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Abstract. In this paper, we address the challenge of fine-grained video
event understanding in traffic scenarios, vital for autonomous driving
and safety. Traditional datasets focus on driver or vehicle behavior, often
neglecting pedestrian perspectives. To fill this gap, we introduce the
WTS dataset, highlighting detailed behaviors of both vehicles and pedes-
trians across over 1.2k video events in over hundreds traffic scenarios.
WTS integrates diverse perspectives from vehicle ego and fixed overhead
cameras in a vehicle-infrastructure cooperative environment, enriched
with comprehensive textual descriptions and unique 3D Gaze data for a
synchronized 2D/3D view, focusing on pedestrian analysis. We also pro-
vide annotations for 5k publicly sourced pedestrian-related traffic videos.
Additionally, we introduce LLMScorer, an LLM-based evaluation metric
to align inference captions with ground truth. Using WTS, we estab-
lish a benchmark for dense video-to-text tasks, exploring state-of-the-art
Vision-Language Models with an instance-aware VideoLLM method as a
baseline. WTS aims to advance fine-grained video event understanding,
enhancing traffic safety and autonomous driving development. Dataset
page: https://woven-visionai.github.io/wts-dataset-homepage/.

1 Introduction

Understanding fine-grained information from videos has been a paramount
challenge in computer vision, especially in mission-critical applications like au-
tonomous driving and traffic safety scenario analysis [23,36,42]. This challenge
hinges on interpreting complex spatial-temporal data swiftly and accurately,
encompassing environmental context and individual behaviors for robust decision-
making and causal understanding of user intentions. Despite significant advance-
ments in this domain, several gaps persist, which we aim to address in our
work.

Existing research extensively focuses on vehicle and driver behavior, but pedes-
trian behavior—a critical aspect of traffic safety—remains underexplored, despite
statistics showing over 20% [26] of traffic accidents involve pedestrians. Current
traffic event models lack granularity in behavior definition, limiting nuanced
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3D Gaze and Location projected in a 3D space for using

Pedestrian behavior caption: 
The pedestrian found himself positioned directly in front of the assailant 
vehicle with their orientation opposite to it. There was no relative distance; 
they were almostly touching the vehicle. His line of sight remained focused on 
the vehicle, closely watching its actions. The pedestrian was about to stand 
still after moving at a slightly higher speed, and they were decelerating.

Multi-views with fine-grained traffic video captioning

Fig. 1: The overview of WTS dataset features. We provide multi-view videos with
fine-grained video captions focusing on pedestrian behavior and the 3D gaze and location
information for a further detailed understanding of the traffic-related videos.

decision-making. The rise of Multi-modal Large Language Models (MLLMs),
which integrate large language models with multi-modality, advances the genera-
tion of detailed textual descriptions from images or videos. However, applying
MLLMs to interpret fine-grained, domain-specific details within traffic scenarios
is still challenging and underdeveloped for real-world applications.

To address these gaps, we propose the WTS dataset, a pedestrian-centric traffic
video dataset with detailed textual descriptions of both pedestrian and vehicle
behaviors. We recorded traffic scenarios from multiple views, using overhead and
vehicle drive recorder cameras, with five video segment labels for traffic accident
analysis. The dataset includes 1.2K well-annotated dense descriptions across 255
traffic scenarios. Multiple-view videos are synchronized using an audio signal from
a radio on the same channel attached to each camera. Additionally, we provide
a 2D/3D synchronized space for our recording environment, offering accurate
3D gaze annotation data of pedestrians using Tobii Pro Glasses 3. The dataset
includes 132 traffic accident patterns described using the ISO34502 standard,
with videos in high 1080p resolution at 24 fps. Figure 1 provides an overview of
our dataset features. For broader experimental purposes, we also offer detailed
textual descriptions for approximately 5K publicly sourced pedestrian-related
traffic videos.

As a benchmark for fine-grained video-to-text tasks using the WTS dataset,
captions cover four high-level categories: Location, Attention, Behavior, and
Context, each with detailed textual information. The average caption length for
one video segment is about 58.7 words. Figure 2 shows a full caption example.
Traditional metrics for video/image caption evaluation, which use text embedding
similarity [21, 29, 33], struggle with long descriptions as they measure word-level
rather than semantic similarity between inference and ground truth sentences.
To address this, we propose an LLM-based video caption scorer focusing on
semantic similarity. Additionally, we introduce an instance-aware approach based
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Fig. 2: A full caption example with its structure design for the [action] phase

on the Video Large Language Model, serving as a baseline for the fine-grained
video-to-text challenge in WTS.

