contingency tables. *Journal of the Royal Statistical*
 688 *Society: Series B (Methodological)*, 13(2):238–241, 2018.

689

690 Anurag Singh, Siu Lun Chau, Shahine Bouabid, and Krikamol Muandet. Domain generalisation via
 691 imprecise learning. In *Proceedings of the 41st International Conference on Machine Learning*,
 692 volume 235 of *Proceedings of Machine Learning Research*, pp. 45544–45570. PMLR, 2024.

693 Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distributional
 694 robustness with principled adversarial training. *arXiv preprint arXiv:1710.10571*, 2017.

695

696 Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
 697 Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
 698 *arXiv preprint arXiv:2106.01342*, 2021.

699

700 Greg Ver Steeg and Aram Galstyan. Information transfer in social media, 2011.

701 Greg Ver Steeg and Aram Galstyan. Information-theoretic measures of influence based on content
 702 dynamics, 2013.

702 Masashi Sugiyama and Motoaki Kawanabe. *Machine learning in non-stationary environments: 703 Introduction to covariate shift adaptation*. MIT press, 2012.

704

705 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In 706 *Computer vision–ECCV 2016 workshops: Amsterdam, the Netherlands, October 8–10 and 15–16, 707 2016, proceedings, part III* 14, pp. 443–450. Springer, 2016a.

708 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In 709 *Computer vision–ECCV 2016 workshops: Amsterdam, the Netherlands, October 8–10 and 15–16, 710 2016, proceedings, part III* 14, pp. 443–450. Springer, 2016b.

711

712 Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J Gordon. Domain adaptation 713 with conditional distribution matching and generalized label shift. *Advances in Neural Information 714 Processing Systems*, 33:19276–19289, 2020.

715 Katherine Tsai, Stephen R Pfahl, Olawale Salaudeen, Nicole Chiou, Matt Kusner, Alexander 716 D’Amour, Sanmi Koyejo, and Arthur Gretton. Proxy methods for domain adaptation. In *International 717 Conference on Artificial Intelligence and Statistics*, pp. 3961–3969. PMLR, 2024.

718 Vladimir Vapnik. *The nature of statistical learning theory*. Springer science & business media, 1999.

719

720 Shamukha Ramakrishna Vedantam, David Lopez-Paz, and David J. Schwab. An empirical investi- 721 gation of domain generalization with empirical risk minimizers. In A. Beygelzimer, Y. Dauphin, 722 P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 723 2021.

724 Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun 725 Zeng, and S Yu Philip. Generalizing to unseen domains: A survey on domain generalization. *IEEE 726 transactions on knowledge and data engineering*, 35:8052–8072, 2022.

727

728 Ruihan Wu, Chuan Guo, Yi Su, and Kilian Q Weinberger. Online adaptation to label distribution 729 shift. *Advances in Neural Information Processing Systems*, 34:11340–11351, 2021.

730

731 Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang. 732 Adversarial domain adaptation with domain mixup. In *Proceedings of the AAAI conference on 733 artificial intelligence*, volume 34, pp. 6502–6509, 2020.

734

735 Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain 736 adaptation with mixup training. *arXiv preprint arXiv:2001.00677*, 2020.

737

738 Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards 739 a theoretical framework of out-of-distribution generalization. In A. Beygelzimer, Y. Dauphin, 740 P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 741 2021.

742 Jingzhao Zhang, Aditya Menon, Andreas Veit, Srinadh Bhojanapalli, Sanjiv Kumar, and Suvrit Sra. 743 Coping with label shift via distributionally robust optimisation. *arXiv preprint arXiv:2010.12230*, 744 2020.

745 Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant 746 representations for domain adaptation. In *International conference on machine learning*, pp. 747 7523–7532, 2019.

748 Han Zhao, Chen Dan, Bryon Aragam, Tommi S Jaakkola, Geoffrey J Gordon, and Pradeep Ravikumar. 749 Fundamental limits and tradeoffs in invariant representation learning. In *Journal of machine 750 learning research*, volume 23, pp. 1–49, 2022.

751 Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A 752 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45:4396–4415, 2022.

753

754

755

APPENDIX

A PROOFS OF THEORETICAL RESULTS

Theorem 4.1. For a covariate vector \mathbf{X} , label Y , with causal structure $\mathbf{X} \leftrightarrow Y$, i.e., some covariates cause Y and some covariates are caused by Y , environment variable E , a feature extractor ϕ , and prediction \hat{Y} , the predictive information $I(Y; \hat{Y})$ is decomposed as follows:

$$I(Y; \hat{Y}) = \overbrace{I(\phi(\mathbf{X}); Y|E)}^{\text{Cond. informativ.}} - \frac{\overbrace{I(\phi(\mathbf{X}); E|Y)}^{\text{Variation}}}{2} + \frac{\overbrace{I(Y; E)}^{\text{Label shift}}}{2} + \frac{\overbrace{I(\phi(\mathbf{X}); E)}^{\text{Feature shift}}}{2} - \frac{\overbrace{I(Y; E|\phi(\mathbf{X}))}^{\text{Concept shift}}}{2} - \overbrace{I(\phi(\mathbf{X}); Y|\hat{Y})}^{\text{Residual}} \quad (1)$$

where $I(\phi(\mathbf{X}); Y|\hat{Y})$ is the residual information in $\phi(\mathbf{X})$ for inferring Y that is not captured by the prediction \hat{Y} . The decomposition above also holds when $\phi(\mathbf{X})$ is replaced with \mathbf{X} .

Proof. From the causal graph shown in Figure 3 of the main paper, in the causal substructure: $\hat{Y} \leftarrow \phi(\mathbf{X}) \leftarrow \mathbf{X} \leftrightarrow Y$, \hat{Y} provides no additional information in predicting Y given either $\phi(\mathbf{X})$ or \mathbf{X} . This is because, the path $\hat{Y} \leftarrow \phi(\mathbf{X}) \leftarrow \mathbf{X} \leftrightarrow Y$, between \hat{Y} and Y is blocked by either $\{\phi(\mathbf{X})\}$ or $\{\mathbf{X}\}$. This implies $\hat{Y} \perp\!\!\!\perp Y|\phi(\mathbf{X})$ and $\hat{Y} \perp\!\!\!\perp Y|\mathbf{X}$. Now consider the expansion of $I(Y; \hat{Y})$.

$$\begin{aligned} I(Y; \hat{Y}) &= I(Y; \phi(\mathbf{X}), \hat{Y}) - I(\phi(\mathbf{X}); Y|\hat{Y}) \quad (\text{Introduce } \phi(\mathbf{X})) \\ &= I(\phi(\mathbf{X}); Y) + \underbrace{I(Y; \hat{Y}|\phi(\mathbf{X}))}_0 - I(\phi(\mathbf{X}); Y|\hat{Y}) \quad (\text{Expand and use } \hat{Y} \perp\!\!\!\perp Y \mid \phi(\mathbf{X})) \\ &= I(\phi(\mathbf{X}), E; Y) - I(Y; E|\phi(\mathbf{X})) - I(\phi(\mathbf{X}); Y|\hat{Y}) \quad (\text{Introduce } \mathbf{E}) \\ &= I(Y; E) + I(\phi(\mathbf{X}); Y|E) - I(Y; E|\phi(\mathbf{X})) - I(\phi(\mathbf{X}); Y|\hat{Y}) \quad (\text{Expand}) \end{aligned} \quad (6)$$

Similarly,

$$\begin{aligned} I(Y; \hat{Y}) &= I(Y; \phi(\mathbf{X}), \hat{Y}) - I(\phi(\mathbf{X}); Y|\hat{Y}) \quad (\text{Introduce } \phi(\mathbf{X})) \\ &= I(\phi(\mathbf{X}); Y) + \underbrace{I(Y; \hat{Y}|\phi(\mathbf{X}))}_0 - I(\phi(\mathbf{X}); Y|\hat{Y}) \quad (\text{Expand and use } \hat{Y} \perp\!\!\!\perp Y \mid \phi(\mathbf{X})) \\ &= I(Y, E; \phi(\mathbf{X})) - I(\phi(\mathbf{X}); E|Y) - I(\phi(\mathbf{X}); Y|\hat{Y}) \quad (\text{Introduce } \mathbf{E}) \\ &= I(\phi(\mathbf{X}); E) + I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); E|Y) - I(\phi(\mathbf{X}); Y|\hat{Y}) \quad (\text{Expand}) \end{aligned} \quad (7)$$

Summing Equations 6 and equation 7 and grouping the terms gives the desired expression:

$$\begin{aligned} I(Y; \hat{Y}) &= I(\phi(\mathbf{X}); Y|E) - \frac{I(\phi(\mathbf{X}); E|Y)}{2} + \frac{I(Y; E)}{2} \\ &\quad + \frac{I(\phi(\mathbf{X}); E)}{2} - \frac{I(Y; E|\phi(\mathbf{X}))}{2} - I(\phi(\mathbf{X}); Y|\hat{Y}). \end{aligned}$$

To get the similar decomposition with \mathbf{X} instead of $\phi(\mathbf{X})$, use $\hat{Y} \perp\!\!\!\perp Y \mid \mathbf{X}$ and introduce \mathbf{X} into the expansion instead of $\phi(\mathbf{X})$. \square

Theorem 4.2. For a covariate vector \mathbf{X} , label Y , an environment variable E , a feature extractor ϕ , the prediction \hat{Y} , and an unobserved confounding variable U that cause both \mathbf{X} and Y , and if either (i) $\mathbf{X} \rightarrow Y$ or (ii) $Y \rightarrow \mathbf{X}$, the predictive information $I(Y; \hat{Y})$ can be decomposed as follows:

$$I(Y; \hat{Y}) = \overbrace{I(\phi(\mathbf{X}); Y|E)}^{\text{Cond. informativeness}} - \overbrace{I(\phi(\mathbf{X}); Y|\hat{Y})}^{\text{Residual}} \quad (4)$$

Proof. Following the causal graph shown in Figure 3 of the main paper, we prove the theorem in two separate cases: $\mathbf{X} \rightarrow Y$ and $Y \rightarrow \mathbf{X}$.

810 **Case 1:** $\mathbf{X} \rightarrow Y$. In this case, we have the following inequality because conditioning on Y opens the
 811 path $\phi(\mathbf{X}) \leftarrow \mathbf{X} \rightarrow Y \leftarrow U \leftarrow E$ between $\phi(\mathbf{X})$ and E at the collider node Y :
 812

$$813 \quad I(\phi(\mathbf{X}); E|Y) \geq I(\phi(\mathbf{X}); E). \quad (8)$$

814 Additionally, considering the causal substructure: $Y \leftarrow \mathbf{X} \leftarrow U \leftrightarrow E$, we have the following
 815 inequality because conditioning on $\phi(\mathbf{X})$ partially blocks the information flow from Y to E at the
 816 node \mathbf{X} as long as $\phi(\mathbf{X})$ encodes some information about \mathbf{X} :
 817

$$818 \quad I(Y; E) \geq I(Y; E|\phi(\mathbf{X})). \quad (9)$$

820 Now consider the following expansion from Equation 7 in the proof of Theorem 4.1.
 821

$$\begin{aligned} 822 \quad I(Y; \hat{Y}) &= I(\phi(\mathbf{X}); E) + I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); E|Y) - I(\phi(\mathbf{X}); Y|\hat{Y}) && \text{(Equation 7)} \\ 823 \quad &\leq I(\phi(\mathbf{X}); Y|E) + I(\phi(\mathbf{X}); E|Y) - I(\phi(\mathbf{X}); E|Y) - I(\phi(\mathbf{X}); Y|\hat{Y}) && \text{(Using 8)} \\ 824 \quad &= I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y}) \end{aligned}$$

826 Similarly, consider the following expansion from Equation 6 from the proof of Theorem 4.1:
 827

$$\begin{aligned} 828 \quad I(Y; \hat{Y}) &= I(Y; E) + I(\phi(\mathbf{X}); Y|E) - I(Y; E|\phi(\mathbf{X})) - I(\phi(\mathbf{X}); Y|\hat{Y}) && \text{(Equation 6)} \\ 829 \quad &\geq I(Y; E) + I(\phi(\mathbf{X}); Y|E) - I(Y; E) - I(\phi(\mathbf{X}); Y|\hat{Y}) && \text{(Using 9)} \\ 830 \quad &= I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y}) \end{aligned}$$

832 That is, we have $I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y}) \leq I(Y; \hat{Y}) \leq I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y})$.
 833

834 **Case 2:** $Y \rightarrow \mathbf{X}$. In this scenario, we have the following inequality because conditioning on $\phi(\mathbf{X})$
 835 opens the path $E \rightarrow U \rightarrow \mathbf{X} \leftarrow Y$ between Y and E at the collider node \mathbf{X} because $\phi(\mathbf{X})$ is a child
 836 of \mathbf{X} (Pearl, 2009).
 837

$$I(Y; E|\phi(\mathbf{X})) \geq I(Y; E) \quad (10)$$

839 Additionally, we have the following inequality because conditioning on Y blocks the path $\phi(\mathbf{X}) \leftarrow \mathbf{X} \leftarrow Y \leftarrow U \leftrightarrow E$ at Y and hence less information flow between $\phi(\mathbf{X})$ and E .
 840

$$I(\phi(\mathbf{X}); E) \geq I(\phi(\mathbf{X}); E|Y) \quad (11)$$

843 Now consider the following expansion from Equation 6 from the proof of Theorem 4.1.
 844

$$\begin{aligned} 845 \quad I(Y; \hat{Y}) &= I(Y; E) + I(\phi(\mathbf{X}); Y|E) - I(Y; E|\phi(\mathbf{X})) - I(\phi(\mathbf{X}); Y|\hat{Y}) && \text{(Equation 6)} \\ 846 \quad &\leq I(\phi(\mathbf{X}); Y|E) + I(Y; E|\phi(\mathbf{X})) - I(Y; E|\phi(\mathbf{X})) - I(\phi(\mathbf{X}); Y|\hat{Y}) && \text{(Using 10)} \\ 847 \quad &= I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y}) \end{aligned}$$

849 Similarly, consider the following expansion from Equation 7 from the proof of Theorem 4.1.
 850

$$\begin{aligned} 851 \quad I(Y; \hat{Y}) &= I(\phi(\mathbf{X}); E) + I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); E|Y) - I(\phi(\mathbf{X}); Y|\hat{Y}) && \text{(Equation 7)} \\ 852 \quad &\geq I(\phi(\mathbf{X}); Y|E) + I(\phi(\mathbf{X}); E) - I(\phi(\mathbf{X}); E) - I(\phi(\mathbf{X}); Y|\hat{Y}) && \text{(Using 11)} \\ 853 \quad &= I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y}) \end{aligned}$$

856 That is, we have $I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y}) \leq I(Y; \hat{Y}) \leq I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y})$.
 857

858 Since the upper bound and lower bounds are the same in both cases, we have the desired result
 859 $I(Y; \hat{Y}) = I(\phi(\mathbf{X}); Y|E) - I(\phi(\mathbf{X}); Y|\hat{Y})$. \square
 860

861 **Proposition 4.1.** If $\phi_1(\cdot), \phi_2(\cdot)$ are invertible functions and if \mathbf{X}_I are informative variables such that
 862 $Y \not\perp\!\!\!\perp \mathbf{X}_I \mid \mathbf{X}, E$, then we have the following inequalities:
 863

$$\begin{aligned} 864 \quad (i) \quad &I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); Y|E) > I(\phi_1(\mathbf{X}); Y|E) & (ii) \quad &I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); E) > I(\phi_1(\mathbf{X}); E) \\ 865 \quad (iii) \quad &I(Y; E|\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\})) < I(Y; E|\phi_1(\mathbf{X})) & (iv) \quad &I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); E \mid Y) > I(\phi_1(\mathbf{X}); E \mid Y) \end{aligned} \quad (5)$$

864 *Proof.* (i) By the chain rule of mutual information, we have: $I(\mathbf{X}, \mathbf{X}_I; Y|E) = I(\mathbf{X}; Y|E) +$
 865 $I(\mathbf{X}_I; Y|E, \mathbf{X})$. We have $I(\mathbf{X}_I; Y|E, \mathbf{X}) > 0$ because $Y \not\perp\!\!\!\perp \mathbf{X}_I | \mathbf{X}, E$. Hence, we have
 866 $I(\mathbf{X}, \mathbf{X}_I; Y|E) > I(\mathbf{X}; Y|E)$. Since $\phi_1(\cdot), \phi_2(\cdot)$ are invertible functions and mutual information is
 867 invariant to invertible transformations, we have $I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); Y|E) > I(\phi_1(\mathbf{X}); Y|E)$.

