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Abstract

Cross-modal representation learning aims to extract semantically aligned rep-
resentations from heterogeneous modalities such as images and text. Existing
multimodal VAE-based models often suffer from limited capability to align het-
erogeneous modalities or lack sufficient structural constraints to clearly separate
the modality-specific and shared factors. In this work, we propose a novel frame-
work, termed Disentangled Cross-Modal Representation Learning with Enhanced
Mutual Supervision (DCMEM). Specifically, our model disentangles the common
and distinct information across modalities and regularizes the shared representa-
tion learned from each modality in a mutually supervised manner. Moreover, we
incorporate the information bottleneck principle into our model to ensure that the
shared and modality-specific factors encode exclusive yet complementary informa-
tion. Notably, our model is designed to be trainable on both complete and partial
multimodal datasets with a valid Evidence Lower Bound. Extensive experimental
results demonstrate significant improvements of our model over existing methods
on various tasks including cross-modal generation, clustering and classification.

1 Introduction

Cross-modal representation learning aims to bridge the semantic gap between heterogeneous data from
different modalities, such as images, text, audio and video [1, 2, 3]. The key challenge of the task lies
in capturing both the modality-specific features and the shared semantic structure across modalities,
despite their inherent differences in format and statistical properties [4]. Disentangled representation
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Figure 1: The architecture of DCMEM. For each modality, the encoder extracts shared (zs, zt) and
modality-specific (ws,wt) latent variables. Self-reconstruction and KL regularization (denoted as
"Reg.") ensure disentanglement, where w follows a standard Gaussian prior and shared variables
serve as priors for each other. Shared representations lie in a common latent space Z, enabling mutual
supervision via cross-modal paths s → Z → t and t → Z → s. We further align zs and zt by
maximizing their mutual information. DCMEM supports cross-modal generation, classification and
clustering.

learning has thus emerged as a promising approach to address this challenge by explicitly separating
modality-invariant (shared) factors from modality-specific (private) ones, enabling more interpretable
and robust cross-modal representations [5]. Variational Autoencoders (VAEs) have been a prevailing
framework for disentanglement with their probabilistic formulation and ability to learn structured
latent representations. In particular, multimodal VAEs have gained significant attention for their ability
to jointly encode and decode information from multiple modalities in a unified probabilistic space [6].
From a methodological perspective, multimodal VAEs can be broadly divided into two categories:
models that focus on learning shared latent variables and those that incorporate modality-specific
private variables. The former (e.g., MVAE [7], MMVAE [8], MoPoE [9], MEME [10]) aim to capture
the common semantic structure across modalities, while the latter (e.g., MMVAE+ [11], CMVAE
[12], IIAE [13], Multi-VAE [14]) explicitly disentangle shared and modality-specific information by
introducing separate latent spaces. However, these methods either suffer from limited capability to
align heterogeneous modalities or lack sufficient structural constraints between modalities, which
hinders the clear separation of informative shared and modality-specific factors. In this work, we
propose a novel multimodal framework, termed Disentangled Cross-Modal representation learning
with Enhanced Mutual supervision (DCMEM), to address these challenges. As illustrated in Figure 1,
our model disentangles the common and distinct information across modalities by extracting shared
and modality-specific latent representations using multiple VAEs. Specifically, we regularize the
shared representation learned from one modality using that from the other in a mutually supervised
manner. Moreover, we incorporate the information bottleneck principle into our model to ensure
that the shared and modality-specific factors encode exclusive yet complementary information for
reconstructing each modality. Finally, we apply an alignment constraint in the shared latent space
to promote consistent semantic and inter-modality coherence. Notably, our model is designed to be
trainable simultaneously on both complete and partial multimodal datasets with a valid Evidence
Lower Bound (ELBO). The main contributions of this paper are summarized as follows:

• We propose DCMEM, a novel multimodal framework that disentangles effectively shared and
modality-specific factors. Our model leverages enhanced mutual supervision to improve cross-
modal alignment and semantic consistency, while simultaneously enforcing structured representa-
tion learning through the information bottleneck principle.

• Our model is inherently designed to be trainable on both complete and partially missing modalities
simultaneously. This improves the robustness of our model and broadens its applicability to
real-world scenarios where incomplete modalities are prevalent.

• Extensive experiments on three diverse datasets demonstrate that our method produces more
coherent and informative embeddings compared to existing multimodal VAE-based approaches
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in terms of various evaluation metrics, including generation coherence, clustering accuracy and
classification accuracy.

2 Related Work

2.1 Multimodal VAEs

Multimodal generation tasks have gained significant attention, driving research on various generative
models. Among them, multimodal VAEs have become particularly popular due to their impressive
performance. Early multimodal VAEs [15, 16, 17] typically employ joint encoders over concatenated
inputs, often requiring auxiliary components or processes to support cross-modal generation. Wu
et al. [7] propose a scalable method based on the Product of Experts (PoE) to address this problem.
However, subsequent research [8, 9, 18, 19] identifies several issues with PoE, such as calibration
errors. To address these limitations, Shi et al. propose MMVAE [8], using Mixture of Experts
(MoE) to model the joint posterior as a mixture of unimodal posteriors. The MoPoE model [9]
combines PoE and MoE to balance semantic coherence with effective joint distribution learning.
Several studies [11, 20] highlight a trade-off between generation quality and coherence in multimodal
VAEs. PoE-based models typically achieve lower coherence, while MoE-based models suffer from
lower generation quality [11, 21]. To address these issues, various models incorporate different
regularizers to improve performance. For instance, MVTCAE [22] uses mutual information theory
for regularization, mmJSD [23] employs a dynamic prior to combine modality information, MEME
[10] enhances performance through mutual supervision and MMVM [24] regularizes learned posterior
approximations with a data-dependent prior. Moreover, Palumbo et al. introduce MMVAE+ [11],
which incorporates modality-specific subspaces to improve cross-modal likelihood estimation [22, 25].
Building on MMVAE+, CMVAE [12] introduces clustering variables and a mixture distribution
for model categories [26, 27], extending multimodal generation to include clustering capabilities.
Recently, Gao et al. introduce MVP [28] which proposes an informational prior based on cyclic
permutations, enabling both generative and clustering tasks.

2.2 Information Bottleneck

Information bottleneck plays a crucial role in multimodal clustering and representation learning,
enabling models to extract robust and interpretable latent representations by capturing shared and
complementary information across different modalities. Wang et al. [29] propose a supervised
method that maximizes mutual information between joint representations and labels while filtering out
irrelevant data from original views. Federici et al. introduce MIB [30], which applies the information
bottleneck to identify shared and view-specific information between views. Hwang et al. [13] develop
a cross-domain generative model to enable image-to-image translation, while Lin et al. propose
COMPLETER [31], which maximizes shared mutual information and minimizes conditional entropy
to recover missing views. In addition, CMIB-Nets [32] balances the consistency and complementarity
of multimodal views by extracting shared and view-specific information. Wan et al. [33] focus on
self-supervised learning to regularize mutual information and improve clustering performance. Hu et
al. [34] introduce a propagation information bottleneck to facilitate the transition from representation
learning to clustering structure learning. Huang et al. [35] identify key requirements for effective
multi-view learning and propose a model that integrates representation learning with clustering. Mao
et al. [36] enhance alignment in clustering by distinguishing between consistency and redundancy
through mutual information maximization, while Yan et al. [37] introduce a differentiable information
bottleneck for deterministic multi-view clustering.