As a summarization of our contribution to the field in several significant ways:
A novel pedestrian-centric traffic video dataset: we introduce a unique

dataset focusing on pedestrian-related traffic scenarios. Each traffic event in
this dataset is accompanied by detailed textual descriptions of both vehicle and
pedestrian behavior, annotated with structured knowledge from traffic safety
analysts. 3D Gaze of the pedestrian as a meta-analysis factor in traffic safety is
also provided.

An LLM-based video caption evaluation scorer: we introduce new
metrics cards composited LLM-based scorer for better alignment with evaluating
the semantic correctness than only word-level similarity.

Empirical Evaluation with Vision-Language Models: to demonstrate
the efficacy of our dataset, we conduct extensive experiments using cutting-edge
vision-language models, including a proposed instance-aware VideoLLM.

2 Related Works

In the evolution of video captioning and behavior-understanding datasets, a
significant focus has been placed on varying domains and the granularity of
annotations. Our dataset, WTS, stands out in its comprehensive coverage of
traffic scenarios with a pedestrian-centric focus. We now draw comparisons with
other datasets to highlight WTS’s unique contributions to the field.

2.1 Related Datasets

Video Captioning: TACoS [31] offers fine-grained cooking activities, while the
MSVD [6], MPII-MD [32], and M-VAD [30] datasets present a broad open domain
with a substantial volume of clips. Although the MSR-VTT [41] dataset is rich
in movie scene captions and provides a fundamental scene-based approach, it
lacks the specificity required for fine-grained descriptions. The Charades [35] and
Charades-Ego [34] datasets contribute valuable insights into daily indoor activities
with lengthy captions. The ActivityNet Captions [9] dataset broadens the domain
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Datasets Videos (total) Type Domain Captions num.
Avg.

caption len. Year

MSVD [6] 1,970 scene open 80,380 7.14 2011
TACoS [31] 7,206 scene cooking 18,227 8.27 2013
MPII-MD [32] 68,327 scene movie 68,375 11.05 2015
M-VAD [30] 46,589 scene movie 46,589 12.44 2015
MSR-VTT [41] 507,502 scene open 200,000 9.27 2016
Charades [35] 9,848 scene daily indoor 25,032 23.91 2015
Charades-Ego [34] 7,860 scene daily indoor 14,039 26.30 2016
TGIF [20] 125,782 scene open 125,781 11.28 2016
ActivityNet Caps. [9] 19,994 instance human activity 72,976 14.72 2017
VATEX [39] 34,991 scene open 349,910 15.25 2019
HowTo100M [24] 139,668,840 scene instruction 139,668,840 4.16 2019
TRECVID-VTT’20 [2] 9,185 scene open 28,183 18.90 2020

BDD-X [16] 6,984 scene traffic + outdoor 26,228 14.5 2018
WTS 6,061 (1,200+4,861) instance traffic + outdoor 49,860 58.7 2023

Table 1: Comparison between different video caption and 3D gaze-related datasets.

of instance-based activities as a dense captioning task with a significant number
of clips, but it does not match the level of detail in pedestrian behavior that
WTS offers. The large-scale instructional dataset HowTo100M [24] encompasses
a vast array of activities, but it provides limited length in caption information.
TRECVID-VTT’20 [2] offers a noteworthy volume of open domain clips, yet it
does not approach the intricacy of pedestrian-vehicle interactions as WTS does.
In the context of traffic-specific datasets, BDD-X [16] marks a significant step
with its focus on traffic scenes and considerable annotation detail for driver action
explanation. However, WTS surpasses it with higher granularity in pedestrian
behavior analysis and a larger volume of clips and annotations focusing on
pedestrians. Notably, WTS is pioneering in its inclusion of 3D gaze data, providing
unparalleled insights into pedestrian attention and behavior in traffic scenarios.