868 (ii) We consider the causal graph shown in Figure 3. From the chain rule of mutual information,
 869 we have: $I(\mathbf{X}, \mathbf{X}_I; E) = I(\mathbf{X}; E) + I(\mathbf{X}_I; E|\mathbf{X})$. Since $E \leftrightarrow U \rightarrow Y$, any covariate that is
 870 informative to Y is also informative to U . Since $E \leftrightarrow U$, we have $I(\mathbf{X}_I; E|\mathbf{X}) > 0$, and hence
 871 $I(\mathbf{X}, \mathbf{X}_I; E) > I(\mathbf{X}; E)$. Since $\phi_1(\cdot), \phi_2(\cdot)$ are invertible functions and mutual information is
 872 invariant to invertible transformations, we have $I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); E) > I(\phi_1(\mathbf{X}); E)$.

873 (iii) Consider $I(Y; E, \mathbf{X}_I | \mathbf{X})$. It can be expressed in two ways:

$$875 I(Y; E, \mathbf{X}_I | \mathbf{X}) = I(Y; E | \mathbf{X}) + I(Y; \mathbf{X}_I | E, \mathbf{X}) = I(Y; \mathbf{X}_I | \mathbf{X}) + I(Y; E | \mathbf{X}_I, \mathbf{X})$$

876 Equating and rearranging the terms gives the following.

$$878 I(Y; E | \mathbf{X}) - I(Y; E | \mathbf{X}_I, \mathbf{X}) = I(Y; \mathbf{X}_I | \mathbf{X}) - I(Y; \mathbf{X}_I | E, \mathbf{X})$$

880 Since $Y \not\perp\!\!\!\perp \mathbf{X}_I | E, \mathbf{X}$, we have $I(Y; \mathbf{X}_I | \mathbf{X}) > I(Y; \mathbf{X}_I | E, \mathbf{X})$ because conditioning usually
 881 reduces mutual information unless the additional conditioning variable opens any collider paths. Here
 882 E is neither a collider nor a descendant of any collider. Thus, $I(Y; E | \mathbf{X}) > I(Y; E | \mathbf{X}_I, \mathbf{X})$. Since
 883 $\phi_1(\cdot), \phi_2(\cdot)$ are invertible functions and mutual information is invariant to invertible transformations,
 884 we have $I(Y; E | \phi_1(\mathbf{X})) > I(Y; E | \phi_2(\{\mathbf{X}_I \cup \mathbf{X}\}))$.

885 (iv) By the chain rule of mutual information, we have: $I(\mathbf{X}, \mathbf{X}_I; E | Y) = I(\mathbf{X}; E | Y) +$
 886 $I(\mathbf{X}_I; E | \mathbf{X}, Y)$. Since $E \leftrightarrow U \rightarrow Y$, any covariate that is informative to Y is also informative to
 887 U . Since $E \leftrightarrow U$, we have $I(\mathbf{X}_I; E | \mathbf{X}, Y) > 0$, and hence $I(\mathbf{X}, \mathbf{X}_I; E | Y) > I(\mathbf{X}; E | Y)$. Since
 888 $\phi_1(\cdot), \phi_2(\cdot)$ are invertible functions and mutual information is invariant to invertible transformations,
 889 we have $I(\phi_2(\{\mathbf{X} \cup \mathbf{X}_I\}); E | Y) > I(\phi_1(\mathbf{X}); E | Y)$. \square

B EXPERIMENTAL SETUP

893 In this section, we detail our experimental setup. The impact of random seeds on the results is
 894 statistically insignificant in many settings (Gardner et al., 2023). For the results in the main paper, we
 895 report the mean and standard deviation across five random hyperparameter values (sampled from
 896 their respective domains in Table B1) for each dataset-method combination. Since we evaluate
 897 models on ID test and OOD test data, to evaluate mutual information terms, we use the nonparametric
 898 entropy estimation toolbox (Kraskov et al., 2004; Steeg & Galstyan, 2011; 2013). Following (Gardner
 899 et al., 2023), we evaluate mutual information using both in-distribution (ID) test data (from training
 900 domains) and out-of-distribution (OOD) test data (from test domains).

901 For consistency, we select 20,000 random samples from each ID and OOD test data, though
 902 some datasets contain fewer than 20,000 samples. Throughout our experiments, the sample
 903 size has a relatively insignificant effect on the evaluated mutual information terms. For
 904 instance, as shown in Figure B1, the terms in
 905 Equation 1 computed for the representations of
 906 the XGB model on the *income* dataset stayed
 907 relatively consistent as we vary sample size. Fea-
 908 tures $\phi(\mathbf{X})$ are extracted from the layer preced-
 909 ing the classification head; for XGBoost, we
 910 combine output margins and SHAP values from
 911 the model. All experiments were conducted on a
 912 single NVIDIA RTX A6000 GPU.

914 In our experiments studying the impact of informative covariates on predictive information, we follow
 915 the categorization introduced by Nastl & Hardt (2024), partitioning covariates into: *causal*, *arguably*
 916 *causal*, and *all covariates*. Causal covariates have clearly established influence on the target, with well-
 917 supported directionality and unlikely reverse causation. However, strict reliance on causal variables
 918 risks omitting relevant parents due to knowledge gaps. Arguably causal covariates have uncertain

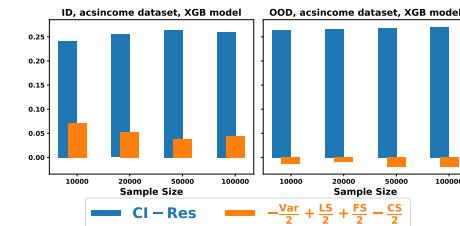


Figure B1: Evaluated terms of predictive information are relatively consistent across various sample sizes on the *income* dataset.

Figure B1: Evaluated terms of predictive information are relatively consistent across various sample sizes on the *income* dataset. All experiments were conducted on a single NVIDIA RTX A6000 GPU.

918
919
920 Table B1: Hyperparameters and their possible values considered in this paper.
921
922
923
924
925
926
927
928

Model	Hyperparameter	Search values
XGBoost	Learning rate	[0.1, 0.2, 0.3]
	Maximum tree depth	[4, 5, 6]
	Minimum child weight	[0.1, 1, 10]
	Gamma (min. loss reduction)	[0.0001, 0.001, 0.01]
	Subsample ratio	[0.5, 0.6, 0.7]
	Column subsample per tree	[0.5, 0.6, 0.7]
	L1 regularization (α)	[0.0001, 0.001, 0.01]
MLP	L2 regularization (λ)	[0.0001, 0.001, 0.01]
	Number of layers	[2, 3, 4]
	Hidden layer size	[256, 512, 1024]
	Dropout rate	[0.0, 0.1, 0.2]
	Learning rate	[0.01, 0.02, 0.05]
	Weight decay (L2)	[0.0001, 0.001, 0.01]
	Batch size	[4096]
GroupDRO	Number of epochs	[1, 2, 3]
	Number of layers	[2, 3, 4]
	Hidden layer size	[256, 512, 1024]
	Group-weights step size	[0.01, 0.05, 0.1]
	Dropout rate	[0.0, 0.1, 0.2]
	Learning rate	[0.01, 0.02, 0.05]
	Weight decay (L2)	[0.0001, 0.001, 0.01]
IRM	Batch size	[4096]
	Number of epochs	[1, 2, 3]
	Number of layers	[2, 3, 4]
	Hidden layer size	[256, 512, 1024]
	Dropout rate	[0.0, 0.1, 0.2]
	IRM penalty weight (λ)	[0.01, 0.05, 0.1]
	IRM penalty anneal iterations	[1, 2, 3]
VREX	Learning rate	[0.01, 0.02, 0.05]
	Weight decay (L2)	[0.0001, 0.001, 0.01]
	Batch size	[4096]
	Number of epochs	[1, 2, 3]
	Number of layers	[2, 3, 4]
	Hidden layer size	[256, 512, 1024]
	VREX penalty anneal iterations	[1, 2, 3]

966 causal relationships, meeting at least one of: (1) being known causal, (2) having plausible but poten-
 967 tially bidirectional influence, or (3) likely (but unconfirmed) causal effect. These groups approximate
 968 true causal parents based on available knowledge, though relationships may be confounded. Some
 969 datasets additionally contain *anti-causal* covariates where the target likely affects them but not vice
 970 versa. The *all covariates* set includes all observed variables regardless of causal status. The sign
 971 consistency metric introduced in the main paper § 5 is defined as follows. For each $(m, \sigma_m) \in M$ where
 $M = \{($ conditional informativeness, +1), (variation, -1), (label shift, +1), (feature shift, +1),

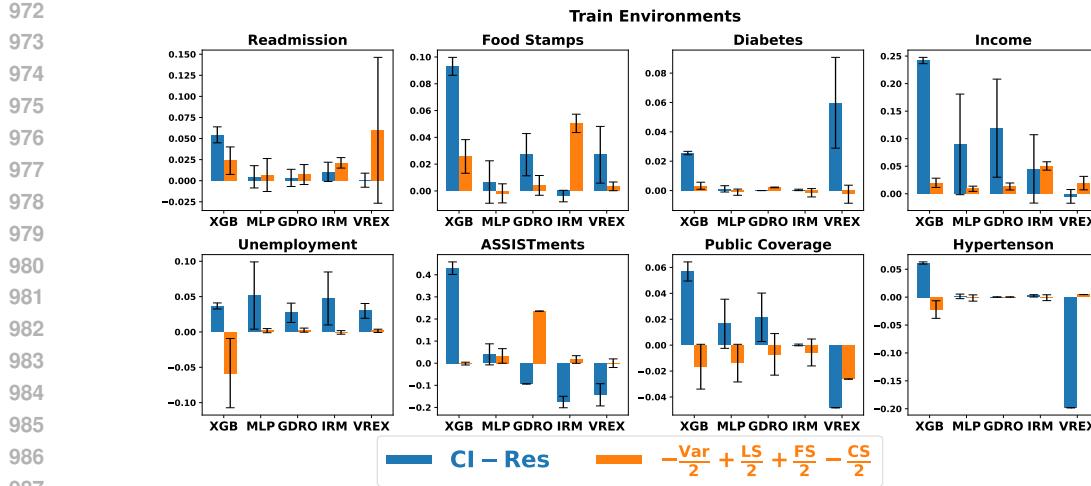


Figure C2: Dataset specific results on ID data.

(concept shift, -1), and (residual, -1 }), for a specific dataset, we compute:

$$C_m = \frac{1}{2|P|} \sum_{(s,t) \in P} [\mathbb{I}(\sigma_m \cdot (\mu_t^{\text{tr}}(m) - \mu_s^{\text{tr}}(m)) > 0) + \mathbb{I}(\sigma_m \cdot (\mu_t^{\text{te}}(m) - \mu_s^{\text{te}}(m)) > 0)]$$

Where P is the set of covariate set pairs (s, t) with $t \supset s$. For example, s can be causal covariates and t can be arguably causal covariates. There is a factor of 2 in $2P$ that accounts for both train and test data. $\mu_s^{\text{tr/te}}(m)$ is the mean of measure m for covariate set s in training/testing data. $\mathbb{I}(\cdot)$ is the indicator function. $|P| = 3$ for covariate settings $\{\text{causal, arguably causal, all}\}$. To get final sign consistency metric value for each m , we average across datasets: $\bar{C}_m = \frac{1}{|D|} \sum_{d \in D} C_m^{(d)}$ where $|D|$ is the number of datasets.

C ADDITIONAL RESULTS ON REAL-WORLD DATASETS

In this section, we present additional results on real-world datasets. Figures C2, C3 show the comparison of the terms: *conditional informativeness – residual* and *–variation/2 + label shift/2 + feature shift/2 – concept shift/2* for each dataset. The key takeaway from these results is that, from Theorem 4.1, the sum of blue and orange terms is positively correlated with the overall model performance. At the same time, due to potential hidden confounding shift in real-world data, the contribution of the difference *conditional informativeness – residual* is higher towards the overall predictive information when compared to the contribution of *–variation/2 + label shift/2 + feature shift/2 – concept shift/2*. This serves as a motivation to maximize conditional informativeness for better OOD generalization under a hidden confounding shift.

Table C2: Comparison of ID and OOD test accuracies of models.

Method	Readmission		Food stamps		Diabetes	
	ID	OOD	ID	OOD	ID	OOD
MLP	65.78 ± 0.14	61.75 ± 0.22	84.74 ± 0.03	82.00 ± 0.06	87.66 ± 0.02	83.22 ± 0.05
GDRO	60.47 ± 1.08	57.60 ± 0.42	84.47 ± 0.04	81.41 ± 0.09	87.47 ± 0.10	82.90 ± 0.10
IRM	50.28 ± 7.35	50.85 ± 1.74	80.91 ± 0.00	78.01 ± 0.00	42.54 ± 36.52	43.48 ± 31.92
Method	Income		Unemployment			
	MLP	82.92 ± 0.05	81.46 ± 0.01	97.27 ± 0.02	96.04 ± 0.05	
GDRO	82.70 ± 0.05	80.16 ± 0.45	97.28 ± 0.01	96.10 ± 0.00		
IRM	67.91 ± 0.00	60.20 ± 0.00	96.61 ± 0.00	94.84 ± 0.00		

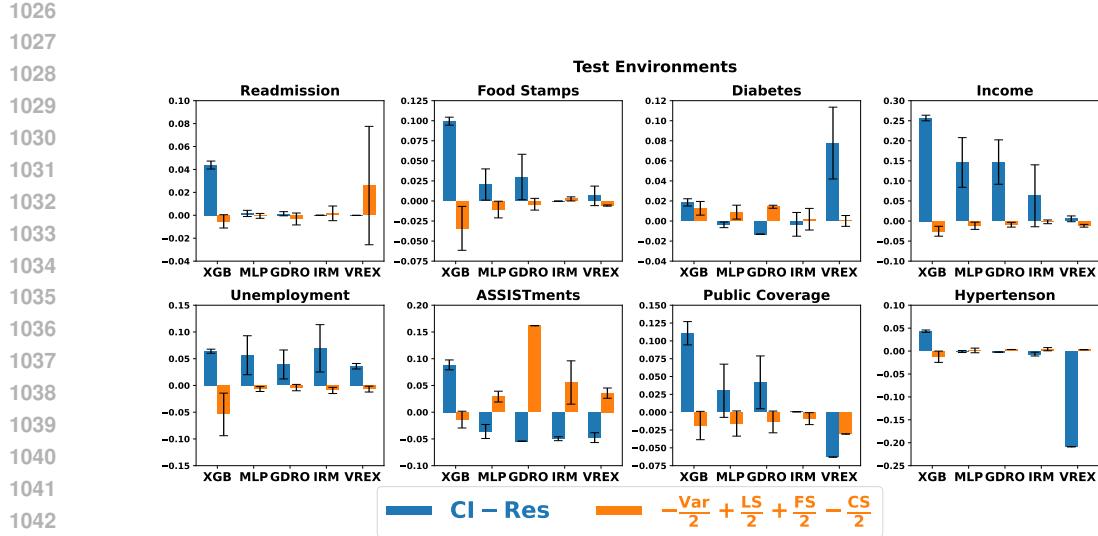


Figure C3: Dataset-specific results on OOD data.

