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ABSTRACT

Distribution shifts introduce uncertainty that undermines the robustness and gen-
eralization capabilities of machine learning models. While conventional wisdom
suggests that learning causal-invariant representations enhances robustness to
such shifts, recent empirical studies present a counterintuitive finding: (i) em-
pirical risk minimization (ERM) can rival or even outperform state-of-the-art
out-of-distribution (OOD) generalization methods, and (ii) OOD generalization
performance improves when all available covariates, including non-causal ones, are
utilized. We present theoretical and empirical explanations that attribute this phe-
nomenon to hidden confounding. Shifts in hidden confounding induce changes in
data distributions that violate assumptions commonly made by existing approaches.
Under such conditions, we prove that generalization requires learning environment-
specific relationships, rather than relying solely on invariant ones. Furthermore,
we explain why models augmented with non-causal but informative covariates can
mitigate the challenges posed by hidden confounding shifts. These findings offer
new theoretical insights and practical guidance, serving as a roadmap for future
research on OOD generalization and principled covariate-selection strategies.

1 INTRODUCTION

Generalization—the ability to draw reliable conclusions about unseen data based on observed data—is
central to numerous scientific fields. In medicine and the social sciences, it is embodied as external
validity, ensuring findings from one population are applicable to a different population (Campbell &
Stanley, 2015); in ecology, it supports space-for-time substitutions, where spatial variation is used as
a proxy for temporal change to infer long-term ecological patterns (Pickett, 1989); and in engineering,
it drives robust control, where models must maintain performance in the presence of unmodeled
disturbances (Khalil et al., 1996). In recent years, machine learning has become a powerful tool for
learning generalizable models (Zhou et al., 2022; Wang et al., 2022; Liu et al., 2021).

To generalize well, machine learning models must be robust to distribution shifts between training and
test data. For example, a model trained to predict food stamp recipiency based on household attributes
in one region should be capable of adapting and performing well when deployed in another region. A
model is said to achieve out-of-distribution (OOD) generalization when it maintains its performance
on both in-distribution (ID) data (from which training data are sampled) and OOD test data. Over the
last decade, various families of methods such as domain generalization (Muandet et al., 2013; Heinze-
Deml et al., 2018; Zhao et al., 2022; Singh et al., 2024), domain adaptation (Zhao et al., 2019; Long
et al., 2018; Xu et al., 2020; Sun & Saenko, 2016a), and robust learning (Levy et al., 2020; Sagawa
et al., 2019) have been proposed to achieve provable OOD generalization under specific assumptions.
However, under careful model selection, models based on standard empirical risk minimization
(ERM) (Vapnik, 1999) often achieve competitive OOD generalization performance across a range of
real-world applications (Gulrajani & Lopez-Paz, 2021; Krueger et al., 2021; Liu et al., 2023; Nastl &
Hardt, 2024; Rosenfeld et al., 2022; Vedantam et al., 2021). Moreover, a recent empirical study (Nastl
& Hardt, 2024) on 16 real-world tabular datasets has concluded that incorporating all available
covariates when predicting the outcome, regardless of whether they directly affect the outcome, can
improve OOD generalization performance. These findings challenge prevailing assumptions in the
field and motivate a deeper investigation into the mechanisms underlying OOD generalization.

Distribution shifts are commonly observed when data originate from different environ-
ments (Scholkopf, 2022). For example, food stamp recipiency may differ across states, because each
state operates under different eligibility rules, leading to distinct, environment-specific distributions.
In such data, certain statistical relationships between covariates and the outcome may stay consistent
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across all environments, referred to as invariant relationships (Arjovsky et al., 2019). Identifying
and learning such invariant relationships ensures OOD generalization (Arjovsky et al., 2019; Peters
et al., 2016; Rojas-Carulla et al., 2018; Muandet et al., 2013; Quinzan et al., 2024). A special kind of
invariance is known as causal invariance, where the causal relationships in the data stay invariant
across environments (Scholkopf, 2022; Peters et al., 2016; Arjovsky et al., 2019). However, in many
real-world settings, not all relevant covariates required for predicting an outcome are observed, due
to limitations in data collection, privacy constraints, or measurement errors (Carroll et al., 2006;
Louizos et al., 2017; Dwork et al., 2014; Little & Rubin, 2019). Their absence disrupts the invariant
relationships needed for models to achieve generalization. This issue is further compounded when the
unobserved variables are confounders that influence both the observed covariates and the outcome. In
practice, such hidden confounders are pervasive, and shifts in their distributions correspond to distinct
environments. Ignoring these shifts not only undermines generalization performance (Landeiro &
Culotta, 2018; Alabdulmohsin et al., 2023; Tsai et al., 2024; Prashant et al., 2025), but can also lead
to learning incorrect relationships between observed covariates and the outcome.

Despite its importance and the recent progress on achieving generalization under hidden confounding
shifts (Alabdulmohsin et al., 2023; Tsai et al., 2024; Prashant et al., 2025), how hidden confounding
shift affects generalization and how informative covariates help in generalization remains poorly
understood. Our work aims to bridge this gap by providing theoretical and empirical explanations.

Our contributions are as follows:

* We motivate the need for studying confounding shift in OOD generalization from a causal perspec-
tive (§ 3) and explain why adding informative, non-causal covariates can improve performance.

* While invariant representations alone, while sufficient, are challenging to achieve under the hidden
confounding shift. We show that maximizing predictive information between model predictions
and true outcomes demands explicitly learning environment-specific relationships. (§ 4.1, § 4.2).

* We demonstrate that variables informative of either outcome or hidden confounders help in im-
proving predictive information between model predictions and true outcomes. This explains the
importance of principled covariate selection in the presence of hidden confounding shift (§ 4.3).

* Our experiments on both real-world and synthetic datasets provide evidence that (i) hidden con-
founding is prevalent in real-world tabular benchmark data, (ii) learning environment-specific
relationships correlates positively with ID and OOD test accuracy, and (iii) incorporating informa-
tive, non-causal covariates improves generalization (§ 5).

2 RELATED WORK

Out-of-distribution (OOD) generalization encompasses various facets, with notable examples in-
cluding domain generalization (Zhou et al., 2022; Wang et al., 2022), domain adaptation (Zhao
etal., 2019; Sun & Saenko, 2016b; Long et al., 2018; Xu et al., 2020), robust learning (Levy et al.,
2020; Sagawa et al., 2019), federated learning (Li et al., 2023), and OOD detection (Lee et al., 2018;
Hendrycks & Gimpel, 2017). Domain adaptation assumes access to unlabeled data from the test
set, whereas domain generalization relies on environment labels during training. Federated learning
adopts a collaborative learning framework, tackling constraints such as communication efficiency
and privacy when data originates from multiple environments. OOD detection focuses on identifying
samples that differ significantly from the training distribution. A common goal of many of these
methods is to learn invariant relationships. However, recent work suggests that additional inductive
biases beyond invariance are required for improved generalization (Lin et al., 2022; Schrouff et al.,
2022; Ye et al., 2021). Ye et al. (2021) argue that invariance of features is necessary but not sufficient
for generalization and discuss the importance of informativeness of features for generalization. We
explain how informativeness plays a crucial role in generalization under hidden confounding shifts.

Proxy variable adjustment: When confounding variables are observed during training and unob-
served at test time, Landeiro & Culotta (2018) propose adjusting for confounding shifts to improve
classifier performance. Building on proxy-based adjustment methods for causal effect estima-
tion (Miao et al., 2018; Kuroki & Pearl, 2014), recent domain adaptation methods rephrase the
problem of unknown distribution shifts as a causal effect identification problem (Alabdulmohsin
et al., 2023; Tsai et al., 2024). Recently, OOD generalization under hidden confounding shift has
been considered under the assumption of overlapping confounder support (Prashant et al., 2025). In
contrast to these approaches, we explain how proxy variables enhance OOD generalization.
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All variable models vs causal models. Recently, Nastl & Hardt (2024) introduced a benchmark
study where covariates are categorized into four groups: causal (conservatively chosen), arguably
causal, anti-causal, and other spurious covariates. They show that across 16 benchmark datasets,
models using all covariates Pareto-dominate those using only causal or arguably causal subsets on
both ID and OOD data. However, there is limited theoretical work explaining these results. We
present scenarios and arguments to explain their experimental findings. For linear causal models,
anchor regression (Rothenhiusler et al., 2021) introduces a framework that balances between two
estimation paradigms: models that include all observed covariates and models that focus solely on
causal covariates. We aim to explain the impact of adding more covariates that are not necessarily
causal under a hidden confounding shift. Eastwood et al. (2023) show that unstable covariates can
boost performance when they carry information about the label, provided they are conditionally
independent of the stable covariates given the label. They propose to adjust the distribution shift by
looking at the test domain without labels. However, when applied to a medical real-world dataset not
constructed for this particular problem (Bandi et al., 2019), ERM still remains competitive with their
method, in line with the findings of Nastl & Hardt (2024). This reflects the broader insight that, under
well-specified covariate shifts, maximum likelihood estimation (MLE) achieves minimax optimality
for OOD generalization (Ge et al., 2024). Yet, real-world settings are rarely well-specified due to
hidden confounding shift, which is the main focus of this work.

3  MANIFESTATIONS OF HIDDEN CONFOUNDING SHIFT

We now provide background on hidden confounding shift and motivate the need to address it.

Types of distribution shifts. For covariates X . o )
and target Y, one may observe several distribu- Table 1: A summary of different distribution shifts.

tion shifts between two environments e and e’ as

shown in Table 1. These distribution shifts usu-  Type of Shift | Mathematical Expression
ally result from a shift in the distribution P(U) Label Pe(Y) # P (Y)

of an unobserved covariate U that causes either  covariate P¢(X) # P (X)

X or Y or both (see Figure 1). The shifts in Conditional Covariate | P°(X | Y) # P (X |Y)
P(U) lead to shifts in observed distributions in-  concept ]pe(y | X) #P¢ (v ‘ X)
volving only X and Y. For instance, we can Dataset Pe(X,Y) # P (X,Y)

write: P(X) = Y, P(U)P(X | U). Thus,
when P¢(U) # P¢(U) and U — X, we observe P¢(X

) # P¢(X). Similar arguments can be
made about the distribution shifts of P(Y'), P(X | Y), P(Y |

X), P(X,Y).

Existing methods for OOD generalization

assume certain causal relationships among
U, X, Y that guarantee specific invariances. For
instance, when U — Y — X (Figure 1 (a)),

Sil’lCC ]P)(X’Y)/ = P(Y)P(X | Y)’ a Shlft (a) Label shift (b) Covariate shift (c) Confounding shift
Pe(X,Y) # P¢ (X,Y) is observed due to label

shift, i.e., P¢(Y) # Pe (Y'), but conditional co- Figure 1: Causal graphs underlying distribution shifts.
variate distribution stays invariant i.e., P¢(X | V) = P* (X | Y) because P(X|Y, U) = P(X|Y) (Wu
et al., 2021; Tachet des Combes et al., 2020; Garg et al., 2020; Alexandari et al., 2020). Similarly,
when U — X — Y (Figure 1 (b)), a shift P¢(X,Y) # ]P’e/(X,Y) is observed due to covari-
ate shift, i.e., P¢(X) # P¢(X), but the conditional distribution P(Y | X) stays invariant i.e.,
Pe(Y | X) = P¢(Y | X) (Schneider et al., 2020; Sugiyama & Kawanabe, 2012; Gretton et al.,
2009). These invariances may not hold in many scenarios because U usually causes both X and
Y (Figure 1 (c¢)) (Liu et al., 2023; Alabdulmohsin et al., 2023; Landeiro & Culotta, 2018; Tsai
et al., 2024; Prashant et al., 2025; Reddy et al., 2022; Reddy & N Balasubramanian, 2024). In
this case, when P(U) shifts between environments, label shift, covariate shift, conditional covariate
shift, and concept shift can all occur simultaneously. Nevertheless, confounding shift induces an
invariance: P¢(X,Y | U) = P¢(X,Y | U) referred to as stable confounding shift (Tsai et al., 2024;
Alabdulmohsin et al., 2023). Since U is unobserved, this invariance is absent from the observed data.

Information-theoretic measures: Following Federici et al. (2021), we use mutual information to
quantify distribution shifts. That is, we use I(X; E), I(Y; E), I(X; E|Y), I(Y; E|X), I(X,Y; E)
to measure the shifts in P(X), P(Y), P(X | ), P(Y | X), P(X,Y) respectively across the
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Figure 2: We evaluate four linear regression (L.R.) models in an OOD setting characterized by
hidden confounding shifts and minimal environment overlap (i.e., distant x.). (i) A model trained
solely on X learns an incorrect relationship with Y, illustrating Simpson’s paradox. (ii) Using
environment-specific summary statistics of X, denoted as F, recovers the correct relationship but
remains limited in representation power. (iii) Using an informative covariate X; for U improves OOD
generalization. (iv) The oracle model is trained on X and U.

environments F. As discussed earlier, existing methods for OOD generalization often assume either
I(X; E'| Y) = 0 through the label shift assumption or I(Y; E | X) = 0 through the covariate shift
assumption. However both of them may be nonzero under hidden confounding shifts.

Challenges with hidden confounding shift: To illustrate the challenges posed by hidden confounding
shift on OOD generalization, we present the experiment shown in Figure 2. The outcome Y depends
on X and a hidden confounder U. Environment-specific shifts in the mean of U, denoted by ji.,
induce distinct environments. A linear regression model trained solely on observed covariate X
infers an incorrect relationship between X and Y, as shown in the first subplot. This exemplifies
the Simpson’s paradox (Simpson, 2018), where Y increases with X within each environment, yet
the model captures the opposite trend. We observe similar behavior from the models designed for
OOD generalization, such as IRM (Arjovsky et al., 2019), VREX (Krueger et al., 2021), and Group
DRO (Sagawa et al., 2019). In such scenarios, we theoretically show in § 4 that the optimal strategy
for generalization involves learning environment-specific relationships, which enables recovery
of the correct relationship between X and Y. This is illustrated in the second subplot, where
environment-specific summary statistics of X, such as mean, standard deviation, and quantiles, help
uncover the true X-Y relationship. This mirrors the backdoor adjustment criteria in causal effect
estimation (Pearl, 2009), where environment-specific information acts as a proxy for adjusting for
confounders. However, as shown in the second subplot, environment-specific information encoded in
observed covariates alone may be insufficient due to the limited representational capacity. However,
as we show in § 4.3, additional informative covariates serving as proxies for unobserved confounders
can further improve generalization performance, as shown in the third subplot. For comparison, we
include an oracle model trained on X and U, which achieves the best-possible mean squared error.

