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Abstract
Model stitching—where the internal representa-
tions of two neural networks are aligned linearly—
helped demonstrate that the representations of
different neural networks for the same task are
surprisingly similar in a functional sense. At the
same time, the representations of adversarially
robust networks are considered to be different
from non-robust representations. For example,
robust image classifiers are invertible, while non-
robust networks are not. Here, we investigate
the functional similarity of robust and non-robust
representations for image classification with the
help of model stitching. We find that robust and
non-robust networks indeed have different rep-
resentations. However, these representations are
compatible regarding accuracy. From the point of
view of robust accuracy, compatibility decreases
quickly after the first few layers but the represen-
tations become compatible again in the last layers,
in the sense that the properties of the front model
can be recovered. Moreover, this is true even
in the case of cross-task stitching. Our results
suggest that stitching in the initial, preprocessing
layers and the final, abstract layers test different
kinds of compatibilities. In particular, the final
layers are easy to match, because their represen-
tations depend mostly on the same abstract task
specification, in our case, the classification of the
input into n classes.

1. Introduction
Methods for studying the similarity of the internal represen-
tations of different neural networks are important tools for
understanding representations. Several such methods are
based on statistical approaches like Centered Kernel Align-
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ment (CKA) (Kornblith et al., 2019) or the two variants of
Canonical Correlation Analysis (CCA) (Raghu et al., 2017;
Morcos et al., 2018).

More recently, a new class of methods based on model
stitching have emerged that concentrate on functional simi-
larity (Lenc & Vedaldi, 2019; Csiszárik et al., 2021; Bansal
et al., 2021). This methodology focuses on the question
whether the representation of one network can substitute the
representation of another network with the help of a simple
(often linear or affine) transformation, while keeping some
functional property such as classification accuracy.

In these works, it has been argued that functional similarity
does not necessarily correlate with the statistical measures of
similarity and, more importantly, the internal representations
seem to be surprisingly compatible in a large number of
different scenarios in this functional sense.

At the same time, there is a general consensus that adver-
sarially robust networks (Szegedy et al., 2014; Goodfellow
et al., 2015) do have functionally different representations.
For example, robust networks are invertible as opposed to
non-robust networks (Engstrom et al., 2019b), their gen-
eralization seems to rely on an entirely different feature
set (Ilyas et al., 2019), and they cluster their representations
differently (Bai et al., 2021).

Model stitching is a promising empirical tool to shed more
light on the differences between robust and non-robust rep-
resentations. It allows us to gain insight into the function
of each layer of a network architecture, and we can study
not only accuracy, but other functional properties as well,
such as robust accuracy. Motivated by this, we adopt the
model stitching approach to investigate a specific question:
do adversarially robust networks have functionally similar
representations to those of non-robust networks?

1.1. Our Contributions

In order to answer our research question, we performed
an empirical study of stitching adversarially robust models
and non-robust models in a number of different scenarios,
for the image classification task1. Here, we list our most
important findings and contributions.

1Code to reproduce our results can be found at https://gi
thub.com/szegedai/robust-stitching
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• We show that robust and non-robust representations are
functionally compatible regarding accuracy. In other
words, despite all the differences, these representations
can be stitched together while preserving classification
accuracy.

• However, when stitching robust representations to ei-
ther robust or non-robust representations to maximize
accuracy, robust accuracy decreases significantly.

• We introduce adversarially robust stitching, where we
train the stitching transformation using adversarial
training. We show that two robust representations can
be matched using robust stitching while keeping both
accuracy and robust accuracy.

• However, robust and non-robust representations cannot
be matched in general using robust stitching either; no
meaningful robustness can be maintained in general,
but there is one exception: when the front network is
robust and stitching is done in the layers close to the
output. (To a lesser extent, matching is possible also
when the end network is robust and stitching is done
very close to the input.)

• We argue that this somewhat surprising exception is
due to the fact that representations are already clustered
towards the last layers in both robust and non-robust
networks, which makes them much easier to match for
the stitching transformation.

• We provide some more support for this hypothesis
through demonstrating that even cross-task stitching is
successful when done in the last layers, and the stitched
network remains invertible in spite of replacing its last
few layers from a non-robust donor network. This
suggests that the last layers perform the same function
in both robust and non-robust networks.

1.2. Related work

Here, we focus on results that are directly related to our
research. These can be classified into two areas: model
stitching and comparing robust representations.

Model stitching. Among many other techniques, (Lenc &
Vedaldi, 2019) introduce the concept of 1× 1 convolutional
stitching layers to connect two different “half networks” by
transforming the representation of the front network to the
representation of the end network. They showed that the ac-
curacy of the resulting stitched network can approach the ac-
curacy of the original donor networks. They also found that
the early, preprocessing layers of networks trained on differ-
ent tasks are interchangeable. The similarity of the feature
representations (that is, the layer before the final logit layer)
was studied by (McNeely-White et al., 2020). Expanding
on these works, (Csiszárik et al., 2021) demonstrated that

model stitching can be used to study the functional similar-
ity of representations by answering the following question:
can a network achieve its task using the representation of
another network? They, along with (Bansal et al., 2021)
showed that networks trained on the same task but under dif-
ferent settings can be stitched with minimal loss of accuracy
and thus all successful networks seem to learn functionally
similar representations.

Comparing robust representations. The work of (Cian-
farani et al., 2022) shares very similar goals to ours, but
they study similarity with the help of the centered kernel
alignment (CKA) representational similarity metric by (Ko-
rnblith et al., 2019), which limits their ability to disentangle
functional aspects of similarity. They show that the represen-
tations of adversarial inputs are similar to those of benign
inputs in the early layers even in non-robust networks. This
suggests that adversarial attacks exert their effect towards
deeper layers. However, (Davari et al., 2022) showed that
the representations in early layers can produce high CKA
values between networks with drastically different function-
alities. Moreover, several studies have demonstrated various
inadequacies of popular representational similarity metrics
regarding their interpretability and their ability to capture the
functional properties of representations (Ding et al., 2021;
Csiszárik et al., 2021; Mirzadeh et al., 2021; Bansal et al.,
2021). (Jones et al., 2022) study model stitching of robust
models at the penultimate (feature) layer. However, they do
not consider other layers, or the compatibility of robust and
non-robust representations, and, most importantly, they do
not study robust accuracy either, a key functional aspect of
robust representations.