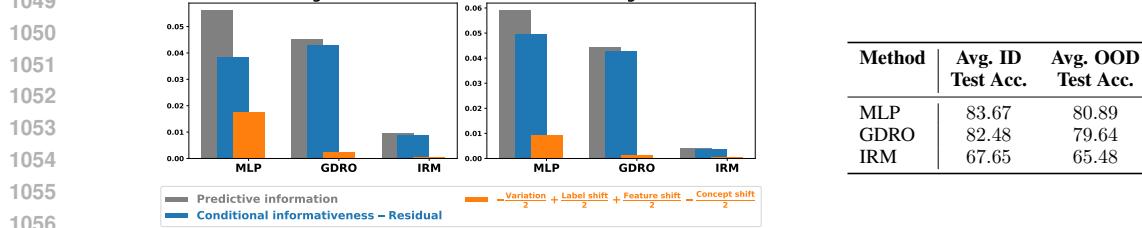


Figure C4: The difference *conditional informativeness – residual* in the plots is positively correlated with the average ID and OOD test accuracy over five datasets shown in the table on the right. The contribution of the difference *conditional informativeness – residual* is higher towards the overall predictive information when compared to the contribution of $-\text{variation}/2 + \text{label shift}/2 + \text{feature shift}/2 - \text{concept shift}/2$.

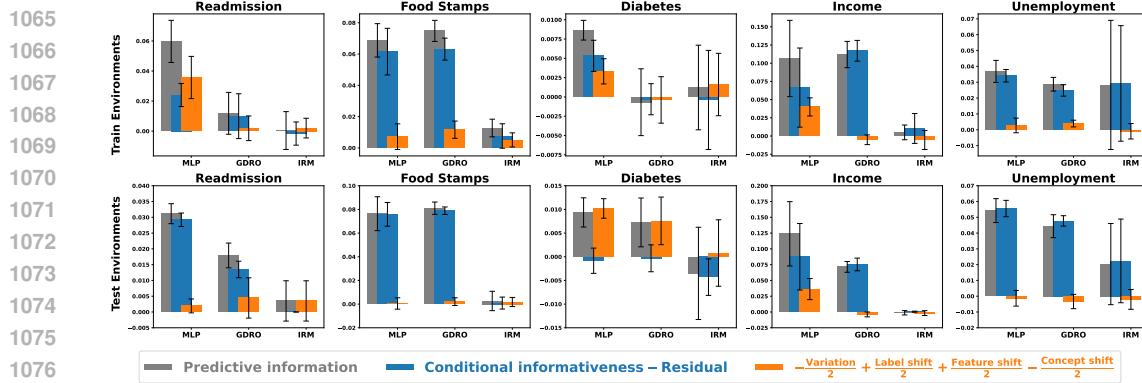


Figure C5: Dataset specific results. Comparison of predictive information among models.

1080 Figures C6- C15 further show the comparison of various terms of the information decomposition in 1
 1081 for each method and dataset. From these results, we observe that the values plotted in the second
 1082 column (**variation**) and third column (**feature shift**) are similar in magnitude, and based on Equation 1,
 1083 their difference is close to zero, contributing very little to the overall predictive decomposition.
 1084 Similarly, we observe that the values plotted in the fourth column (**label shift**) and fifth column
 1085 (**concept shift**) are similar in magnitude, and based on Equation 1, their difference is close to zero,
 1086 contributing very little to the overall predictive decomposition. In almost all settings, the difference
 1087 *conditional informativeness - residual* is the majority contributor for the predictive information.

1088 **Hyperparameter tuning:** We also perform hyperparameter tuning on model parameters. We run
 1089 a grid search over hyperparameter values and select the best hyperparameter values based on ID
 1090 validation accuracy (not OOD validation accuracy). We run 1500 experiments (5 datasets, 3 models,
 1091 and 100 hyperparameter choices sampled from a grid of hyperparameter values). In this case, to
 1092 get the mean and standard deviation results for accuracies and mutual information terms, we run
 1093 each experiment for 5 random seeds, even if the effect of random seeds is insignificant in many
 1094 cases. Results are shown in Figure C4. From Theorem 4.1, the sum of **blue** and **orange** terms is
 1095 positively correlated with the overall model performance. At the same time, due to potential hidden
 1096 confounding shift in real-world data, the contribution of the difference *conditional informativeness -*
 1097 *residual* is higher towards the overall predictive information when compared to the contribution of
 1098 *-variation / 2 + label shift / 2 + feature shift / 2 - concept shift / 2*. Dataset-specific results shown
 1099 in Figure C5 and Table C2 also show similar trends.

1100 **Potential limitations with predictive information decomposition analysis:** While predictive
 1101 information $I(Y; \hat{Y})$ measures statistical dependence between predictions and labels, it does not
 1102 guarantee accuracy. For instance, a binary classifier that systematically predicts the *wrong* label
 1103 (e.g., $\hat{Y} = 1$ when $Y = 0$) achieves maximal $I(Y; \hat{Y}) = 1$ bit (for binary variables) due to
 1104 perfect anti-correlation, yet yields 0% accuracy. This occurs because mutual information quantifies
 1105 *reduction in uncertainty* rather than correctness. Other decomposition terms provide further insight:
 1106 conditional informativeness $I(\phi(\mathbf{X}); Y|E)$ may mask harmful variation $I(\phi(\mathbf{X}); E|Y)$, while feature
 1107 shift $I(\phi(\mathbf{X}); E)$ can inflate $I(Y; \hat{Y})$ through spurious correlations. Nevertheless, this decomposition
 1108 remains valuable for analyzing reasonably performant models, as our experiments demonstrate - it
 1109 reveals whether predictive information stems from generalizable patterns or environment-specific
 1110 artifacts, enabling targeted improvements while maintaining interpretability.

1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

Figure C6: Decomposition of information metrics on train data for XGBoost and groups of features:
 (C) Causal, (A.C) Arguably causal, (A) All.

1178

1179

1180

1181

1182

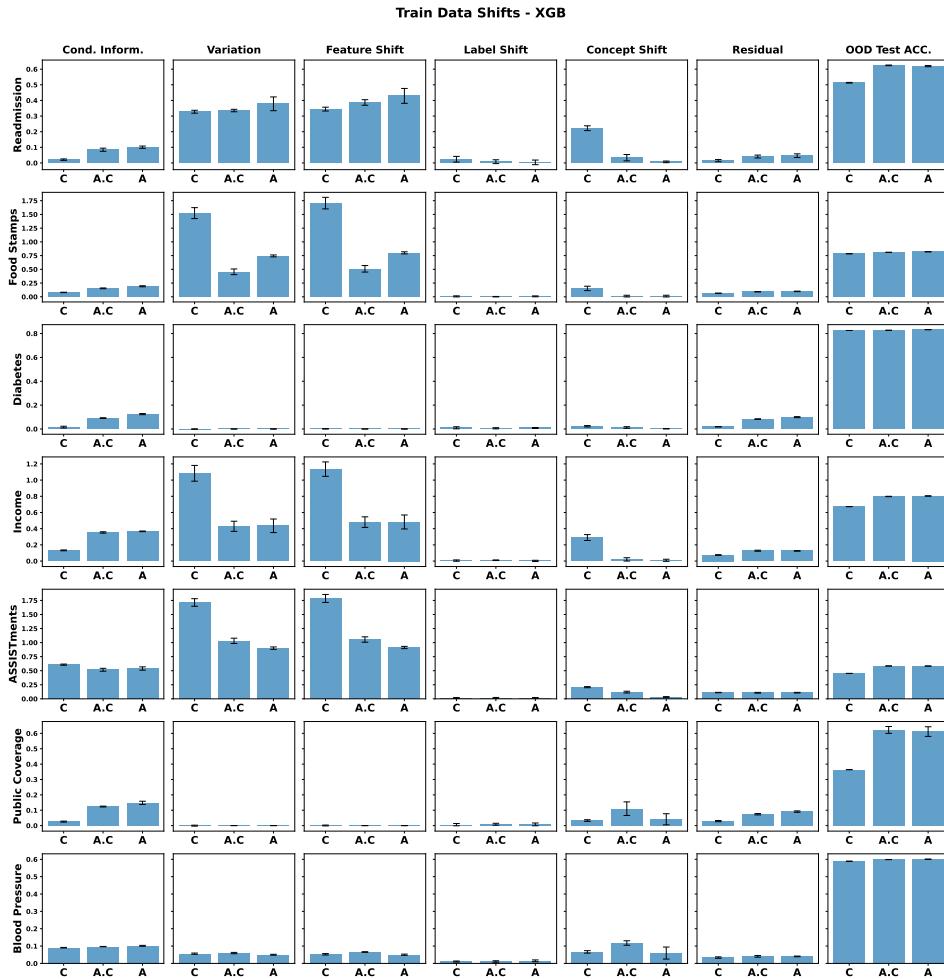
1183

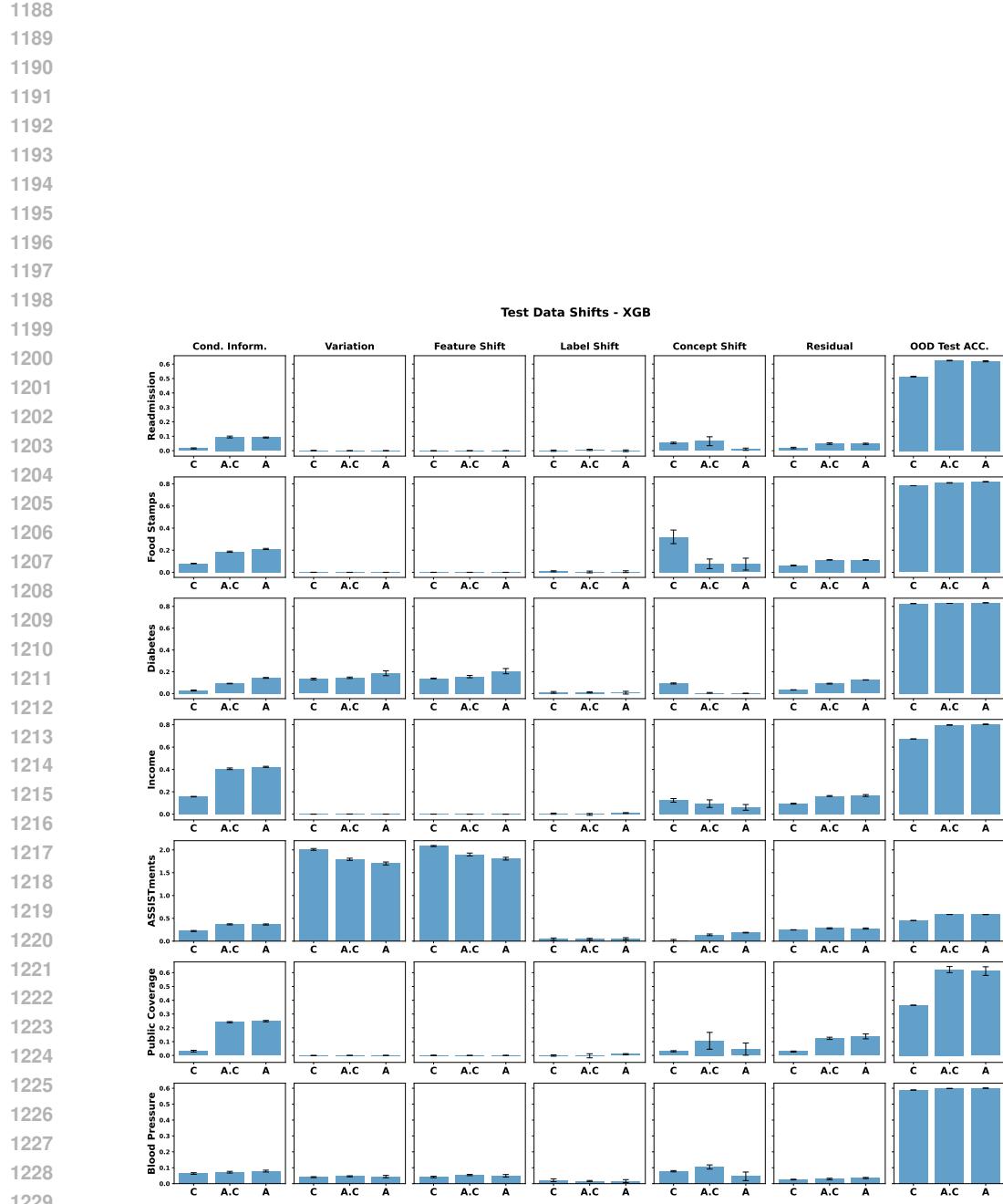
1184

1185

1186

1187





1228 **Figure C7: Decomposition of information metrics on test data for XGBoost and groups of features:**
1229 **(C) Causal, (A.C) Arguably causal, (A) All.**