4 IMPACT OF HIDDEN CONFOUNDING SHIFTS ON OOD GENERALIZATION

In this section, we theoretically explain how hidden confounding shifts impact various aspects of
OOD generalization. Let Y = (f 0 ¢)(X) be the predicted label for an input X, where f is a classifier

and ¢ is a feature extractor or transformation function. H(X) = —Ex [log(P(X))] denotes entropy
and I(X;Y) = Ex y[log %] denotes mutual information. The risk of the predictor (f o ¢)

in an environment e is defined as: R¢(f o ¢) = E(x y)~pe ,, [(((f 0 ¢)(X),Y)] where £(-,-) is a
loss function. The goal in OOD generalization is to learn a predictor (f o ¢) that performs well on
both ID and OOD data. To this end, various objectives have been considered in the literature. Robust
optimization-based methods (Ben-Tal & Nemirovski, 2002; Sinha et al., 2017; Sagawa et al., 2019)
aim to minimize the worst risk across all training environments: RR(f o ¢) = max.cg, R¢(f 0 ¢)
where &, denotes the set of training environments. Invariant risk minimization (IRM) (Arjovsky
et al., 2019) aims to minimize ) . Eor Re(f o ¢) with the constraint that f is a simultaneously
optimal classifier across all environments. Empirical risk minimization (ERM) based methods simply
pool data from all training environments and minimize the empirical risk on the pooled data (Arjovsky
etal., 2019; Krueger et al., 2021). That is, ERM minimizes R™™(f o ¢) = 3 . R(f o o).

To understand how hidden confounding shift impacts traditional objective functions, we explore
different aspects of maximizing predictive information: I(Y;Y) where Y = (f 0 ¢)(X). I(Y;Y)
quantifies how informative the prediction Y is about the true label Y, making it a natural and mean-

ingful objective for many tasks. We start by defining two key properties of ¢(X)—informativeness
and invariance—both of which are crucial for OOD generalization (Ye et al., 2021).
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Definition 4.1 (Informativeness and Conditional Informativeness). The informativeness of fea-
tures ¢(X) for predicting Y is defined as INF($(X),Y) = I(6(X);Y). The conditional informa-
tiveness of features ¢(X) for predicting Y conditioned on environment variable E is defined as

CINF(6(X),Y, E) = I(${X): Y | ).

Conditional informativeness measures the information ¢(X) provides about Y within each envi-
ronment. Minimizing CINF implies information loss, and maximizing CINF can be undesirable in
applications such as algorithmic fairness, as ¢(X) may exploit sensitive or biased information within
environments, leading to unfair predictions. While such biased representations can be avoided by
minimizing I(¢(X); E), it may reduce predictive performance, as we show in § 4.2. Considering the
setting where no sensitive information is associated with E, we adopt the perspective that maximizing
CINF can improve generalization performance, a view we follow and substantiate in § 4.1.

Definition 4.2 (Variation and Invariance). For a given label Y, the variation in the features ¢(X)
across environments E is defined as VAR($(X),Y, E) = I(¢(X); E|Y'). For a given label Y, the
invariance of the features $(X) across environments E is defined as the negative of the variation i.e.,
INV(¢(X),Y, E) = —VAR(¢(X),Y, E) = —1(¢(X); E|Y)

Invariance quantifies how consistent the representation ¢(X) is across different environments for
a given label Y. Minimizing invariance can lead to overfitting by preserving environment-specific
information in ¢(X), whereas maximizing invariance helps eliminate environment-specific dependen-
cies, promoting invariant learning. Extending the information-theoretic measures from § 3, we use
I1(¢(X); E) and I(Y; E | (X)) to quantify feature shift and concept shift respectively. Depending
on the context, we use the term concept shift to denote either I(Y; E | X) or I[(Y; E | ¢(X)).

4.1 A GENERAL DECOMPOSITION OF PREDICTIVE INFORMATION

We begin with a few causal-graph preliminaries. A causal graph G consists of nodes representing
random variables, and directed edges indicating direct causal influences between nodes. A path
between two nodes X; and X is a sequence of unique nodes connected by edges. A directed path
from X; to X; with ¢ < j is one where all arrows point toward X;, ie., X; - X;14 — -+ —
X;j_1 — Xj. In such a directed path, Xj is called the parent of X; 1, X; 11 is the child of X;, X; an
ancestor of X;, and X is a descendant of X;. Paths decompose into three fundamental structures: a
chain X; — X; — Xy, afork X; < X; — X}, and a collider X; — X; <— X},. In both chains and
forks, X; and X}, are marginally dependent yet become conditionally independent upon conditioning
on the intermediate node X, i.e. X; £ Xj; and X; 1 X; | X;. In a collider, X; and X, are
marginally independent but become conditionally dependent when conditioning on X; or any of its
descendants, i.e. X; L Xy and X; £ X} | X;. A path between X; and X}, is said to be blocked by
a conditioning set S if and only if either (i) the path contains a chain or fork whose middle node lies
in S, or (ii) it contains a collider such that neither the collider nor any of its descendants belongs to S.
If all paths from X; to X}, are blocked by S, then X; 1 X}, | S. A path is open if it is not blocked.

Now consider the predictive information I(Y;Y"), where the
predictions Y = (f o ¢)(X) are based on a learned represen-
tations ¢(X). We model the underlying causal relationships
among X, Y, U, ¢(X), Y and E as shown in Figure 3. Here,
U is a hidden confounding variable. Given either X or ¢(X),
Y is redundant for reasoning about Y. Thatis, ¥ 1 Y | X Figure 3: Bi-directed arrow between
andY 1Y | ¢(X). E denotes an environment variable that X and Y" indicate that some covariates
captures shifts in P(U). That is, between any two environments, US¢ Y, and some are caused by Y.
there is a shift in P(U). We first present a more general decomposition of predictive information
without explicit consideration of how U influences X, Y. A formal treatment of U’s influence on X
and'Y is presented in § 4.2.

Theorem 4.1. For a covariate vector X, label Y, with causal structure X <+ Y, i.e., some covariates
cause Y and some covariates are caused by Y, environment variable FE, a feature extractor ¢, and

prediction Y, the predictive information I(Y; Y) is decomposed as follows:

Cond. informativ. —_——— — Residual
. ———— I(¢(X)E|Y) I(Y:E) I1(6(X):E) IY:E|6X)) ~——o

ey
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where I(p(X); Y|§>) is the residual information in ¢(X) for inferring Y that is not captured by the
prediction'Y. The decomposition above also holds when ¢(X) is replaced with X.

Proofs are presented in Appendix § A. Existing methods can be viewed as methods that explicitly
minimize or maximize certain terms in Equation 1. For instance, IRM (Arjovsky et al., 2019) enforces
that a fixed classifier f remains the same across different environments. This is directly related to
maximizing —I(¢(X); E|Y) because if ¢(X) were to carry extra environment-specific information
conditional on Y, the fixed classifier would no longer be optimal in all environments. DANN (Ganin
et al., 2016) and the independence criterion for fair classification (Federici et al., 2021) aims to
minimize environment-specific information in ¢(X) by minimizing I(¢(X); E). In the context of
domain adaptation, certain properties of features are learned invariant to domains (Sun & Saenko,
2016b; Xu et al., 2020). While minimizing I (¢(X); E') may be good for fair classification, it may
degrade predictive performance (Johansson et al., 2019; Federici et al., 2021). This can be seen
from Equation 1, where minimizing I(¢(X); E) can reduce I(Y;Y). In CDAN (Long et al., 2018),
the objective is to obtain P¢(¢(X),Y) = P¢ (¢(X),Y). By enforcing this equality, E becomes
independent of the pair (¢(X),Y"). Consequently, P(Y | ¢(X), E) = P(Y | ¢(X)) = I(YV; E |
¢(X)) = 0. Thus, although CDAN does not explicitly include I(Y;E | ¢(X)) in its loss, its
joint-distribution alignment objective effectively drives I(Y; E | $(X)) to zero. While I(Y; E) is a
constant, there exist methods that are robust to label shift (Sagawa et al., 2019).

Recall that Equation 1 is derived without explicitly considering how U influences X, Y. Knowing
how U influences X and Y can further guide better understanding of the terms in Equation 1. That
is,ifU - Y,U A X,Y — X, then I(X; E | Y) = 0, suggesting that minimizing I (¢(X); £ | Y)
is a principled objective. Similarly, if U 4 Y, U — X, X — Y, then I(Y; E | X) = 0, thereby
motivating the minimization of I(Y; E | ¢(X)). However, if U — Y and U — X, the interaction
between the terms in Equation 1 becomes non-trivial, and it remains unclear what constitutes an ideal
strategy for addressing them. We answer this question in the next section.

4.2 PREDICTIVE INFORMATION UNDER HIDDEN CONFOUNDING SHIFT

To understand how hidden confounding variable U that cause both X and Y, impact the predictive
information, we consider two special cases of the relationship between X and Y: (i) X — Y and
(i) Y — X. When X — Y, we obtain the inequalities in 2 because conditioning on Y opens the
path ¢(X) <+~ X = Y < U « E from ¢(X) to E at the collider node Y which results in additional
information flow from ¢(X) to F via Y. In contrast, conditioning on ¢(X) partially blocks the
information flow from Y to F at the node X as long as ¢(X) encodes some information about X.

—_——
(1) I(6(X); E[Y) = 1((X); E) (ii) I(Y; E) = I(Y; E|¢(X)) 2

Similarly, when Y — X, we obtain the inequalities in 3 because conditioning on Y blocks the
information flow from ¢(X) to F at the node Y and conditioning on ¢(X) opens the path Y —
X <~ U < EfromY to E at the node X because ¢(X) is the child of X and conditioning on the
child of a collider opens a path via that collider (Pearl, 2009) (recall the preliminaries in § 4.1).

(1) I(¢(X); E) = I(¢(X); E|Y) (#1) I(Y; Elp(X)) = I(Y; E) ©)
Using the inequalities in 2, 3, we refine the predictive information decomposition as follows.

Theorem 4.2. For a covariate vector X, label Y, an environment variable F, a feature extractor ¢,
the prediction Y, and an unobserved confounding variable U that cause both X and'Y, and if either
(i) X = Y or(ii) Y — X, the predictive information I(Y;Y) can be decomposed as follows:

Cond. informativeness Residual

R —_— ———
IY;Y) = I(¢(X); Y[E) —I(¢(X); YY) )

In Theorem 4.2, we consider the two cases: X — Y and Y — X separately. However, the causal
relationship X — Y is more prevalent in real-world tabular prediction tasks. For instance, 11 out of
16 datasets considered in recent benchmark studies (Nastl & Hardt, 2024; Liu et al., 2023; Gardner
et al., 2023) follow the causal structure X — Y. In the remaining 5 out of 16 datasets, the number
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of covariates that are caused by Y is much smaller than the number of covariates that cause Y. We
present the key understanding from Theorem 4.2 below.

Compared to the decomposition in 1, the decomposition in 4 (which is obtained for the special
cases: NV U - X, U - Y, X = Y,0)U —- X, U —» Y,Y — X)is free from the terms:

. That is, under hidden confounding
shift, when either X — Y or Y — X, the predictive information is equal to the difference:
conditional informativeness — residual.

Remarks on conditional informativeness: In a very recent work, Prashant et al. (2025) proposed
a mixture of experts (MoE) model for OOD generalization under hidden confounding shift, where
each expert corresponds to a specific hidden confounder assignment. That is, each expert focuses
on maximizing the performance within the environment corresponding to a particular value of the
hidden confounder. Thus, learning MoE models aligns with the goal of maximizing the conditional
informativeness I(¢(X); Y'|E). Equation 4 provides theoretical justification for the use of MoE-type
models. Beyond supporting such models, the Equation 4 also highlights the need for methods that
operate under more general confounding shift settings. For instance, the method proposed by Prashant
et al. (2025) assumes overlapping confounding support i.e., supp(P(U|&:.)) C supp(P(U|&)), and
the proxy variables to be discrete-valued.

The results in Figure 2 illustrate that, in a simple setting without confounding overlap and
with a continuous-valued proxy, a linear regression model can successfully recover the correct
causal relationship between observed covariates and the target across environments when
provided with environment-specific information. We theoretically explain in § 4.3 why
environment-specific informative covariates help improve generalization performance.

Remarks on residual: The residual term I(¢(X);Y | Y) quantifies how much additional infor-
mation ¢(X) provides about the true label Y beyond what is already contained in the prediction

Y. The residual term can be expressed as: I(¢(X);Y |Y) = H(Y | Y) — H(Y | $(X),Y). The
conditional entropy H (Y | Y') is related to the expected cross-entropy loss as: Ey ¢ [lce(Y,Y)] =

H(Y | Y) + calibration error (Brocker, 2009; Berta et al., 2025). Here H(Y | Y) is known as the
refinement error that measures the model’s ability to distinguish between classes.

4.3 IMPACT OF ADDITIONAL INFORMATIVE COVARIATES

In § 4.2, we present the desiderata for generalization under hidden confounding shifts. In practice,
we sometimes have access to proxies for the hidden confounding variable (Alabdulmohsin et al.,
2023; Tsai et al., 2024; Prashant et al., 2025), which can be leveraged to substitute for the hidden
confounding variable. We now explain how adding such non-causal but informative covariates
improves predictive information.

Definition 4.3 (Informative Covariates). A set of covariates X that are not causally related to Y i.e.,
neither ancestors nor descendants of Y are in X, are said to be informative to'Y if Xy and Y are
not independent of each other given other causally related covariates X and E i.e., Y 1 X; | X, E.