3 Methods

Problem Statement. We consider a cross-modal learning scenario where the data consists of two
modalities, s and t, with some observations potentially missing one of the modalities. In this context,
we represent the data containing only modality s as Ds, the data containing only modality t as
Dt and the data containing both modalities paired as Ds,t. Our goal is to learn meaningful latent
representations from the combined datasets D = Ds∪Dt∪Ds,t for various downstream tasks such as
clustering and classification, while maintaining high-quality cross-modal generation and coherence.
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3.1 Disentangled Mutual Supervision

Given the paired data setting (s, t), the information flow s ↔ z ↔ t is often employed in cross-
modal representation learning, aiming to extract a latent representation z that encodes the infor-
mation shared between both modalities [10]. However, such a design lacks a separate space for
modality-specific information, which causes the shared latent representation z to inevitably con-
tain entangled noise through mutual supervision under both information flows. Therefore, we
propose to learn a modality specific factor w along with the shared latent z to decompose the
exclusive and common features of each modality. Specifically, we present the main concept by
considering the information flow from s to t and the derivation for the opposite direction is sim-
ilar. According to our assumption, we define the generative process of our model as follows:
pθ,ψz (t, s,zs,ws) = p (t) pψz (zs | t) p (ws) pθ (s | zs,ws), where ws captures modality-specific
content from s, zs represents the shared information necessary for generating t. The prior of ws
is assumed to follow a standard normal distribution, i.e., p (ws) ∼ N (0, I). Based on the genera-
tive model, the marginal log-likelihood pθ,ψz (t, s) requires integration over the latent variables zs
and zw, which is generally intractable. We then seek a variational posterior qϕ,φ (zs,ws|s, t) to
overcome this intractability and derive the ELBO via Jensen’s inequality:

log pθ,ψz (t, s) = log

∫
pθ,ψz (t, s,zs,ws) dzsdws ≥ Eqϕ,φ(zs,ws|s,t) log

pθ,ψz (t, s,zs,ws)

qϕ,φ (zs,ws | s, t)
.

(1)
In the course of variational inference, we derive a factorized form of the posterior distribution
qϕ,φ (zs,ws, t | s) under the assumptions that (i) the latent variables zs and ws are indepen-
dent, and (ii) the observations s and t are conditionally independent given zs. Thus, the infer-
ence process is represented as:qϕ,φ (zs,ws, t | s) = qϕz (zs | s) qϕw (ws | s) qφ (t | zs). Once
qϕ,φ (zs,ws, t | s) is computed, we can apply Bayes’ rule to obtain qϕ,φ (zs,ws | s, t) according
to the following decomposition: qϕ,φ (zs,ws|s, t) = qϕ,φ(zs,ws,t|s)

qϕz,φ(t|s)
=

qϕz (zs|s)qϕw (ws|s)qφ(t|zs)
qϕz,φ(t|s)

,
where qϕz,φ (t | s) =

∫
qϕz (zs | s) qφ (t | zs) dzs. And ϕ = {ϕz, ϕw} denotes the full set of pa-

rameters governing the variational distribution of zs andws, each modeled as a Gaussian distribution.
By substituting inference process into Eq. (1), we obtain:

log pθ,ψz (t, s) ≥ Eqϕ(zs,ws|s)
[
qφ (t | zs)
qϕz,φ (t | s)

log
pψz (zs | t) p (ws) pθ (s | zs,ws)
qϕz (zs | s) qϕw (ws | s) qφ (t | zs)

]
+ log qϕz,φ (t|s) + log p (t) .

(2)

In Eq. (2), the ratio qφ(t|zs)
qϕz,φ(t|s)

serves as an importance weight that adjusts for the mismatch be-
tween the sampled latent-induced distribution and the actual conditional distribution. This ad-
justment improves the estimation accuracy and prevents the loss of pivotal information regard-
ing t during sampling. Moreover, the log term measures the agreement between the genera-
tive process (through pψz (zs | t) p (ws) pθ (s | zs,ws)) and the variational inference (through
qϕz (zs | s) qϕw (ws | s) qφ (t | zs)). Maximizing this term encourages consistency between the
latent structure inferred from data and the one induced by the generative process. The additional term
log qϕz,φ (t|s) acts as a regularization term to encourage its alignment with the true distribution of t
and balance the other components of the ELBO. Since log p(t) is constant with respect to the model
parameters, it does not affect the optimization and can be ignored in the objective function.

Structured Representation Learning. The maximization of the ELBO alone presented in Eq. (2) is
insufficient to ensure complete disentanglement of the latent variables ws and zs, as any arbitrary
mutually exclusive factorization may be equally favored in the absence of mechanisms that explicitly
encourage information retention in the shared factor. Considering this, we add a mutual information
maximization term I (zs; t; s) to enforce zs containing all relevant information across modailties. We
further incorporate another mutual information penalty I (zs;ws) to encourage the decomposition of
ws and zs. The two information constraints can be unified in the following form:

max I (zs; t; s)− I (zs;ws) = I (s;zs,ws)− I (s;ws)− I (zs; s | t) (3)

The detailed derivations for Eq. (3) are provided in the Appendix A.1. Since direct optimization of
mutual information is generally intractable, approximation methods such as variational inference or
Monte Carlo sampling are often used to estimate these terms [38, 39, 40]. We subsequently derive
computationally feasible approximations for each mutual information component as follows.
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The first term I (s; zs,ws) quantifies the amount of information about the input modality s that
is captured by the latent variables zs and ws. Since its calculation involves q(s | ws, zs) =
q(ws,zs|s) pD(s)∫
pD(s) q(zs,ws|s) ds , where pD(s) appears both as the empirical data distribution in the expectation

and as an integral term in the denominator, making the computation intractable. We instead obtain a
variational lower bound based on the generative distribution pθ (s | zs,ws):

I (zs,ws; s) = Eqϕ(zs,ws|s)pD(s) log
q (s | zs,ws)

pD (s)

= H (s) + Eqϕ(zs,ws|s)pD(s) log pθ (s | zs,ws)
+ Eq(zs,ws) [DKL (q (s | zs,ws) ∥pθ (s | zs,ws))]
≥ H (s) + Eqϕ(zs,ws|s)pD(s) log pθ (s|zs,ws) ,

(4)

where the entropy term H (s) is treated as a constant. The remaining expectation term corresponds
to a reconstruction loss under Gaussian distribution assumption and it indicates that maximizing
I (zs,ws; s) facilitates ws and zs to jointly contain all relevant information to modality s. The
second term −I (s;ws) can be omitted as a standalone constraint. A detailed explanation is provided
in the Appendix A.3. The conditional mutual information term −I (zs; s | t) is minimized to suppress
view-specific redundancy. The latent representation zs is regularized by the counterpart modality t,
encouraging zs to capture only the information accessible from both views. Specifically, by defining
zs and zt over a shared latent space Z, I (zs; s | t) can be variationally approximated as:

−I (zs; s | t) ≥ −EpD(s,t) [DKL (qϕz (zs = z | s) ||qψz (zt = z | t))] . (5)

A complete derivation of Eq. (5) is provided in Appendix A.2. Consequently, by integrating these vari-
ationally tractable surrogate objectives, namely the reconstruction-based surrogate for I (zs,ws; s) in
Eq. (4), the KL divergence bound for −I (s;ws) and the cross-modal regularization for I (zs; s | t)
in Eq. (5), the original ELBO in Eq. (2) becomes the following tractable optimization objective:

L{Φ,Ψ}(s, t) = Eqϕ(zs,ws|s)
[
qφ (t | zs)
qϕz,φ (t | s)

log
pψz (zs | t) p (ws) pθ (s | zs,ws)
qϕz (zs | s) qϕw (ws | s) qφ (t | zs)

]
+ log qϕz,φ (t |s) + Eqϕ(zs,ws|s)pD(s) log pθ (s | zs,ws)
− EpD(s,t) [DKL (qϕz (zs = z | s) ||qψz (zt = z | t))] ,

(6)

where Φ = {ϕ, φ} and Ψ = {ψ, θ} correspond to the encoder and decoder parameters, respectively.