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

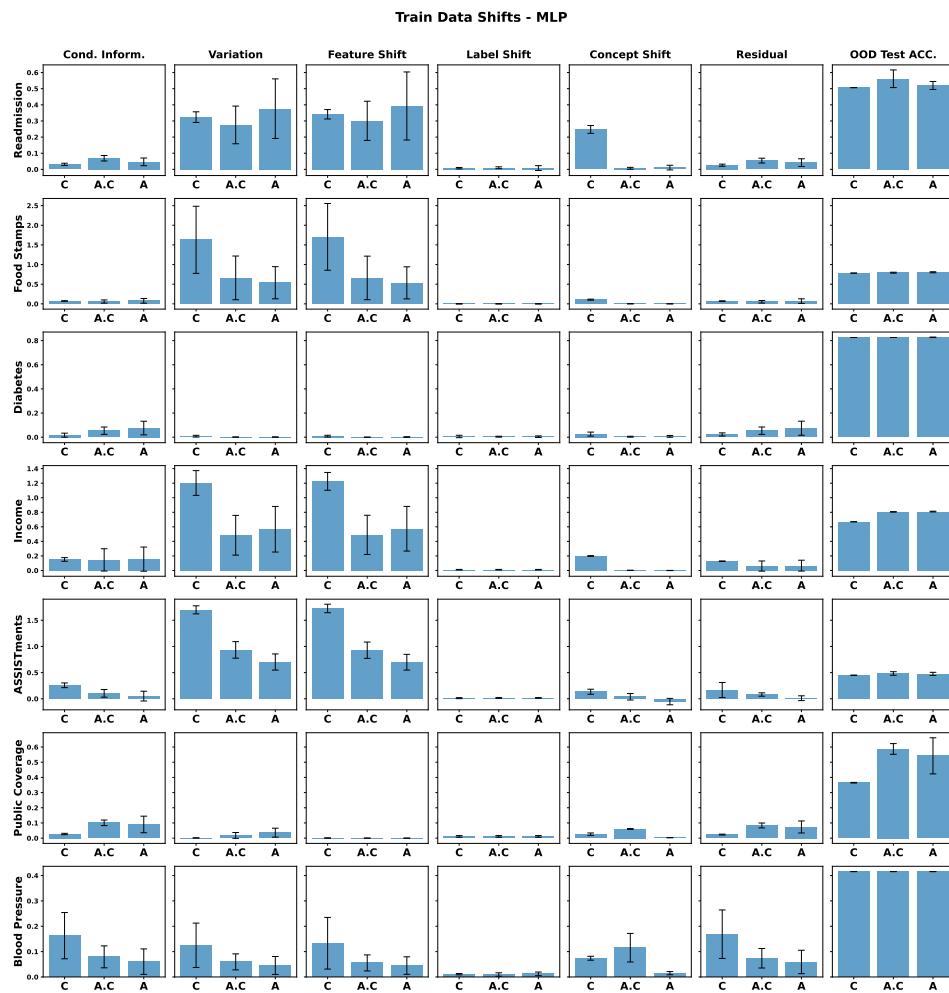


Figure C8: Decomposition of information metrics on train data for MLP and groups of features: (C) Causal, (A.C) Arguably causal, (A) All.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

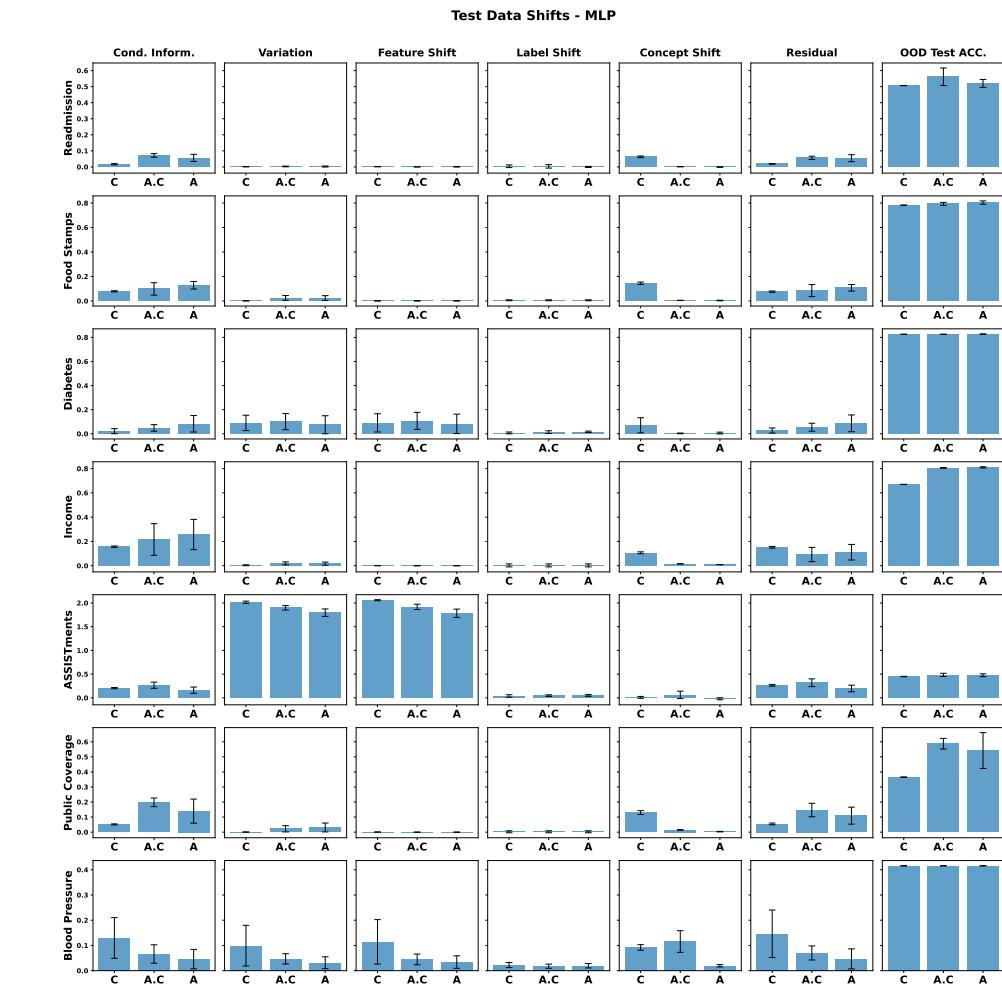


Figure C9: Decomposition of information metrics on test data for MLP and groups of features: (C) Causal, (A.C) Arguably causal, (A) All.

1340

1341

1342

1343

1344

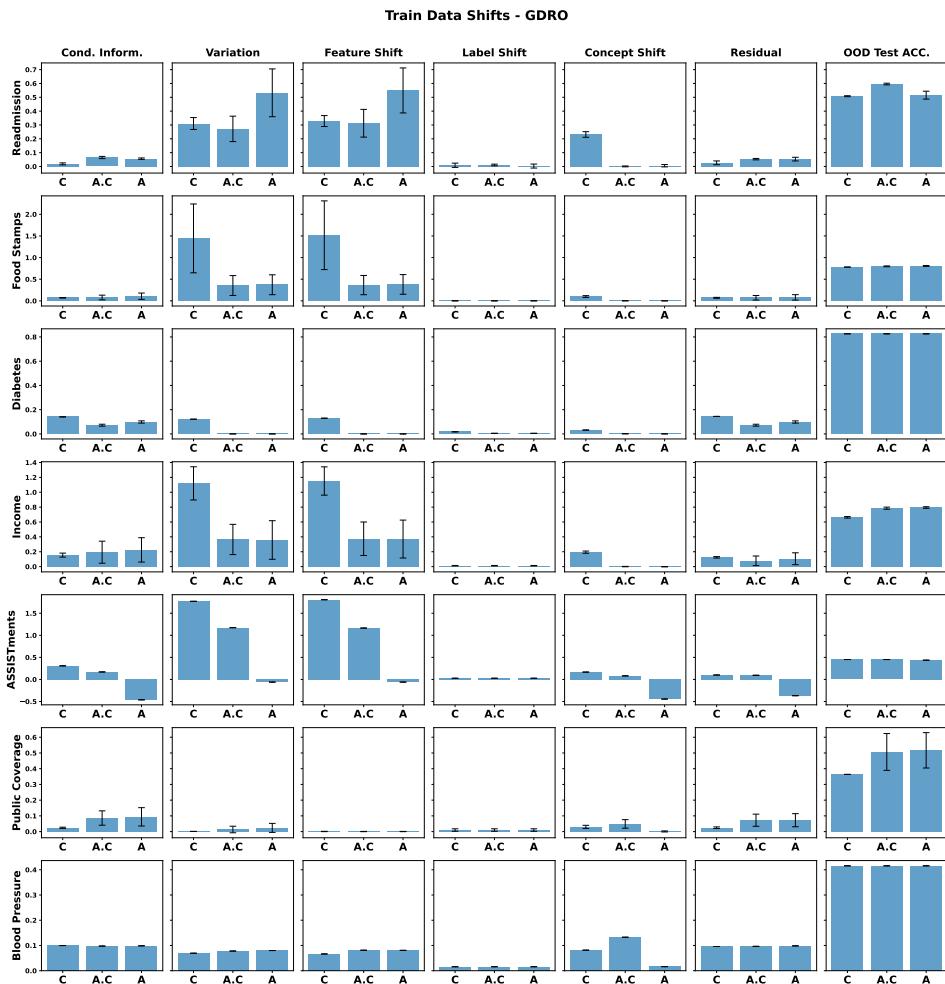
1345

1346

1347

1348

1349



1392 Figure C10: Decomposition of information metrics on train data for GDRO and groups of features:
 1393 (C) Causal, (A.C) Arguably causal, (A) All.

1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

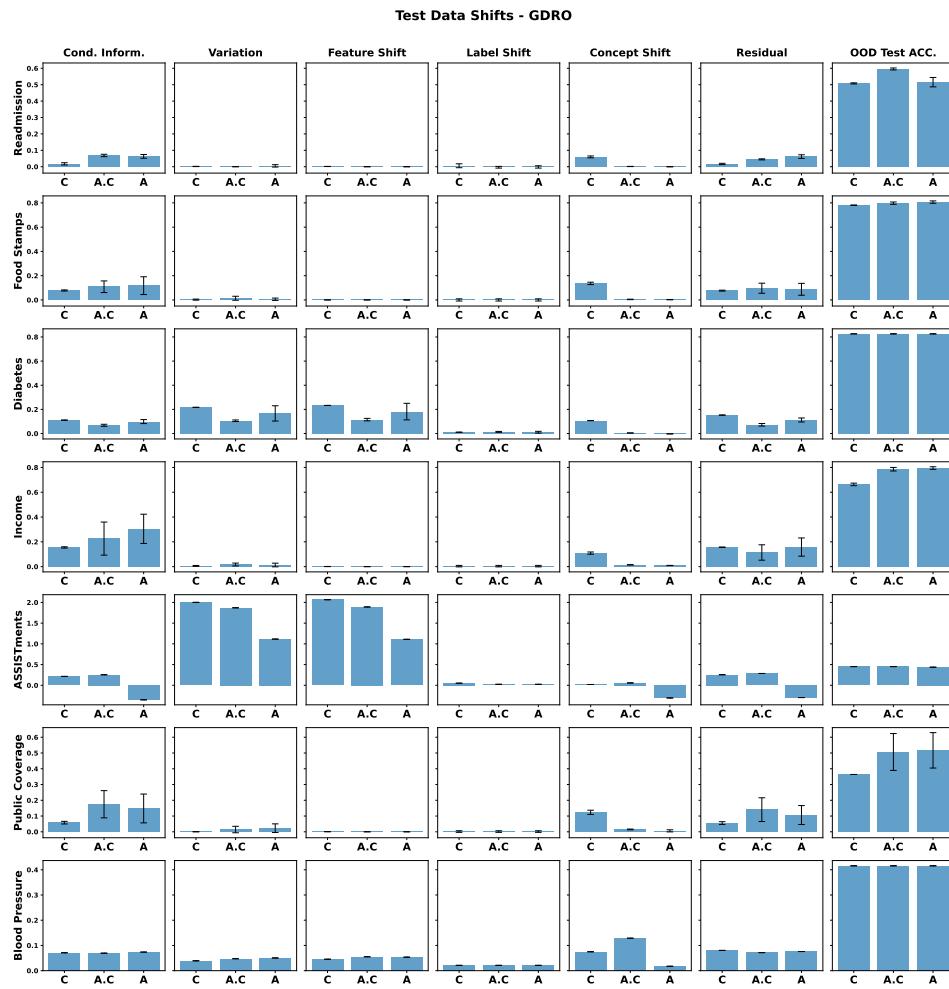


Figure C11: Decomposition of information metrics on test data for GDRO and groups of features: (C) Causal, (A.C) Arguably causal, (A) All.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

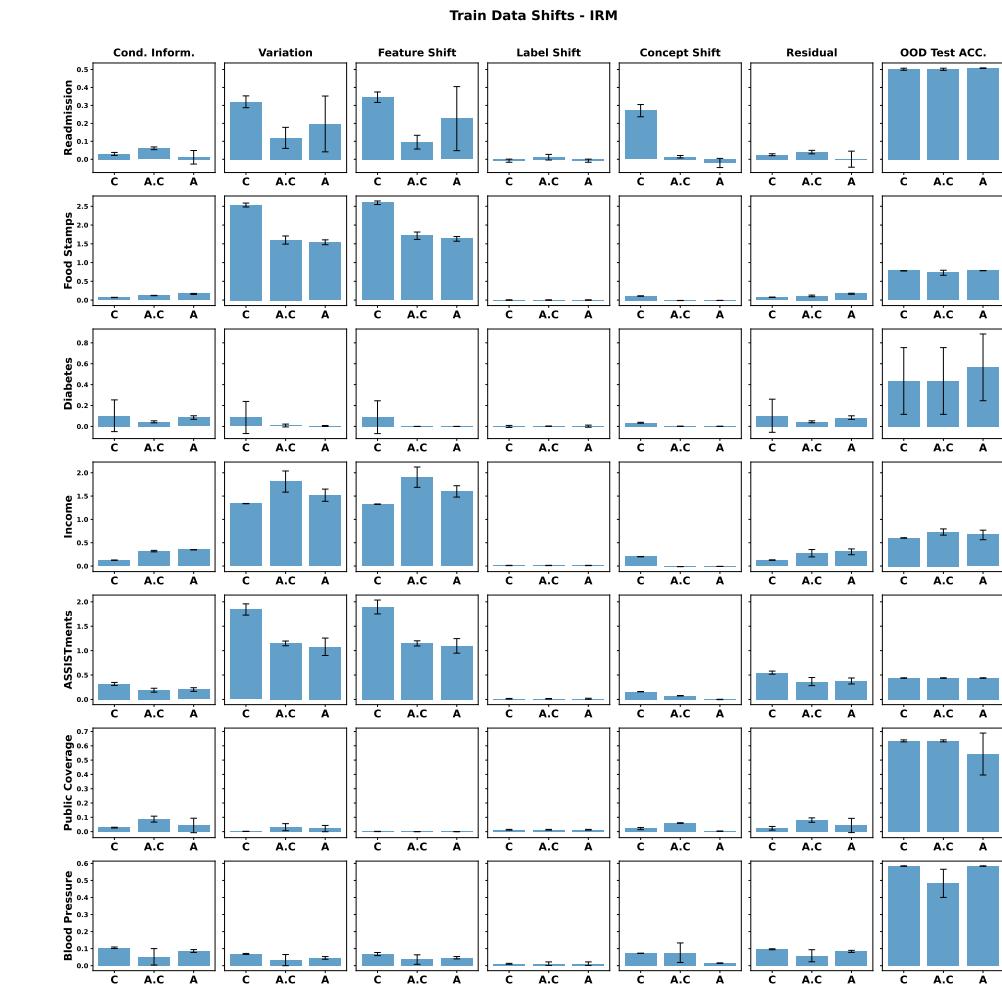


Figure C12: Decomposition of information metrics on train data for IRM and groups of features: (C) Causal, (A.C) Arguably causal, (A) All.