2.2 Video Captioning Methods

Video and image captioning are fundamental tasks in video understanding.
Vid2Seq [43] introduces a model that integrates special time tokens in a language
model to predict event boundaries and textual descriptions in the same sequence.
T. Wang et al. [38] present PDVC, a framework for dense video captioning that
uses parallel decoding and treats dense caption generation as a set prediction
task. MPLUG-2 [40] leverages large-scale pre-training for a deep understanding
of complex visual-language interactions. VALOR [7] is a framework for object
retrieval tasks involving video and language input, excelling in processing complex
queries and locating items based on descriptions. Recent foundation models have
significantly improved performance in video-to-text tasks due to prior knowledge
alignment. DriveGPT-4 [42], based on the GPT-4 architecture, integrates visual
data and contextual understanding for autonomous driving scenarios, showing
strong performance on the BDD-X [16] dataset. Caption Anything [37] generates
accurate, context-aware captions for a wide range of video content, leveraging the
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segment anything model for descriptive and relevant captions. Video-LLaMA [47]
combines linguistic, visual, and audio data for comprehensive video content
understanding. We benchmarked recent Video LLM-based methods’ performance
on the WTS dataset to evaluate their potential for fine-grained video-to-text
tasks.

2.3 Evaluation Metrics

Video/image caption evaluation metrics including, reference-based ones such as
BLUE [29], ROUGE [21], CIDER [33], METEOR [5], SPICE [1] and Rankgen [18].
However, due to the above methods focused on the word level similarity and
its order, for the long caption, especially its semantic meaning evaluation is
relatively difficult to judge that two paragraphs represent the same thing but
different words. Recently, for video-language understanding benchmark, GPT-
based metrics [3,11,19] have been developed for use, which are better for aligning
the semantic meaning for evaluation. The main difference between our proposed
LLMScorer and the above ones is LLMScore is designed with a customizable
specified aspect considering the semantic meaning as well as syntactic structure
similarity for a holistic caption correctness evaluation.

3 WTS Dataset

WTS is a novel pedestrian-centric traffic video dataset featuring 255 traffic sce-
narios, including staged pedestrian-related accidents across 1.2k video segments.
Each scenario spans 1 to 3 minutes, with segments ranging from 1 to 15 seconds. It
covers 5 phases of pedestrian behavior (Pre-recognition, Recognition, Judgement,
Action, Avoidance). Detailed textual descriptions of pedestrian and vehicle behav-
iors are provided for each segment, along with bounding box annotations. We also
curated approximately 5k pedestrian-related videos from BDD100K [45] using
the same annotation approach as WTS. Additionally, we include synchronized
3D gaze and location annotations for each scenario video, totaling 52, 823 frames
across 6 subjects in outdoor environments.

3.1 Data Construction

Camera views: Our recording setup includes three types of cameras: overhead,
driver recorder, and ego-centric cameras. The multi-view setup is designed for
vehicle-infrastructure cooperation, such as in smart cities, enhancing the accuracy
of fine-grained descriptions and improving AD system safety features. It also
helps avoid false negatives from vehicle blind spots and offers promising avenues
for future research. We selected 18 out of 24 overhead views after removing
occluded viewpoints. Each view records at 1080p resolution and 24 fps, with
calibrated camera parameters. The driver recorder uses a GoPro Hero10 with
linear model settings at 1080p and 24 fps. The ego-centric camera, Tobii Pro
Glasses 3, captures 720p resolution videos at 24 fps, providing accurate 2D gaze
ground truth. Sample views of these cameras are illustrated in Figure 1.
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Fig. 3: The overview of WTS video caption data structure: 1) the left figure shows
multiple views from overhead to ego vehicle view with 5 phases. 2) the right figure
shows the definition of our phase segment and the GT captions corresponding with
action segment about the target pedestrian and vehicle respectively as an example.

Subjects: There are total 14 subjects who joined the recording with 7 females
and 7 males, whose ages are ranged from 16∼50 years old.

Scenarios: We follow the ISO34502 standard, a scenario-based safety eval-
uation framework used for automated driving systems as well as our scenario
guideline. We created at least one scenario for each of the 138 pedestrian-vehicle
relative position patterns defined in it to construct the recording scenario. The
scenario patterns and its recorded video sample frames are shown in Figure 4(a).

Captions: We provide fine-grained pedestrian-related behavior captions for
each video segment in the traffic scenarios. It starts from the phase segmentation
to find each behavior phase temporal localization part, then moves to describe the
event in the segment into text along the temporal directions. The features of this
caption can be drawn as 1. long paragraph; 2. fine-grained observation regarding
the position, action, attributes, and attention of pedestrians and vehicles with
the surrounding context; 3. focus on the target objective.