Mutual Supervision. Mutual supervision leverages reciprocal guidance between modalities to learn
a semantically consistent shared latent space. Unlike explicit integration methods like PoE or MoE, it
offers greater flexibility and robustness without requiring strict alignment or direct fusion. Building
on the notion that each modality both informs and constrains the other, we formulate the objective in
the case where t represents the source data and s the target data, i.e. t→ zt → s, as follows:

L{Ψ,Φ}(s, t) = Eqψ(zt,wt|t)

[
qθ (s | zt)
qθ,ψz (s | t)

log
pϕz (zt | s) p (wt) pφ (t | zt,wt)
qψz (zt | t) qψw (wt | t) qθ (s | zt)

]
+ log qθ,ψ (s |t) + Eqψ(zt,wt|t)pD(t) log pφ (t | zt,wt)
− EpD(s,t) [DKL (qψz (zt = z | t) ∥qϕz (zs = z | s))] .

(7)

This formulation mirrors the standard direction L{Φ,Ψ}(s, t) and captures the reverse information
flow. To instantiate this symmetric structure, we implement the model by swapping the roles of the
generative and inference networks, where we exchange the parameter sets Φ and Ψ. To integrate
both directions of information flow, we combine the contributions from both L{Φ,Ψ}(s, t) and
L{Ψ,Φ}(s, t), yielding the objective function:

LBi (s, t) =
1

2

(
L{Φ,Ψ}(s, t) + L{Ψ,Φ}(s, t)

)
. (8)

Shared Representations Alignment. We leverage I(zs, zt) to directly align the modality-invariant
latent variables, preventing them from diverging or encoding discrepant semantics for the same
content. This ensures that mutual supervision is not only reflected in the generative reconstruction
paths, but also enforced through semantic alignment at the latent representation level. We incorporate
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I(zs, zt) as a regularization component in addition to Eq. (8) and derive the following training
objective in the paired-data scenario:

LBi (s, t) =
1

2

(
L{Φ,Ψ}(s, t) + L{Ψ,Φ}(s, t)

)
+ αI (zs; zt) . (9)

where α serves as a regularization coefficient that balances the contribution of the mutual information
term I (zs; zt). Empirically, we estimate I (zs; zt) using contrastive learning, which has been
confirmed as an effective way to solve for the mutual information maximization. Specifically, we
align paired latent features while distinguishing unpaired ones, computing pairwise cosine similarities
within each batch and applying cross-entropy without extra projection layers.

3.2 Partial Observations Scenario

Our model naturally extends to single-view scenarios due to its autoregressive cross-modal generative
structure. Given an observed modality, the shared latent representation can be inferred and used to
approximate the missing modality via learned generative paths. First considering that the s-mode
data is available, we can derive a variational approximation for log pθ,ψ (s) by marginalizing over
the unobserved modality t, resulting in the following lower bound:

log pθ,ψz (s) = log

∫
p (t) pψz (zs | t) p (ws) pθ (s | zs,ws) dtdzsdws

≥ Eqϕ(zs,ws|s) log
pθ (s | zs,ws) p (ws) put (zs)

qϕz (zs | s) qϕw (ws | s)
,

(10)

where put (zs) =
∫
p (t) pψz (zs | t) dt. Notably, even in the absence of paired t-observations,

the model can still regularize the latent representation zs through a shared prior derived from the
distribution of t. Inspired by VampPrior [41], we define a batch-dependent prior over B representative
anchors {uti}Bi=1 sampled from the t-modality, yielding: put (zs) = 1

B

∑B
i=1 pψz (zs|uti), where

dynamic resampling ensures the prior adapts to the evolving latent structure, improving stability and
expressiveness. Eq. (10) can then be rewritten as:

Ls (s) = Eqϕ(zs,ws|s) log
pθ (s | zs,ws) p (ws) 1

B

∑B
i=1 pψz (zs | uti)

qϕz (zs | s) qϕw (ws | s)

= Eqϕ(zs,ws|s) log pθ (s | zs,ws)−DKL

(
qϕz (zs | s) ∥

1

B

∑B

i=1
pψz

(
zs | uti

))
−DKL (qϕw (ws | s) ||p (ws)) .

(11)

With this design, we can still leverage the information from the t-modality to effectively constrain
and guide the model. In a comparable manner, when the s-modality is missing and t-modality is
available, the objective is defined as:

Lt (t) = Eqψ(zt,wt|t) log pφ (t | zt,wt)−DKL

(
qψz (zt | t) ∥

1

B

∑B

i=1
pϕz (zt | usi )

)
−DKL (qψw (wt|t) ∥p (wt)) .

(12)

The final objective function integrates the target loss functions for both paired and unpaired cases,
encompassing three scenarios: paired samples, samples with only s-modality, and samples with only
t-modality. It is expressed as follows and the training procedure is detailed in Appendix A.7.

L (D) =
∑

s,t∈Ds,t

LBi (s, t) +
∑
s∈Ds

Ls (s) +
∑
t∈Dt

Lt (t). (13)

4 Experiments

4.1 Experiments Setup

Datasets. Two widely used datasets, i.e. MNIST-SVHN and CUBICC, are adopted in our experi-
ments. The MNIST-SVHN dataset consists of the MNIST and Street View House Numbers (SVHN)
datasets, where the samples share digit labels (10 classes) but have different digit styles [8]. The
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Figure 2: The cross-modal generation performance of DCMEM and existing multimodal VAEs on
the MNIST-SVHN dataset. Each model was run independently three times. The best performance is
located in the top-right corner of each figure.

CUB Image-Captions for Clustering (CUBICC) dataset, a variant of the CUB image caption dataset
constructed by Palumbo et al. [12], consists of two modalities: bird images and their corresponding
descriptive captions. The dataset is divided into 8 categories based on bird species. In addition, the
Human Breast Cancer spatial transcriptomics dataset provides high-resolution spatial measurements
across multiple modalities, including gene expression, spatial coordinates, and tissue morphological
features [42]. The dataset comprises 20 distinct spatial label categories corresponding to different
tissue or structural regions. These datasets are selected as representative benchmarks to evaluate the
model’s ability to disentangle and align multimodal latent spaces rather than to cover all possible
modality combinations.

Baselines. To comprehensively evaluate the performance of the proposed method, we compare
it with eight existing multimodal VAEs, including MVAE [7], MMVAE [8], MoPoE [9], MEME
[10], MMVAE+ [11], CMVAE [12], MMVM [24] and MVP [28]. For all comparison methods,
we adopt the model architectures proposed in their respective papers and use their default optimal
parameters. To assess the model’s capability in handling partially observed datasets, we construct
a set of incomplete bimodal datasets by randomly removing one modality at missing rates of
η ∈ {0.25, 0.5, 0.75} and then train MVAE, MoPoE, MEME, MVP as well as our method on these
modified datasets. Each method is run three times to ensure the reliability of the results. We provide
the implementation details of our method in Appendix B.2.