2. Model Stitching
Our notion of network stitching closely follows that
of (Csiszárik et al., 2021). Here, we summarize the ba-
sic concepts and propose an adversarially robust variant of
stitching as well.

2.1. Notation

Let f : X → Y be a feedforward neural network composed
of m layers: f = fm ◦ · · · ◦ f1, where the function fi :
Af,i−1 → Af,i maps the activation space of layer i− 1 to
the activation space of layer i. By definition, Af,0 = X .

Since stitching will act on two “half networks”, we introduce
the notations f≤l = fl ◦ · · · ◦ f1 and f>l = fm ◦ · · · ◦ fl+1.
Clearly, f = f>l ◦ f≤l and for an input x ∈ X , f≤l(x) ∈
Af,l.

2.2. The Abstract Stitching Problem

The goal of stitching is to find out whether two given frozen
networks f, g : X → Y have functionally compatible inter-
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nal representations. To examine this, we select layer i from
network f and layer j from network g, and we wish to find a
transformation T : Af,i → Ag,j such that the composition
g>j ◦ T ◦ f≤i (called the Frankenstein network, or stitched
network) is functionally similar to g or f . Depending on
how we formulate the constraints on transformation T and
on how we define functional similarity, this framework al-
lows for a multitude of interesting avenues for investigating
network representations. In the following, we discuss our
specific framework.

Requirements on T . Transformation T should not increase
the capacity of the model significantly, but at the same
time it should be expressive enough to allow for non-trivial
mappings. The consensus is that affine mappings are suit-
able (Csiszárik et al., 2021; Bansal et al., 2021). For con-
volutional layers, we adopt the proposal of (Csiszárik et al.,
2021). Here, the activation spaces take the form of Rw×h×c,
where c is the number of feature maps of width w and height
h. The transformation T is implemented by 1× 1 convolu-
tion layers (including bias terms) for each of the c feature
maps, thus applying the same affine mapping M : Rc → Rc

at each of the w × h positions.

Functional similarity. Here, we focus on the similarity of
a given metric, in our case accuracy or robust accuracy, over
a supervised classification problem, given by an underlying
distribution p(x, y) over X × Y .

2.3. Stitching for Accuracy

When similarity is defined based on classification accuracy,
to find the best transformation T , we solve the learning task

argmin
θ

Ep(x,y)[L([g>j ◦ Tθ ◦ f≤i](x), y)] (1)

using a suitable surrogate loss function L : Y ×Y → R and
a dataset D = {(xi, yi)}ni=1 from the distribution p(x, y).
We train only the parameters θ of Tθ while freezing g>j and
f≤i.

A word of caution. Note, that this is an indirect way to
achieve functional similarity to either f or g. In principle,
the stitched network can outperform both f and g, in which
case we know that the chosen function class implementing
the transformation T is too powerful, or f and g are not op-
timal. However, when the stitched network underperforms
both f and g then the representations are most likely in-
compatible with respect to the chosen transformation class,
except if the optimization of the stitching layer fails (for
example, if the chosen surrogate loss L is inappropriate, or
the hyperparameters are incorrect, etc.).

2.4. Stitching for Robust Accuracy

Here, functional similarity is defined based on robust accu-
racy, so we should optimize robust accuracy while stitching.

To this end, we shall use the adversarial version of our
learning task following the strategy of (Madry et al., 2018;
Goodfellow et al., 2015), given by

argmin
θ

Ep(x,y)[(1− α)L([g>j ◦ Tθ ◦ f≤i](x), y)+

αmax
δ∈S

L([g>j ◦ Tθ ◦ f≤i](x+ δ), y)],
(2)

where S = {δ : ∥δ∥p ≤ ϵ} is the set of possible pertur-
bations. We will work only with ℓ∞ norm perturbations
(p = ∞) here. Parameter α ∈ [0, 1] defines the propor-
tion of adversarial training samples. In Appendix B, we
present results with alternative adversarial training strate-
gies as well.

2.5. Functional Similarity is Fine-Grained

We wish to emphasize that stitching always requires a spe-
cific definition of functional similarity, in other words, the
concept of similarity is not meaningful without referring to
a specific functional property such as a performance met-
ric. Therefore, it is logically possible that two representa-
tions are similar according to one functional property, but
very different according to another one. This allows for
discussing similarity in a more fine-grained manner than
function-independent similarity metrics allow. Here, we dis-
cuss the case of two metrics: accuracy and robust accuracy.

3. Stitching Robust Networks for Accuracy
In our first set of experiments, we stitch the representations
of robust networks to robust as well as non-robust networks
using accuracy as a similarity metric. We find that robust
and non-robust networks are functionally similar regarding
accuracy, independently of which layer is stitched. This
is somewhat unexpected, based on the intuition that robust
and non-robust representations are known to be qualitatively
different, as we argued previously (see also Figure 9).

We also find that stitching a robust network to itself, that is,
inserting an affine layer and optimizing it for plain accuracy,
can reduce the robustness of the network significantly while
increasing plain accuracy. This result would not be sur-
prising if we were fine-tuning the entire network, however,
we can shift the robustness-accuracy tradeoff significantly
by training just a very small set of parameters defining the
inserted affine transformation, while freezing the rest of the
network.

Experimental Setup. Throughout the paper, we present ex-
perimental results over the CIFAR-10 dataset (Krizhevsky,
2009) using a number of pre-trained ResNet-18 (He et al.,
2016b) networks, and each experiment is repeated three
times independently. For additional datasets and ar-
chitectures please refer to Appendix B. We experiment
with two robust networks, both available from Robust-
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Figure 1. Stitching plots for the indicated donor networks, stitching optimized for plain accuracy.
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Figure 2. Stitching plots for identical front and end networks,
stitching optimized for plain accuracy.