3D Gaze: 3D Gaze is provided for the target pedestrians as extra data for
further use, such as using it as a prior for traffic accident analysis. We provide
both 2D and 3D gaze annotations for the corresponding frames with the target
pedestrian. Figure 1 shows the example of 2D/3D gaze annotations in the frame.
Except for the above-ground truth, we also provide the 3D head position and
raw 2D gaze ground truth acquired from the Tobii glasses. To check and visualize
the 3D information appropriately, a 2D paired 3D scanned map is given.

3.2 Data Collection

Generally, collecting natural traffic events in the real world is challenge. WTS
ensures a controlled environment for collecting traffic events, adhering to ISO34502
scenarios and using pre-defined context settings based on actual accident videos.
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Fig. 4: (a).Sample of scenario pattern. 3 frames are sampled from the video along
the temporal direction with the order 1 to 3 at the upper left of the frame. (b).Our
recording environment map and camera position.

All accident-related scenarios are staged by professional stuntmen to replicate
real-world conditions accurately.

Recording environment: We use a driving school with several intersections
and single roads as our recording environment. It is a 72× 84 meters outdoor
space in total, and 15× 15 meters for intersection and 11m as width and 81m as
length for the single road. We have installed 6 multi-lens (4 lenses) overhead view
cameras BOSCH FLEXIDOME multi 7000i in our recording place, and each
overhead view camera is attached to the electric pole around the road. Figure
4(b) shows the map of our recording place with the camera placement positions.

Recording process: A series of scenarios was listed on a worksheet. Random
walk or standby action was performed by subjects before and after each event.
Each event includes each phase from Pre-recognition to Avoidance. The traffic
light in the intersection is operated normally without any pre-defined behavior.
The events occurred at various positions to ensure the diversity of the dataset.
In each event, target pedestrians will be involved in the scenario, and non-target
pedestrians who only performed the random walk in the video to make the task
setting close to the real-world setup.

Synchronization: Synchronizing multiple, heterogeneous videos is challeng-
ing, especially under unconstrained outdoor environments, where we have multiple
dynamic cameras. We utilize the audio input that most commodity video cameras
are equipped to synchronize the videos. We use analog radio signals as the audio
syncing signals. The average sync delay is 0.015 seconds, well below our frame
interval of 24 FPS. For quality assurance, human annotators checked for audio
delays (echoing when two videos are out of sync by more than 0.03 seconds) and
labeled such videos for human modification.

3.3 Ground Truth Generation

Annotation of the detailed description of traffic video is not easy to ensure
accuracy and bias from the human. To resolve this kind of challenge and provide
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Fig. 5: Annotation pipeline for generating the traffic domain-related captions.

high-quality annotations for each data, we introduce several novel manners for
the annotation.

Captions: For the traffic event-related caption, two challenge points are:
1) the caption information requires professional knowledge and viewpoint that
is hard to create by a normal annotator correctly. 2) to give the temporal
localization information to each segment and create the related temporal-spatial
behavior caption is still based on the intuition of the analyst’s experience, which
is biased. 3) writing a long description of the video from humans requires a high
concentration which is error-prone. To remove the bias and make the annotator
perform the annotation without deep knowledge of the traffic safety analysis
area, we introduced a semi-auto caption generation manner with the following
flow as shown in Figure 5: 1. We cooperated with the professional analyst in the
insurance company to regularize and unify the guidelines for the segment temporal
localization manner. Annotators are asked to do the phase segmentation according
to the guidelines. 2. We make structured knowledge from the existing traffic event
textual description data. The structured knowledge will be a breakdown of over
180 factual items as a checklist related to the environment context, attributes,
position, action, and attention from target pedestrians and vehicles. For the
position (left, right, front, etc.) items regarding the pedestrian and vehicle, we use
the vehicle-centric as the relative anchor to define whether the pedestrian is "left"
or right" to the vehicle to remove the bias. Samples of our checklist are shown
in Figure 5. Details can be referred from the supplementary. 3. Annotators are
asked to check the items from the structured checklist for each annotated segment
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Fig. 6: Illustration of the 3D gaze GT pipeline. Note that the radius of the red cone,
illustrating the 3D gaze direction, is solely for visualization purposes. It represents an
approximate eccentric gaze FOV of 15°, attainable without head movement.