Since U — Y, any covariate that is informative to U, is also informative to Y and vice-versa. Causal
graphs that show informative covariates X; have the structure U < X;Y < X in addition
to the causal relationships shown in Figure 3. From the predictive information decomposition in
Equation 1, to maximize I(Y;Y), it is required to minimize the concept shift I(Y; E | ¢(X)). Liu
et al. (2023) suggest based on their empirical analysis that collecting additional covariates X such
that P(Y|X, X7) is more stable across environments i.e., reducing concept shift, improves the OOD
test accuracy. We theoretically show that utilizing more informative variables helps maximizing
predictive information by maximizing or minimizing certain terms in Equation 1.

Proposition 4.1. If ¢1(-), ¢2(+) are invertible functions and if X are informative variables such that
Y L X; | X, E, then we have the following inequalities:
(1) I(@2({X U X }); YIE) > I(¢1(X); YIE)  (i1) I(¢2({X U X1}); E) > 1(1(X); E)

(i) I(Y; Bl ({X UX1})) < I(Y; Elé1(X)) (iv) I(6s({X UX1}): E | V) > I(61(X): B | V) O



Under review as a conference paper at ICLR 2026

Table 2: Quantifying distribution shifts. Mean+standard deviation is computed over 10 random
subsets of 40,000 samples. Statistical significance against a mean of zero is assessed via one-sample
t-tests (a = 0.05), confirming all measures are significantly different from zero (p-value = 0).

Dataset Conditional Covariate Shift Label shift Covariate Shift Concept shift
I(X;ElY) I(Y;E) I(X;FE) 1(Y; E|X)
Readmission 0.107 £ 0.002 0.068 £0.002  0.097 £0.002  2.032 £ 0.000
Food stamps 0.126 £ 0.004 0.030 £0.003  0.108 £0.001  2.118 £ 0.001
Income 0.168 £ 0.002 0.075£0.003  0.147£0.001  2.059 £ 0.002
Public coverage 0.231 £ 0.002 0.412 £0.006  0.222+£0.002  1.945+0.001
Unemployment 0.117 £ 0.001 0.019£0.002  0.114+£0.002  2.010 £ 0.003
Diabetes 0.032 £ 0.002 0.048 £0.001  0.022+£0.002  2.132 £ 0.001
Hypertension 0.090 £ 0.002 0.183£0.003  0.037£0.001  1.883 £ 0.004
ASSISTments 0.293 £ 0.002 0.260 £0.001  0.306 £0.002  0.367 £ 0.004

Proposition 4.1 shows that adding informative covariates increases conditional informativeness (5.7)
and feature shift (5.4¢), while reducing concept shift (5.747). However, adding informative covariates
also amplifies variation (5.7v), which may necessitate dedicated strategies to control the variation.
However, from our experimental results, we observe that the reduction of concept shift leads to
significant improvement in the performance of models compared to minimizing variation.

5 EXPERIMENTAL RESULTS

We conduct experiments on both real-world and synthetic datasets to analyze: (i) the presence of
hidden confounding shift in real-world data, (ii) how the components of the decomposition in 1 affect
OOD generalization under hidden confounding shifts, and (iii) the role of informative covariates in
improving generalization. We consider eight real-world tabular benchmark datasets: Food stamps,
Readmission, Income, Public coverage, Unemployment, Diabetes, Hypertension, and ASSISTments.
These datasets and corresponding domain splits are adopted from TableShift benchmark (Gardner
et al., 2023). We use ID test and OOD test accuracies to measure the performance of models. We
perform experiments on two ERM-based methods: XGBoost (XGB) (Chen & Guestrin, 2016) and
multi-layer perceptron (MLP), two domain generalization methods: IRM (Arjovsky et al., 2019),
VREX (Krueger et al., 2021), and one robust learning based method: Group DRO (GDRO) (Sagawa
et al., 2019).

We use Non-Parametric Entropy Estimation toolbox (NPEET) for estimating mutual information (MI)
via Kraskov-Stogbauer-Grassberger (KSG) estimator (Kraskov et al., 2004; Steeg & Galstyan, 2011;
2013). Following (Gardner et al., 2023), we evaluate mutual information using both in-distribution
(ID) test data (from training domains) and out-of-distribution (OOD) test data (from test domains).
Additional details of the experimental setup are provided in Appendix § B. The code and instructions
to reproduce the results are provided in the supplementary material.

Hidden confounding shift: Recall that hidden confounding shifts induce observable shifts in the
distributions P(X), P(X | Y), P(Y), and P(Y" | X). Results in Table 2 show that label shift, covariate
shift, conditional covariate shift, and concept shift are all present in real-world datasets, indicating the
presence of hidden confounding shifts. For the qualitative understanding, we query GPT-40 (Achiam
et al., 2023) to list potential hidden confounders for several benchmark datasets (Gardner et al., 2023;
Nastl & Hardt, 2024). These results are presented in Appendix § E. For instance, in the food stamps
dataset, unmeasured factors such as economic policies specific to each state may influence both
household income and food stamp recipiency. GPT-4o returned results are solely meant for semantic
insight and are not implicitly or explicitly used in other experiments.

Conditional informativeness vs. accuracy: From Theorem 4.2, under hidden confounding shift,
maximizing the difference conditional informativeness — residual is essential for maximizing predic-
tive information. We observe that the difference conditional informativeness — residual is positively
correlated with ID test and OOD test accuracies, as measured using the Spearman rank correlation
coefficient (p) between accuracy and the difference: conditional informativeness — residual. For the
results on five methods and eight datasets, we obtain p = 0.93 with respect to ID test accuracy, and
p = 0.80 with respect to OOD test accuracy. As shown in the dataset-wise results in Appendix C, we
observe that sum — + + — is closer zero
under due to hidden confounding shift (Theorem 4.2).
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Table 3: For all methods, sign consistency value is high for concept shift (CS). However, the sign consistency
metric for conditional informativeness (CI) is crucial for generalization according to Theorem 4.2, and XGB

excels at this. Res: residual, : variation, FS: feature shift, C: causal, AC: arguably causal, A: all.
|  Sign Consistency Metric (t) | ID-Test Accuracy (1) | OOD-Test Accuracy (1)
Method ‘ CI Res ‘ C AC A ‘ C AC A

XGB 092 056 035 079 0.15| 7891 81.96 8231 | 64.35 7280 72.90
MLP 0.65 0.60 0.21 085 042 | 77.56 78.86 80.16 | 62.03 67.92 66.93
GDRO 0.69 0.50 0.25 090 0.35 | 77.87 80.15 76.20 | 61.95 66.64 65.87
IRM 0.71 0.58 0.23 0.88 0.31 | 61.68 63.38 64.67 | 61.14 61.18 62.75
VREX 0.52 0.71 0.19 0.85 0.58 | 58.74 64.69 62.75 | 60.40 65.57 65.21

Mean Squared Error Cond. Informativeness & Variation Feature Shift & Concept Shift
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Figure 4: Adding more proxy variables X of U that are informative to Y helps in reducing MSE, increasing
conditional informativeness and feature shift while reducing concept shift.

Informative covariates vs. accuracy: We now study how inclusion of informative covariates
helps in achieving better OOD generalization. To this end, we adopt the covariate partitioning
from (Nastl & Hardt, 2024), where all available covariates are grouped into three nested covariate
subsets: causal covariates C arguably causal covariates C all covariates (see Appendix § B). We
evaluate how the terms in the decomposition in | affect ID and OOD performance when going from
one covariate subset to another covariate subset. To this end, we use what we call the sign consistency
metric, which works as follows. When we move from one covariate set to a larger covariate set,
for any term in 1 with a positive coefficient, such as conditional informativeness, we count how
often its value rises when accuracy improves. For negatively weighted terms, such as concept shift,
we count how often its value decreases when accuracy improves. The metric is the fraction of
observations where a term’s change aligns with its beneficial direction, thus capturing how reliably
it contributes to better generalization. See Appendix § B for the formal definition. Table 3 shows
that both conditional informativeness and concept shift exhibit high sign consistency with accuracy
gains. While reducing concept shift is crucial, XGB further enhances conditional informativeness
compared to other methods, yielding additional performance improvements. Dataset-specific results
are presented in Appendix § C.

Note that in real-world datasets, it is often challenging to verify whether all available covariates
include every relevant or sufficiently informative variable. To further test our hypothesis that informa-
tive covariates enhance generalization, we conduct experiments on synthetic data with a known causal
structure: U — X, U — Y, X — Y, and U — X, where X denotes informative covariates caused
by the hidden confounder U. We observe that including X; leads to improvements in conditional
informativeness and feature shift, while reducing concept shift, as shown in Figure 4. The synthetic
data generation process and additional results are provided in Appendix § D.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We decompose the predictive information between model outputs and true outcomes to explain the
factors limiting OOD generalization under the hidden confounding shift. We explain why simple
methods such as XGBoost work better than invariance-based OOD generalization methods. We
also explain how the addition of non-causal informative covariates helps improve the generalization
performance of any method. Our goal is to explain these phenomena but not to provide any solution
to the problems posed by the hidden confounding shift. By highlighting the inevitability of hidden
confounding and the need to address it directly, our work lays a foundation for future work: (i)
understanding the role of environments in maximizing conditional informativeness (ii) quantifying
the cost—accuracy trade-off of acquiring non-causal informative covariates, (iii) handling entangled
shifts without relying on untestable proxy assumptions, and (iv) modeling ambiguity from unobserved
confounders to inspire new OOD-robust paradigms.
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APPENDIX

A PROOFS OF THEORETICAL RESULTS

Theorem 4.1. For a covariate vector X, label Y, with causal structure X <+ Y, i.e., some covariates
cause Y and some covariates are caused by Y, environment variable F, a feature extractor ¢, and

prediction Y, the predictive information I (Y; Y) is decomposed as follows:

Cond. informativ. P e U Residual
o = [($(X);E]Y)  I(Y;E) I(¢(X);E) IY;E[p(X)) T o oo

(1)
where I(¢(X); YY) is the residual information in ¢(X) for inferring Y that is not captured by the
prediction'Y. The decomposition above also holds when ¢(X) is replaced with X.

Proof. From the causal graph shown in Figure 3 of the main paper, in the causal substructure:
Y« d(X) XY, Y provides no additional information in predicting Y given either ¢(X) or
X. This is because, the path Y < ¢(X) « X ¢ Y, between Y and Y is blocked by either {¢(X)}
or {X}. This implies ¥ L Y'|¢(X) and Y L Y|X. Now consider the expansion of I(Y;Y’).

I(Y;Y) = 1(Y;¢(X),Y) = I(¢(X); Y]Y)  (Introduce $(X))
= I(¢(X);Y) + I(Y;Y[¢(X)) =I(¢(X); YY) (Expandanduse Y LY | $(X))
0
= 1(¢(X), B;Y) — I(Y; E|$(X)) — I(¢(X); Y[Y)  (Introduce E)
=I(Y;E) + I(¢(X); Y|E) — I(Y; E|¢(X)) — I(¢(X); YY) (Expand) ©
Similarly,

I(Y;Y) = I(Y;¢(X),Y) = I(¢(X); Y]Y)  (Introduce ¢(X))
= 1(p(X);Y) + I(Y;Y]$(X)) —1(¢(X); Y[Y)  (Expandanduse ¥ 1LY | $(X))
0
I(Y, E; ¢(X)) = I(¢(X); E]Y) = I($(X); YY) (Introduce E)
I($(X); E) + I($(X); Y|E) — I($(X); E[Y) — I(¢(X); Y[Y)  (Expand)

)

Summing Equations 6 and equation 7 and grouping the terms gives the desired expression:

I(Y;Y) = I(¢(X); Y|E) — I<¢<X;;EIY> N I(YQ; E)

I(¢(X); E)  1(Y;E|9(X)) UID
5 - 5 — I(¢(X); Y]Y).

+

To get the similar decomposition with X instead of ¢(X), use Y 1. Y | X and introduce X into the
expansion instead of ¢(X). O

Theorem 4.2. For a covariate vector X, label Y, an environment variable F, a feature extractor ¢,
the prediction Y, and an unobserved confounding variable U that cause both X and Y, and if either
(i) X = Y or (ii)) Y — X, the predictive information I(Y;Y) can be decomposed as follows:

Cond. informativeness Residual
~ —_—~ ~
I(Y;Y) = I{¢(X); Y|E) —I(¢(X); YY) ©)

Proof. Following the causal graph shown in Figure 3 of the main paper, we prove the theorem in two
separate cases: X — Y and Y — X.
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Case 1: X — Y. In this case, we have the following inequality because conditioning on Y opens the
path p(X) « X — Y + U « E between ¢(X) and F at the collider node Y:

I(¢(X); EIY) = 1(¢(X); E). ®

Additionally, considering the causal substructure: ¥ <— X < U < E, we have the following
inequality because conditioning on ¢(X) partially blocks the information flow from Y to E at the
node X as long as ¢(X) encodes some information about X:

I(Y; E) > I(Y; E|¢(X)). ©)

Now consider the following expansion from Equation 7 in the proof of Theorem 4.1.

I(Y;Y) = I(@(X); E) + [($(X); Y|E) = I($(X); E]Y) — I(¢(X); YY) (Equation 7)
< I(6(X):Y|E) + 1(6(X): E)Y) — I(¢(X): BY) = I(¢(X); YY) (Using 8)
= I(6(X); Y| E) = I(6(X); YY)

Similarly, consider the following expansion from Equation 6 from the proof of Theorem 4.1:
I(Y; Y) =I(Y;E)+ I(¢(X); Y|E) — I(Y; E|¢(X)) — I(¢(X);Y|f/) (Equation 6)
> I(Y; E) + I(¢(X): Y|E) = I(Y; E) = I(¢(X);Y|Y)  (Using 9)
= I(¢(X); Y|E) — I(¢(X); YY)

That is, we have I(¢(X); Y|E) — I(¢(X); YY) < I(Y;Y) < I(¢(X); Y|E) — I(¢(X); Y|Y).

Case 2: Y — X. In this scenario, we have the following inequality because conditioning on ¢(X)
opens the path £ — U — X < Y between Y and E at the collider node X because ¢(X) is a child
of X (Pearl, 2009).