Bench (Croce et al., 2021): fR1 denotes the ResNet-18 net-
work of (Sehwag et al., 2022) and fR2 is the network of (Ad-
depalli et al., 2021). The network fN1 is a basic non-robust
network that we trained ourselves. We solve the stitching
problem given in Equation (1). For the additional details of
our experimental settings see Appendix A.

The stitching plot. Our main tool for presenting our re-
sults is the stitching plot (see, for example, Figure 1). On
the horizontal axis, we indicate the location of the stitch-
ing layer within the stitched network sorted according to
increasing distance from the input. The first point indicates
the full end model (as if the stitching was before the net-
work, thus combining zero layers from the front network
and the complete end network), and the last point indicates
the full front model. The rest of the points correspond to the
basic blocks of the ResNet-18 architecture, sorted according
to increasing distance from the input. Stitching layers are
inserted after the basic blocks, after the skip connection (see
Appendix A.5 for more details).

On the vertical axis, we indicate accuracy and robust ac-
curacy of both donor networks in the following way: the
interval defined by the plain accuracy of the front and end
networks is indicated in blue, and the interval defined by
robust accuracy is indicated in yellow. We evaluate every
stitched network for accuracy and robust accuracy, and these
values are plotted. Robust accuracy is evaluated using Au-
toAttack (Croce & Hein, 2020) (see Appendix A.4).

3.1. Experimental Results

Plain accuracy. Figure 1 illustrates the results for the two
possible combinations of robust and non-robust networks,
and for stitching two robust networks. The most obvious ob-
servation is that representation matching is successful in all
the cases, in that the stitched networks either interpolate the
plain accuracy of the two donor networks, or even surpass it
in the case of stitching two robust networks.

Robust accuracy. Although, here, stitching is optimized for
plain accuracy, we show the robust accuracy of the stitched
network as well, which shows interesting patterns. When the
front network is non-robust, the robustness of the stitched
network is completely lost after the first few layers. How-
ever, when the end network is non-robust, interestingly,
robust accuracy is preserved in the last layers. Even more
interestingly, we see a similar pattern in the case of stitching
two robust networks, where robustness is also lost in the first
half of the network. Clearly, the preservation of robustness
depends on the location of the stitching. In Section 5 we will
argue that this phenomenon could be due to the clustering
of representations that increases towards the output.

Self-stitching. For any similarity measure, an important
sanity check is whether a representation is considered sim-
ilar to itself. Figure 2 illustrates this sanity check for two
robust networks. It is striking that, at almost any layer, the
accuracy of the stitched network is higher than that of the
original network. Considering that the transformation has
a low complexity, this indicates that the robust networks
are far from optimal w.r.t. plain accuracy, as they can be
significantly improved by just a weak extra transformation
layer.

In general, the result is very similar to the case of stitching
two different robust networks. This means that the observed
shift in the accuracy-robustness tradeoff is not due to in-
compatibilities of the representation of robust features (as
they are identical here), instead, it is caused by the simple
affine stitching transformation. This is a potentially useful
observation for the study of the accuracy-robustness tradeoff
problem and represents an avenue for future research.
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Figure 3. Stitching plots for the indicated donor networks, stitching optimized for robust accuracy. Trained using 100% (top row) and 50%
(bottom row) adversarial examples (that is, with α = 1 and α = 0.5, respectively).
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Figure 4. The ratio of the most often predicted class over the test
set of the stitched networks trained using 100% (α = 1) and 50%
(α = 0.5) adversarial examples. Note that the optimal value of
this ratio is 1/10 (indicated in black), because CIFAR-10 has 10
classes with equal probabilities.

4. Adversarial Stitching
Here, we use the same experimental setup as in Section 3, ex-
cept we now solve the learning task defined in Equation (2),
and we use an additional non-robust model fN2.

Our main finding is that the representations of two robust
networks can be matched, preserving both robust and plain
accuracy. However, matching robust and non-robust repre-
sentations is a lot harder, and the success of the matching
strongly depends on the location of the matched layer. After
presenting the experimental results, we shall offer a spec-
ulative explanation that is based on the clustering of the
representations in Section 5.

4.1. Robust-Robust Stitching

Figure 3 presents the case when we stitch two robust net-
works together. Clearly, the robust representations are com-
patible. It is also remarkable that the results with α = 1 and
α = 0.5 are practically identical. A possible explanation
is that the adversarial training samples generate a larger

loss value (since there, the loss is explicitly maximized) and
therefore they dominate the learning task.

It is remarkable that in the self-stitching cases we can still
see a slight shift in the robustness-accuracy tradeoff, al-
though to a much lesser extent than in the case of non-robust
stitching. Note that the two robust networks we examine
were trained with sophisticated methods well beyond the
adversarial training we apply here, and, roughly speaking,
stitching may “undo” some of the effects of those tech-
niques.

4.2. Plain-Plain Stitching

Figure 5 includes our results with stitching two non-robust
networks. It is not expected that the stitched network can be
made robust just by adding the stitching layer and training
it adversarially, but it is still interesting to study this case
to gain some insights. Indeed, with α = 1 the matching
completely fails. Although we can see a non-zero robust ac-
curacy, this is due to the matching going awry. The stitched
network classifies most inputs to a single class in a desperate
attempt to achieve a robust accuracy of 1/10 this way (see
Figure 6). Hence, plain accuracy is also very low.

However, with α = 0.5 we can see an interesting difference.
Here, when stitching by the layers closer to the output, we
can see that the plain accuracy is recovered, despite training
for robust accuracy, which stays close to zero. Clearly, due
to using clean inputs as well, a good stitching transformation
with respect to plain accuracy is also a local optimum for
the robust loss in layers closer to the output, but this is not
true in earlier layers. The data in Figure 6 also supports this
interpretation.
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Figure 5. Stitching plots for the indicated donor networks, stitching optimized for robust accuracy. Trained using 100% (top row) and 50%
(bottom row) adversarial examples (that is, with α = 1 and α = 0.5, respectively).
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Figure 6. The ratio of the most often predicted class over the test set of the stitched networks trained using 100% (α = 1) and 50%
(α = 0.5) adversarial examples. Note that the optimal value of this ratio is 1/10 (indicated in black), because CIFAR-10 has 10 classes
with equal probabilities.