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

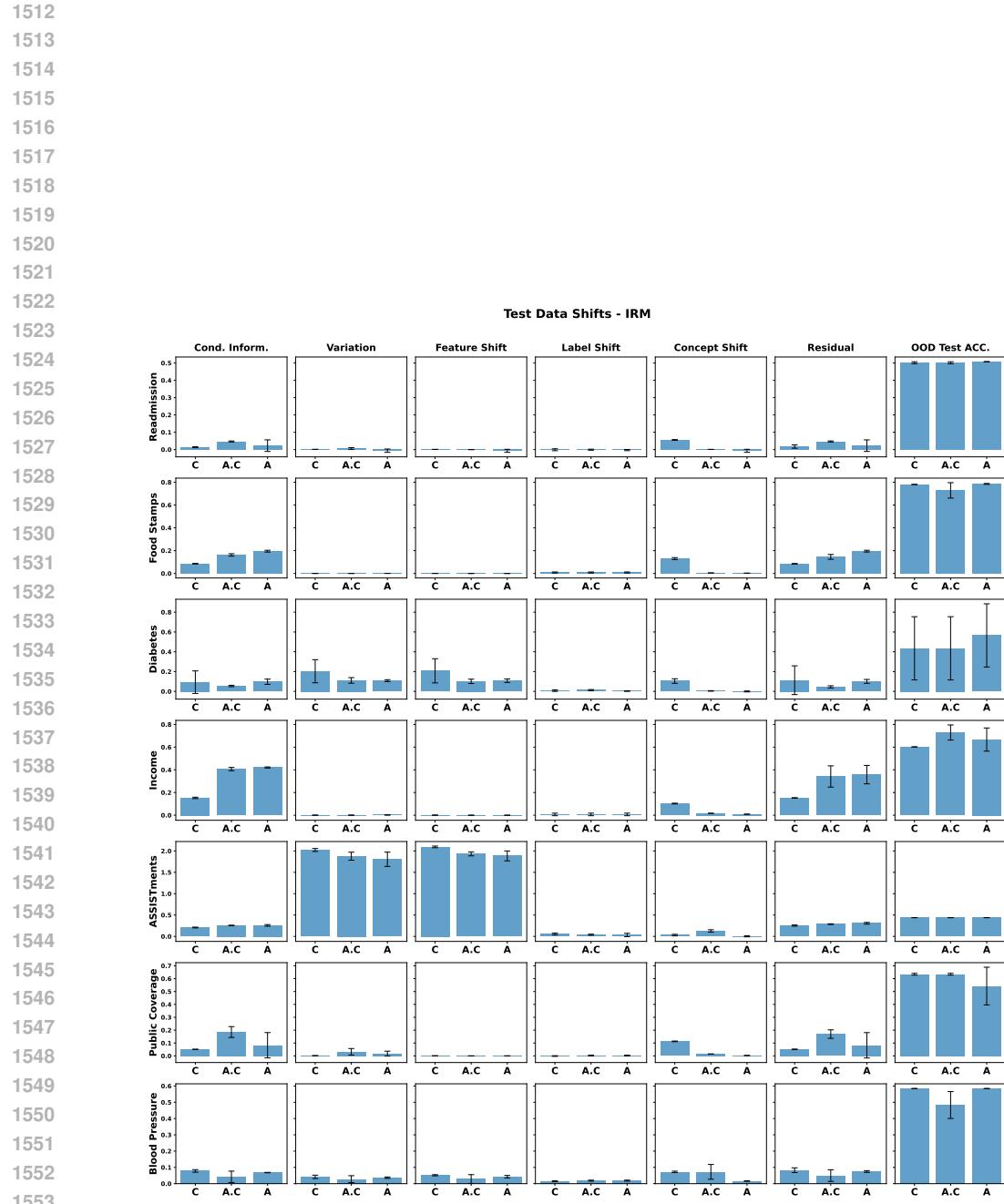


Figure C13: Decomposition of information metrics on test data for IRM and groups of features: (C) Causal, (A.C) Arguably causal, (A) All.

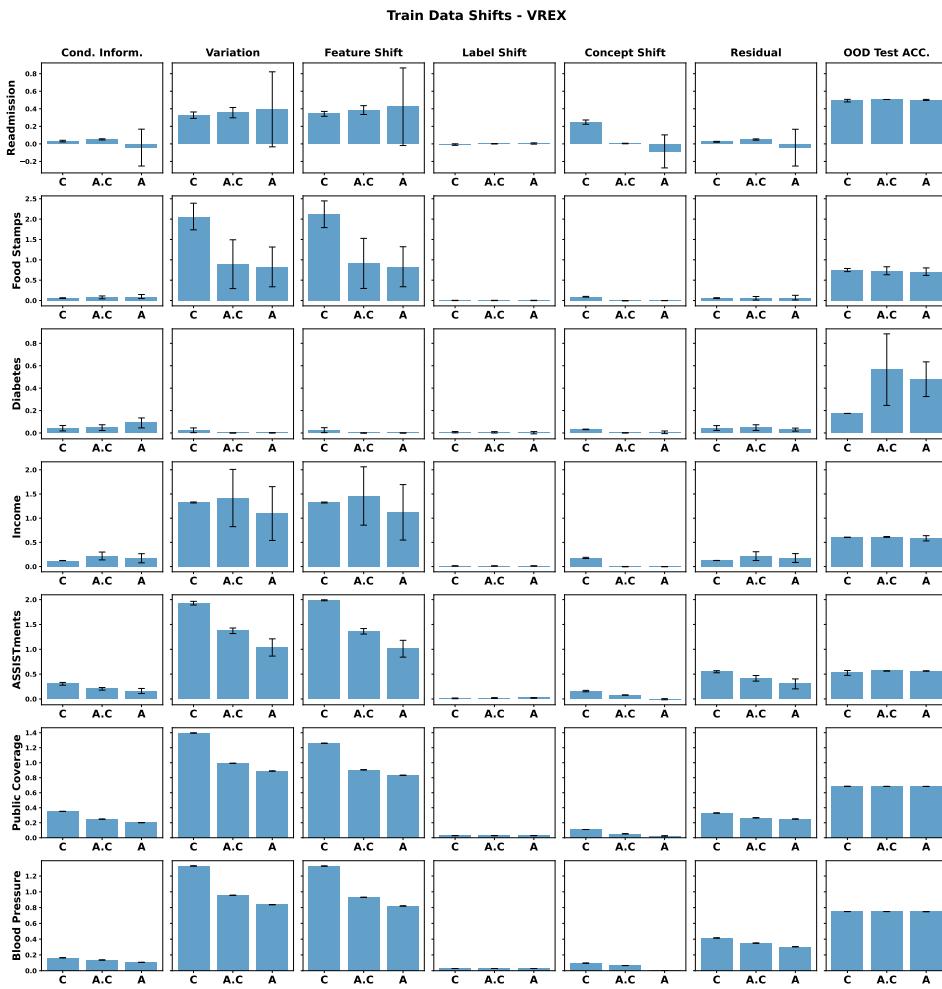


Figure C14: Decomposition of information metrics on train data for VREX and groups of features: (C) Causal, (A.C) Arguably causal, (A) All.

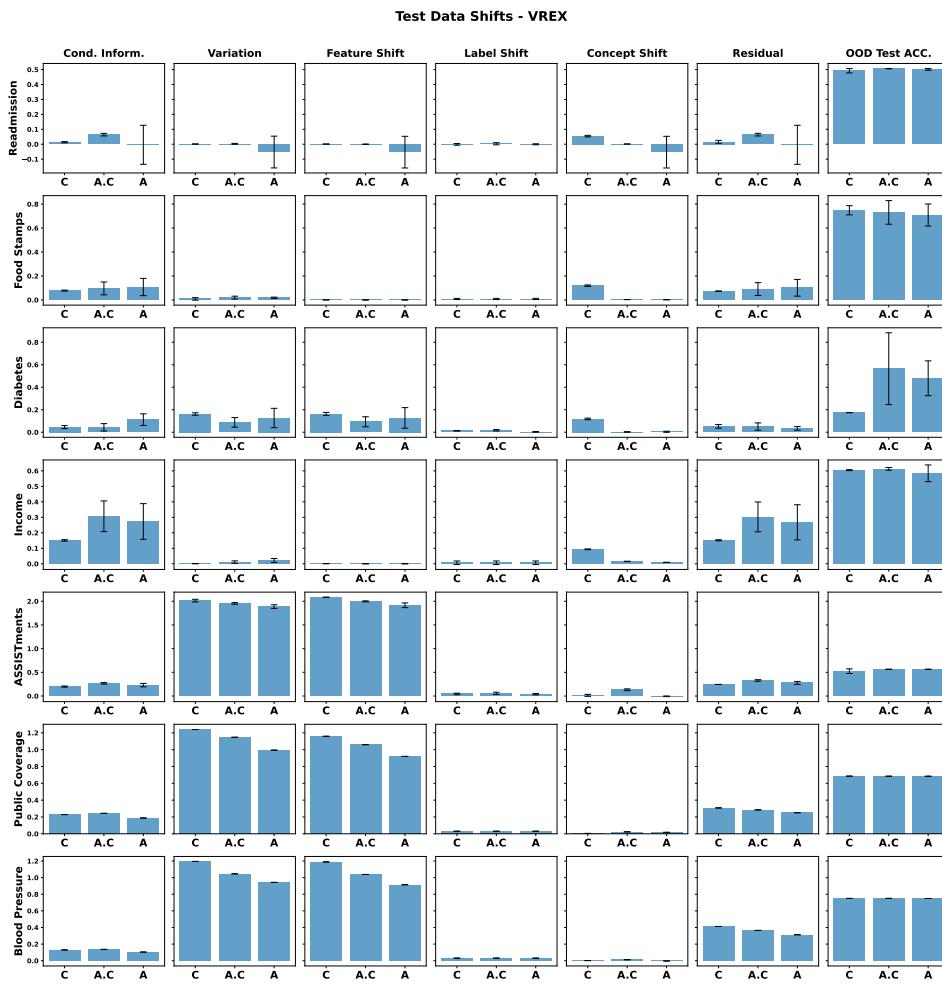


Figure C15: Decomposition of information metrics on test data for VREX and groups of features: (C) Causal, (A.C) Arguably causal, (A) All.

1674 D RESULTS ON SYNTHETIC DATASETS

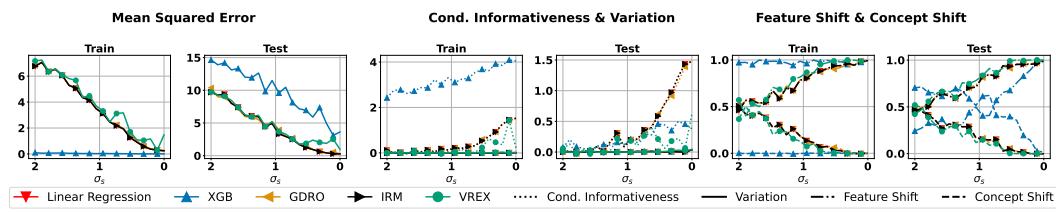
1675
 1676 We conduct several experiments on synthetic datasets to investigate: (i) the impact of different
 1677 informativeness criteria, (ii) how the level of confounder overlap across environments affects model
 1678 performance, and (iii) the influence of the number of causal versus anti-causal variables on the
 1679 performance. The data-generating process follows the structural equations in 12, with the causal
 1680 structure $U \rightarrow X, U \rightarrow Y, U \rightarrow \mathbf{X}_I$, and $X \rightarrow Y$, where U is an unobserved confounder, X is an
 1681 observed covariate, Y is the target variable, and \mathbf{X}_I represents additional informative covariates.

$$1682 \quad U \sim \mathcal{N}(\mu_u^e, \sigma_u) \quad X \leftarrow f_X(U) + \mathcal{N}(\mu_x, \sigma_x) \quad (12)$$

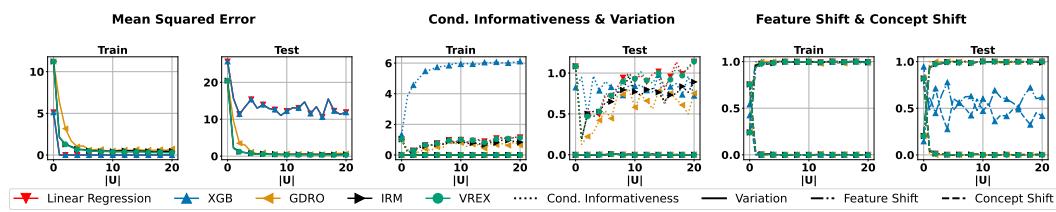
$$1683 \quad X_i \leftarrow f_i(U) + \mathcal{N}(\mu_i, \sigma_i); \quad X_i \in \mathbf{X}_I \quad Y \leftarrow f_Y(X, U) + \mathcal{N}(\mu_y, \sigma_y)$$

1684
 1685 We explore different functional forms for f_X , f_i , and f_Y , with the corresponding results presented in
 1686 our analysis. Domain shifts are induced by systematically varying the environment-specific mean
 1687 parameter μ_u^e of the confounder distribution. This allows us to examine how different degrees of
 1688 distributional shift affect model performance across environments.

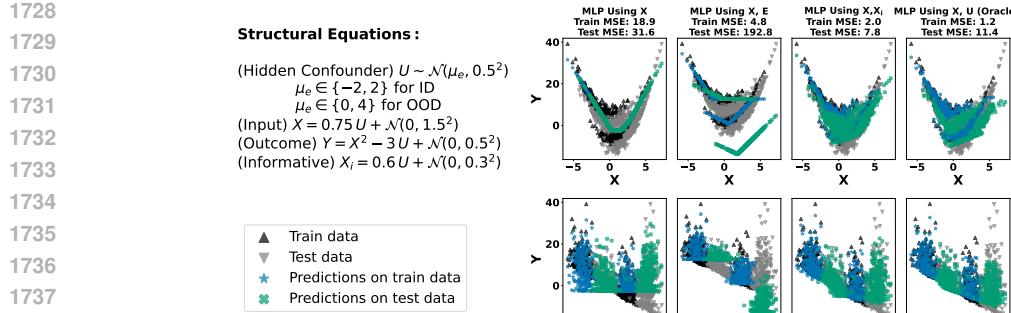
1689
 1690 **Informativeness vs. accuracy:** In this set of experiments, we begin with linear structural equations:
 1691 $f_X = 0.3U$, $f_i = 0.1U$, and $f_Y = X - 2U$. For these experiments $\mu_u^e \in \{-2, 2\}$ for training
 1692 environments and $\mu_u^e \in \{0, 4\}$ for test environments. For the results presented in Figure 4 of the
 1693 main paper, we consider one hidden confounding variable with $|\mathbf{X}_I| = 20$ informative covariates.
 1694 As we increase the number of informative covariates from 0 to 20, we observe: (i) a reduction in
 1695 mean squared error, (ii) improved conditional informativeness, (iii) enhanced feature shift, while
 1696 (iv) decreased concept shift. We extend these findings by examining two additional informativeness
 1697 criteria. First, we analyze the case with one hidden confounder and a single informative covariate
 1698 ($|\mathbf{X}_I| = 1$) across varying noise levels $\sigma_i \in \{0, 0.1, \dots, 2.0\}$. Figure D16 demonstrates that as noise
 1699 decreases from 2.0 to 0.0, we observe: (i) reduced mean squared error, (ii) improved conditional
 1700 informativeness, (iii) enhanced feature shift, alongside (iv) decreased concept shift. Consistent with
 1701 other synthetic experiments, the variation term remains zero throughout. Finally, we investigate a
 1702 setting with 20 hidden confounders and corresponding 20 informative covariates, using modified
 1703 structural equations $f_X = 0.3U$, $f_i = 0.2U$, and $f_Y = X - 2U$. Figure D17 shows that as we
 1704 introduce informative covariates corresponding to hidden confounders, we again observe: (i) reduced
 1705 mean squared error, (ii) improved conditional informativeness, (iii) enhanced feature shift, while
 1706 (iv) decreased concept shift. These experiments demonstrate how different informativeness criteria
 1707 help in achieving OOD generalization.