Fig. 7: Qualitative sample from our tracking results for bbox generation. Using human
annotated bbox as visual prompt input to the track-anything.

according to facts that occurred in the video. 4. Once the event check process is
done, a double-check process happens to verify whether the checked items match
the video or not as the first quality verification. 5. Then, the checked items are
fed to a Large Language Model with an appropriate prompt setting (detailed
can be referred from the supplementary) for generating the natural sentence,
including all the checked items as the caption ground truth. We use GPT-3.5 [28]
as the LLM engine for the caption generation. 6. Finally, a double-check for the
generated caption is done manually as the second quality verification.

Notice that GPT is used solely to summarize human-annotated scenario-
describing checklist results into captions, ensuring that the diversity of scenario
descriptions is not limited by GPT’s diversity.

3D Gaze: Previous studies on 3D gaze ground truth have typically been
conducted in controlled environments or with people under controlled conditions.
These studies often rely on numerous AR markers to localize ego-view cameras
[25] or restrict the point of gaze, providing instructions to subjects for gaze
estimation [13,15]. However, these methods can make the environment appear
unnatural in third-person view videos, or hinder subjects from acting naturally.

To overcome these limitations, our approach involves localizing in the environ-
ment through structure-from-motion (SfM) from ego-view video, inspired by [12].
The pipeline is outlined in Figure 6. Input videos are sub-sampled at 5 fps, and
each frame is localized in world coordinates using SfM and a pre-built localization
map. We utilize the GTSfM open source SfM library [4] and a Matterport camera
with LiDAR scanning ‡ to create the pre-built localization map. Finally, the
3D gaze direction in ego-view is transformed into each surveillance camera’s

‡https://matterport.com/
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third-person view. This is done using the pre-calibrated surveillance camera pose,
the ego-view frame pose, and the 3D gaze direction from the Tobii glasses in
local coordinates. The transformation process for the i-th surveillance camera is
defined as:di = R−1

i Regodego, where dego ∈ S2 represents the 3D gaze direction
in ego-view, Rego ∈ SO(3) the ego-view pose in world coordinates, Ri ∈ SO(3)
the i-th surveillance camera pose in world coordinates, and di ∈ S2 the 3D gaze
direction in the i-th surveillance camera.

We evaluated the 3D gaze annotation quality in four aspects: (1) ego-view
pose estimation using SfM, (2) transformation to world coordinates, (3) overhead
camera pose estimation, and (4) Tobii’s accuracy with moving subjects. For (1),
sampled videos with rapid motion were used, resulting in an average error of 4.19
degrees. For (2) and (3), we estimated relative poses between real and rendered
images from scanned 3D scenes, achieving an error of 0.18 degrees. We applied
a sanity check to remove visually perceptible errors and aggregated ego-view
poses using RANSAC and Procrustes. For (4), Tobii’s gaze accuracy for walking
subjects was 1.74 degrees [27]. Finally, the combined error was 6.11 degrees,
within the human eye’s 15 degree eccentric gaze FOV.

Bounding Box Generation We also provide bounding boxes of target
vehicles and pedestrians. We choose a semi-supervised approach based on the
human prompt in the first frame and tracking the target in the rest of the frames.
We leverage Track Anything [44], an interactive tool for segmentation and video
object tracking based on Segment Anything [17] and XMem [8] respectively,
which only takes several clicks on the target in the first frame as input.

4 Baseline Approach

Based on our dataset, we prepared three baselines for testing the fine-grained
video captioning task. Video-LLaMA [48] is a multi-modal LLM framework
with the capability of understanding both visual and auditory content in the
video. The video-language branch is composed of a frozen pre-trained image
encoder from EVA-CLIP ViT-G/14 to extract features from video frames In
our experiment, we do not use the audio branch but only the pre-trained video-
language branch for the video caption benchmark without fine-tuning on the WTS
dataset under several different prompt settings. Video-ChatGPT [22] use CLIP
ViT-L/14 as the visual encoder. To acquire the video-level feature, it uses frame-
level embeddings are average-pooled along the temporal dimension to obtain
a video-level temporal representation. Similarly, the frame-level embeddings
are average-pooled along the spatial dimension to yield the video-level spatial
representation. The temporal and spatial features are concatenated to obtain the
video-level features with a linear layer to project the video embedding Qv into
the language decoder’s embedding space. The text queries are tokenized to the
same dimensions as Qt concatenated with the Qv input to the language decoders.