Evaluation. For the generative task, we primarily evaluate generation coherence and generation
quality as in previous work [11, 12, 24]. To evaluate generation coherence, we use a pretrained
classifier to classify the generated samples and evaluate the generation coherence in terms of the
classification accuracy. The generation quality is assessed using the FID metric [43]. Moreover, we
investigate the effectiveness of the learned latent representations based on classification and clustering
analyses. For classification, we follow previous work by training a linear classifier on the latent space
and report the accuracy. For clustering, we apply K-means and evaluate the results using ACC, NMI
and ARI. For models with both shared and modality-specific latent variables, all evaluations are
conducted on the shared latent space, which captures modality-invariant semantics.

4.2 Comparison of Generation Performance

In this section, we compare the performance of the proposed DCMEM model with that of the
aforementioned competitive multimodal VAEs in terms of cross-modal generation. We first conduct
the cross-modal generation experiment on the fully paired MNIST-SVHN dataset. As shown in
Figure 2, our model demonstrates superior performance, achieving both high generative coherence
and quality. In Figures 3 and 7, we present the cross-modal generation results for each model. It is
evident from these results that our model effectively captures the underlying digit labels and generates
accurate cross-modal samples. In contrast, other models tend to misidentify similar digits, struggling
with certain digit pairs. This discrepancy highlights the advantages of our model in handling the
complexity of cross-modal generation tasks, maintaining both high fidelity and label consistency.
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DCMEM CMVAE MMVAE+ MEME MoPoE MMVAE MVAEMMVMMVP

Figure 3: Qualitative results of cross-modal generation on the MNIST-SVHN dataset for each model.
The left side shows the input samples, while the right side displays the cross-modal generated samples.

DCMEM MVP CMVAE MMVAE+

Figure 4: Five SVHN-to-MNIST samples are generated by varying only the modality-specific latent
variables on the MNIST-SVHN dataset.

the bird has a black belly that turns 
into an  orange breast with black 
wings.

this bright bird has mostly scarlet 
plumage with black eyes, wings, 
tail feathers, and feet.

a red bird, short beak with black 
eyes.

the small bird  is belly brown with 
a beak a small orange head and 
black eyes.

（b)  Image->Caption（a)  Caption->Image

-----------------------

Figure 5: Qualitative results of cross-modal generation by DCMEM on the CUBICC dataset. The
samples on the left side of the arrows represent the input samples, while the samples on the right side
show the generated cross-modal samples.

Among the models, MMVAE+, CMVAE, MVP and our DCMEM all incorporate both shared and
modality-specific latent variables. To further analyze the generation coherence and quality, we fix
the shared latent variables and randomly sample five different modality-specific latent variables
for cross-modal generation. This allows us to evaluate how well each model can generate diverse
samples while maintaining consistency across modalities. The experimental results are illustrated
in Figures 4 and 8. Our model demonstrates the ability to generate images that maintain the same
digit class, while introducing variations in digit shape and color as the modality-specific variables are
modified. In contrast, both MMVAE+ and CMVAE exhibit entanglement between class information
and modality-specific variables, leading to inconsistencies in the generated samples. Meanwhile,
MVP fails to introduce sufficient variation through its modality-specific latent variables, resulting
in limited sample diversity. These comparisons further highlight the strength of our approach in
producing diverse and high-quality cross-modal generations without sacrificing semantic consistency
or class identity.

To further demonstrate the performance of our model in more complex scenarios, we conduct a cross-
modal generation experiment on the CUBICC dataset and Figure 5 presents the generation results.
As expected, our model consistently achieves high-quality cross-modal generation performance
across different modalities. The generated samples align well with the corresponding modalities,
maintaining a high level of coherence between the image and text representations. This showcases
the model’s ability to effectively handle multimodal data in more intricate and diverse settings,
demonstrating its robustness in real-world applications. Moreover, the model achieves robust cross-
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Table 1: Quantitative comparison of clustering performance for each model’s latent representations
on the CUBICC dataset. The best and second-best results are highlighted in bold and underlined,
respectively.

Methods Image Representation Caption Representation Joint Representation
ACC NMI ARI ACC NMI ARI ACC NMI ARI

MVAE 26.2 12.4 7.5 18.1 2.4 0.9 38.7 26.8 18.0
MMVAE 23.1 12.1 6.1 14.5 1.3 0.1 15.8 1.5 0.2
MoPoE 33.4 17.6 11.5 43.5 27.1 19.9 40.8 30.4 20.2
MEME 44.8 43.4 28.4 36.3 29.5 18.6 19.8 4.8 2.1

MMVAE+ 27.7 11.9 7.1 48.7 36.4 26.8 64.4 52.6 44.1
CMVAE 67.7 58.3 47.4 65.1 53.3 42.7 73.7 67.4 57.2
MMVM 58.9 56.9 44.5 23.9 9.4 5.4 66.8 67.0 55.5

MVP 64.1 53.8 41.8 48.5 34.4 26.1 61.1 55.6 44.0
DCMEM 86.9 77.4 72.4 69.7 52.2 44.2 86.3 76.8 71.5

Figure 6: Classification accuracy under different missing rates on the MNIST-SVHN dataset. Shaded
areas represent the standard deviation across multiple runs. The subscripts in method names indicate
the observed modality. For example, DCMEM_SVHN (Observation fraction = 0.25) denotes that the
training data consists of 25% paired samples and 75% unimodal SVHN samples.

modal generation under varying missing rates, effectively balancing generative quality and class-level
semantic consistency (see Appendix C.1).

4.3 Latent Representation Analysis

In this section, we focus on evaluating the effectiveness of the latent representations learned by
the model. All models are trained on the fully paired MNIST-SVHN and CUBICC datasets and
the latent representations for the test set are extracted using the trained models. We also evaluate
the models under partially paired (incomplete) scenarios, as detailed in Appendix C.2. We first
perform clustering on the latent representations of each modality to assess their individual clustering
performance, followed by clustering on the joint representations. For models such as MVAE and
MoPoE, which produce joint latent representations, we directly use the joint representations for
K-means clustering. CMVAE directly yields the clustering labels as it learns a clustering variable.
For other models that provide neither the joint representations nor clustering factors, we concatenate
the latent representations from each modality and then apply K-means clustering to the resulting
joint representation. The clustering results are summarized in Tables 1 and 2.

Quantitative metrics clearly demonstrate that our model outperforms others in terms of clustering
performance. The T-SNE [44] plots of our model’s latent representations are presented in Figure 9.
From these visualizations, it is evident that the latent representations for both modalities naturally form
distinct clusters. Moreover, the latent representations of the same category across modalities align
into a single cohesive cluster, indicating that our model effectively captures the shared information
between modalities. In contrast, the latent representations of other models either fail to form well-
defined clusters or exhibit separation between modalities, as shown in Figures 10 and 11. These
results further emphasize the superiority of our model in learning coherent and meaningful latent
representations, making it highly effective for clustering tasks involving multimodal data.
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For the classification task, we present the results based solely on the classification accuracy metric,
evaluating model performance under various missing data conditions. The classification results
are shown in Figures 6 and 12. Our model consistently outperforms the other alternatives and
demonstrates robust classification performance across varying missing rates. In contrast, other
baseline models exhibit significant performance degradation at certain missing rates, indicating the
limited capability in exploiting incomplete data. For example, MMVAE+ underperforms on the
MNIST-SVHN dataset. This suboptimal performance is likely due to its inability to effectively
capture class-discriminative features within the shared latent space. Moreover, although models
such as MEME and MVP are designed to handle missing modalities, their performance degrades
substantially as the missing rate increases. This suggests a limited robustness to incomplete data,
highlighting the advantage of our method in maintaining high classification accuracy under varying
degrees of missing information. Analyses in Appendix C.3 and Appendix C.4 further show that
our model consistently preserves semantic and class-level alignment across modalities. Appendices
C.5–C.7 provide detailed descriptions of the ablation study, parameter analysis, and computational
resources.