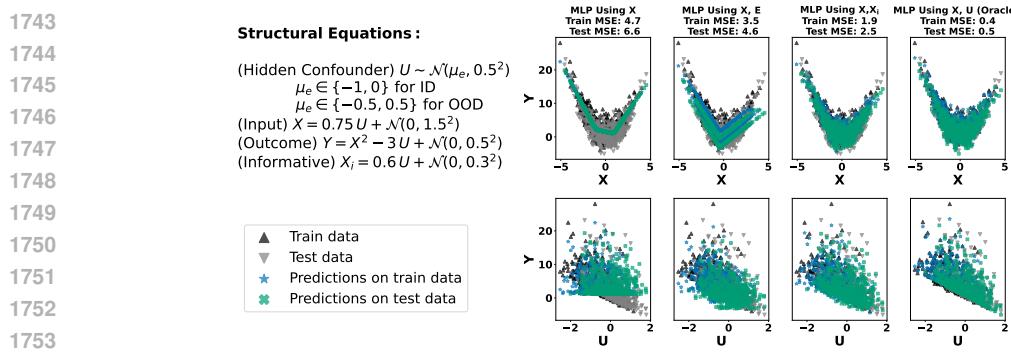
1708
 1709 Figure D16: Adding proxy variable with low noise helps in reducing MSE, increasing conditional
 1710 informativeness and feature shift while reducing concept shift.



1711
 1712 Figure D17: Adding more proxy variables \mathbf{X}_I of a set of hidden confounding variables U that are
 1713 informative to Y helps in reducing MSE, increasing conditional informativeness and feature shift
 1714 while reducing concept shift.



1740 Figure D18: Performance of MLP on the low overlap non-linear setting, for sets of features: (i) X
1741 (ii) X and E (environment statistics) (iii) X and X_i (iv) X and U (Oracle).



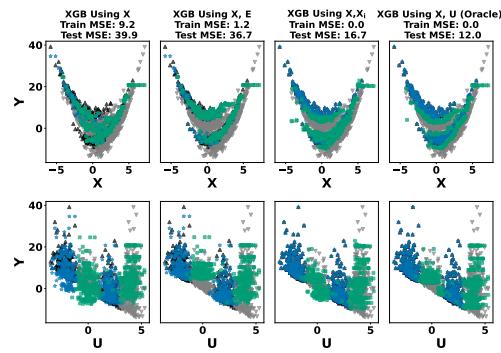
1754 Figure D19: Performance of MLP on the high overlap non-linear setting, for sets of features: (i) X
1755 (ii) X and E (environment statistics) (iii) X and X_i (iv) X and U (Oracle).

1758 **Overlapping confounder support vs. accuracy:** As established in the main paper, recent work
1759 by Prashant et al. (2025) proposed an OOD generalization method for hidden confounding shift that
1760 assumes test confounder support remains within training support. While our results demonstrated
1761 successful learning of correct relationships in synthetic linear data when sufficient information about
1762 hidden confounders exists in observed covariates, we now extend this analysis to nonlinear data
1763 using MLP and XGB models under both low and high confounding support conditions (Figures D18–
1764 D21). In low confounding overlap settings (characterized by distant μ_e between ID and OOD data),
1765 models relying solely on X learn an inadequate global function that fails to distinguish environments.
1766 Performance improves when incorporating environment-specific summary statistics of observed
1767 covariates, which helps capture environment-specific relationships, but the most significant gains
1768 occur only when leveraging additional informative covariates, underscoring their importance. For
1769 completeness, we include both oracle model results and U - Y relationship scatter plots to elucidate
1770 the learned input-output mappings. These experiments confirm better performance under high
1771 confounding overlap as expected, but more importantly, reveal promising results in the low-overlap
1772 regime – a previously unstudied scenario that challenges the common support assumption in the
1773 literature.

1773 **Number of causal vs anti-causal variables:** Recent benchmarks (Gardner et al., 2023) show
1774 that baseline methods (e.g., XGB, MLP) consistently match or outperform OOD generalization
1775 techniques (e.g., GDRO, IRM, VREX) in real-world datasets, coinciding with the prevalent causal
1776 structure $\mathbf{X} \rightarrow Y$ in tabular data. To test if baseline superiority stems from the causal structure:
1777 $\mathbf{X} \rightarrow Y$, we vary the causal-to-anti-causal ratio $\rho = |\mathbf{X}_C|/|\mathbf{X}_A| \in \{0.0, \dots, 1.0\}$ with $|\mathbf{X}| = 50$
1778 and $\mathbf{X} = \mathbf{X}_C \cup \mathbf{X}_A$ (e.g., $\rho = 0.5$ gives $|\mathbf{X}_C| = |\mathbf{X}_A| = 25$). Results (Figure D22) show baseline
1779 resilience even under the causal structures $\mathbf{X}_C \rightarrow Y \rightarrow \mathbf{X}_A$, though no method dominates universally
1780 (Figures D23, D24). Baselines achieve superior PMA-OOD scores (Gardner et al., 2023) (fraction
1781 of maximum OOD accuracy). We evaluate: (1) ERM-based methods (XGBoost (Chen & Guestrin,
1782 2016), LightGBM (Ke et al., 2017), MLP, ResNet (Gorishniy et al., 2021), SAINT (Somepalli et al.,

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789 **Structural Equations :**
 1790 (Hidden Confounder) $U \sim \mathcal{N}(\mu_e, 0.5^2)$
 $\mu_e \in \{-2, 2\}$ for ID
 $\mu_e \in \{0, 4\}$ for OOD
 1792 (Input) $X = 0.75U + \mathcal{N}(0, 1.5^2)$
 (Outcome) $Y = X^2 - 3U + \mathcal{N}(0, 0.5^2)$
 (Informative) $X_i = 0.6U + \mathcal{N}(0, 0.3^2)$
 1794
 1795
 1796
 1797
 1798
 1799

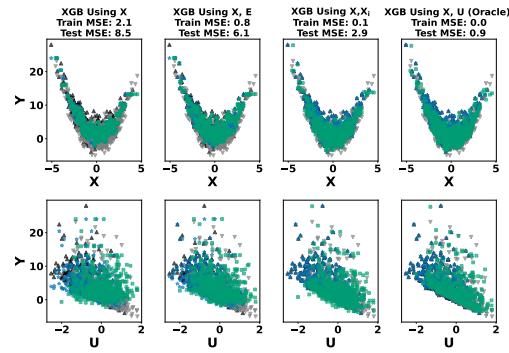
▲ Train data
 ▽ Test data
 ★ Predictions on train data
 ♦ Predictions on test data



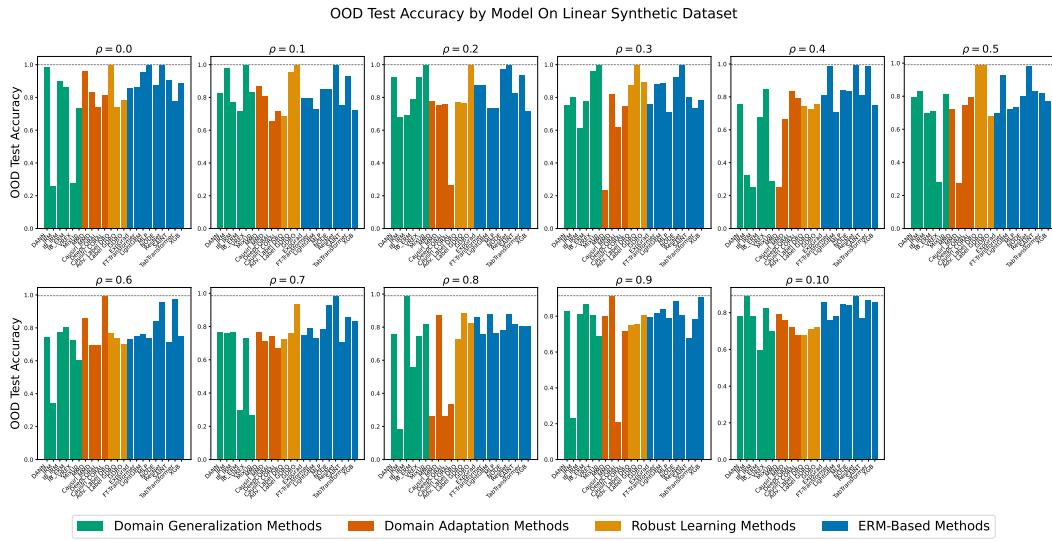
1800 Figure D20: Performance of XGB on the low overlap non-linear setting, for sets of features: (i) X
 1801 (ii) X and E (environment statistics) (iii) X and X_i (iv) X and U (Oracle).
 1802

1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816 **Structural Equations :**
 1817 (Hidden Confounder) $U \sim \mathcal{N}(\mu_e, 0.5^2)$
 $\mu_e \in \{-1, 0\}$ for ID
 $\mu_e \in \{-0.5, 0.5\}$ for OOD
 1820 (Input) $X = 0.75U + \mathcal{N}(0, 1.5^2)$
 (Outcome) $Y = X^2 - 3U + \mathcal{N}(0, 0.5^2)$
 (Informative) $X_i = 0.6U + \mathcal{N}(0, 0.3^2)$
 1821
 1822
 1823
 1824
 1825
 1826
 1827

▲ Train data
 ▽ Test data
 ★ Predictions on train data
 ♦ Predictions on test data



1828 Figure D21: Performance of XGB on the low overlap non-linear setting, for sets of features: (i) X
 1829 (ii) X and E (environment statistics) (iii) X and X_i (iv) X and U (Oracle).
 1830
 1831
 1832
 1833
 1834
 1835

Figure D23: OOD test accuracy on the linear setting per model for different values of ρ .

2021), TabTransformer, NODE (Popov et al., 2019), FT-Transformer, ExpGrad (Agarwal et al., 2018)); (2) OOD generalization methods (IRM (Arjovsky et al., 2019), IB-IRM, IB-ERM (Gulrajani & Lopez-Paz, 2021), CausIRL (Chevalley et al., 2022), DANN (Ajakan et al., 2014), MMD (Li et al., 2018), DeepCORAL (Sun & Saenko, 2016a), V-REx (Krueger et al., 2021), Domain Mixup (Xu et al., 2020; Yan et al., 2020)); and (3) Robust optimization methods (DRO (Levy et al., 2020), GroupDRO (Sagawa et al., 2019), Label DRO, Adversarial Label DRO (Zhang et al., 2020)).

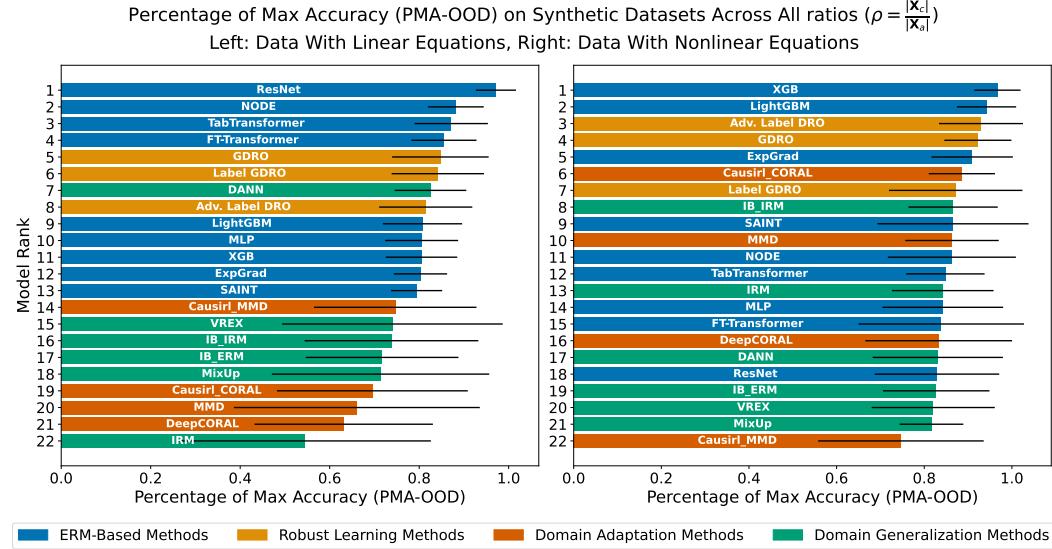
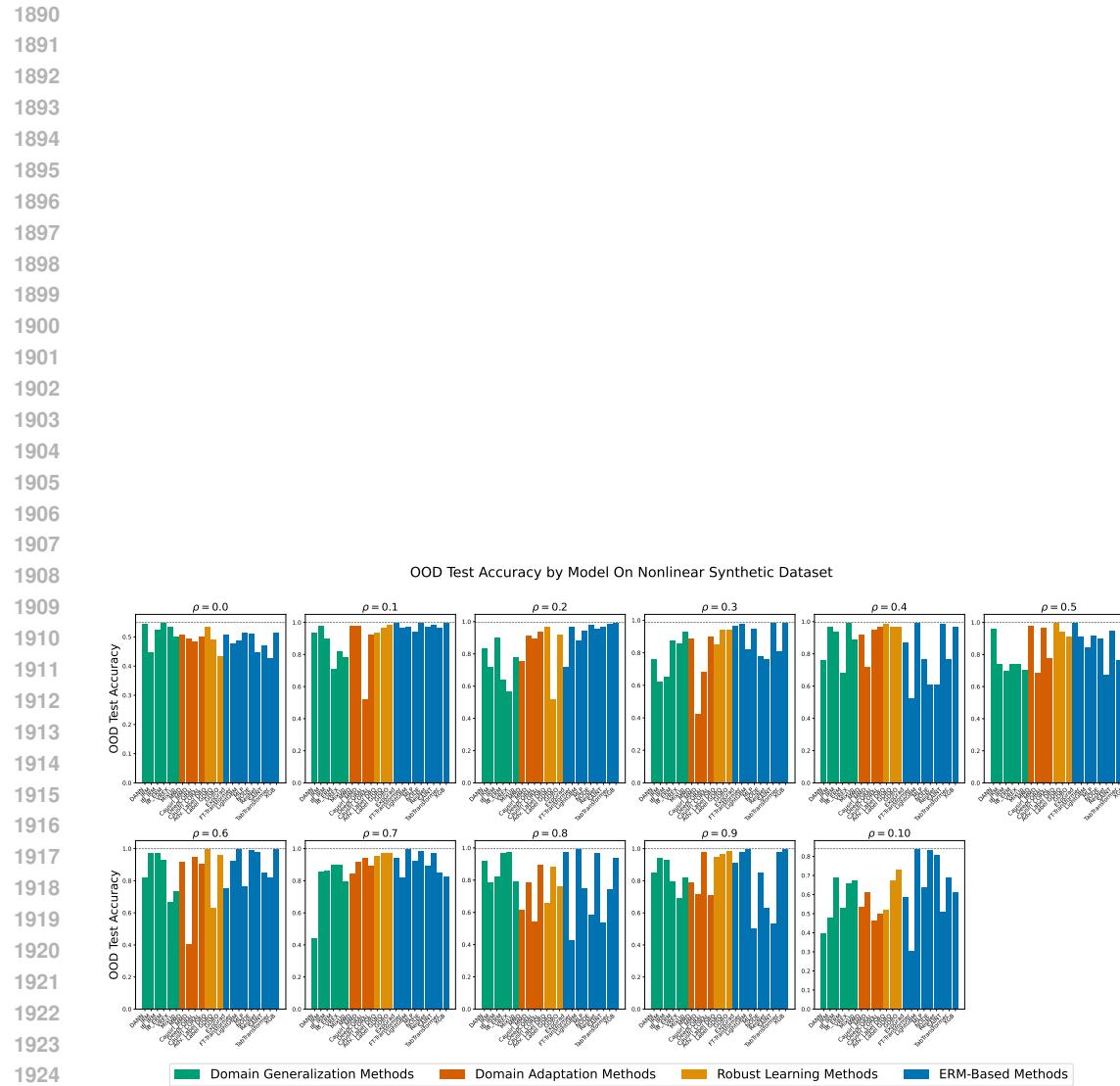


Figure D22: ERM-based methods achieve a better percentage of maximum OOD (PMA-OOD) test accuracy on the synthetic datasets, in line with the real-world results of (Gardner et al., 2023).