4.3. Plain-Robust Stitching

Let us now have a look at the case with a non-robust (plain)
front network and a robust end network. Here, in the first
preprocessing layers some robustness can be recovered in a
non-degenerate manner, that is, we can preserve the plain
accuracy (see also Figure 6). This indicates that the first few
non-robust layers still preserve some of the robust features
that can be mapped to the robust representation of the end
network.

However, from the middle of the network the stitching plot
indicates a very similar behavior to the plain-plain case we
discussed above: with α = 1 we get degenerate stitching
layers, and with α = 0.5 plain accuracy is preserved but
robustness vanishes (that is, what we get is essentially plain
stitching despite robust training). This indicates that the
non-robust front network can no longer provide any robust
features. Also, the robust accuracy is very similar with both
α = 1 and α = 0.5, which indicates that α = 0.5 is a better
choice in this case.

4.4. Robust-Plain Stitching

The last remaining case involves a robust front network
and a non-robust end network. In this case, the first half
resembles the plain-plain case, when we can see degenerate
mappings with α = 1, indicating that the first few pre-
processing layers cannot be matched meaningfully to the
representation of the non-robust end network. Also, setting
α = 0.5 changes the stitching transformation to favor plain
accuracy significantly more, although here, plain accuracy
cannot be recovered completely.

However, in the second half of the network, something
interesting happens. Here, the last few layers of the plain
end network are perfectly suitable as a replacement for the
robust network’s last layers. In other words, the first layers
are a lot less interchangeable than the last layers. It is also
remarkable that the robustness is, again, very similar with
α = 1 and α = 0.5, while the plain accuracy is very clearly
better with α = 0.5. This suggests that α = 0.5 is a better
choice for adversarially robust stitching.
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4.5. Concluding Remarks

As a general observation, we can conclude that the last
layers appear to be interchangeable, in the sense that the
properties of every type of front network can be recovered
with an appropriate stitching method. However, the front
layers are not always interchangeable, in the sense that the
robustness of the end network quickly vanishes when non-
robust preprocessing layers are added. But, from the point
of view of plain accuracy, even the preprocessing layers are
interchangeable.

Also, the most aggressive setting of α = 1 causes the for-
mation of degenerate stitching layers at locations where
matching the representations is hard, as illustrated by Fig-
ure 6. Figure 4, however, indicates that in the robust-robust
case matching is easy even with α = 1.

5. The Role of Representation Clustering
The observations in Section 4.5 beg the question of what the
most important difference is between early and late layers
that could explain the difference in their interchangeability.
A possible explanation is that this difference lies in the dif-
ferent clustering of the representations, at least in the case
of classification problems. In general, the last layers of net-
works are expected to depend more on the abstract task type,
while early layers depend more on the input distribution.
This phenomenon is quite well understood and the role of
clustering has already been identified (Goldfeld et al., 2019).
This could explain why the layers close to the output are
more interchangeable: these layers are similar because in
each network (robust or not) the task is still to classify the
input into a number of classes.

Figure 7 shows the visualizations of the representations
in layers 4 to 8 using t-SNE (van der Maaten & Hinton,
2008). Indeed, in both the robust and non-robust networks
we can observe a clear increase in the clustering of the
representations.

5.1. Cross-Task Stitching

If the final layers of the network are indeed abstract and
depend less on the input distribution then the last layers
should be interchangeable even if the donor networks were
trained on different datasets, as long as the abstract task type
is compatible.

We tested this hypothesis via stitching networks that were
trained on different tasks: CIFAR-10 and the SVHN dataset.
Both tasks require the network to classify the input into 10
classes, but the input distribution is rather different. The
CIFAR-10 networks we used were our usual fN1 and fR1,
and we also trained an SVHN network gN1 using non-
adversarial training. We used plain stitching based on Equa-

tion (1). For more details, please refer to Appendix A.

In Figure 8 we can see that our hypothesis is supported,
in that the last layers are indeed interchangeable. That is,
if we train the stitching layer on the dataset of the front
network then replacing the last few layers is possible while
preserving accuracy on the task of the front network.

Also, note that our findings complement the results of (Terzi
et al., 2021), where the authors study transferability by
building a linear classifier over the feature representation
of a model and show that robust representations transfer
better. Here, cross-task stitching is also more successful
in the last layers if the front model is robust, suggesting a
richer feature representation.

We can also see that, when the stitching layer is trained over
the dataset of the end network, the preprocessing layers are
also interchangeable. In this case, it is also better to have a
robust network as an end network.

6. Model Inversion
A characteristic property of robust networks is that they are
invertible (Engstrom et al., 2019b), which suggests that ro-
bust models keep more information about the input, which
is counter-intuitive (Terzi et al., 2021), given that the last
layers are more abstract and, as we saw, more interchange-
able, even between networks that were trained on different
input distributions.

Here, we test the invertibility of several stitched networks,
to see whether robust accuracy is sufficient to characterize
the preservation of information. For simplicity, we define
the inversion task assuming our setup and notation, where
the feature representation of a ResNet-18 network f is f≤8.
Under these assumptions, the inverse of a given feature
representation z ∈ Af,8 is computed by solving the opti-
mization problem

f−1
≤8 (z) = argmin

x
∥f≤8(x)− z∥2. (3)

Figure 9 illustrates the invertibility of several networks, by
taking a CIFAR-10 image x and computing f−1

≤8 (f≤8(x))
for a given network f . For our detailed setup and more
inversion results please see Appendix C.

The striking observation is that the stitched network in which
the last layers are donated by a non-robust network is in-
vertible, in fact, perhaps better than the full robust network.
It is clear that the detailed information about the input is
preserved while passing through the last non-robust layers.
This also supports the hypothesis that the last layers have
less to do with robustness and more to do with the abstract
task at hand.