4.4 Application to Human Breast Cancer Dataset

To evaluate the applicability of our model in other fields, we conduct an additional experiment
on a spatial transcriptomics dataset of human breast cancer [42]. The dataset presents significant
challenges for accurate spatial domain identification due to technical noise and inherent biological
variability. We compare our model with eight multimodal VAE baselines and five spatial domain
clustering methods, including Scanpy [45], STAGATE [46], GraphST [47], SiGra [48], and xSiGra
[49]. For the VAE-based baselines lacking explicit spatial relationships modeling, we adopt the
CoordConv strategy [50], encoding spatial (x, y) coordinates as two additional image channels. In
contrast, spatial clustering methods are inherently designed to capture spatial dependencies through
graph-based or attention mechanisms. As illustrated in Figure 13, DCMEM achieves the highest
clustering performance, with an ARI of 55.1 and NMI of 69.7, substantially outperforming both
VAE-based and spatially-awared approaches. Among multimodal VAEs, MMVAE achieves the best
results, yet it still falls short compared to Scanpy, GraphST and our model. Methods such as MVAE
and MMVM struggle to resolve fine-grained cell population structures. Although spatial methods
like STAGATE and GraphST generate more coherent partitions, DCMEM produces sharper cluster
boundaries and exhibits better alignment with ground truth labels. These results demonstrate the
effectiveness of our method in integrating heterogeneous modalities and capturing informative spatial
and molecular patterns, underscoring its strong potential for real-world clustering tasks.

5 Broader Impact & Limitations

This work focuses on learning disentangled cross-modal representations and enhancing generation
quality and coherence by leveraging mutual supervision along with the information bottleneck princi-
ple. Our approach is applicable to a variety of tasks in scientific and engineering domains and holds
the potential for positive societal impact. In the biomedical field, for example, our model can detect
fine-grained cell populations with precise boundaries and identify potential biomarkers associated
with tumor heterogeneity for subsequent clinical validation, by analyzing spatial transcriptomics data
at the single-cell level. At the bulk cancer omics level, it can also assist in identifying novel disease
subtypes and predicting the survival outcomes to inform better treatment strategy design. Although
our model yields better representations and more coherent outputs, it is specifically designed for
bimodal data scenarios and may require non-trivial effort to achieve competitve performance on
general multimodal datasets.

6 Conclusion

In this work, we propose DCMEM, a variational framework that integrates disentanglement and
mutual supervision to learn structured cross-modal representations. It separates shared and modality-
specific information via dedicated latent spaces and promotes semantic alignment by maximizing
mutual information between shared latent variables across modalities, achieving strong performance
across diverse tasks and settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the paper, we present a novel multimodal approach that outperforms existing
multimodal methods on multiple datasets. The contributions are clearly stated in the abstract
and introduction, and align with the theoretical and empirical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the paper in the Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical results include clear assumptions and complete proofs, provided
in the main text or appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe all the experiments in full detail in the appendix (see Appendix B)
such that all the results on all datasets can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the complete source code along with instructions, including
README files and environment settings in the supplementary material. All datasets used in
our experiments are publicly available, and we include clear instructions for accessing and
preprocessing the data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the necessary information either in the main text and appendix
(see Appendix B).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard deviation of the results obtained from
experiments conducted using three different random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided details on the compute resources used, including type
of workers, memory, and execution time, as well as the total compute required for the
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
complies with all of its guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential broader impact of the proposed work alongside its
limitations in Section 5.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not involve the release of models or datasets with high risks
of misuse, such as pretrained language models, image generators, or scraped datasets.
Therefore, there are no specific safeguards discussed in the paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and code used in our work are publicly available and properly cited
in the paper. We have explicitly acknowledged the original sources and included license
information where applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have included the code as supplementary material with our submission to
ensure reproducibility during the review process. Upon acceptance, we will make the code
publicly available with comprehensive documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Technical Details

A.1 Mutual Information Decomposition for Structured Representation Learning

Define X , Y and Z be random variables. The the chain rule for mutual information is:
I(X;Y ;Z) = I(X;Y )− I(X;Y |Z) = I(X;Z)− I(X;Z|Y ) = I(Y ;Z)− I(Y ;Z|X) (14)

As defined in the main text, the modality-invariant variable zs and the modality-specific variable ws
have already been introduced. I(zs;ws) and I (s; t;zs) can be computed as follows:

I(zs;ws) = I (zs; s)− I (zs; s | ws) + I (ws; zs | s)
I (s; t;zs) = I (zs; s)− I (zs; s | t)

(15)

Under the assumption that the modality-invariant variable zs and the modality-specific variable
ws are conditionally independent given the input s, we have: q (ws | s) = q (ws | s,zs). Thus,
the conditional mutual information I (ws; zs | s) simplifies to I (ws; zs | s) = H (ws | s) −
H (ws | s,zs) = 0. As a result, I (ws; zs) can be further decomposed as follows: I(zs;ws) =
I (zs; s) − I (zs; s | ws) = I (zs; s) + I (s;ws) − I (s; zs,ws). In conclusion, the mutual infor-
mation decomposition for disentangled representation learning is given as follows:

I (zs; t; s)− I (zs;ws)

=XXXXI (zs; s)− I (zs; s | t) + I (s;zs,ws)− I (s;ws)−XXXXI (zs; s)

= I (s;zs,ws)− I (s;ws)− I (zs; s | t)
(16)

A.2 Evidence Lower Bound on the cross-modal regularization

Assuming that both zt and zs lie in the same latent space Z:

−I (zs; s | t) = −EpD(s,t)Eqϕz (zs|s)
[
log

qϕz (zs = z | s)
pψz (zs = z | t)

]
= −EpD(s,t)Eqϕz (zs|s)

[
log

qϕz (zs = z | s)
qψz (zt = z | t)

qψz (zt = z | t)
pψz (zs = z | t)

]
= −EpD(s,t) [DKL (qϕz (zs = z | s) ||qψz (zt = z | t))]
+ EpD(t) [DKL (pψz (zs = z | t) ||qψz (zt = z | t))]
≥ −EpD(s,t) [DKL (qϕz (zs = z | s) ||qψz (zt = z | t))] .

(17)

Similarly, −I (zt; t | s) can be computed as:
− I (zt; t | s) ≥ −EpD(s,t) [DKL (qψz (zt = z | t) ∥qϕz (zs = z | s))] . (18)

A.3 Derivation of the Mutual Information Term I(s;ws)

The second term −I (s;ws) also poses computational challenges due to its depen-
dence on the marginal distribution pD(s), where q(ws) =

∫
q(ws | s)pD(s)ds.

In a similar vein, this term is approximated using its variational lower bound
−EpD(s) [DKL (qϕw(ws | s)∥p(ws))]. This KL divergence term naturally appears in the ELBO

objective (Eq. (2)) due to Eqϕ(zs,ws|s)
[
qφ(t|zs)
qϕz,φ(t|s)

log p(ws)
qϕw (ws|s)

]
= Eqϕw (ws | s) log p(ws)

qϕw (ws|s) =

−EpD(s) [DKL (qϕw(ws | s)∥p(ws))]. Hence, it is implicitly optimized through the ELBO and can
be omitted as a standalone constraint.