Figure D24: OOD test accuracy on the non-linear setting per model for different values of ρ

1944 **E QUALITATIVE ANALYSIS OF HIDDEN CONFOUNDING SHIFT IN REAL-WORLD**
 1945 **DATASETS**
 1946

1947 In this section, we qualitatively study the presence of hidden confounding shifts in real-world datasets.
 1948 Tables [E3-E18](#) present potential hidden confounders influencing various observed covariates in
 1949 several real-world datasets ([Nastl & Hardt, 2024](#)). For additional details regarding these datasets,
 1950 we refer to ([Gardner et al., 2023](#); [Nastl & Hardt, 2024](#)). We use GPT4o ([Achiam et al., 2023](#)) for
 1951 this task, and we acknowledge that the list of unobserved confounding variables provided is not
 1952 exhaustive. This study supports the arguments for the existence and impact of hidden confounding
 1953 shifts across domains in real-world datasets. These GPT-4o responses are solely meant for semantic
 1954 insight and are not implicitly or explicitly used in other experiments.
 1955

1956 **Prompt:** We use the prompt below to query GPT4o to get possible hidden confounders.

1957 For a target variable, you will be given lists of causal,
 1958 arguably causal, anti-causal, and spurious covariates. Also,
 1959 you will be provided with environment variables such that
 1960 different datasets are collected in environments induced by these
 1961 environment variables. Provide possible hidden confounders that
 1962 cause any of the target, causal, arguably causal, spurious, and
 1963 anti-causal covariates. That is, the hidden confounders should
 1964 influence the distribution of their children in different domains.
 1965 Ensure hidden confounders are not a part of the given variables,
 1966 and your explanation should include how hidden confounders
 1967 influence their children in different environments.

1968 **Table E3: Dataset:** Food stamps. **Target:** Food stamp recipiency in the past year for households
 1969 with child. **Environments:** regions in the United States.

1971 Hidden confounder	1972 Affected variables	1973 Reason for confounding
1972 Local economic conditions	1973 Food stamp recipiency, Age, Sex, Race, Marital status	1974 Poor economic conditions can increase food insecurity (raising food stamp usage), while also influencing population demographics due to migration, employment patterns, and household formation.
1975 State or regional public assistance policies	1976 Food stamp recipiency, Marital status, Number of children, Household income	1977 Generous or restrictive assistance policies directly affect food stamp eligibility and indirectly influence household structure and income distribution.
1978 Cultural attitudes towards welfare and public assistance	1979 Food stamp recipiency, Marital status, Disability, Race, Ethnicity	1980 Social stigma or support for welfare affects both the uptake of food stamps and social norms around marriage, disability reporting, and identity categories.
1981 Regional health care conditions	1982 Food stamp recipiency, Disability, Cognitive difficulty, Hearing difficulty, Vision difficulty	1983 Regions with limited healthcare access may show higher disability prevalence and greater reliance on food stamps due to increased financial and care burdens.

1998
1999
2000
2001
2002
2003

Table E4: **Dataset:** Income. **Target:** Total person’s income $\geq 56K$ for employed adults. **Environments:** regions in the United States.

Hidden confounder	Affected variables	Reason for confounding
Local economic conditions	Income, Occupation, Educational attainment, Marital status	Stronger local economies offer better-paying jobs and education access, increasing income; they also influence occupational choices and household formation patterns.
State or regional tax and labor policies	Income, Class of worker, Educational attainment, Marital status	Tax incentives and labor protections affect wages and employment types, while also shaping decisions about education and family due to financial security.
Cost of living and regional affordability	Income, Occupation, Marital status, Educational attainment	Higher living costs necessitate higher incomes and may drive occupational or educational shifts; they also influence marriage or cohabitation decisions.
Cultural norms and regional economic history	Income, Educational attainment, Occupation	Cultural values and historical industry presence shape education levels and job opportunities, which in turn affect income distributions.

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028

Table E5: **Dataset:** Public coverage. **Target:** Coverage of non-Medicare eligible low-income individuals. **Environments:** Disability statuses.

Hidden confounder	Affected variables	Reason for confounding
State or regional healthcare policies	Public health coverage, Marital status, Employment status, Income	Differences in Medicaid expansion and public insurance eligibility influence health coverage; these policies also affect economic stability, employment, and family dynamics.
Economic conditions and poverty levels	Public health coverage, Employment status, Income, Marital status	Poorer regions tend to have lower employment rates and incomes, which increase reliance on public health coverage and influence marriage and household composition.
Cultural attitudes towards disability and healthcare	Public health coverage, Disability status, Cognitive difficulty, Hearing difficulty, Vision difficulty	Stigma or support for disability and public care varies culturally, affecting both the reporting of disabilities and the likelihood of seeking or receiving public coverage.
Urban vs. rural divide	Public health coverage, Educational attainment, Marital status, Occupation	Urban areas typically offer better healthcare access, education, and jobs, all of which affect coverage likelihood and socioeconomic indicators.

2049
2050
2051

2052
 2053
 2054
 2055
Table E6: Dataset: Unemployment. Target: Classify whether a person is unemployed. Environ-
 2056 **ments: Educational attainments.**
 2057

Hidden confounder	Affected variables	Reason for confounding
Local economic conditions	Employment status, Occupation, Marital status, Mobility status	Regional economic strength affects job availability and unemployment rates; it also shapes occupation types, migration decisions, and household stability.
State or regional labor market policies	Employment status, Occupation, Educational attainment, Marital status	Labor regulations and unemployment benefits vary by region, affecting hiring practices, education incentives, and family structures.
Cultural and social norms around employment	Employment status, Disability status, Marital status	Cultural attitudes toward work and dependency influence unemployment reporting and societal roles around disability and family responsibilities.
Health and disability status	Employment status, Disability status, Cognitive difficulty, Hearing difficulty, Vision difficulty	Poor health or disabilities reduce the ability to work, directly increasing unemployment and shaping associated health-related variables.

2075
 2076
 2077
 2078
 2079
 2080
 2081
Table E7: Dataset: Voting. Target: Classify whether a person voted in the U.S. presidential election.
Environments: United States census regions.
 2084

Hidden confounder	Affected variables	Reason for confounding
Political, family, and peer influences	Voted in national election, Party identification, Political participation	Social networks shape political ideology and engagement, influencing both voting likelihood and party alignment.
Media consumption habits	Voted in national election, Party identification, Political knowledge, Voting behavior	Media exposure affects awareness of political issues and biases, influencing party affiliation, political knowledge, and voting participation.
Social capital	Voted in national election, Political participation, Interest in elections	Strong community ties and civic networks increase political interest and participation, leading to higher voter turnout.
Civic education and political engagement programs	Voted in national election, Interest in elections, Political knowledge	Educational programs raise political awareness and civic responsibility, influencing both knowledge levels and voting decisions.
Historical and cultural context	Voted in national election, Party identification, Interest in elections	Historical events and regional political culture affect interest in elections and party alignment, which in turn influence voting behavior.

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119

Table E8: **Dataset:** Hypertension. **Target:** Whether a person has hypertension. **Environments:** Body Mass Index (BMI) values.

Hidden confounder	Affected variables	Reason for confounding
Socioeconomic status	Income, Employment status, Smoking habits, Alcohol consumption, Physical activity, Healthcare access, Medical cost, High blood pressure diagnosis	Lower socioeconomic status reduces access to healthcare and healthy lifestyle options, leading to poor diet, limited activity, and delayed diagnosis, which jointly influence both BMI and hypertension risk.
Access to healthcare services	Healthcare access, Medical costs, Smoking habits, Alcohol consumption, Physical activity, High blood pressure diagnosis	Limited healthcare access results in under-diagnosis and unmanaged hypertension, while also affecting lifestyle choices that vary with BMI, confounding the relationship between BMI and hypertension.
Genetic predisposition	Age group, Race, Sex, Smoking habits, Diabetes, High blood pressure diagnosis	Genetic risk factors for hypertension may co-vary with demographic attributes and influence both hypertension prevalence and BMI distribution across subpopulations.
Psychosocial stress	Smoking habits, Alcohol consumption, Physical activity, High blood pressure diagnosis, Diabetes, Age group	Chronic stress alters behavior (e.g., smoking, inactivity) and physiological responses, contributing to both increased BMI and elevated blood pressure, thus confounding the BMI–hypertension link.
Environmental factors	Physical activity, Diet, Smoking habits, High blood pressure diagnosis, Diabetes, BMI category	Living environments affect access to recreational spaces, food quality, and pollution exposure, influencing both BMI and hypertension risks. These vary across BMI categories, creating confounding.
Dietary habits beyond fruits and vegetables	Alcohol consumption, Smoking habits, Physical activity, High blood pressure diagnosis, BMI category	High-sodium or processed-food diets raise both BMI and hypertension risk. Variation in such unmeasured dietary habits across BMI categories creates spurious associations with hypertension.

2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171

2172 **Table E9: Dataset:** College Scorecard. **Target:** Predict completion rate for first-time, full-time
 2173 students at four-year institutions. **Environments:** Based on Carnegie Classifications.

2175 Hidden confounder	2176 Affected variables	2177 Reason for confounding
2176 Institutional funding and re- 2177 sources	2178 Accreditor, Control of in- 2179 stitution, Highest degree 2180 awarded, In-state tuition, Out-of-state tuition, Cost of attendance, SAT scores	2181 Wealthier institutions can offer better aca- 2182 demic support, facilities, and programs, 2183 leading to higher completion rates and 2184 more selective admission profiles. This varies across Carnegie classifications.
2181 Regional socio-economic 2182 factors	2183 Region, Poverty rate, 2184 Unemployment rate, SAT scores	2185 Economic conditions across regions affect 2186 affordability, student preparedness, and 2187 institutional support levels, all influencing 2188 both enrollment outcomes and graduation 2189 likelihood.
2185 Demographic factors	2186 HBCU flag, Federal loan re- 2187 cipient rate, Pell grant recip- 2188 ient rate, ACT scores, Under- 2189 graduate enrollment	2190 Student demographics shape financial aid 2191 needs, academic preparation, and gradu- 2192 ation rates. Their effect differs by institu- 2193 tion type and selectivity under Carnegie 2194 categories.
2190 Community support and en- 2191 gagement	2192 Distance-education flag, 2193 Federal loan recipient rate, Pell grant recipient rate, SAT scores, Undergraduate enrollment	2194 Supportive institutional communities im- 2195 prove retention and completion. Variation 2196 in engagement across institution types and 2197 student aid profiles induces confounding.
2194 Admission selectivity	2195 Admission rate, SAT (read- 2196 ing/math) midpoints, ACT 2197 midpoint, Undergraduate enrollment	2198 Selective admissions correlate with better- 2199 prepared students and higher completion 2200 rates, and vary with institutional prestige 2201 and classification.
2198 State and local policies	2199 Region, Poverty rate, Un- 2200 employment rate, Cost of 2201 attendance	2202 Differences in education funding and pub- 2203 lic policy affect cost structures and com- 2204 pletion outcomes, interacting with institu- 2205 tional classification and regional demo- 2206 graphics.

2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225

2226 **Table E10: Dataset:** ASSISTments. **Target:** Predict whether a student solves a problem correctly on
 2227 the first attempt in an online learning tool. **Environments:** Different schools.

2228

Hidden confounder	Affected variables	Reason for confounding
Institutional teaching quality	Hint count, Attempt count, Skill ID, Problem type, Tutor mode, Position, Type, First action, Milliseconds to first response, Overlap time, Average confidence	Variation in instructional quality and pedagogy across schools affects how effectively students engage with content, leading to differences in problem-solving strategies, response behavior, and emotional states.
Student motivation	Hint count, Attempt count, Skill ID, Problem type, First action, Milliseconds to first response, Overlap time, Average confidence	Differences in intrinsic motivation across schools influence students' willingness to persevere, seek help, or give up quickly, affecting interaction and performance.
Classroom environment	Hint count, Attempt count, Tutor mode, Position, Type, First action, Average confidence	Peer dynamics, classroom culture, and noise levels vary by school and affect how confidently and independently students solve problems.
School technology infrastructure	Hint count, Attempt count, Tutor mode, Position, Type, First action, Milliseconds to first response, Overlap time, Average confidence	Access to reliable devices and fast internet differs by school, influencing response time, tool usage, and student experience.
Teacher-student interaction	Hint count, Attempt count, Tutor mode, Position, Type, First action, Milliseconds to first response, Overlap time, Average confidence	The level of teacher guidance and feedback shapes how much support students require during problem-solving, affecting engagement and confidence.
Previous academic performance	Hint count, Attempt count, Skill ID, Problem type, First action, Average confidence	Students' prior achievement affects how easily they solve problems, their need for assistance, and their confidence, all of which vary across schools.

2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279

2280 **Table E11: Dataset: ICU. Target:** Predict whether the patient will stay in the ICU for longer than 3
 2281 days. **Environments:** Insurance types.

2282
 2283
 2284
 2285
 2286
 2287
 2288

Hidden confounder	Affected variables	Reason for confounding
Socioeconomic status (SES)	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, etc.	SES influences access to healthcare, preventive services, and overall health status. Differences in SES across insurance types lead to variability in pre-ICU health, physiological indicators, and ICU stay duration.
Hospital resources and care quality	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, Heart rate, etc.	Hospital infrastructure and care standards affect monitoring, intervention speed, and clinical decisions. These factors vary by insurance coverage and influence ICU outcomes and vitals.
Comorbidities	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, Heart rate, etc.	Presence of chronic conditions (e.g., diabetes, cardiovascular disease) affects both the need for prolonged ICU care and physiological measurements. The distribution of comorbidities differs across insurance types.
Insurance-related treatment variability	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, etc.	Differences in treatment timing, intensity, and access to specialists based on insurance policies affect ICU stay duration and clinical metrics.
Genetic factors	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, etc.	Inherited traits influence predisposition to organ failure, metabolic responses, and recovery trajectories. These effects are partially mediated by ethnicity and age distributions, which vary across insurance groups.

2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

2322
2323
2324
2325
2326
2327
2328
2329
2330

2331 **Table E12: Dataset:** Hospital mortality. **Target:** Classify whether an ICU patient expires in the
2332 hospital during their current visit. **Environments:** Insurance types.