I(Y; E|¢p(X)) > I(Y; E) (10)

Additionally, we have the following inequality because conditioning on Y blocks the path ¢(X) <«
X <Y < U 4> E at Y and hence less information flow between ¢(X) and E.

I(¢(X); E) > 1(¢(X); E|Y) (11)

Now consider the following expansion from Equation 6 from the proof of Theorem 4.1.
I(Y;Y) = I(Y; E) + I(¢(X); Y|E) = I(Y; E|¢(X)) = I(¢(X); Y[Y)  (Equation 6)
< I(G(X); Y|E) + I(Y; E|6(X)) = I(Y; E|¢(X)) = I($(X);Y|Y)  (Using 10)
= 1(6(X);Y|E) — I(¢(X); YY)
Similarly, consider the following expansion from Equation 7 from the proof of Theorem 4.1.
(YY) = I(6(X); E) + 1((X); Y|E) — [(¢(X); E]Y) — I(¢(X); Y|V")  (Equation 7)
> I(@(X); Y| E) + 1(¢(X); E) — I($(X); E) = I(¢(X); YY) (Using 11)
= 1(6(X); Y[E) — I(¢(X); YY)
That is, we have I(¢(X); Y| E) — I(¢(X); Y[Y) < I(Y;Y) < I(¢(X); Y| E) — I(¢(X); Y[Y).
Since the upper bound and lower bounds are the same in both cases, we have the desired result
IY;Y) = I(¢(X); Y[E) = I(¢(X); Y[Y). 0

Proposition 4.1. If ¢1(-), ¢2(-) are invertible functions and if X are informative variables such that
Y X X; | X, E, then we have the following inequalities:

(1) H{op2({X U X }); YIE) > I(¢1(X); YIE) (1) I(dp2({X U X1}); E) > 1(¢1(X); E) )
(i) I(Y; Elpo({X U X1})) < I(Y; E|¢1 (X)) (iv) I(g2({XU X }); E|Y) > I(1(X); E 1Y)
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Proof. (i) By the chain rule of mutual information, we have: I[(X,Xp;Y|E) = I(X;Y|E) +
I(X;;Y|E,X). We have I(X;Y|E,X) > 0 because Y £ X; | X,E. Hence, we have
I(X,X;Y|E) > I(X;Y|E). Since ¢1(+), ¢2(-) are invertible functions and mutual information is
invariant to invertible transformations, we have I(¢2({X U X;}); Y|E) > I(1(X); Y |E).

(i) We consider the causal graph shown in Figure 3. From the chain rule of mutual information,
we have: I[(X,X;E) = I(X;E) + I(Xy; E|X). Since E <+ U — Y, any covariate that is
informative to Y is also informative to U. Since E <+ U, we have I(X;; E|X) > 0, and hence
I(X,X; E) > I(X;E). Since ¢1(-), ¢2(-) are invertible functions and mutual information is
invariant to invertible transformations, we have I(p2({X U X;}); E) > I(¢1(X); E).

(iil) Consider I(Y; E, X|X). It can be expressed in two ways:
HYiB,X; | X) = [(Y;E| X) + I(Y:X; | E,X) = I(V;X; | X) + IV E | X1, X)
Equating and rearranging the terms gives the following.
IV;E|X)-IY;E | X, X)=I(V;X; | X) - I(V;X | E,X)

Since Y L X; | E, X, wehave I(Y;X; | X) > I(Y; X | E,X) because conditioning usually
reduces mutual information unless the additional conditioning variable opens any collider paths Here
E is neither a collider not a descendant of any collider. Thus, I(Y; E | X) > I(Y; E | X7, X). Since
¢1(+), P2(+) are invertible functions and mutual information is invariant to 1nvert1ble transformatlons,
wehave [(Y; E | ¢1(X)) > I(Y; E | p2({X7 UX})).

(iv) By the chain rule of mutual information, we have: I(X,X;E | V) = I(X;E | V) +
I(X; E|X,Y). Since E <+ U — Y, any covariate that is informative to Y is also informative to
U. Since E <+ U, we have I(X;; E|X,Y) > 0, and hence I(X,X; E | Y) > I(X; E | Y). Since
¢1(+), P2(-) are invertible functions and mutual information is invariant to invertible transformations,
we have [(po({XUX LK E|Y) > I(1(X); E|Y). O

B EXPERIMENTAL SETUP

In this section, we detail our experimental setup. The impact of random seeds on the results is
statistically insignificant in many settings (Gardner et al., 2023). For the results in the main paper, we
report the mean and standard deviation across five random hyperparameter values (sampled from
their respective domains in Table B1) for each dataset-method combination. Since we evaluate
models on ID test and OOD test data, to evaluate mutual information terms, we use the nonparametric
entropy estimation toolbox (Kraskov et al., 2004; Steeg & Galstyan, 2011; 2013). Following (Gardner
et al., 2023), we evaluate mutual information using both in-distribution (ID) test data (from training
domains) and out-of-distribution (OOD) test data (from test domains).

For consistency, we select 20,000 random sam- dataset, XGE modal dataset, XGB model
ples from each ID and OOD test data, though

some datasets contain fewer than 20,000 sam-

ples. Throughout our experiments, the sam-

ple size has a relatively insignificant effect on

the evaluated mutual information terms. For o

instance, as shown in Figure B1, the terms in oo os T e
Equation 1 computed for the representations of = Cl-Res

the XGB model on the income dataset stayed

relatively consistent as we vary sample size. Fea-  Fjgure B1: Evaluated terms of predictive informa-

tures P(X) are extracted from the layer preced- tion are relatively consistent across various sample
ing the classification head; for XGBoost, we gjzes on the income dataset.

combine output margins and SHAP values from the model. All experiments were conducted on a
single NVIDIA RTX A6000 GPU.

In our experiments studying the impact of informative covariates on predictive information, we follow
the categorization introduced by Nastl & Hardt (2024), partitioning covariates into: causal, arguably
causal, and all covariates. Causal covariates have clearly established influence on the target, with well-
supported directionality and unlikely reverse causation. However, strict reliance on causal variables
risks omitting relevant parents due to knowledge gaps. Arguably causal covariates have uncertain
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Table B1: Hyperparameters and their possible values considered in this paper.

Model Hyperparameter Search values
Learning rate [0.1,0.2,0.3]
Maximum tree depth 4,5,6]
Minimum child weight 0.1,1,10]
XGBoost Gamma (min. loss reduction) 0.0001, 0.001, 0.01]
Subsample ratio 0.5,0.6,0.7]
Column subsample per tree 0.5,0.6,0.7]
L1 regularization () 0.0001, 0.001, 0.01]
L2 regularization () 0.0001,0.001,0.01]
Number of layers 2,3,4]
Hidden layer size 256,512, 1024]
Dropout rate 0.0,0.1,0.2]
MLP Learning rate 0.01,0.02,0.05]
Weight decay (L2) 0.0001,0.001,0.01]
Batch size 4096)
Number of epochs 1,2,3]
Number of layers 2,3,4]
Hidden layer size 256,512, 1024]
Group-weights step size 0.01,0.05,0.1]
GroupDRO  Dropout rate 0.0,0.1,0.2]
Learning rate 0.01,0.02,0.05]
Weight decay (L2) 0.0001,0.001,0.01]
Batch size 4096)
Number of epochs 1,2,3]
Number of layers 2,3,4]
Hidden layer size 256,512, 1024]
Dropout rate 0.0,0.1,0.2]
IRM penalty weight (\) 0.01,0.05,0.1]
IRM IRM penalty anneal iterations 1,2,3]
Learning rate 0.01,0.02,0.05]
Weight decay (L2) 0.0001, 0.001, 0.01]
Batch size 4096]
Number of epochs 1,2,3]
Number of layers 2,3,4]
Hidden layer size 256,512, 1024]
VREX penalty anneal iterations |1, 2, 3]
VREX penalty weight () 0.1,10,100]
VREX Dropout rate 0.0,0.1,0.2]
Learning rate 0.01,0.02,0.05]
Weight decay (L2) 0.0001, 0.001,0.01]
Batch size 4096
Number of epochs 1,2,3]

causal relationships, meeting at least one of: (1) being known causal, (2) having plausible but poten-
tially bidirectional influence, or (3) likely (but unconfirmed) causal effect. These groups approximate
true causal parents based on available knowledge, though relationships may be confounded. Some
datasets additionally contain anti-causal covariates where the target likely affects them but not vice
versa. The all covariates set includes all observed variables regardless of causal status. The sign con-
sistency metric introduced in the main paper § 5 is defined as follows. For each (m, o,,) € M where
M = {(conditional informativeness, +1), (variation, —1), (label shift, 4-1), (feature shift, +1),
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Figure C2: Dataset specific results on ID data.

(concept shift, —1), and (residual, —1)}, for a specific dataset, we compute:

Com = ﬁ Y [L(om - (uf(m) = p(m)) > 0) +1 (om - (4 (m) — i (m) > 0)]
(s,t)epP

Where P is the set of covariate set pairs (s,?) with ¢ D s. For example, s can be causal covariates
and ¢ can be arguably causal covariates. There is a factor of 2 in 2P that accounts for both train and
test data. () is the mean of measure m for covariate set s in training/testing data. I(-) is the

indicator function. |P| = 3 for covariate settings {causal, arguably causal, all}. To get final sign

consistency metric value for each m, we average across datasets: C,,, = ﬁ Y deD C,gf ) where | D]
is the number of datasets.

C ADDITIONAL RESULTS ON REAL-WORLD DATASETS

In this section, we present additional results on real-world datasets. Figures C2, C3 show the com-
parison of the terms: conditional informativeness — residual and —variation /2 + label shift /2 +
feature shift / 2 — concept shift / 2 for each dataset. The key takeaway from these results is that, from
Theorem 4.1, the sum of blue and terms is positively correlated with the overall model perfor-
mance. At the same time, due to potential hidden confounding shift in real-world data, the contribution
of the difference conditional informativeness — residual is higher towards the overall predictive in-
formation when compared to the contribution of —variation / 2 + label shift / 2 + feature shift / 2 —
concept shift / 2. This serves as a motivation to maximize conditional informativeness for better OOD
generalization under a hidden confounding shift.

Table C2: Comparison of ID and OOD test accuracies of models.

Method Readmission Food stamps Diabetes
D 00D 1D 00D D OO0D

MLP 65.78 £0.14 61.75£0..22 84.74+0.03 82.00+£0.06 87.66+0.02  83.2240.05
GDRO 6047 +1.08 57.60+0.42 8447+0.04 81.41+£0.09 87.47+£0.10 82.90%0.10
IRM 50.28£7.35 50.85+1.74 80.91£0.00 78.01+0.00 42.54436.52 43.48+31.92

Method Income Unemployment
MLP 82.92+0.05 81.46+0.01 97.27+0.02 96.04 +0.05
GDRO 82.70 £0.05 80.16+0.45 97.28+0.01 96.10 4 0.00
IRM 67.91+£0.00 60.20+0.00 96.61+0.00 94.84 4+0.00
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Figure C3: Dataset-specific results on OOD data.

In-d in: Avg. Over D Out-of-d in: Avg. Over Da

Method | Avg.ID Avg. OOD
Test Acc.  Test Acc.

ooz MLP 83.67 80.89
oo GDRO 82.48 79.64
000 IRM 67.65 65.48

MLP GDRO MLP GDRO IRM

== Predictive information m— _Variation . Label shift  Feature shift _ Concept shift

=== Conditional informativeness — Residual

Figure C4: The difference conditional informativeness — residual in the plots is positively correlated with the
average ID and OOD test accuracy over five datasets shown in the table on the right. The contribution of the
difference conditional informativeness — residual is higher towards the overall predictive information when
compared to the contribution of —variation / 2 4 label shift / 2 + feature shift / 2 — concept shift / 2.
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Figures C6- C15 further show the comparison of various terms of the information decomposition in 1
for each method and dataset. From these results, we observe that the values plotted in the second
column ( ) and third column ( ) are similar in magnitude, and based on Equation 1,
their difference is close to zero, contributing very little to the overall predictive decomposition.
Similarly, we observe that the values plotted in the fourth column ( ) and fifth column
( ) are similar in magnitude, and based on Equation 1, their difference is close to zero,
contributing very little to the overall predictive decomposition. In almost all settings, the difference
conditional informativenss - residual is the majority contributor for the predictive information.

Hyperparameter tuning: We also perform hyperparameter tuning on model parameters. We run
a grid search over hyperparameter values and select the best hyperparameter values based on ID
validation accuracy (not OOD validation accuracy). We run 1500 experiments (5 datasets, 3 models,
and 100 hyperparameter choices sampled from a grid of hyperparameter values). In this case, to
get the mean and standard deviation results for accuracies and mutual information terms, we run
each experiment for 5 random seeds, even if the effect of random seeds is insignificant in many
cases. Results are shown in Figure C4. From Theorem 4.1, the sum of blue and terms is
positively correlated with the overall model performance. At the same time, due to potential hidden
confounding shift in real-world data, the contribution of the difference conditional informativeness —
residual is higher towards the overall predictive information when compared to the contribution of
—variation / 2 + label shift / 2 + feature shift / 2 — concept shift / 2. Dataset-specific results shown
in Figure C5 and Table C2 also show similar trends.

Potential limitations with predictive information decomposition analysis: While predictive
information (Y f’) measures statistical dependence between predictions and labels, it does not
guarantee accuracy. For instance, a binary classifier that systematically predicts the wrong label
(e.g., Y = 1 when Y = 0) achieves maximal T (Y; f’) = 1 bit (for binary variables) due to
perfect anti-correlation, yet yields 0% accuracy. This occurs because mutual information quantifies
reduction in uncertainty rather than correctness. Other decomposition terms provide further insight:
conditional informativeness I (¢(X); Y |E) may mask harmful variation I (¢(X); E|Y), while feature
shift I(¢(X); E) can inflate I(Y; V') through spurious correlations. Nevertheless, this decomposition
remains valuable for analyzing reasonably performant models, as our experiments demonstrate - it
reveals whether predictive information stems from generalizable patterns or environment-specific
artifacts, enabling targeted improvements while maintaining interpretability.