Instance-VideoLLM is our proposed baseline with fine-tuning on our
training dataset. The main framework follows a similar architecture to Video-
LLaMA, thus we use the same visual encoder, positional embedding, and Video
Q-former as Video-LLLaMA. As the caption is targeted at the specific pedestrian
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Fig. 8: Instance-VideoLLM approach overview.

or vehicle, we introduce a spatial token that represents the target instance region
to the language encoder. The overview of the approach is shown in Figure 8. For
a given video V , the segments of the video M is defined as Mseg. The frame
Ft, t ∈ N from Mseg is fed to the visual encoder and then applied with a positional
embedding to the representations of different frames. The position-encoded frame
representations with dimension D and frame number N in a batch size B are
denoted with tensor N ×D ×B are fed to the Video Q-Former to obtain the
video embeddings. A linear layer to transform the video embeddings into the
video query vectors V . The video query vectors are of the same dimension as the
text embeddings T of LLM. Inspired by Pixel LLM [46] using the binary mask
to introduce the instance spatial information. Each video segment’s first frame
target bounding box region will be used for generating a bbox mask binary map,
which will be resized into 224× 224 fulfilled with a binary mask as 1 if the pixel
in the bbox. Then flatten and project it to generate the spatial token S. In the
forward pass, video query embedding V and spatial token S will be concatenated
to text embeddings T as a video-instance soft prompt to guide the frozen LLMs
to generate the text conditioned on video content

5 Experiment

5.1 Experiment Setup

Dataset for benchmarking: There are around 120 scenarios from staged data
and 2000 scenarios from selected BDD data as training sets, 60 scenarios from
staged, and 800 scenarios from BDD as validation sets. Each scenario will have
∼ 5 segments with ∼ 5 captions. For staged data, as there are multiple overhead
views, we picked up a main view that covers the whole scenario in one view with
a clear visible angle for the pedestrian and vehicle from the dataset for training
and validation purposes. We think multiple-view caption consistency is also a
new aspect for pushing forward more accurate video-to-text performance.

LLMScore Evaluation protocol: Semantic and syntactic information is
crucial to measure the relatedness of two sentences. Various studies [14] [10]



12 Q.Kong et al.

Method Prompt LLM Fine-tune BLUE-4 METEOR ROUGE-L CIDER

Video-LLaMA [48] P-A LLaVA-7B No 0.022 0.201 0.195 0.119

Video-ChatGPT [22] P-A Vicuna-7B No 0.096 0.117 0.171 0.009

Video-LLaMA [48] P-B LLaVA-7B No 0.027 0.210 0.211 0.143

Video-ChatGPT [22] P-B Vicuna-7B No 0.024 0.178 0.208 0.053

Video-LLaMA [48] P-C LLaVA-7B No 0.045 0.247 0.226 0.210

Video-ChatGPT [22] P-C Vicuna-7B No 0.072 0.267 0.266 0.282

Ours(VideoLLM) P-C Vicuna-7B YES 0.101 0.389 0.407 0.363

Ours(Instance-VideoLLM) P-C Vicuna-7B YES 0.121 0.409 0.417 0.389

Table 2: Average performance comparison on the WTS dataset. Both WTS staged
data and BDD are used for evaluation.

Method Fine-tune Semantic Syntactic LLMScore
Video-LLaMA [48] No 0.008 0.373 0.117
Video-ChatGPT [22] No 0.004 0.468 0.143
Ours(Instance-VideoLLM) YES 0.285 0.508 0.351

Table 3: Comparison methods on LLMScorer metric.

learn to disentangle the semantic and syntactic representations. To achieve this,
inspired by the evaluation protocol in GPTScore [11], our LLMScore has a prompt
template includes task description (comparing two captions), ground truth caption
(G), inferred caption (C), and consideration aspects (location, attention, behavior
of pedestrian/vehicle, and environment). Semantic score quantifies the degree
of semantic similarity between two sentences. In our approach, we instruct the
LLM (GPT-3.5-turbo) to evaluate the semantic accuracy of the caption for each
aspect Location, Attention, Behavior, Context with respect to the ground truth.
We assign a score of 1 to the aspect that is semantically correct, otherwise 0.
We take an equal-weighted average of these scores and call this Semantic Score
(Scoresem). Syntactic score quantifies the syntactic similarity between the
answers. First, for each aspect, we prompt LLM (GPT-3.5-turbo) to give the
answers to subjective questions for candidate caption as well as ground truth.
Subsequently, we compute the cosine similarity score between the embeddings of
these answers for the subject questions associated with candidate caption and
ground truth. We use OpenAI’s text-embedding-3-small for generating embeddings.
We then calculate the syntactic score (Scoresyn) by taking the equally weighted
average of the cosine similarities. Semantic score and Syntactic score are defined
as Scoresem and Scoresyn respectively as,

Scoresem =
1

n
·

n∑
i=1

Psem(T,A,G,C,Qsem, Osem, Ssem) (1)
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Fig. 9: Comparison of the caption from each method evaluated with each metric. Blue
font means the evaluation target aspect in GT and correct representation, and Red font
means the error representation.