7
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layer 4 layer 5 layer 6 layer 7 layer 8

Figure 7. The t-SNE visualization of various layers of fN1 (top row) and fR1 (bottom row). Each point is a sample and the color represents
one of 10 classes.
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Figure 8. Cross-task stitching using CIFAR-10 networks (fN1,
fR1) and an SVHN network (gN1). The curves show the plain
accuracy of the stitched networks when stitching over CIFAR-10
and SVHN.

7. Limitations
Since we study stitching using adversarial training, the ex-
periments are very expensive which limited the number
of experiments we could complete and the complexity of
the models and the datasets we could work with, given the
amount of computational resources we have access to. At
present, this work represents about one GPU year’s worth
of computation (not counting the experiments in our path-
finding phase). It would be very useful to study several other
datasets and network architectures beyond what has been
presented in the paper and in the Appendix to support the
generality of our empirical findings better.

or
ig

fR1

fN1

4

5

Figure 9. Inverted feature representations of several networks over
a random sample of CIFAR-10 images (top row). In row 4 we
have fN1,>6 ◦ Trob ◦ fR1,≤6, that is, the front network is fR1, the
end network is fN1, robust stitching with α = 1 at layer 6. Row 9
shows fR1,>2 ◦ Trob ◦ fN1,≤2 using robust stitching with α = 1.

8. Conclusions
Our main conclusion is that robust representations are func-
tionally similar to non-robust representations in terms of
accuracy but, in general, they are not similar in terms of
robust accuracy.

However, the last layers of any two networks are inter-
changeable, in the sense that the stitched network is similar
to the front network, even if the front network is robust and
the end network is not, and even if the two stitched networks
were trained on different tasks of the same type.

We argued that the clustering of the representations, that
happens independently of robustness and input distribution,
is a possible explanation of why the last layers are inter-
changeable.

These conclusions are interesting from several points of
view. First of all, they underline the fact that representation
similarity is fine-grained, that is, similarity is ill-defined

8
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without referring to function.

Second, our experiments provide independent evidence that
robust and non-robust representations might indeed be dif-
ferent, and we can even localize the layers where the differ-
ence is the largest: they are in the transition phase between
preprocessing and clustering (or semantic) layers, where pre-
processing is already high level but the semantic structure
is not yet mature.
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G., and Varga, D. Similarity and matching of neural
network representations. In Ranzato, M., Beygelzimer,
A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems 34
(NeurIPS), pp. 5656–5668, 2021. URL https://pr
oceedings.neurips.cc/paper/2021/hash
/2cb274e6ce940f47beb8011d8ecb1462-Abs
tract.html.

Davari, M., Horoi, S., Natik, A., Lajoie, G., Wolf, G., and
Belilovsky, E. On the inadequacy of CKA as a measure
of similarity in deep learning. In ICLR 2022 Workshop on
Geometrical and Topological Representation Learning,
2022. URL https://openreview.net/forum
?id=rK841rby6xc.

Ding, F., Denain, J.-S., and Steinhardt, J. Grounding repre-
sentation similarity through statistical testing. In Ranzato,
M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems (NeurIPS), volume 34, pp. 1556–1568. Curran
Associates, Inc., 2021. URL https://proceeding
s.neurips.cc/paper/2021/file/0c0bf91
7c7942b5a08df71f9da626f97-Paper.pdf.

Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., and
Tsipras, D. Robustness (python library), 2019a. URL ht
tps://github.com/MadryLab/robustness.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Tran,
B., and Madry, A. Adversarial robustness as a prior for
learned representations. Technical Report 1906.00945,

9

https://openreview.net/forum?id=SHB_znlW5G7
https://openreview.net/forum?id=SHB_znlW5G7
https://proceedings.neurips.cc/paper/2021/hash/f770b62bc8f42a0b66751fe636fc6eb0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f770b62bc8f42a0b66751fe636fc6eb0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f770b62bc8f42a0b66751fe636fc6eb0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/01ded4259d101feb739b06c399e9cd9c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/01ded4259d101feb739b06c399e9cd9c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/01ded4259d101feb739b06c399e9cd9c-Abstract.html
https://openreview.net/forum?id=SbAaNa97bzp
https://openreview.net/forum?id=SbAaNa97bzp
http://proceedings.mlr.press/v119/croce20b.html
http://proceedings.mlr.press/v119/croce20b.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a3c65c2974270fd093ee8a9bf8ae7d0b-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a3c65c2974270fd093ee8a9bf8ae7d0b-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a3c65c2974270fd093ee8a9bf8ae7d0b-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a3c65c2974270fd093ee8a9bf8ae7d0b-Abstract-round2.html
https://proceedings.neurips.cc/paper/2021/hash/2cb274e6ce940f47beb8011d8ecb1462-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2cb274e6ce940f47beb8011d8ecb1462-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2cb274e6ce940f47beb8011d8ecb1462-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2cb274e6ce940f47beb8011d8ecb1462-Abstract.html
https://openreview.net/forum?id=rK841rby6xc
https://openreview.net/forum?id=rK841rby6xc
https://proceedings.neurips.cc/paper/2021/file/0c0bf917c7942b5a08df71f9da626f97-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/0c0bf917c7942b5a08df71f9da626f97-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/0c0bf917c7942b5a08df71f9da626f97-Paper.pdf
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness


On the Functional Similarity of Robust and Non-Robust Neural Representations

arXiv.org, 2019b. URL https://arxiv.org/abs/
1906.00945.

Goldfeld, Z., van den Berg, E., Greenewald, K. H., Mel-
nyk, I., Nguyen, N., Kingsbury, B., and Polyanskiy, Y.
Estimating information flow in deep neural networks. In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning (ICML), volume 97 of Proceedings of Machine
Learning Research, pp. 2299–2308. PMLR, 2019. URL
http://proceedings.mlr.press/v97/gold
feld19a.html.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In 3rd International
Conference on Learning Representations (ICLR), 2015.
URL https://arxiv.org/abs/1412.6572.