Hidden confounder	Affected variables	Reason for confounding
Socioeconomic status (SES)	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, Systolic blood pressure, White blood cell count, etc.	SES shapes access to timely and high-quality care, preventive services, and general health status. Patients with higher SES often have better insurance and outcomes, leading to confounding with mortality risk.
Comorbidities	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, Heart rate, Systolic blood pressure, etc.	Pre-existing conditions such as diabetes or heart disease increase mortality risk and influence physiological features. Their prevalence differs by insurance type, creating confounding.
Hospital resources and care quality	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, Heart rate, Systolic blood pressure, White blood cell count, etc.	Access to advanced treatments, trained staff, and timely interventions influences survival rates. These factors correlate with insurance coverage, confounding mortality outcomes.
Genetic factors	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, Heart rate, etc.	Genetic predispositions affect disease susceptibility and treatment responses. Variations in genetic risk factors may correlate with demographic traits across insurance types.
Lifestyle and behavioral factors	Age, Gender, Ethnicity, Height, Weight, Bicarbonate, CO ₂ , pCO ₂ , pO ₂ , Lactate, Sodium, Hemoglobin, Oxygen saturation, Respiratory rate, Heart rate, Temperature, Systolic blood pressure, White blood cell count, etc.	Behaviors such as smoking, diet, and physical activity affect long-term health and mortality risk. These behaviors vary systematically with SES and insurance coverage, influencing both target and physiological features.

2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

2376
2377
2378
2379
2380
2381

Table E13: **Dataset:** Childhood lead. **Target:** Predict blood lead levels above CDC blood level reference value. **Environments:** Poverty-income ratios.

2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

Hidden confounder	Affected variables	Reason for confounding
Environmental Exposure	Blood lead levels, Country of birth, Age, Race and Hispanic origin	Environmental exposure to lead influences blood lead levels, and this varies significantly across socio-economic groups. People in lower PIR groups are more likely to live in areas with higher lead contamination, which contributes to higher blood lead levels. Furthermore, environmental factors may affect the demographic distribution (e.g., country of birth, race).
Access to Healthcare	Blood lead levels, Age, Gender, Race and Hispanic origin, Marital status, Education	Limited access to healthcare, especially in lower PIR groups, means fewer opportunities for detection and treatment of lead poisoning. This results in higher blood lead levels, with disparities also influencing demographic variables like age, gender, and education. Additionally, healthcare access varies by insurance and socio-economic status, further confounding the relationships.
Diet and Nutrition	Blood lead levels, Age, Gender, Race and Hispanic origin	Dietary factors, such as poor nutrition in lower PIR groups, can exacerbate lead absorption. Malnutrition increases the body's susceptibility to lead poisoning, raising blood lead levels. In contrast, higher PIR groups may have better access to nutritious foods, lowering lead absorption, thus creating a confounding effect in how socio-economic status and race influence lead toxicity.
Housing Conditions	Blood lead levels, Country of birth, Race and Hispanic origin, Marital status	Older housing conditions, which are more prevalent in lower PIR groups, contribute significantly to elevated lead exposure (e.g., lead paint, poor plumbing). These living conditions directly influence blood lead levels and can also correlate with demographic factors like country of birth, race, and marital status. This introduces confounding, as socio-economic status impacts both exposure and the demographics of affected individuals.
Occupation	Blood lead levels, Age, Race and Hispanic origin, Marital status, Education	Certain occupations, which are more common among lower PIR groups, involve higher lead exposure (e.g., construction, manufacturing). Occupational lead exposure directly impacts blood lead levels and is often correlated with education, marital status, and socio-economic status. The varying prevalence of lead exposure by occupation introduces confounding, especially across different PIR groups.

2427
2428
2429

2430
2431
2432
2433
2434
2435
2436

Table E14: **Dataset:** Diabetes. **Target:** Predict diabetes. **Environments:** Preferred race categories.

2437
2438
2439
2440
2441
2442
2443
2444
2445
2446

Hidden confounder	Affected variables	Reason for confounding
Genetic predisposition	Diabetes, BMI, High blood pressure, High blood cholesterol	Genetic factors and family history contribute to both the onset of diabetes and comorbid conditions like obesity, hypertension, and high cholesterol. These genetic predispositions can make individuals more susceptible to diabetes, leading to confounding as they correlate with other health indicators.
Access to healthcare	Diabetes, Physical health, BMI, Healthcare coverage, Health checkups	Limited or unequal access to healthcare, especially in marginalized racial groups, leads to disparities in diabetes diagnosis, management, and comorbidity treatment. It also influences the frequency of health checkups and access to medications, which can confound the relationship between diabetes status and other health metrics.
Dietary habits and food availability	Diabetes, BMI, Physical health, Alcohol consumption, Fruit and vegetable intake	Dietary habits, often shaped by socio-economic status and local food environments, influence weight, health behaviors (such as alcohol consumption), and diabetes risk. People in lower socioeconomic strata may have limited access to healthy food options, leading to higher BMI and increased diabetes risk, creating confounding effects on health outcomes.
Psychosocial stress and mental health factors	Diabetes, Mental health, Physical health, BMI, Physical activity, Doctor visits	Chronic stress and mental health issues, often higher in marginalized groups, contribute to diabetes development and complicate its management. These factors also affect physical health (e.g., weight gain due to stress) and health-seeking behaviors (e.g., fewer doctor visits), leading to confounding by influencing both diabetes risk and its associated variables.
Socioeconomic status beyond income	Diabetes, Income, Physical health, Healthcare coverage, Education level	Socioeconomic factors, such as occupation, education, and neighborhood wealth, influence access to healthcare, nutrition, and overall health behaviors. These factors can confound the relationships between diabetes and other socio-economic variables like income and education, as they shape opportunities for prevention and treatment.

2470
2471
2472
2473
2474
2475
2476
2477

2484

2485

2486

2487

2488

Table E15: **Dataset:** Sepsis. **Target:** Predict, from a set of fine-grained ICU data, whether a patient will experience sepsis onset within the next 6 hours. **Environments:** Lengths of ICU stay.

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

Hidden confounder	Affected variables	Reason for confounding
Infection prevalence in ICU	SepsisLabel, Temperature (Temp), Leukocyte count (WBC), Heart rate (HR), Blood urea nitrogen (BUN)	Higher infection rates in certain ICU units can lead to a higher probability of sepsis onset (SepsisLabel). These infection rates influence biomarkers such as WBC, HR, and BUN, creating confounding because the unit's infection environment affects both the likelihood of sepsis and the observed clinical measures.
Quality of ICU Care	SepsisLabel, Fibrinogen concentration (Fibrinogen), Leukocyte count (WBC), Platelet count (Platelets)	Higher-quality care in certain ICUs may lead to earlier identification and treatment of sepsis, resulting in more accurate SepsisLabel predictions. Additionally, better care could affect biomarkers like fibrinogen, WBC, and platelets, which are critical in sepsis detection and progression, thereby confounding the relationships between these variables and the outcome.
Severity of underlying conditions	SepsisLabel, Blood urea nitrogen (BUN), Creatinine, Lactate, Calcium	Patients with severe chronic conditions (e.g., kidney disease, cardiovascular issues) are at a higher risk of sepsis and may show abnormal levels in biomarkers like BUN, creatinine, lactate, and calcium. These underlying conditions contribute to the SepsisLabel outcome and confound the relationship between the biomarkers and the likelihood of sepsis, varying across ICU units depending on patient population.
Patient's socio-economic status	Age (Age), Gender (Gender), Leukocyte count (WBC), Fibrinogen concentration (Fibrinogen), Platelet count (Platelets)	Socio-economic factors, such as access to healthcare, can influence both the likelihood of sepsis and the observed clinical biomarkers. For example, patients from lower socio-economic backgrounds may have delayed hospitalizations or inadequate care, which affects both SepsisLabel and the progression of sepsis as indicated by WBC, fibrinogen, and platelet levels.
Hospital-specific protocols and treatment guidelines	SepsisLabel, Lactate, Glucose, Creatinine	Differences in hospital protocols for sepsis treatment, such as timing of interventions and choice of sepsis bundles, can affect both the SepsisLabel and biomarkers like lactate, glucose, and creatinine. These protocols lead to variability in how sepsis is diagnosed and treated across different hospitals and ICU units, confounding the relationship between biomarkers and sepsis outcomes.

2538
2539
2540
2541
2542

2543 **Table E16: Dataset:** Hospital readmission. **Target:** Predict whether a diabetic patient is readmitted
2544 to the hospital within 30 days of their initial release. **Environments:** Admission sources.

2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555

Hidden confounder	Affected variables	Reason for confounding
Socio-economic status (SES)	Race, Gender, Age, Payer code, Medical specialty, Number of outpatient visits, Number of emergency visits, Number of inpatient visits, Diabetes medication prescribed	SES influences access to healthcare, patient demographics, and chronic disease rates. It can also determine the type of care received based on admission source (e.g., emergency department vs. outpatient settings). Differences in healthcare access, such as availability of medications, may impact readmission rates and associated variables like outpatient visits and prescribed medication.
Severity of illness	Primary diagnosis, Secondary diagnosis, Number of diagnoses, Discharge type, Medication changes (e.g., Insulin, Glipizide)	More severe illness increases the likelihood of readmission and influences the complexity of diagnoses and the treatments administered. The severity of illness may differ based on the admission source (e.g., emergency versus outpatient), impacting the number and type of diagnoses and treatments prescribed at discharge, affecting readmission likelihood.
Access to healthcare resources	Time in hospital, Discharge disposition, Number of procedures, Number of medications, Number of lab tests	Access to healthcare resources (e.g., time in hospital, availability of procedures and medications) influences treatment decisions and outcomes. Different admission sources may have varying levels of available resources, leading to different lengths of stay, the types of procedures performed, and overall treatment quality, which can affect the likelihood of readmission.
Patient's adherence to medication	Change in medications, Diabetes medication prescribed, Number of outpatient visits, Number of emergency visits	Adherence to prescribed medications is often influenced by socio-economic status, which can vary depending on admission source. Non-adherence may lead to medication changes, affecting diabetes control and subsequent readmission risk. The number of outpatient and emergency visits can also reflect how well a patient manages their diabetes and the likelihood of complications.
Hospital-specific protocols	Time in hospital, Number of diagnoses, Discharge disposition, Readmitted	Different hospitals and healthcare systems implement various protocols for discharge planning and readmission prevention, which can affect readmission rates. These protocols may vary by admission source, where patients admitted via the emergency department may receive different follow-up instructions and care than those admitted through other channels.

2588
2589
2590
2591

2592
2593
2594
2595
2596
2597
2598

Table E17: **Dataset:** MEPS. **Target:** Measure of health care utilization. **Environments:** Insurance types.

2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615

Hidden confounder	Affected variables	Reason for confounding
Socioeconomic status (SES)	Years of education, Employment status, Hourly wage, Paid sick leave, Paid leave to visit doctor, Family size, Insurance coverage, Healthcare utilization	SES can influence access to healthcare services, insurance coverage, and the ability to use medical services. Insurance types often correlate with SES levels, where individuals with lower SES may be more likely to be insured by government programs (e.g., Medicaid), which in turn impacts healthcare utilization patterns across different SES groups.
Healthcare access	Paid sick leave, Insurance coverage, Employer offers health insurance, Healthcare utilization	Limited access to healthcare, such as lack of insurance or paid sick leave, directly impacts healthcare utilization. The type of insurance a person holds is often tied to access to various medical services. The level of coverage and accessibility differs across insurance types, influencing healthcare behaviors such as whether a patient can afford and utilize healthcare services.
Health behaviors	Perceived health status, Asthma medications, Limitations in physical functioning, Healthcare utilization	Lifestyle factors like smoking, alcohol consumption, and physical activity can directly affect health status and healthcare needs. Health behaviors differ across groups with different insurance types, and these behaviors contribute to healthcare utilization. Insurance coverage can also be influenced by perceived health status, which varies across insured groups, affecting utilization of medical services.
Chronic health conditions	Asthma medications, Perceived health status, Limitations in physical functioning, Healthcare utilization	Chronic conditions like asthma or diabetes increase the need for healthcare services, leading to higher healthcare utilization. People with chronic conditions are more likely to be covered by Medicare or Medicaid, which influences the type of insurance they hold and impacts their healthcare utilization and associated features (e.g., medications and physical limitations).
Regional healthcare infrastructure	Region, Family size, Healthcare utilization, Paid sick leave, Paid leave to visit doctor, Employment status	The quality and availability of healthcare infrastructure vary across regions, which can impact healthcare utilization. In underserved regions, people may be more reliant on public insurance options like Medicaid, affecting healthcare access and behaviors. The regional differences in healthcare systems can lead to disparities in access to medical services, insurance coverage, and utilization of healthcare.

2616
2617
2618
2619
2620
2621
2622
2623
2624

2625
2626
2627
2628
2629
2630
2631
2632

2633
2634
2635
2636
2637
2638
2639
2640
2641

2642
2643
2644
2645

2646
2647
2648
2649
2650
2651

Table E18: **Dataset:** Poverty. **Target:** Predict household income-to-poverty ratio. **Environments:** Citizenship statuses.

Hidden confounder	Affected variables	Reason for confounding
Social capital	Income, Unemployment compensation, Disability benefits, Family size, Housing conditions, Household income-to-poverty ratio	Stronger social support networks can improve access to income, benefits, and resources like unemployment or disability compensation. Social capital can vary based on citizenship status, which in turn influences income, housing conditions, and eligibility for benefits, confounding the relationship between household income and poverty ratios.
Workplace discrimination or bias	Household income, Worker's compensation, Unemployment compensation, Pension, Family income, Disability benefits	Discrimination in the workplace can limit opportunities for higher wages, pensions, or disability benefits, especially for marginalized groups (e.g., racial minorities, non-citizens). This bias varies by citizenship status and leads to biased associations between income, benefits, and poverty levels.
Healthcare access	Household income, Health insurance premiums, Medical expenses, Disability benefits, Family size, Health conditions, Medicaid/Medicare assistance	Limited access to healthcare, particularly for non-citizens, can lead to higher medical expenses and greater reliance on public health assistance. Citizenship status directly impacts eligibility for public healthcare programs, confounding relationships between medical expenses and income, and affecting poverty ratios.
Access to education and skills development	Educational attainment, Household income, Employment status, Unemployment compensation, Income from assistance, Savings	Disparities in educational opportunities, often linked to citizenship status, influence income potential and eligibility for government assistance. These disparities, in turn, affect the household income-to-poverty ratio and employment outcomes, creating confounding relationships between education and income.
Cultural factors	Family size, Household income, Savings, Disability benefits, Healthcare utilization, Income assistance, Living arrangements	Cultural factors influence financial management, family support, and the use of social programs. These factors can vary across citizenship statuses, leading to differences in how household income and assistance are distributed, and thus confounding the relationship between income, benefits, and financial behavior.
Housing market and rent conditions	Housing ownership, Housing costs, Family size, Household income, Rent payments, Social security benefits, Medical aid	Housing market conditions, especially rent disparities, can create financial strain and impact the household income-to-poverty ratio. Citizenship status often influences eligibility for housing assistance and rent subsidies, which confounds the relationship between housing costs and income, particularly in areas with significant immigrant populations.

2697
2698
2699

2700 **LLM USAGE**

2701

2702 In addition to querying LLMs about the semantic meaning of hidden confounding variables (§ E),
2703 LLMs are used to aid or polish writing.

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753