A.4 Mutual Information Approximation

The mutual information I(zs, zt) between the shared latent variables zs and zt is approximated
using a contrastive loss that encourages alignment between representations of paired inputs while
distinguishing those from non-paired ones [51]. Given a batch of B paired latent features (hs,ht)
sampled from zs and zt, we concatenate them into a set of 2B vectors. Pairwise cosine similarities
are computed and scaled by a fixed temperature τ = 0.5 to construct the contrastive logits. Positive
pairs are defined between the i-th feature in hs and the i-th feature in ht, as they correspond to the
paired input instances. All other pairs in the batch are treated as negatives. We apply a cross-entropy
loss to encourage the model to assign higher similarity to positives than to negatives.
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A.5 Cross-Modal Reconstruction Mechanism

In our framework, qφ (t | zs) serves a key role in the mutual supervision mechanism. Specifically, zs
is the shared latent representation inferred from modality s and qφ (t | zs) models the reconstruction
of modality t based solely on this shared information. This setup is intentionally designed to
exclude the private latent variable w, since the goal is to assess what information is common and
transferable across modalities. In practice, we implement qφ (t | zs) by settingw = 0 and passing
the concatenation [zs,0] into the decoder of modality t. This design offers two key advantages: (1)
it avoids introducing an additional decoder by reusing pφ (t | zs,w) with w set to zero, keeping
the architecture compact; and (2) it promotes effective disentanglement, as reconstructing t from zs
alone forces zs to capture modality-invariant, shared information.

A.6 Importance Sampling Stability

The importance sampling weight qφ(t|zs)
qϕz,φ(t|s)

in Equation 2 plays a critical role in our training objective,
but its direct computation can introduce numerical instability due to high variance in gradient
estimates. This arises because both the numerator and denominator are parameterized distributions
that are learned during training, and their stochastic nature may result in noisy, unreliable updates
when used in Monte Carlo estimation of the ELBO. To address this issue, we adopt a stop-gradient
strategy to stabilize training without compromising the objective, following a rationale similar to that
in prior work [52, 10]. Concretely, we prevent gradients from flowing through the qφ(t|zs)

qϕz,φ(t|s)
, treating

it as a fixed scalar during backpropagation: stop_gradient
(
qφ(t|zs)
qϕz,φ(t|s)

)
. This modification ensures

that the parameters are optimized based on more stable signals, as it avoids amplifying gradient noise
through the ratio. Importantly, this treatment does not alter the forward computation of the objective
but improves the robustness and reliability of the training dynamics. In summary, this design provides
a practical and effective solution to variance-induced instability in training, while still aligning with
the theoretical intent of the original ELBO formulation.

A.7 Training procedure for DCMEM

Algorithm 1: Optimization Procedure of DCMEM
Input: Multimodal dataset: D = Ds ∪ Dt ∪ Ds,t; Training epochs number: M ;

Hyperparameters: α; Model parameters {Φ,Ψ}
Output: Latent representation zs and zt

1 Randomly initialize model parameters {Φ,Ψ};
2 for epoch < M do
3 for each sample in paired data Ds,t do
4 Compute L{Φ,Ψ}(s, t) and L{Ψ,Φ}(s, t) via Eqs. (6) and (7);
5 Estimate enhanced mutual-supervised information regularization by Eq. (8);
6 Compute the bidirectional lower bound LBi(s, t) by Eq. (9);
7 for each sample in modality-specific data Ds do
8 Compute Ls (s) via Eq. (11);
9 for each sample in modality-specific data Dt do

10 Compute Lt (t) via Eq. (12);
11 Update parameters {Φ,Ψ} by maximizing the overall objective in Eq. (13);
12 Compute latent representations zs = fϕz (s) and zt = fψz (t) using the optimized parameters;
13 return Latent representationas zs and zt

B Dataset and Implementation Details

B.1 Dataset Licences

• MNIST_SVHN: originally published in [8], downloaded the data from
http://yann.lecun.com/exdb/mnist, http://ufldl.stanford.edu/housenumbers and the code
from https://github.com/iffsid/mmvae, licensed under GPL 3.0.
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DCMEM CMVAE MMVAE+ MEME MoPoE MMVAE MVAEMMVMMVP

Figure 7: Supplementary qualitative results of cross-modal generation on the MNIST-SVHN dataset
for each model.

DCMEM MVP CMVAE MMVAE+

Figure 8: Five MNIST-to-SVHN samples are generated by varying only the modality-specific latent
variables on the MNIST-SVHN dataset.

• CUBICC: originally published in [12], downloaded the data from
https://polybox.ethz.ch/index.php/s/LRkTC2oa6YHHlUj/download, published under the
MIT license.

• Human Breast Cancer: originally published in [42], downloaded the data from
https://www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-1-1-standard-
1-0-0, published under the CC BY 4.0 license.

B.2 Implementation Details

To ensure a fair comparison, all models are run on a local server with an NVIDIA GeForce RTX 2080
Ti GPU, 64 GB of RAM running Ubuntu 18.04. For our model, we use a ResNet encoder and decoder
for image data, and convolutional encoders and decoders for text data. The parameter α is set to 1.
For the MNIST-SVHN dataset, the dimensions of the shared and specific latent spaces are set to 32.
We use the Adam optimizer with a learning rate of 5e-4, a batch size of 64 and train the model for 100
epochs. For the CUBICC dataset, the dimensions of the shared and specific latent spaces are set to 48
and 16, respectively. The Adam optimizer is used with a learning rate of 1e-4, a batch size of 16 and
training is conducted for 200 epochs. For the spatial transcriptomics dataset, we preprocess the gene
expression data by selecting the top 3000 highly variable genes, followed by standard normalization
and log-transformation. Both the encoder and decoder for this modality are implemented as fully
connected neural networks. For the tissue morphology modality, input images are resized to 128×128
pixels. To incorporate spatial context, we adopt the CoordConv [50] technique by appending the
2D spatial coordinates (x, y) as two additional input channels, resulting in a 5-channel input. This
modality is processed using convolutional neural networks for both encoding and decoding. Both the
shared and specific latent dimensions are set to 32. Optimization is performed using Adam with a
learning rate of 5e-4, a batch size of 64 and 100 training epochs.

C Additional Experimental Results

C.1 Additional Results on Cross-Modal Generation

To further evaluate the generative capability of our model, we conduct additional experiments under
varying missing rates, focusing on both generative coherence and quality. The quantitative results
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(a) MNIST-SVHN (b) CUBICC

Figure 9: T-SNE plot of the latent representations obtained by DCMEM on the MNIST-SVHN and
CUBICC datasets. Here, MNIST_0 represents the data from the MNIST modality with the digit label
0, and similarly for other labels.

CMVAEMMVAE+

MoPoEMMVAEMVAE

MMVM MVP

MEME

Figure 10: T-SNE plot of the latent representations obtained by baseline models on the MNIST-SVHN
dataset.

CMVAEMMVAE+

MoPoEMMVAEMVAE

MMVM MVP

MEME

Figure 11: T-SNE plot of the latent representations obtained by baseline models on the CUBICC
dataset.

on the MNIST-SVHN dataset are shown in Figures 14 and 15, while the qualitative results are
presented in Figures 16–22. As shown in the figures, our model consistently achieves robust cross-
modal generation under different levels of missing data. Although a slight degradation in generative
consistency is observed as the missing rate increases, the model still maintains strong performance
and demonstrates competitive stability compared to other baselines.
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Table 2: Quantitative comparison of clustering performance for each model’s latent representations on
the MNIST-SVHN dataset. The best and second-best results are highlighted in bold and underlined,
respectively.