Gowal, S., Rebuffi, S., Wiles, O., Stimberg, F., Calian, D. A.,
and Mann, T. A. Improving robustness using generated
data. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems 34 (NeurIPS), pp. 4218–
4233, 2021. URL https://proceedings.neur
ips.cc/paper/2021/hash/21ca6d0cf2f25
c4dbb35d8dc0b679c3f-Abstract.html.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in
deep residual networks. In Leibe, B., Matas, J., Sebe, N.,
and Welling, M. (eds.), Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, volume 9908
of Lecture Notes in Computer Science, pp. 630–645.
Springer, 2016a. doi: 10.1007/978-3-319-46493-0\ 38.
URL https://doi.org/10.1007/978-3-319
-46493-0_38.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2016b. URL https://www.cv-foundation.
org/openaccess/content_cvpr_2016/pap
ers/He_Deep_Residual_Learning_CVPR_2
016_paper.pdf.
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A. Experimental Setup
A.1. Datasets and Architectures

Our experiments were conducted using a number of models trained on the following datasets: MNIST (LeCun et al., 2010),
Fashion MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky, 2009) and SVHN (Netzer et al., 2011). We used the single-class
version of the SVHN dataset and the standard version available in PyTorch for all the other datasets. All the input image
color values during training and evaluation were scaled into the [0, 1] interval. The model architectures we used include
VGG-11 (Simonyan & Zisserman, 2015), ResNet-18, ResNet-50 (He et al., 2016b), PreActResNet-18 (He et al., 2016a) and
WideResNet-28-10 (Zagoruyko & Komodakis, 2016). Table 1 contains the details of all the models used in our experiments.

Table 1. Accuracy and robust accuracy (evaluated by the method explained in A.4) of the models used in our experiments. Column Source
indicates the publication in the case of state-of-the-art robust networks and the robust training method (AT: (Madry et al., 2018), TRADES:
(Zhang et al., 2019)) in the case of our own robust networks. Column Rob. Acc. is measured as described in Appendix A.4.

Network Architecture Dataset Accuracy Rob. Acc. Source
hN1 VGG-11 MNIST 99,61% 0%
hN2 VGG-11 Fashion MNIST 94,12% 0%
hN3 ResNet-18 MNIST 99,97% 0%
hN4 ResNet-18 Fashion MNIST 94,77% 0%
gN1 ResNet-18 SVHN 95,36% 0%
gN2 VGG-11 SVHN 95,35% 0%
fN1 ResNet-18 CIFAR10 90,67% 0%
fN2 ResNet-18 CIFAR10 93,66% 0%
fN3 PreActResNet-18 CIFAR10 93,82% 0%
fN4 ResNet-50 CIFAR10 94,47% 0%
fN5 WideResNet-28-10 CIFAR10 92,91% 0%
fN6 VGG-11 CIFAR10 90,23% 0%
hR1 ResNet-18 MNIST 99,39% 94,10% AT, PGD, α = 1
hR2 ResNet-18 Fashion MNIST 90,65% 45,40% AT, PGD, α = 1
gR1 ResNet-18 SVHN 85,32% 52,15% TRADES, β = 10
gR2 ResNet-18 SVHN 91,71% 44,48% AT, α = 0.5
fR1 ResNet-18 CIFAR10 84,59% 56,66% (Sehwag et al., 2022)
fR2 ResNet-18 CIFAR10 80,24% 52,07% (Addepalli et al., 2021)
fR3 ResNet-18 CIFAR10 79,97% 47,50% TRADES, β = 10
fR4 PreActResNet-18 CIFAR10 89,02% 58,34% (Rade & Moosavi-Dezfooli, 2021)
fR5 ResNet-50 CIFAR10 87,03% 51,53% (Engstrom et al., 2019a)
fR6 WideResNet-28-10 CIFAR10 87,50% 64,31% (Gowal et al., 2021)

A.2. Hyperparameters for Training Donor Models

Our hyperparameter settings for model training closely followed those of (Csiszárik et al., 2021). All of our non-robust
models were trained minimizing the cross-entropy loss function with an ℓ2 weight decay coefficient of 10−4 using the
stochastic gradient descent (SGD) optimizer with a Nesterov momentum of 0.9. For better generalization we used
the following augmentation techniques: random horizontal flip, random crop and in the case of MNIST random affine
transformations with scaling in the range of [0.9, 1.1] and at most 5 degrees of rotation and shearing. We set the initial
learning rate 10−3 when training VGG-11 models and 10−1 for every other architecture. During training, we divided the
learning rate by 10 at 1/3 and 2/3 of the total number of training epochs. We trained the MNIST models for 30 epochs and
the CIFAR-10, SVHN and Fashion MNIST models for 200 epochs.

A.3. Adversarial Training

We trained our robust models with the ℓ∞ threat model with the standard setting ϵ = 0.3 for the MNIST and Fashion MNIST
models and ϵ = 8/255 for the CIFAR-10 and SVHN models. For the internal maximization in adversarial training, when
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using the strategy of (Madry et al., 2018; Goodfellow et al., 2015), we used the untargeted projected gradient descent (PGD)
attack as described by (Madry et al., 2018) with 10 iterations and with a step size parameter of 0.1 for MNIST and Fashion
MNIST models and 2/255 for CIFAR-10 and SVHN models.

To experiment with a more diverse set of robust models, we also used the TRADES loss (Zhang et al., 2019) for adversarial
training that defines the learning task

argmin
θ

Ep(x,y)[L(fθ(x), y) + βmax
δ∈S

L(fθ(x), fθ(x+ δ))], (4)

where f denotes the trained model and θ denotes the parameters of f . To maximize robustness we set β to 10.

All the hyperparameters that were not mentioned in this section were identical to those described in Appendix A.2.

A.4. Evaluating Robustness

For evaluating the robustness of the original models as well as the stitched models, we used the “rand” version of AutoAttack
(Croce & Hein, 2020) with the implementation of (Nicolae et al., 2018). The “rand” version of AutoAttack contains two
untargeted auto-projected gradient descent (aPGD) attacks that maximize the cross-entropy and the logit margin, respectively.
Both attacks were parameterized similarly: 20 iterations, no restarts and ϵ and step size values identical to those mentioned
in Appendix A.3. Evaluation was conducted in the ℓ∞ threat model. We found that this version of AutoAttack, while being
slightly weaker than the standard version, is still a suitable and significantly faster way to evaluate a network’s robustness
against gradient-based attacks. Table 2 shows a comparison of the strength of the AutoAttack variants.