21



Under review as a conference paper at ICLR 2026

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
has Train Data Shifts - XGB
1::2 B Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.
1147 L
o B oo mminnl i
1149 £ — - S| .
1150 ¢ Ac A ¢ Ac A ¢ Ac A ¢ Ac A ¢ Ac A ¢ ac A ¢ Ac A
1151 -
1152 B I
DER e ] | T e — | |
1 1 54 C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A
1155 oo
1156 ..
1157 o IS | | N | I | S | By
1158 cC AC A X X C AC A C AC A C AC A C AC A
1159 ;
1160
o - ] |
1162 T ac A ¢ ac A ¢ ac A ¢ Ac A ¢ Ac A
1163
1164
1165 -“
1166 . , , N S S R S
1167 goe
e e II
11 Loz
1133 i | (S | R | I - _——I
c A.C A C A.C A C A.C A C A.C A [ A.C A C A.C A C A.C A
1171 e
1172
1173 3.
1174 B L | e et e || O | | L O ol || e e
1 1 75 C A.C A c A.C A C A.C A c A.C A [ A.C A c A.C A c A.C A

1176 Figure C6: Decomposition of information metrics on train data for XGBoost and groups of features:
177 (C) Causal, (A.C) Arguably causal, (A) AllL
1178

1179
1180
1181
1182
1183
1184
1185
1186
1187

22



Under review as a conference paper at ICLR 2026

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200 v
1201 3o
1202 5.
1203 W ] i U B AR | [ SR § E———

c A.C A c A.C A c A.C A C A.C A c A.C A C A.C A
1204

1205

Test Data Shifts - XGB

Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.

A.C

1206 g“
1207 2" e M *P;-ﬁﬁ—--
C A.C A

1 208 9 A.C A (9 A.C A c A.C A c A.C A c A.C A

C

C
1209 " I

C

C

1210
e o e | | o i B mmB . | || e

1212 C AC A C AC A C AC A C AC A C AC A C AC A

Diabetes

A.C

1213
1214
we o Gl e
1216 ¢ Ac A . ¥ ¥ "

1217
1218
1219
1220
1221
1222
1223
1224

Income

>
(2]

ASSISTments

Public Coverage

02
01
0.0 mmm—

c A.C A c A.C A c A.C A c A.C A c A.C A c A.C A

1225 .
1226 o
1227 ”
1228 TS T ) ) R I 1§ P ) R — vy

¢ Ac A ¢ AC A ¢ Ac A ¢ Ac A ¢ AcC A ¢ Ac A
1229

Blood Pressure

1230 Figure C7: Decomposition of information metrics on test data for XGBoost and groups of features:

1231 (C) Causal, (A.C) Arguably causal, (A) All.
1232

1233
1234
1235
1236
1237
1238
1239
1240
1241

23



Under review as a conference paper at ICLR 2026

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254 os

Sos

1255 e
. i T .i []
1257 % e e I i . | ] e e
(4 A.C A [ A.C A . . C A.C A

¢ aAc A
1258 2s

1259 £
1260 a,
8 os
el | 'T"
1262 C A.C A C A.C A

1263 gor
1264 i
8,

Train Data Shifts - MLP

Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.

SR N

c

2
1265 vol o oo | | . _ [ I (R N -
1266 cC AC A C AC A cC AC A C AC A cC AC A cC AC A c

1267 12

o ull Bn 0
oo lillﬁllil o em e e ed
1270 [ A.C A (4 A.C A X . L .

1271

1272

8

c

o

£ 10

£

e - [] . []
a
< e [ == - ||
A.C A X . X .

2 2
> >
b} a
>->.

>
[e]
ol |

1274
1275 0.
1276 8.

>
(2]
gl |

1277 s I
1278 FAGaM ) I § PSR ) P § R

1279
1280

1281 5"
PR S .

C A.C A C A.C A C A.C A C A.C A C A.C A [ A.C A C A.C A
1283

1254 Figure C8: Decomposition of information metrics on train data for MLP and groups of features: (C)

1285 Causal, (A.C) Arguably causal, (A) Al
1286

1287
1288
1289
1290
1291
1292
1293
1294
1295

24



Under review as a conference paper at ICLR 2026

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306 Test Data Shifts - MLP
1307
1 308 Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.
1309 i
1310 5.
1311 O T N N 1 AR 1 T B B =g =
1312 c AC A ¢ AC A c AC A cC AC A c AC A cC AC A ¢ AC A
1313 gm
1314 i
1315 'E.,:.,—ﬁ- [ T B IR N1 [ e s——
1316 € AC A C AC A C AC A ¢ AC A C AC A cC AC A C AC A
1317 -
1318 2.
8o,
e I ) o T 1 00 T | I |~ S | e
1320 cC AC A cC AC A cC AC A C AC A cC AC A cC AC A cC AC A
1321
1322 Lo I
132 S
- e e o (| i
1324 C AC A C AC A C AC A C AC A
1325 0’
1326 i
1327 @os
< ol o I e S o B i ---
1 328 C A.C A c A.C A C A.C A C A.C A C A.C A
1329 .
1330 I '
Qo3
1331 Loa .
1332 Ei:--l'llil S S b RN P -illillil
C AC A C AC A C AC A C AC A C AC A C AC A C AC A
1333 0o
1334
g
1335 %“
1336 =" iﬁ.h o lﬁ_
1337 7 ac A C AC A C AC A C AC A C AC A C AC A C AC A

1938 Figure C9: Decomposition of information metrics on test data for MLP and groups of features: (C)

1339 Causal, (A.C) Arguably causal, (A) All.
1340

1341
1342
1343
1344
1345
1346
1347
1348
1349

25



Under review as a conference paper at ICLR 2026

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362 o7

1363 i
B 11T i
1365 0 o — +*+-_¢*_—

C A.C A C A.C A C A.C A

c A.C A C A.C A c A.C A
1366

1367

1368

1369 || M. . . | _|HHEN
[ A.C A . . C A.C A

1 370 c A.C A c A.C A

Train Data Shifts - GDRO

Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.

5

Food Stamps
B

1371 oo
1372 %
1373 B
ML T 1 D N e e e
1374 C AC A cC AC A C AC A C AC A C AC A C AC A C AC A
1375 =
1376 £
wr T T ]|
- lillillil R ] I ) [ -
1378 C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A
1379 2 s
B 1_ R
1381 RN - I | S — 1
< [ ] __ __ [ I
1 382 - C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A
1383 gos
1384 o
1385 go .
1386 E::_ﬁﬁ [ I I DR pr S ) E—
c A.C A (4 A.C A [ A.C A c A.C A (4 A.C A [ A.C A C A.C A
1387 g
1388 g
1389 %"
1390 ol T 1T IFTT ICT T 1 i |1 |
1391 o0 C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A

1992 Figure C10: Decomposition of information metrics on train data for GDRO and groups of features:

1393 (C) Causal, (A.C) Arguably causal, (A) All.
1394

1395
1396
1397
1398
1399
1400
1401
1402
1403

26



Under review as a conference paper at ICLR 2026

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414 _
Test Data Shifts - GDRO

1415
1 41 6 Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.
1417 £
1418 §ﬁ
1419 D T S NN IS T B PR—— =
1420 C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A
1421 gu
1422 g“
1423 E;n-lillil o s __ . e || e e
1424 c A.C A C A.C A [ A.C A (4 A.C A [ A.C A (4 A.C A C A.C A
1425 .
1426 3.

s
ey oo e |m || == W
1428 C AC A C AC A C AC A C AC A C AC A C AC A C AC A
1429 -
1430 L. I
1431 S lil'i

oo e | e .
1 432 C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A
1433 g
1434 -
1435 8., S — ]
1 436 A C A.C A C A.C A C A.C A C A.C A
1437 g o
1438 ..

Gos
S i
1440 E::— ﬁ I _ _ _ - - - -_* —iﬁ

c A.C A C A.C A [ A.C A c A.C A [ A.C A [4 A.C A C A.C A

1441 oot
1442 Bos

4
1443 %“
1444 T T || ——— ] T
1445 o C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A

1445 Figure C11: Decomposition of information metrics on test data for GDRO and groups of features:
1447 (C) Causal, (A.C) Arguably causal, (A) All.
1448

1449
1450
1451
1452
1453
1454
1455
1456
1457

27



Under review as a conference paper at ICLR 2026

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468 Train Data Shifts - IRM
1469
1470 Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.
1471 5
1473 o] e T T i i e T e | { T
1474 C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A
1475 gu
1477 o e e | |
1478 C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A
1479 .
1480 3o
8oz
1481 T e 1 ) | e I i
1482 € AC A C AC A cC AcC A ¢ AC A C AC A ¢ AC A C AC A
1483 =
1485 =os
| e o R e ] e
1486 ¢ AC A ¢ AC A ¢ Ac A ¢ Ac A ¢ AC A ¢ AC A ¢ AC A
1487 P
1488 g I
oo < e i B S T T O T T
[ A.C A C A.C A [ A.C A (4 A.C A c A.C A (4 A.C A C A.C A
1491 g
1492 5
1493 s
1494 T e U [ [ PR D
1 495 [ A.C A C A.C A C A.C A (4 A.C A c A.C A [4 A.C A C A.C A
o.s
1496 %“
1497 3o
1498 %::-ﬁ- O ol e | B i || | | | | e W
1499 C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A C A.C A

1500 Figure C12: Decomposition of information metrics on train data for IRM and groups of features: (C)

1501 Causal, (A.C) Arguably causal, (A) All.
1502

1503
1504
1505
1506
1507
1508
1509
1510
1511

28



Under review as a conference paper at ICLR 2026

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523

1 524 Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.
o5

ws
1526 gm
1527 S| || L I ™ I ———
. . . . X . c A.C A

1528 .
1529 g

1530 e
1531 fleemm®] . 1 L || e

Test Data Shifts - IRM

1 532 c A.C A c A.C A c A.C A C A.C A c A.C A C A.C A A.C A

1536 cC AC A cC AC A cC AC A C AC A cC AC A C AC A

1537
1538
1539 oz
1540
1541 20
1542
1543
1544 o
1545 0’
1546
1547
1548
1549 o
1550
1551

1552 PN S R S I—— T

c A.C A c A.C A c A.C A c A.C A c A.C A c A.C A c A.C A
1553

Income

|l|
1533 .
1534 £.. i
1535 [ S e [ b | S

C

C

ASSISTments

e P 1 7 | --
c

ol |

Public Coverag

T [ N I | i N e pus

c A.C A c A.C A c A.C A c A.C A c A.C A c A.C A c A.C A

lood Pressure

1954 Figure C13: Decomposition of information metrics on test data for IRM and groups of features: (C)

1555 Causal, (A.C) Arguably causal, (A) All.
1556

1557
1558
1559
1560
1561
1562
1563
1564
1565

29



Under review as a conference paper at ICLR 2026

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576 Train Data Shifts - VREX
1577
1 578 Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.
1579 i
EOR | 1| (1] | Se———— ] |
1581 e + + +
1582 c AC A ¢ Ac A cC AC A cC AC A ¢ Ac A c AC A cC AC A
i
LT
1585 L I | e | | |
1586 C AC A cC AC A C AC A C AC A cC AC A C AC A C AC A
1587 .
1588 1. -
E 0.2
1589 e e || I | IS | p—
1590 cC AC A C AC A cC AC A cC AC A cC AC A cC AC A
1591 -
1592 £ I i
1593 Zos
,_‘,——ﬁ e e | [ _ _ —ﬁﬁ ..-
1594 . A.C A c A.C A C A.C A c A.C A c A.C A
1595
1596 I
B
on e e | i | |
c AC A ¢ Ac A c AC A ¢ Ac A c AC A c AC A
1599 g
1600 g
1601 g “l
1602 2] I o o s 1 T 1
1603 C AC A C AC A C AC A C AC A C AC A C AC A
Q12
1604 g:
1605 3 “I
2o
1606 . e — N ._-_-
1607 C AC A C AC A C AC A C AC A C AC A C AC A C AC A

1608 Figure C14: Decomposition of information metrics on train data for VREX and groups of features:

1609 (C) Causal, (A.C) Arguably causal, (A) All.
1610

1611
1612
1613
1614
1615
1616
1617
1618
1619

30



Under review as a conference paper at ICLR 2026

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1 632 Cond. Inform. Variation Feature Shift Label Shift Concept Shift Residual 00D Test ACC.
os

1633 III
1634 ::__+ o + ~ o *_+

1635 o
C AC A C AC A C AC A C AC A C AC A C AC A

1636

C A.C A
1637 L.
1638 Boe
1639 'Eo:,—ﬁﬁ e e | e e

c A.C A

1 640 c A.C A c A.C A c A.C A c A.C A c A.C A c A.C A

1641 f
1642 i -
1648 j e I | ™ T . |

X C A.C A

1644 C AC A C AC A C AC A C AC A C AC A

1645
1646 -i
T N S AU | PO |
A.C A . . . C A.C A
A.C A

Test Data Shifts - VREX

Readmission

1647
1648
1649 *
1650
1651
1652 *
1653
1654
1655
1656 Y
1657
1658
1659 Toa

1660 oo I NN

A Ac
¢ Ac A ¢ aAc A ac
1661

1662 Figure C15: Decomposition of information metrics on test data for VREX and groups of features:
1663 (C) Causal, (A.C) Arguably causal, (A) All.
1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

ASSISTments
s

C A.C A C A.C A C A.C A C A.C A

el |1

c A.C A c A.C A c A.C A c A.C A

A C A.C A

C A.C A C A.C A C A.C A

C A.C A C

C

31



Under review as a conference paper at ICLR 2026

D RESULTS ON SYNTHETIC DATASETS

We conduct several experiments on synthetic datasets to investigate: (i) the impact of different
informativeness criteria, (ii) how the level of confounder overlap across environments affects model
performance, and (iii) the influence of the number of causal versus anti-causal variables on the
performance. The data-generating process follows the structural equations in 12, with the causal
structure U - X, U — Y, U — X;,and X — Y, where U is an unobserved confounder, X is an
observed covariate, Y is the target variable, and X; represents additional informative covariates.