Scoresyn =
1

n
·

n∑
i=1

Psyn(T,A,G,C,Qsyn, Osyn, Ssyn) (2)

where Psem and Psyn are the prompt template with the input, T is task
definition, A is definition for aspects, G is ground truth, C is inferred cap-
tion. Qsem defines the queries, Ssem is scoring criteria, Osem is output for-
mat for semantic scoring and Qsyn defines the queries, Ssyn is scoring criteria,
Osyn is output format for syntactic scoring. Therefore, LLMScore is defined as
LLMScore = w1 ∗ Scoresem + w2 ∗ Scoresyn, where w1 and w2 are the weights
for the scores.

5.2 Implementation details

For the Video-LLaMA and Video-ChatGPT, we did not fine-tune the model but
used the input video and the user query prompt fed to the LLM for generating
the captions. There are three kinds of prompts we used, P-A is a simple task
prompt like "Describe the video from a pedestrian perspective". P-B is a prompt
with system settings and more constraints for the traffic domain for the task. P-C
is a system prompt with a task description following a demonstration sample.
More detail can be referred from the supplementary. For our proposed baseline,
during the fine-tuning, LLM is frozen only to fine-tune the Q-Former, linear
translation part. We use the AdamW optimizer and a weight decay of 0.05. We
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use a cosine learning rate decay with a peak learning rate of 2e− 5 and a linear
warmup of 2k steps. We use images of size 22× 224. For LLMScore, the w1 and
w2 are set to 0.7 and 0.3 respectively.

5.3 Evaluations

Table 2 shows the comparison result on the WTS dataset for each method
with different prompt settings on 4 kinds of traditional popular metrics. It is
obvious that the prompt P −C is the best setup and thus all the methods could
achieve the best results under this setting. However, based on this best prompt
setting, Video-LLaMA and Video-ChatGPT still worked not well for the WTS
dataset traffic event domain showing that the fine-grained description in WTS is
not generalizable from the common sense knowledge trained Video LLM model
without fine-tuning.

To evaluate the impact of fine-tuning on the WTS dataset, we compared
Ours(VideoLLM) to Video-LLaMA in Table 2 of our paper. Both models share
similar architectures, isolating the effect of fine-tuning. The comparison showed
that fine-tuning improves performance but is still a challenge. In Ours(Instance-
VideoLLM), we added region-specific information. Despite this, results indicate
significant room for improvement, suggesting our approach as an initial idea
for developing more advanced methods for fine-grained instance-level video
understanding with LLMs.

Table 3 shows the result using our LLMScore for each method. For Video-
LLaMA and Video-ChatGPT, the semantic score is relatively low and the syn-
tactic score is high, is because almost all the critical semantic meaning regarding
the location, attention, behavior, and context are not correct according to the
GT even though the whole paragraph looks similar to each other. More samples
can be referred from the supplementary. Figure 9 shows a success case sample
of how the caption looks like from each method. It is hard to tell the difference
from the traditional metrics but highly be separated by using the LLMScore for
fine-tuned results, as more semantic meanings are correct for this case.

To compare the LLMScore with the human evaluation result, We use 50% of
the validation set for human evaluations. Human evaluators score the correctness
of information in C and G using pre-set questions, extracting sub-texts that best
describe the aspects. The average human score is 0.243 (variance is 0.002), close
to the LLMScore of 0.242 (variance is 0.0007) for the same samples.

6 Conclusion

We introduced the WTS dataset a large-scale pedestrian-centric traffic dataset
accompanied by detailed textual descriptions of both vehicle and pedestrian
behavior and 3D gaze meta-information for pedestrian use. A new LLM-based
video caption evaluation scorer and an Instace-VideoLLM baseline are proposed
as well. WTS is a challenging dataset with long descriptions for the traffic video
domain, experiment shows that there is a large space for pushing forward the
spatial-temporal language understanding into the next stage.
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