Methods SVHN Representation MNIST Representation Joint Representation
ACC NMI ARI ACC NMI ARI ACC NMI ARI

MVAE 27.9 16.0 13.1 79.2 65.5 62.6 42.7 35.3 24.5
MMVAE 22.0 10.4 10.1 21.8 10.3 10.1 22.6 10.7 10.1
MoPoE 37.9 27.2 18.5 50.5 45.6 33.0 64.1 60.5 50.7
MEME 21.9 10.3 10.0 36.5 32.1 20.4 22.4 10.6 10.1

MMVAE+ 23.9 11.4 11.1 21.3 10.4 10.0 22.9 11.9 10.8
CMVAE 42.2 36.3 25.4 28.1 15.9 14.5 32.3 19.5 15.4
MMVM 42.2 27.1 20.7 88.1 82.1 80.4 77.5 72.2 67.5

MVP 53.6 38.7 30.1 81.4 79.6 73.6 84.8 76.4 70.6
DCMEM 91.5 80.6 82.0 99.1 97.3 98.0 99.5 98.4 98.9
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Figure 12: Classification accuracy under different missing rates on the CUBICC dataset. Shaded
areas represent the standard deviation across multiple runs. The subscripts in method names indicate
the observed modality. For example, DCMEM_Caption (Observation fraction = 0.25) denotes that
the training data consists of 25% paired samples and 75% unimodal Caption samples.

Similarly, the cross-modal generation results on the CUBICC dataset are shown in Figures 23 and 24.
Our model achieves the highest generative coherence across all missing conditions, indicating its
effectiveness in preserving class-level semantics despite incomplete input. However, we observe a
moderate decline in generation quality. This trade-off is primarily due to the inherent tension between
the generation and clustering objectives: while generation benefits from latent representations that
retain fine-grained modality-specific details, clustering prefers representations that focus on global
class-level features. As a result, our model strategically balances these two objectives rather than
optimizing solely for one, which inevitably limits performance in either direction when pursued
independently.

C.2 Additional Results on Clustering

We evaluate the clustering performance of MVAE, MoPoE, MEME, MVP and DCMEM under
varying missing scenarios on both the MNIST-SVHN and CUBICC datasets. As shown in Tables
3, 4, 5 and 6, we consider two settings for each dataset: one where the first modality is partially
missing (e.g., MNIST or Image), and one where the second modality is partially missing (e.g., SVHN
or Caption). For each setting, clustering is performed based on the latent representations learned
from individual modalities as well as their joint embedding. DCMEM consistently achieves the
best performance across all settings and representation types, demonstrating strong robustness to
incomplete data. Even at low paired data fractions (e.g., 25%), DCMEM maintains high clustering
accuracy, while baseline models such as MVAE, MoPoE, MEME and MVP exhibit significant
performance degradation. This is especially evident in the Caption modality of the CUBICC dataset,
where several baselines struggle to learn meaningful representations under high missing-view rates.
Overall, these results highlight the effectiveness of DCMEM in learning coherent and discriminative
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ARI: 53.4   NMI: 64.0 ARI: 44.5   NMI: 66.1 ARI: 35.7   NMI: 68.8 ARI: 48.1   NMI: 57.6

ARI: 46.6   NMI: 59.7 ARI: 55.1   NMI: 69.7

Figure 13: Visualization of clustering results on the human breast cancer dataset. Each subplot shows
the clustering output of a different method, with colors indicating predicted clusters. Each method is
run three times, and the mean ARI and NMI scores are reported above each plot.
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Figure 14: Classification accuracy of cross-modal generations under different missing rates on
the MNIST-SVHN dataset. Shaded areas represent the standard deviation across multiple runs.
The subscripts in method names indicate the observed modality. For example, DCMEM_SVHN
(Observation fraction = 0.25) denotes that the training data consists of 25% paired samples and 75%
unimodal SVHN samples.
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Figure 15: FID score of cross-modal generations under different missing rates on the MNIST-SVHN
dataset. Shaded areas represent the standard deviation across multiple runs. The subscripts in method
names indicate the observed modality. For example, DCMEM_SVHN (Observation fraction = 0.25)
denotes that the training data consists of 25% paired samples and 75% unimodal SVHN samples.

latent spaces across different datasets and under various levels of modality incompleteness. Its ability
to leverage both paired and unimodal data allows it to maintain superior clustering performance,
setting it apart from existing multimodal VAE approaches.

C.3 Semantic Relatedness in the Latent Space

Semantic relatedness refers to the notion that semantically aligned multimodal inputs should yield
more similar latent distributions than unrelated pairs. To investigate whether our models as well as the
baselines exhibit this behavior, we adopt the 2-Wasserstein distance as a measure of semantic similarity
between latent distributions. This metric is well-suited for comparing Gaussian distributions due to
its closed-form expression in such cases. In our experiment, we compute pairwise 2-Wasserstein
distances between all combinations of latent distributions within a mini-batch. We then visualize
the resulting distances using histograms, color-coded to distinguish paired samples from unpaired
samples. A clear separation between the two groups in the histogram indicates that the model captures
meaningful semantic alignment across modalities. Figure 25 illustrates the relatedness histograms
produced by our model on the MNIST-SVHN and CUBICC datasets. Figures 26 and 27 show the
results for the baseline models.

As shown in Figure 25, our model exhibits consistently lower 2-Wasserstein distances for paired sam-
ples, while unpaired samples yield significantly higher distances. This clear separation demonstrates
that our model effectively captures semantic alignment across modalities. In contrast, baseline models
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Figure 16: MNIST->SVHN (Left) and SVHN->MNIST (Right), for the fully observed case.

Figure 17: MNIST->SVHN (Left) and SVHN->MNIST (Right), when MNIST is observed 75% of
the time.

Figure 18: MNIST->SVHN (Left) and SVHN->MNIST (Right), when SVHN is observed 75% of the
time.
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Figure 19: MNIST->SVHN (Left) and SVHN->MNIST (Right), when MNIST is observed 50% of
the time.

Figure 20: MNIST->SVHN (Left) and SVHN->MNIST (Right), when SVHN is observed 50% of the
time.

Figure 21: MNIST->SVHN (Left) and SVHN->MNIST (Right), when MNIST is observed 25% of
the time.
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Figure 22: MNIST->SVHN (Left) and SVHN->MNIST (Right), when SVHN is observed 25% of the
time.
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Figure 23: Classification accuracy and FID score of cross-modal generations under different missing
rates on the CUBICC dataset. Shaded areas represent the standard deviation across multiple runs.
The subscripts in method names indicate the observed modality. For example, DCMEM_Caption
(Observation fraction = 0.25) denotes that the training data consists of 25% paired samples and 75%
unimodal Caption samples.

such as MVAE and MMVAE display similar distance distributions for both paired and unpaired
data, suggesting that their latent representations fail to encode meaningful semantic information.
Although MoPoE and MEME capture a certain degree of semantic relatedness, as evidenced by
the relatively small gap between paired and unpaired distributions, they achieve weaker semantic
alignment compared to our model. MMVAE+, CMVAE and MMVM are only able to capture seman-
tic differences on a single dataset with limited generalization capability. Although MVP shows a
noticeable separation, the contrast between paired and unpaired distances is less pronounced than
in our model. These comparisons further highlight the superior ability of our approach to learn
semantically structured and modality-aligned latent representations.