Table 2. Comparing the version of AutoAttack we used (third column) with the standard version of AutoAttack (fourth column) by
evaluating the robust accuracy of five state-of-the-art robust networks with the two attacks.

Architecture Publication AutoAttack (”rand”) AutoAttack (full)
ResNet-18 (Addepalli et al., 2021) 52,07% 51,06%
ResNet-18 (Sehwag et al., 2022) 56,66% 55,54%
PreActResNet-18 (Rade & Moosavi-Dezfooli, 2021) 58,34% 57,67%
ResNet-50 (Engstrom et al., 2019a) 51,53% 49,25%
WideResNet-28-10 (Gowal et al., 2021) 67,28% 63,44%

A.5. Stitching

Our stitching implementation is based on the implementation provided by (Csiszárik et al., 2021). The stitching transforma-
tion does not contain batch normalization, however, it does contain learnable bias terms and so it is an affine transformation.
We train all the stitching layers with the Adam optimizer for 30 epochs. Learning rate scheduling and hyperparameters
(except for the optimizer) are identical to those described in Appendix A.2. We used the random initialization method for
the stitching layer in the main part of the paper. Here, however, we also include some results with initialization with the
identity mapping.

In our experiments the stitched donor networks have identical architectures. We performed stitching at architecturally
corresponding layers which, according to the sanity check proposed by (Kornblith et al., 2019) should be the most similar
between networks with the same architecture. In other words in all our experiments f≤l and g≤j as well as f>l and g>j

were architecturally identical.

A.5.1. STITCHING LAYER PLACEMENT

When stitching residual networks we place the stitching layers at the end of residual blocks, after the piecewise addition
operation. This is important because stitching inside the residual block—while technically possible—cannot be imple-
mented properly using a single stitching layer, because the transformation of the skip connection is also necessary. Our
implementation does allow for stitching to be performed inside the residual blocks with the caveat that the skip connection
is taken directly from the end network. For completeness, we mention that we performed a set of preliminary experiments
(not shown here) with plain stitching inside the residual blocks that showed a comparable performance.
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Figure 10. Stitching plots for the indicated donor networks, stitching optimized for plain accuracy. (Same as Figure 1, only with different
networks.)

Another question regarding stitching layer placement is the location of the stitching layer relative to the activation function.
In the case of VGG-11 and ResNet, the stitching layers are placed before the activation function in the forward order. In the
case of PreActResNet and WideResNet, the stitching layers are placed after the activation function.

A.5.2. BATCH NORMALIZATION

The implementation of (Csiszárik et al., 2021) allows all of the batch normalization layers’ mean and variance parameters in
the stitched network to be modified during the training of the stitching layer. We performed a set of preliminary experiments
with plain stitching where we froze the batch normalization layers. These experiments resulted in practically identical
performance, but at the cost of significantly slower convergence. Possibly to combat this, the implementation of (Bansal et al.,
2021) adds one batch normalization before and after the stitching transformation. Based on our preliminary experiments, we
left the batch normalization layers unfrozen, as was done in (Csiszárik et al., 2021).

A.6. Computational Resources

During our experiments we trained and evaluated over 3000 stitching layers, of which approximately 75% were trained
adversarially. For our experiments we used a mixture of GeForce 2080 Ti 10G, 3060 12G, and V100DX-16C (10G virtual
slice) GPUs. While plain stitching experiments took about 30 minutes for each layer on a single GPU, adversarial stitching
experiments with larger networks took significantly longer. For example, the training and evaluation of each stitching layer
of the ResNet-18 architecture over the CIFAR-10 dataset took approximately 3 hours on one GPU (so, one run for one
full stitching plot took about a GPU-day). A layer of the ResNet-50 architecture with adversarial stitching and evaluation
over the CIFAR-10 dataset took approximately 8 hours, so one run for a full stitching plot with this architecture took 124
GPU-hours, or about 5.34 days.

B. Additional Experiments
The main text of the paper focused on a fixed set of ResNet-18 networks over the CIFAR-10 dataset. Here, we present
additional results with alternative networks, architectures, datasets, and algorithmic components. Here, each point of every
plot corresponds to a single run of the given training algorithm.

B.1. Alternative Network Instances and Components

First, let us present experimental results using the same setting as the main text (ResNet-18 networks over the CIFAR-10
dataset). Figures 10 and 11 present results that use identical settings to the ones used in the main text, but replacing some of
the networks that are stitched. The results are similar.

Apart from the method described in Section 2, we experimented with an additional adversarial stitching method as well that
is based on the TRADES loss (Zhang et al., 2019):

argmin
θ

Ep(x,y)[L([g>j ◦ Tθ ◦ f≤i](x), y) + βmax
δ∈S

L([g>j ◦ Tθ ◦ f≤i](x), x+ δ)] (5)

In our experiments, parameter β (that controls the tradeoff between accuracy and robustness) is set to 1 if at least one
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Figure 11. Stitching plots for the indicated donor networks, stitching optimized for robust accuracy. Trained using 100% (top row) and
50% (bottom row) adversarial examples. (Same as the same type of plots included in Figure 3, only with different networks.)

donor network is non-robust. This allows us to closely match the adversarial stitching method described by Equation (2)
with α = 0.5. Our experiments indicate that the two adversarial stitching methods yield similar results, as illustrated by
Figure 12.

In the case of self-stitching experiments, it is an interesting question whether the stitching layer will be more similar to the
identity mapping if we use the identity mapping for initialization. As Figure 13 indicates, the stitching layers appear to be
very similar to the ones using random initialization.