U~ Ny, 0u) X fx(U) + N(pz, 04)

X+ fi(U) + N(ps,00); Xi € X Y «— fy(X,U) + N(uy, 0y) (12)

We explore different functional forms for fx, f;, and fy, with the corresponding results presented in
our analysis. Domain shifts are induced by systematically varying the environment-specific mean
parameter p, of the confounder distribution. This allows us to examine how different degrees of
distributional shift affect model performance across environments.

Informativeness vs. accuracy: In this set of experiments, we begin with linear structural equations:
fx = 03U, f; = 0.1U, and fy = X — 2U. For these experiments u¢ € {—2,2} for training
environments and p¢, € {0,4} for test environments. For the results presented in Figure 4 of the
main paper, we consider one hidden confounding variable with |X ;| = 20 informative covariates.
As we increase the number of informative covariates from 0 to 20, we observe: (i) a reduction in
mean squared error, (ii) improved conditional informativeness, (iii) enhanced feature shift, while
(iv) decreased concept shift. We extend these findings by examining two additional informativeness
criteria. First, we analyze the case with one hidden confounder and a single informative covariate
(|Xr| = 1) across varying noise levels o; € {0,0.1,...,2.0}. Figure D16 demonstrates that as noise
decreases from 2.0 to 0.0, we observe: (i) reduced mean squared error, (ii) improved conditional
informativeness, (iii) enhanced feature shift, alongside (iv) decreased concept shift. Consistent with
other synthetic experiments, the variation term remains zero throughout. Finally, we investigate a
setting with 20 hidden confounders and corresponding 20 informative covariates, using modified
structural equations fx = 0.3U, f; = 0.2U, and fy = X — 2U. Figure D17 shows that as we
introduce informative covariates corresponding to hidden confounders, we again observe: (i) reduced
mean squared error, (ii) improved conditional informativeness, (iii) enhanced feature shift, while
(iv) decreased concept shift. These experiments demonstrate how different informativeness criteria
help in achieving OOD generalization.

Mean Squared Error Cond. Informativeness & Variation Feature Shift & Concept Shift
Train Test Train Test Train Test
15 a A 1.5 v | Lo paa, wpptoe| 1.0 =
6 ea™ § 4’ 7N
10 aak 1.0 oA “x.,,.*l\ﬁ o
a & l_j\ A r\{
2 0.5{K] 0.5 <
5 | 05 : e Agl A
2 . kv S O \
: . o S
0 0 0{B-n—Bub- BB 8 »s'| 0.0{0-4- 0.0{4d-d-su i EBmw| 0.0 R‘.‘—-'—‘b
2 1 o 2 1 o 2 1 o 2 1 o 2 1 o
o5 o. o5 o. a.
—¥— Linear Regression  —&— XGB GDRO —»— IRM  —@— VREX  ----- Cond. Informativeness =~ —— Variation =~ —-- Feature Shift ~——- Concept Shift

Figure D16: Adding proxy variable with low noise helps in reducing MSE, increasing conditional
informativeness and feature shift while reducing concept shift.
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Figure D17: Adding more proxy variables X of a set of hidden confounding variables U that are
informative to Y helps in reducing MSE, increasing conditional informativeness and feature shift
while reducing concept shift.
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MLP Using X MLP Using X, E MLP Using X,X; MLP Using X, U (Oracle)
Train MSE: 18.9 Train MSE: 4.8 Train MSE: 2.0 Train MSE: 1.2
Test MSE: 31.6 Test MSE: 192.8 Test MSE: 7.8 Test MSE: 11.4

Structural Equations:

(Hidden Confounder) U ~ N(ue, 0.5%)
He € {—2,2} for ID
He € {0, 4} for OOD
(Input) X = 0.75U + N0, 1.52)
(Outcome) Y = X2 —3U + N0, 0.52)
(Informative) X; = 0.6 U + M(0, 0.3%)

Train data
Test data
Predictions on train data
Predictions on test data

® * 4P

Figure D18: Performance of MLP on the low overlap non-linear setting, for sets of features: (i) X
(i) X and F (environment statistics) (iii) X and X; (iv) X and U (Oracle).

MLP Using X MLP Using X, E MLP Using X,X;  MLP Using X, U (Oracle)
Train MSE: 4.7 Train MSE: 3.5 Train MSE: 1.9 Train MSE: 0.4
Structural Equations : Test MSE: 6.6 Test MSE: 4.6 Test MSE: 2.5 Test MSE: 0.5

(Hidden Confounder) U ~ M(ue, 0.52)  20{%,
He € {—1,0} for ID
Ue € {—0.5, 0.5} for OOD > 10
(Input) X = 0.75 U + A0, 1.52)
(Outcome) Y =X2—3U + N0, 0.52) °
(Informative) X;= 0.6 U + A(0, 0.32)

Train data
Test data
Predictions on train data
Predictions on test data

< »
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Figure D19: Performance of MLP on the high overlap non-linear setting, for sets of features: (i) X
(i1) X and E (environment statistics) (iii) X and X; (iv) X and U (Oracle).

Overlapping confounder support vs. accuracy: As established in the main paper, recent work
by Prashant et al. (2025) proposed an OOD generalization method for hidden confounding shift that
assumes test confounder support remains within training support. While our results demonstrated
successful learning of correct relationships in synthetic linear data when sufficient information about
hidden confounders exists in observed covariates, we now extend this analysis to nonlinear data
using MLP and XGB models under both low and high confounding support conditions (Figures D 18-
D21). In low confounding overlap settings (characterized by distant p. between ID and OOD data),
models relying solely on X learn an inadequate global function that fails to distinguish environments.
Performance improves when incorporating environment-specific summary statistics of observed
covariates, which helps capture environment-specific relationships, but the most significant gains
occur only when leveraging additional informative covariates, underscoring their importance. For
completeness, we include both oracle model results and U-Y relationship scatter plots to elucidate
the learned input-output mappings. These experiments confirm better performance under high
confounding overlap as expected, but more importantly, reveal promising results in the low-overlap
regime - a previously unstudied scenario that challenges the common support assumption in the
literature.

Number of causal vs anti-causal variables: Recent benchmarks (Gardner et al., 2023) show
that baseline methods (e.g., XGB, MLP) consistently match or outperform OOD generalization
techniques (e.g., GDRO, IRM, VREX) in real-world datasets, coinciding with the prevalent causal
structure X — Y in tabular data. To test if baseline superiority stems from the causal structure:
X — Y, we vary the causal-to-anti-causal ratio p = |X¢|/|X 4| € {0.0,...,1.0} with |X]| = 50
and X = X UX,4 (e.g., p = 0.5 gives | X¢| = |X 4| = 25). Results (Figure D22) show baseline
resilience even under the causal structures X — Y — X 4, though no method dominates universally
(Figures D23, D24). Baselines achieve superior PMA-OOD scores (Gardner et al., 2023) (fraction
of maximum OOD accuracy). We evaluate: (1) ERM-based methods (XGBoost (Chen & Guestrin,
2016), LightGBM (Ke et al., 2017), MLP, ResNet (Gorishniy et al., 2021), SAINT (Somepalli et al.,
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XGB Using X XGB Using X, E XGB Using X,X XGB Using X, U (Oracle)
Train MSE: 9.2 Train MSE: 1.2 Train MSE: 0.0 Train MSE: 0.0

Structural Equations: gg TSt MSEr30.9 Test MSE: 36.7 Test MSE: 16.7 Test MSE: 12.0

(Hidden Confounder) U ~ N(ue, 0.5%)
He € {=2,2} for ID
e € {0, 4} for OOD
(Input) X = 0.75U + A0, 1.52)
(Outcome) Y= X2 —3U + N0, 0.52)
(Informative) X; = 0.6 U + M(0, 0.3%)

Train data
Test data
Predictions on train data
Predictions on test data
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Figure D20: Performance of XGB on the low overlap non-linear setting, for sets of features: (i) X
(i) X and F (environment statistics) (iii) X and X; (iv) X and U (Oracle).
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Figure D21: Performance of XGB on the low overlap non-linear setting, for sets of features: (i) X
(i) X and F (environment statistics) (iii) X and X; (iv) X and U (Oracle).
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0OOD Test Accuracy by Model On Linear Synthetic Dataset

p=02 p=03

00D Test Accuracy
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00D Test Accuracy
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B Domain Generalization Methods B Domain Adaptation Methods I Robust Learning Methods I ERM-Based Methods

Figure D23: OOD test accuracy on the linear setting per model for different values of p.

2021), TabTransformer, NODE (Popov et al., 2019), FT-Transformer, ExpGrad (Agarwal et al.,
2018)); (2) OOD generalization methods (IRM (Arjovsky et al., 2019), IB-IRM, IB-ERM (Gulrajani
& Lopez-Paz, 2021), CausIRL (Chevalley et al., 2022), DANN (Ajakan et al., 2014), MMD (Li et al.,
2018), DeepCORAL (Sun & Saenko, 2016a), V-REx (Krueger et al., 2021), Domain Mixup (Xu
et al., 2020; Yan et al., 2020)); and (3) Robust optimization methods (DRO (Levy et al., 2020),
GroupDRO (Sagawa et al., 2019), Label DRO, Adversarial Label DRO (Zhang et al., 2020)).

1X

Percentage of Max Accuracy (PMA-OOD) on Synthetic Datasets Across All ratios (p = IXaI)
Left: Data With Linear Equations, Right: Data With Nonlinear Equations
1 ResNet 1 XGB
2 NODE 2 LightGBM
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4 FT-Transformer 4 GDRO
5 GDRO 5 ExpGrad
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Figure D22: ERM-based methods achieve a better percentage of maximum OOD (PMA-OOD) test accuracy
on the synthetic datasets, in line with the real-world results of (Gardner et al., 2023).

35



Under review as a conference paper at ICLR 2026

0O0D Test Accuracy by Model On Nonlinear Synthetic Dataset

p=02 p=03 p=04 p=0.5

00D Test Accuracy

“

p=0.6

BT I S

9 p=0.10

ARSI AT AN AN ey
p=0

p=07 p=0.8

00D Test Accuracy

AR

WS SN oW SN R B ®
S R oA - Al s

B Domain Generalization Methods B Domain Adaptation Methods mmm Robust Learning Methods B ERM-Based Methods

Figure D24: OOD test accuracy on the non-linear setting per model for different values of p
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E QUALITATIVE ANALYSIS OF HIDDEN CONFOUNDING SHIFT IN REAL-WORLD
DATASETS

In this section, we qualitatively study the presence of hidden confounding shifts in real-world datasets.
Tables E3-E18 present potential hidden confounders influencing various observed covariates in
several real-world datasets (Nastl & Hardt, 2024). For additional details regarding these datasets,
we refer to (Gardner et al., 2023; Nastl & Hardt, 2024). We use GPT40 (Achiam et al., 2023) for
this task, and we acknowledge that the list of unobserved confounding variables provided is not
exhaustive. This study supports the arguments for the existence and impact of hidden confounding
shifts across domains in real-world datasets. These GPT-40 responses are solely meant for semantic
insight and are not implicitly or explicitly used in other experiments.

Prompt: We use the prompt below to query GPT4o to get possible hidden confounders.

For a target variable, you will be given lists of causal,
arguably causal, anti-causal, and spurious covariates. Also,
you will be provided with environment variables such that
different datasets are collected in environments induced by these
environment variables. Provide possible hidden confounders that
cause any of the target, causal, arguably causal, spurious, and
anti-causal covariates. That is, the hidden confounders should
influence the distribution of their children in different domains.
Ensure hidden confounders are not a part of the given variables,
and your explanation should include how hidden confounders
influence their children in different environments.

Table E3: Dataset: Food stamps. Target: Food stamp recipiency in the past year for households
with child. Environments: regions in the United States.

Hidden confounder

Affected variables

Reason for confounding

Local economic conditions

Food stamp recipiency,
Age, Sex, Race, Marital
status

Poor economic conditions can increase
food insecurity (raising food stamp usage),
while also influencing population demo-
graphics due to migration, employment
patterns, and household formation.

State or regional public as-
sistance policies

Food stamp recipiency,
Marital status, Number
of children, Household
income

Generous or restrictive assistance policies
directly affect food stamp eligibility and
indirectly influence household structure
and income distribution.

Cultural attitudes towards
welfare and public assis-
tance

Food stamp recipiency,
Marital status, Disability,
Race, Ethnicity

Social stigma or support for welfare af-
fects both the uptake of food stamps and
social norms around marriage, disability
reporting, and identity categories.

Regional health care condi-
tions

Food stamp recipiency, Dis-
ability, Cognitive difficulty,
Hearing difficulty, Vision
difficulty

Regions with limited healthcare access
may show higher disability prevalence and
greater reliance on food stamps due to in-
creased financial and care burdens.
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Table E4: Dataset: Income. Target: Total person’s income > 56K for employed adults. Environ-
ments: regions in the United States.

Hidden confounder

Affected variables

Reason for confounding

Local economic conditions

Income, Occupation, Edu-
cational attainment, Marital
status

Stronger local economies offer better-
paying jobs and education access, increas-
ing income; they also influence occupa-
tional choices and household formation
patterns.

State or regional tax and la-
bor policies

Income, Class of worker,
Educational  attainment,
Marital status

Tax incentives and labor protections af-
fect wages and employment types, while
also shaping decisions about education
and family due to financial security.

Cost of living and regional
affordability

Income, Occupation, Mar-
ital status, Educational at-
tainment

Higher living costs necessitate higher in-
comes and may drive occupational or ed-
ucational shifts; they also influence mar-
riage or cohabitation decisions.

Cultural norms and re-
gional economic history

Income, Educational attain-
ment, Occupation

Cultural values and historical industry
presence shape education levels and job
opportunities, which in turn affect income
distributions.

Table ES: Dataset: Public coverage. Target: Coverage of non-Medicare eligible low-income
individuals. Environments: Disability statuses.

Hidden confounder

Affected variables

Reason for confounding

State or regional healthcare
policies

Public health coverage,
Marital status, Employ-
ment status, Income

Differences in Medicaid expansion and
public insurance eligibility influence
health coverage; these policies also affect
economic stability, employment, and fam-
ily dynamics.

Economic conditions and
poverty levels

Public health coverage, Em-
ployment status, Income,
Marital status

Poorer regions tend to have lower employ-
ment rates and incomes, which increase
reliance on public health coverage and in-
fluence marriage and household composi-
tion.

Cultural attitudes towards
disability and healthcare

Public health coverage, Dis-
ability status, Cognitive dif-
ficulty, Hearing difficulty,
Vision difficulty

Stigma or support for disability and public
care varies culturally, affecting both the
reporting of disabilities and the likelihood
of seeking or receiving public coverage.

Urban vs. rural divide

Public health coverage, Ed-
ucational attainment, Mari-
tal status, Occupation

Urban areas typically offer better health-
care access, education, and jobs, all of
which affect coverage likelihood and so-
cioeconomic indicators.
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Table E6: Dataset: Unemployment. Target: Classify whether a person is unemployed. Environ-
ments: Educational attainments.

Hidden confounder

Affected variables

Reason for confounding

Local economic conditions

Employment status, Occu-
pation, Marital status, Mo-
bility status

Regional economic strength affects job
availability and unemployment rates; it
also shapes occupation types, migration
decisions, and household stability.

State or regional labor mar-
ket policies

Employment status, Occu-
pation, Educational attain-
ment, Marital status

Labor regulations and unemployment ben-
efits vary by region, affecting hiring prac-
tices, education incentives, and family
structures.

Cultural and social norms
around employment

Employment status, Dis-
ability status, Marital status

Cultural attitudes toward work and depen-
dency influence unemployment reporting
and societal roles around disability and
family responsibilities.

Health and disability status

Employment status, Dis-
ability status, Cognitive dif-
ficulty, Hearing difficulty,
Vision difficulty

Poor health or disabilities reduce the abil-
ity to work, directly increasing unem-
ployment and shaping associated health-
related variables.

Table E7: Dataset: Voting. Target: Classify whether a person voted in the U.S. presidential election.
Environments: United States census regions.

Hidden confounder

Affected variables

Reason for confounding

Political, family, and peer
influences

Voted in national election,
Party identification, Politi-
cal participation

Social networks shape political ideology
and engagement, influencing both voting
likelihood and party alignment.

Media consumption habits

Voted in national election,
Party identification, Politi-
cal knowledge, Voting be-
havior

Media exposure affects awareness of po-
litical issues and biases, influencing party
affiliation, political knowledge, and voting
participation.

Social capital

Voted in national election,
Political participation, In-
terest in elections

Strong community ties and civic networks
increase political interest and participa-
tion, leading to higher voter turnout.

Civic education and politi-
cal engagement programs

Voted in national election,
Interest in elections, Politi-
cal knowledge

Educational programs raise political
awareness and civic responsibility, influ-
encing both knowledge levels and voting
decisions.

Historical and cultural con-
text

Voted in national election,
Party identification, Interest
in elections

Historical events and regional political cul-
ture affect interest in elections and party
alignment, which in turn influence voting
behavior.
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Table E8: Dataset: Hypertension. Target: Whether a person has hypertension. Environments:
Body Mass Index (BMI) values.

Hidden confounder

Affected variables

Reason for confounding

Socioeconomic status

Income, Employment sta-
tus, Smoking habits, Alco-
hol consumption, Physical
activity, Healthcare access,
Medical cost, High blood
pressure diagnosis

Lower socioeconomic status reduces ac-
cess to healthcare and healthy lifestyle op-
tions, leading to poor diet, limited activity,
and delayed diagnosis, which jointly influ-
ence both BMI and hypertension risk.

Access to healthcare ser-
vices

Healthcare access, Medical
costs, Smoking habits, Al-
cohol consumption, Phys-
ical activity, High blood
pressure diagnosis

Limited healthcare access results in under-
diagnosis and unmanaged hypertension,
while also affecting lifestyle choices that
vary with BMI, confounding the relation-
ship between BMI and hypertension.

Genetic predisposition

Age group, Race, Sex,
Smoking habits, Diabetes,
High blood pressure diag-
nosis

Genetic risk factors for hypertension may
co-vary with demographic attributes and
influence both hypertension prevalence
and BMI distribution across subpopula-
tions.

Psychosocial stress

Smoking habits, Alcohol
consumption, Physical ac-
tivity, High blood pressure
diagnosis, Diabetes, Age
group

Chronic stress alters behavior (e.g., smok-
ing, inactivity) and physiological re-
sponses, contributing to both increased
BMI and elevated blood pressure, thus
confounding the BMI-hypertension link.

Environmental factors

Physical activity, Diet,
Smoking habits, High
blood pressure diagnosis,
Diabetes, BMI category

Living environments affect access to recre-
ational spaces, food quality, and pollution
exposure, influencing both BMI and hy-
pertension risks. These vary across BMI
categories, creating confounding.

Dietary habits beyond fruits
and vegetables

Alcohol consumption,
Smoking habits, Physi-
cal activity, High blood
pressure diagnosis, BMI
category

High-sodium or processed-food diets raise
both BMI and hypertension risk. Variation
in such unmeasured dietary habits across
BMI categories creates spurious associa-
tions with hypertension.
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Table E9: Dataset: College Scorecard. Target: Predict completion rate for first-time, full-time
students at four-year institutions. Environments: Based on Carnegie Classifications.

Hidden confounder

Affected variables

Reason for confounding

Institutional funding and re-
sources

Accreditor, Control of in-
stitution, Highest degree
awarded, In-state tuition,
Out-of-state tuition, Cost of
attendance, SAT scores

Wealthier institutions can offer better aca-
demic support, facilities, and programs,
leading to higher completion rates and
more selective admission profiles. This
varies across Carnegie classifications.

Regional socio-economic
factors

Region, Poverty rate,
Unemployment rate, SAT
scores

Economic conditions across regions affect
affordability, student preparedness, and
institutional support levels, all influencing
both enrollment outcomes and graduation
likelihood.

Demographic factors

HBCU flag, Federal loan re-
cipient rate, Pell grant recip-
ient rate, ACT scores, Un-
dergraduate enrollment

Student demographics shape financial aid
needs, academic preparation, and gradua-
tion rates. Their effect differs by institu-
tion type and selectivity under Carnegie
categories.

Community support and en-
gagement

Distance-education  flag,
Federal loan recipient rate,
Pell grant recipient rate,
SAT scores, Undergraduate
enrollment

Supportive institutional communities im-
prove retention and completion. Variation
in engagement across institution types and
student aid profiles induces confounding.

Admission selectivity

Admission rate, SAT (read-
ing/math) midpoints, ACT
midpoint, Undergraduate
enrollment

Selective admissions correlate with better-
prepared students and higher completion
rates, and vary with institutional prestige
and classification.

State and local policies

Region, Poverty rate, Un-
employment rate, Cost of
attendance

Differences in education funding and pub-
lic policy affect cost structures and com-
pletion outcomes, interacting with insti-
tutional classification and regional demo-
graphics.
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Table E10: Dataset: ASSISTments. Target: Predict whether a student solves a problem correctly on
the first attempt in an online learning tool. Environments: Different schools.

Hidden confounder

Affected variables

Reason for confounding

Institutional teaching qual-
ity

Hint count, Attempt count,
Skill ID, Problem type, Tu-
tor mode, Position, Type,
First action, Milliseconds
to first response, Overlap
time, Average confidence

Variation in instructional quality and ped-
agogy across schools affects how effec-
tively students engage with content, lead-
ing to differences in problem-solving
strategies, response behavior, and emo-
tional states.

Student motivation

Hint count, Attempt count,
Skill ID, Problem type,
First action, Milliseconds
to first response, Overlap
time, Average confidence

Differences in intrinsic motivation across
schools influence students’ willingness to
persevere, seek help, or give up quickly,
affecting interaction and performance.

Classroom environment

Hint count, Attempt count,
Tutor mode, Position, Type,
First action, Average confi-
dence

Peer dynamics, classroom culture, and
noise levels vary by school and affect how
confidently and independently students
solve problems.

School technology infras-
tructure

Hint count, Attempt count,
Tutor mode, Position, Type,
First action, Milliseconds
to first response, Overlap
time, Average confidence

Access to reliable devices and fast inter-
net differs by school, influencing response
time, tool usage, and student experience.

Teacher-student interaction

Hint count, Attempt count,
Tutor mode, Position, Type,
First action, Milliseconds
to first response, Overlap
time, Average confidence

The level of teacher guidance and feed-
back shapes how much support students
require during problem-solving, affecting
engagement and confidence.

Previous academic perfor-
mance

Hint count, Attempt count,
Skill ID, Problem type,
First action, Average con-
fidence

Students’ prior achievement affects how
easily they solve problems, their need for
assistance, and their confidence, all of
which vary across schools.
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Table E11: Dataset: ICU. Target: Predict whether the patient will stay in the ICU for longer than 3
days. Environments: Insurance types.

Hidden confounder Affected variables Reason for confounding
Socioeconomic status Age, Gender, Ethnicity, SES influences access to healthcare, pre-
(SES) Height , Weight , Bicarbon- ventive services, and overall health status.

ate, CO,, pCO,, pO,, Lac- Differences in SES across insurance types
tate, Sodium, Hemoglobin, lead to variability in pre-ICU health, physi-
Oxygen saturation, Respira- ological indicators, and ICU stay duration.
tory rate, etc.

Hospital resources and care  Age, Gender, Ethnicity, Hospital infrastructure and care standards
quality Height , Weight , Bicarbon- affect monitoring, intervention speed, and
ate, CO,, pCO,, pO,, Lac- clinical decisions. These factors vary by
tate, Sodium, Hemoglobin, insurance coverage and influence ICU out-
Oxygen saturation, Respira- comes and vitals.
tory rate, Heart rate, etc.

Comorbidities Age, Gender, Ethnicity, Presence of chronic conditions (e.g., dia-
Height , Weight , Bicarbon- betes, cardiovascular disease) affects both
ate, CO,, pCO;,, pO,, Lac- the need for prolonged ICU care and phys-
tate, Sodium, Hemoglobin, iological measurements. The distribution
Oxygen saturation, Respira- of comorbidities differs across insurance
tory rate, Heart rate, etc. types.

Insurance-related treatment Age, Gender, Ethnicity, Differences in treatment timing, intensity,
variability Height , Weight , Bicarbon- and access to specialists based on insur-
ate, CO,, pCO,, pO,, Lac- ance policies affect ICU stay duration and
tate, Sodium, Hemoglobin, clinical metrics.
Oxygen saturation, Respira-
tory rate, etc.

Genetic factors Age, Gender, Ethnicity, Inherited traits influence predisposition to
Height , Weight , Bicarbon- organ failure, metabolic responses, and
ate, CO,, pCO,, pO,, Lac- recovery trajectories. These effects are
tate, Sodium, Hemoglobin, partially mediated by ethnicity and age
etc. distributions, which vary across insurance

groups.
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Table E12: Dataset: Hospital mortality. Target: Classify whether an ICU patient expires in the
hospital during their current visit. Environments: Insurance types.

Hidden confounder Affected variables Reason for confounding
Socioeconomic status Age, Gender, Ethnicity, SES shapes access to timely and high-
(SES) Height, Weight, Bicar- quality care, preventive services, and gen-
bonate, Lactate, Sodium, eral health status. Patients with higher
Hemoglobin, Oxygen SES often have better insurance and out-
saturation, Respiratory rate, comes, leading to confounding with mor-
Systolic blood pressure, tality risk.
White blood cell count, etc.
Comorbidities Age, Gender, Ethnicity, Pre-existing conditions such as diabetes or

Height, Weight, Bicarbon-
ate, CO,, pCO,, pO,, Lac-
tate, Sodium, Hemoglobin,
Oxygen saturation, Respi-
ratory rate, Heart rate, Sys-
tolic blood pressure, etc.

heart disease increase mortality risk and
influence physiological features. Their
prevalence differs by insurance type, cre-
ating confounding.

Hospital resources and care
quality

Age, Gender, Ethnicity,
Height, Weight, Bicarbon-
ate, CO,, pCO,, pO,, Lac-
tate, Sodium, Hemoglobin,
Oxygen saturation, Respi-
ratory rate, Heart rate, Sys-
tolic blood pressure, White
blood cell count, etc.

Access to advanced treatments, trained
staff, and timely interventions influences
survival rates. These factors correlate with
insurance coverage, confounding mortal-
ity outcomes.

Genetic factors

Age, Gender, Ethnicity,
Height, Weight, Bicarbon-
ate, CO,, pCO,, pO,, Lac-
tate, Sodium, Hemoglobin,
Oxygen saturation, Respira-
tory rate, Heart rate, etc.

Genetic predispositions affect disease sus-
ceptibility and treatment responses. Varia-
tions in genetic risk factors may correlate
with demographic traits across insurance

types.

Lifestyle and behavioral
factors

Age, Gender, Ethnicity,
Height, Weight, Bicarbon-
ate, CO,, pCO,, pO,, Lac-
tate, Sodium, Hemoglobin,
Oxygen saturation, Respira-
tory rate, Heart rate, Tem-
perature, Systolic blood
pressure, White blood cell
count, etc.

Behaviors such as smoking, diet, and phys-
ical activity affect long-term health and
mortality risk. These behaviors vary sys-
tematically with SES and insurance cov-
erage, influencing both target and physio-
logical features.
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Table E13: Dataset: Childhood lead. Target: Predict blood lead levels above CDC blood level
reference value. Environments: Poverty-income ratios.

Hidden confounder

Affected variables

Reason for confounding

Environmental Exposure

Blood lead levels, Country
of birth, Age, Race and His-
panic origin

Environmental exposure to lead influences
blood lead levels, and this varies signifi-
cantly across socio-economic groups. Peo-
ple in lower PIR groups are more likely
to live in areas with higher lead contami-
nation, which contributes to higher blood
lead levels. Furthermore, environmental
factors may affect the demographic distri-
bution (e.g., country of birth, race).