B.2. Alternative Network Architectures

Here, still staying with the CIFAR-10 dataset, we tested additional network architectures. Figures 14 and 15 shows our
stitching experiments with ResNet-50 networks, Figures 16 and 17 present the experiments with PreActResnet-18, and
finally, Figures 18 and 19 present our results with WideResnet-28-10. We can conclude that similar patterns emerge in each
case. One case stands out, however: the WideResnet architecture results in a better robust accuracy for non-robust stitching
than the other architectures, when two robust networks are stitched together.

B.3. Alternative Datasets

Here, we present a set of results over other datasets. In particular, Figures 20 and 21 show our results over the SVHN dataset,
Figure 22 contains our results with the Fashion-MNIST dataset, and Figure 23 presents stitching plots over the MNIST
dataset. The patterns that we observe are, again, consistent with the previous results. Perhaps MNIST stands out slightly,
because it preserves more robustness than the other networks when the front network is robust. This could be due to the
fact that a lot of the adversarial vulnerability of MNIST networks originate from manipulating the background (which is
constant black in all the clean examples), and robust networks tend to threshold the background, which is an easy fix for this
particular attack vector.

B.4. Additional Cross-Task Experiments

We experimented with cross-task stitching using other datasets and networks as well, the results are shown in Figures 24
to 26. The results are consistent with out previous results. One observation we can make is that cross-task stitching
works better when the network solving the harder task (CIFAR-10, and Fashion-MNIST, respectively) is the front network.
However, here, it is also clear that the last layers are interchangeable, even if the weaker network is the front network. This
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Figure 12. Stitching plots for the indicated donor networks, stitching optimized for robust accuracy using TRADES with β = 1.

is not the case for the preprocessing layers.

C. Additional Inversion Results
Our representation inversion experiments are based on the implementation provided by (Engstrom et al., 2019b) and our
hyperparameter settings are identical to theirs. For optimization we use an ℓ2-bounded PGD with random initialization,
ϵ = 1000 and a step size of 1.

Figure 27 shows the inverted representations of additional networks relative to those shown in Figure 9. These new networks
correspond to rows 6–9. All of these new stitched networks use the robust fR1 as a front network. We were interested in
how the invertibility depends on the end network and the stitching method. The end networks include gN1, which is trained
on a different task (SVHN). The figure indicates that invertibility is surprisingly robust to these factors, and the last layers
seem to be interchangeable almost independently of the end network, keeping also a reasonable degree of invertibility.
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Figure 13. Stitching plots for identical front and end networks, with identity initialization, stitching optimized for plain accuracy (top row)
and robust accuracy with α = 0.5 (middle row) and α = 1 (bottom row). (See Figures 2 and 3 for the same experiments but with random
initialization.)
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Figure 14. Results with the ResNet-50 networks, stitching optimized for plain accuracy.
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Figure 15. Results with the ResNet-50 networks, stitching optimized for robust accuracy with α = 1 (top row) and α = 0.5 (bottom row).
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Figure 16. Results with the PreActResNet-18 networks, stitching optimized for plain accuracy.
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Figure 17. Results with the PreActResNet-18 networks, stitching optimized for robust accuracy with α = 0.5 (top row), α = 1 (middle
row) and with TRADES, β = 1 (bottom row).
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Figure 18. Results with the WideResNet-28-10 networks, stitching optimized for plain accuracy.

19



On the Functional Similarity of Robust and Non-Robust Neural Representations

front: fN5, end: fR6 front: fR6, end: fN5

End
model

1 2 3 4 5 6 7 8 9 10 11 12
Front

model
0.0

0.2

0.4

0.6

0.8

1.0

End
model

1 2 3 4 5 6 7 8 9 10 11 12
Front

model
0.0

0.2

0.4

0.6

0.8

1.0

End
model

1 2 3 4 5 6 7 8 9 10 11 12
Front

model
0.0

0.2

0.4

0.6

0.8

1.0

End
model

1 2 3 4 5 6 7 8 9 10 11 12
Front

model
0.0

0.2

0.4

0.6

0.8

1.0

Figure 19. Results with the WideResNet-28-10 networks, stitching optimized for robust accuracy with α = 0.5 (top row) and with
TRADES, β = 1 (bottom row).
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Figure 20. Results over the SVHN dataset, stitching optimized for plain accuracy.
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Figure 21. Results over the SVHN dataset, stitching optimized for robust accuracy with α = 0.5 (top row), α = 1 (middle row) and with
TRADES, β = 1 (bottom row).
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Figure 22. Results with Fashion-MNIST networks, stitching optimized for plain accuracy.
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Figure 23. Results with MNIST networks, stitching optimized for plain accuracy.
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Figure 24. Cross-task stitching using CIFAR-10 network fN6 and SVHN network gN2 (both using VGG11 architecture). The curves
show the plain accuracy of the stitched networks when stitching over CIFAR-10 and SVHN.
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Figure 25. Cross-task stitching using MNIST network hN1 and Fashion-MNIST network hN2 (both using VGG11 architecture). The
curves show the plain accuracy of the stitched networks when stitching over MNIST and Fashion-MNIST.
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Figure 26. Cross-task stitching using MNIST network hN3 and Fashion-MNIST network hN3 (both using ResNet-18 architecture). The
curves show the plain accuracy of the stitched networks when stitching over MNIST and Fashion-MNIST.
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Figure 27. Inverted feature representations of several networks over a random sample of CIFAR-10 images (top row). In row 4 we have
fN1,>6 ◦ Trob ◦ fR1,≤6, that is, the front network is fR1, the end network is fN1, robust stitching with α = 1 at layer 6. Row 5 shows
fR1,>2 ◦Trob ◦ fN1,≤2 using robust stitching with α = 1, Row 6: fN1,>6 ◦Tplain ◦ fR1,≤6, Row 7: gN1,>6 ◦Tplain,cifar10 ◦ fR1,≤6 using
plain cross-task stitching over CIFAR-10, Row 8: gN1,>6 ◦ Trob,cifar10 ◦ fR1,≤6 using robust cross-task stitching over CIFAR-10 with
α = 0.5, Row 9: gN1,>6 ◦ Trob,cifar10 ◦ fR1,≤6 using robust cross-task stitching over CIFAR-10 with α = 1.
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