Access to Healthcare

Blood lead levels, Age,
Gender, Race and Hispanic
origin, Marital status, Edu-
cation

Limited access to healthcare, especially in
lower PIR groups, means fewer opportuni-
ties for detection and treatment of lead poi-
soning. This results in higher blood lead
levels, with disparities also influencing de-
mographic variables like age, gender, and
education. Additionally, healthcare access
varies by insurance and socio-economic
status, further confounding the relation-
ships.

Diet and Nutrition

Blood lead levels, Age,
Gender, Race and Hispanic
origin

Dietary factors, such as poor nutrition in
lower PIR groups, can exacerbate lead
absorption. Malnutrition increases the
body’s susceptibility to lead poisoning,
raising blood lead levels. In contrast,
higher PIR groups may have better access
to nutritious foods, lowering lead absorp-
tion, thus creating a confounding effect in
how socio-economic status and race influ-
ence lead toxicity.

Housing Conditions

Blood lead levels, Country
of birth, Race and Hispanic
origin, Marital status

Older housing conditions, which are more
prevalent in lower PIR groups, contribute
significantly to elevated lead exposure
(e.g., lead paint, poor plumbing). These
living conditions directly influence blood
lead levels and can also correlate with de-
mographic factors like country of birth,
race, and marital status. This introduces
confounding, as socio-economic status im-
pacts both exposure and the demographics
of affected individuals.

Occupation

Blood lead levels, Age,
Race and Hispanic origin,
Marital status, Education

Certain occupations, which are more com-
mon among lower PIR groups, involve
higher lead exposure (e.g., construction,
manufacturing). Occupational lead expo-
sure directly impacts blood lead levels and
is often correlated with education, mari-
tal status, and socio-economic status. The
varying prevalence of lead exposure by
occupation introduces confounding, espe-
cially across different PIR groups.
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Table E14: Dataset: Diabetes. Target: Predict diabetes.

Environments: Preferred race categories.

Hidden confounder

Affected variables

Reason for confounding

Genetic predisposition

Diabetes, BMI, High
blood pressure, High blood
cholesterol

Genetic factors and family history con-
tribute to both the onset of diabetes and
comorbid conditions like obesity, hyper-
tension, and high cholesterol. These ge-
netic predispositions can make individuals
more susceptible to diabetes, leading to
confounding as they correlate with other
health indicators.

Access to healthcare

Diabetes, Physical health,
BMI, Healthcare coverage,
Health checkups

Limited or unequal access to healthcare,
especially in marginalized racial groups,
leads to disparities in diabetes diagno-
sis, management, and comorbidity treat-
ment. It also influences the frequency
of health checkups and access to medica-
tions, which can confound the relationship
between diabetes status and other health
metrics.

Dietary habits and food
availability

Diabetes, BMI, Physical
health, Alcohol consump-
tion, Fruit and vegetable in-
take

Dietary habits, often shaped by socio-
economic status and local food environ-
ments, influence weight, health behaviors
(such as alcohol consumption), and dia-
betes risk. People in lower socioeconomic
strata may have limited access to healthy
food options, leading to higher BMI and
increased diabetes risk, creating confound-
ing effects on health outcomes.

Psychosocial stress and
mental health factors

Diabetes, Mental health,
Physical health, BMI, Phys-
ical activity, Doctor visits

Chronic stress and mental health issues,
often higher in marginalized groups, con-
tribute to diabetes development and com-
plicate its management. These factors also
affect physical health (e.g., weight gain
due to stress) and health-seeking behav-
iors (e.g., fewer doctor visits), leading to
confounding by influencing both diabetes
risk and its associated variables.

Socioeconomic status be-
yond income

Diabetes, Income, Physi-
cal health, Healthcare cov-
erage, Education level

Socioeconomic factors, such as occupa-
tion, education, and neighborhood wealth,
influence access to healthcare, nutrition,
and overall health behaviors. These fac-
tors can confound the relationships be-
tween diabetes and other socio-economic
variables like income and education, as
they shape opportunities for prevention
and treatment.
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Table E15: Dataset: Sepsis. Target: Predict, from a set of fine-grained ICU data, whether a patient
will experience sepsis onset within the next 6 hours. Environments: Lengths of ICU stay.

Hidden confounder

Affected variables

Reason for confounding

Infection prevalence in ICU

SepsisLabel, Temperature
(Temp), Leukocyte count
(WBC), Heart rate (HR),
Blood urea nitrogen (BUN)

Higher infection rates in certain ICU units
can lead to a higher probability of sepsis
onset (SepsisLabel). These infection rates
influence biomarkers such as WBC, HR,
and BUN, creating confounding because
the unit’s infection environment affects
both the likelihood of sepsis and the ob-
served clinical measures.

Quality of ICU Care

SepsisLabel, Fibrinogen
concentration (Fibrinogen),
Leukocyte count (WBC),
Platelet count (Platelets)

Higher-quality care in certain ICUs may
lead to earlier identification and treatment
of sepsis, resulting in more accurate Sep-
sisLabel predictions. Additionally, better
care could affect biomarkers like fibrino-
gen, WBC, and platelets, which are crit-
ical in sepsis detection and progression,
thereby confounding the relationships be-
tween these variables and the outcome.

Severity of underlying con-
ditions

SepsisLabel, Blood urea ni-
trogen (BUN), Creatinine,
Lactate, Calcium

Patients with severe chronic conditions
(e.g., kidney disease, cardiovascular is-
sues) are at a higher risk of sepsis and
may show abnormal levels in biomark-
ers like BUN, creatinine, lactate, and cal-
cium. These underlying conditions con-
tribute to the SepsisLabel outcome and
confound the relationship between the
biomarkers and the likelihood of sepsis,
varying across ICU units depending on pa-
tient population.

Patient’s socio-economic

status

Age (Age), Gender (Gen-
der), Leukocyte count
(WBC), Fibrinogen con-
centration  (Fibrinogen),
Platelet count (Platelets)

Socio-economic factors, such as access
to healthcare, can influence both the like-
lihood of sepsis and the observed clin-
ical biomarkers. For example, patients
from lower socio-economic backgrounds
may have delayed hospitalizations or in-
adequate care, which affects both Sepsis-
Label and the progression of sepsis as in-
dicated by WBC, fibrinogen, and platelet
levels.

Hospital-specific protocols
and treatment guidelines

SepsisLabel, Lactate, Glu-
cose, Creatinine

Differences in hospital protocols for sepsis
treatment, such as timing of interventions
and choice of sepsis bundles, can affect
both the SepsisLabel and biomarkers like
lactate, glucose, and creatinine. These
protocols lead to variability in how sepsis
is diagnosed and treated across different
hospitals and ICU units, confounding the
relationship between biomarkers and sep-
sis outcomes.
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Table E16: Dataset: Hospital readmission. Target: Predict whether a diabetic patient is readmitted
to the hospital within 30 days of their initial release. Environments: Admission sources.

Hidden confounder

Affected variables

Reason for confounding

Socio-economic status

(SES)

Race, Gender, Age, Payer
code, Medical specialty,
Number of outpatient vis-
its, Number of emergency
visits, Number of inpatient
visits, Diabetes medication
prescribed

SES influences access to healthcare, pa-
tient demographics, and chronic disease
rates. It can also determine the type of
care received based on admission source
(e.g., emergency department vs. outpa-
tient settings). Differences in healthcare
access, such as availability of medications,
may impact readmission rates and associ-
ated variables like outpatient visits and
prescribed medication.

Severity of illness

Primary diagnosis, Sec-
ondary diagnosis, Number
of diagnoses, Discharge
type, Medication changes
(e.g., Insulin, Glipizide)

More severe illness increases the likeli-
hood of readmission and influences the
complexity of diagnoses and the treat-
ments administered. The severity of ill-
ness may differ based on the admission
source (e.g., emergency versus outpatient),
impacting the number and type of diag-
noses and treatments prescribed at dis-
charge, affecting readmission likelihood.

Access to healthcare re-
sources

Time in hospital, Discharge
disposition, Number of pro-
cedures, Number of medi-
cations, Number of lab tests

Access to healthcare resources (e.g., time
in hospital, availability of procedures and
medications) influences treatment deci-
sions and outcomes. Different admission
sources may have varying levels of avail-
able resources, leading to different lengths
of stay, the types of procedures performed,
and overall treatment quality, which can
affect the likelihood of readmission.

Patient’s adherence to med-
ication

Change in medications,
Diabetes medication
prescribed, Number of
outpatient visits, Number
of emergency visits

Adherence to prescribed medications is of-
ten influenced by socio-economic status,
which can vary depending on admission
source. Non-adherence may lead to med-
ication changes, affecting diabetes con-
trol and subsequent readmission risk. The
number of outpatient and emergency visits
can also reflect how well a patient man-
ages their diabetes and the likelihood of
complications.

Hospital-specific protocols

Time in hospital, Number
of diagnoses, Discharge dis-
position, Readmitted

Different hospitals and healthcare sys-
tems implement various protocols for dis-
charge planning and readmission preven-
tion, which can affect readmission rates.
These protocols may vary by admission
source, where patients admitted via the
emergency department may receive differ-
ent follow-up instructions and care than
those admitted through other channels.
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Table E17: Dataset: MEPS. Target: Measure of health care utilization. Environments: Insurance
types.

Hidden confounder

Affected variables

Reason for confounding

Socioeconomic status

(SES)

Years of education, Em-
ployment status, Hourly
wage, Paid sick leave, Paid
leave to visit doctor, Fam-
ily size, Insurance cover-
age, Healthcare utilization

SES can influence access to healthcare ser-
vices, insurance coverage, and the ability
to use medical services. Insurance types
often correlate with SES levels, where in-
dividuals with lower SES may be more
likely to be insured by government pro-
grams (e.g., Medicaid), which in turn im-
pacts healthcare utilization patterns across
different SES groups.

Healthcare access

Paid sick leave, Insurance
coverage, Employer offers
health insurance, Health-
care utilization

Limited access to healthcare, such as lack
of insurance or paid sick leave, directly
impacts healthcare utilization. The type
of insurance a person holds is often tied
to access to various medical services. The
level of coverage and accessibility differs
across insurance types, influencing health-
care behaviors such as whether a patient
can afford and utilize healthcare services.

Health behaviors

Perceived health status,
Asthma medications,
Limitations in physical
functioning,  Healthcare
utilization

Lifestyle factors like smoking, alcohol
consumption, and physical activity can
directly affect health status and health-
care needs. Health behaviors differ across
groups with different insurance types, and
these behaviors contribute to healthcare
utilization. Insurance coverage can also
be influenced by perceived health status,
which varies across insured groups, affect-
ing utilization of medical services.

Chronic health conditions

Asthma medications, Per-
ceived health status, Limi-
tations in physical function-
ing, Healthcare utilization

Chronic conditions like asthma or dia-
betes increase the need for healthcare ser-
vices, leading to higher healthcare utiliza-
tion. People with chronic conditions are
more likely to be covered by Medicare
or Medicaid, which influences the type
of insurance they hold and impacts their
healthcare utilization and associated fea-
tures (e.g., medications and physical limi-
tations).

Regional healthcare infras-
tructure

Region,  Family size,
Healthcare utilization, Paid
sick leave, Paid leave to
visit doctor, Employment
status

The quality and availability of healthcare
infrastructure vary across regions, which
can impact healthcare utilization. In un-
derserved regions, people may be more
reliant on public insurance options like
Medicaid, affecting healthcare access and
behaviors. The regional differences in
healthcare systems can lead to disparities
in access to medical services, insurance
coverage, and utilization of healthcare.
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Table E18: Dataset: Poverty.
Citizenship statuses.

Target: Predict household income-to-poverty ratio. Environments:

Hidden confounder

Affected variables

Reason for confounding

Social capital

Income, Unemployment
compensation, Disability
benefits, Family size, Hous-
ing conditions, Household
income-to-poverty ratio

Stronger social support networks can im-
prove access to income, benefits, and re-
sources like unemployment or disability
compensation. Social capital can vary
based on citizenship status, which in turn
influences income, housing conditions,
and eligibility for benefits, confounding
the relationship between household in-
come and poverty ratios.

Workplace discrimination
or bias

Household income,
Worker’s  compensation,
Unemployment compen-
sation, Pension, Family
income, Disability benefits

Discrimination in the workplace can
limit opportunities for higher wages, pen-
sions, or disability benefits, especially for
marginalized groups (e.g., racial minori-
ties, non-citizens). This bias varies by
citizenship status and leads to biased as-
sociations between income, benefits, and
poverty levels.

Healthcare access

Household income, Health
insurance premiums, Med-
ical expenses, Disability
benefits, Family size,
Health conditions, Medi-
caid/Medicare assistance

Limited access to healthcare, particularly
for non-citizens, can lead to higher medi-
cal expenses and greater reliance on public
health assistance. Citizenship status di-
rectly impacts eligibility for public health-
care programs, confounding relationships
between medical expenses and income,
and affecting poverty ratios.

Access to education and
skills development

Educational  attainment,
Household income,
Employment status, Unem-
ployment compensation,
Income from assistance,
Savings

Disparities in educational opportunities,
often linked to citizenship status, influence
income potential and eligibility for govern-
ment assistance. These disparities, in turn,
affect the household income-to-poverty ra-
tio and employment outcomes, creating
confounding relationships between educa-
tion and income.

Cultural factors

Family size, Household in-
come, Savings, Disabil-
ity benefits, Healthcare uti-
lization, Income assistance,
Living arrangements

Cultural factors influence financial man-
agement, family support, and the use of
social programs. These factors can vary
across citizenship statuses, leading to dif-
ferences in how household income and
assistance are distributed, and thus con-
founding the relationship between income,
benefits, and financial behavior.

Housing market and rent
conditions

Housing ownership, Hous-
ing costs, Family size,
Household income, Rent
payments, Social security
benefits, Medical aid

Housing market conditions, especially
rent disparities, can create financial strain
and impact the household income-to-
poverty ratio. Citizenship status often in-
fluences eligibility for housing assistance
and rent subsidies, which confounds the
relationship between housing costs and in-
come, particularly in areas with significant
immigrant populations.
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LLM USAGE

In addition to querying LL.Ms about the semantic meaning of hidden confounding variables (§ E),
LLMs are used to aid or polish writing.
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