C.4 Class-Contextual Relatedness in the Latent Space

To evaluate whether our model captures class-level semantic alignment across modalities, we conduct
a class-contextual relatedness analysis on both the MNIST-SVHN and CUBICC datasets. Following
the methodology proposed in MEME [10], we compute a class-conditioned distance matrix K ∈
RC×C , where C is the number of classes in the dataset. Each entry Kij represents the average
2-Wasserstein distance between the latent distributions of class i from one modality and class j from
the other. Ideally, if the model successfully aligns class-level semantics across modalities, we expect
the matrix to exhibit low distances along the diagonal (representing matched classes) and higher
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small red bird, with black secondaries and a 
small yellow bill and gray tarsus and feet.

this is a yellow bird a dark breast yellow 
patch and its tip to with brown bottom.

a medium sized bird has bright yellow and 
black, and is white beak curve shaped the 
feet.

-----------------------

-----------------------------------------------------------------------------------------------------------------------------

Images observed 75% of the time.

this is a bird with a yellow belly and black 
back with white on its wing.

a white body, black crown, and a bright 
orange beak with black tip are features of 
this bird.

small yellow bird but the under, a black 
bands, and black throat and brown.

the bird has an black crown and the red 
wings the flank and orange spot.

-----------------------
-----------------------------------------------------------------------------------------------------------------------------

Captions observed 75% of the time.

a totally red bird with a long red tail.

this bird has wings that are grey and has a 
white belly.

this colorful bird has a white belly and 
orange crown with blue wings and black 
gray tarsus pointed brown.

this bird with a grey white body back 
facial a grey wings.

-----------------------

-----------------------------------------------------------------------------------------------------------------------------

Images observed 50% of the time.

this bird has an orange bill and white body 
with white wings that have black edges.

bird is black and orange with some white, 
it is little but has a pointy bill.

this bird an white body a long gray crown, 
and a long white.. 

this bird has a flat pointed bill with brown 
head, and white patch the rectrices of 
upper its patch cheek tail light.

-----------------------

-----------------------------------------------------------------------------------------------------------------------------

Captions observed 50% of the time.

an all dark black bird with a sharp thick 
beak.

small brown and white bird with long pink 
tarsus and long brown beak.

this bird has a black and orange body of 
long spots orange.

this small bird has light brown a wings 
and the beak sits and smaller of that tip.

-----------------------

-----------------------------------------------------------------------------------------------------------------------------

Images observed 25% of the time.

this small bird is black and blue with a 
purple naple, small white eyes, and a 
slightly curved beak.

this bird has a white and grey breast with a 
yellow bill.

the bird has a red breast and belly and a 
small bill.

this small brown bird is colored of leaf 
<exc> dark stripes.

-----------------------

Captions observed 25% of the time.

this colorful bird has a yellow bottom half 
with an impressive black upper half.

Figure 24: Cross-modal generations on the CUBICC dataset by DCMEM.
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(a) MNIST-SVHN (b) CUBICC

Figure 25: Histograms of 2-Wasserstein distances between latent distributions for paired and unpaired
multimodal samples obtained by DCMEM on the MNIST-SVHN and CUBICC datasets.

CMVAEMMVAE+

MoPoEMMVAEMVAE

MMVM MVP

MEME

Figure 26: Histograms of 2-Wasserstein distances between latent distributions for paired and unpaired
multimodal samples obtained by baseline models on the MNIST-SVHN dataset.
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MoPoEMMVAEMVAE

MMVM MVP

MEME

Figure 27: Histograms of 2-Wasserstein distances between latent distributions for paired and unpaired
multimodal samples obtained by baseline models on the CUBICC dataset.
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(a) MNIST-SVHN (b) CUBICC

Figure 28: Heatmaps of class-conditioned 2-Wasserstein distances between latent distributions
obtained by DCMEM on the MNIST-SVHN and CUBICC datasets.
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MoPoEMMVAEMVAE

MMVM MVP

MEME

Figure 29: Heatmaps of class-conditioned 2-Wasserstein distances between latent distributions
obtained by baseline models on the MNIST-SVHN dataset.
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MMVM MVP

MEME

Figure 30: Heatmaps of class-conditioned 2-Wasserstein distances between latent distributions
obtained by baseline models on the CUBICC dataset.
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Table 3: Quantitative comparison of clustering performance based on latent representations under
different missing rates in the MNIST modality on the MNIST-SVHN dataset. Fraction indicates
the proportion of paired samples relative to the full training set. Each model is trained on a dataset
consisting of paired data at a proportion of Fraction and unimodal SVHN data at a proportion of
1-Fraction, and evaluated on the complete test set.

Fraction Methods SVHN Representation MNIST Representation Joint Representation
ACC NMI ARI ACC NMI ARI ACC NMI ARI

0.75

MVAE 18.0 6.0 3.1 77.5 63.4 59.8 43.3 41.9 28.1
MoPoE 27.0 13.4 8.3 50.3 41.4 29.0 61.8 52.4 42.7
MEME 11.8 0.3 0.1 41.6 35.9 24.2 11.7 0.4 0.1
MVP 56.4 54.6 39.9 61.3 60.3 45.7 37.8 37.6 22.1

DCMEM 87.4 73.8 74.0 98.7 96.3 97.2 99.5 98.4 98.9

0.5

MVAE 18.0 6.0 3.2 70.6 56.0 52.1 43.3 41.8 27.7
MoPoE 22.5 10.0 5.8 52.4 45.8 34.9 52.8 45.4 34.3
MEME 11.7 0.3 0.1 41.8 35.8 24.6 11.6 0.3 0.1
MVP 29.0 16.0 10.2 50.6 48.8 33.2 42.9 39.0 26.7

DCMEM 87.5 76.1 75.8 98.3 95.2 96.2 98.4 96.6 97.5

0.25

MVAE 17.9 5.9 3.1 68.3 56.5 50.4 39.3 33.7 22.4
MoPoE 18.6 6.1 3.3 54.3 43.5 31.8 42.5 35.9 23.9
MEME 11.6 0.3 0.1 45.8 36.9 27.0 11.7 0.3 0.1
MVP 12.3 0.6 0.1 39.1 42.0 24.8 12.3 0.6 0.1

DCMEM 62.0 47.2 38.4 92.3 83.4 90.3 92.3 83.4 84.0

Table 4: Quantitative comparison of clustering performance based on latent representations under
different missing rates in the SVHN modality on the MNIST-SVHN dataset. Fraction indicates the
proportion of paired samples relative to the full training set. Each model is trained on a dataset
consisting of paired data at a proportion of Fraction and unimodal MNIST data at a proportion of
1-Fraction, and evaluated on the complete test set.

Fraction Methods SVHN Representation MNIST Representation Joint Representation
ACC NMI ARI ACC NMI ARI ACC NMI ARI

0.75

MVAE 17.2 4.8 2.6 82.4 68.0 65.7 40.3 34.6 23.9
MoPoE 32.1 21.6 13.4 53.8 47.2 35.5 61.1 52.4 42.9
MEME 13.0 3.8 2.2 39.3 36.8 24.1 13.4 6.6 3.3
MVP 49.0 31.0 23.9 78.1 71.0 64.9 75.9 70.9 64.0

DCMEM 89.0 76.2 77.2 99.1 97.3 98.0 99.7 99.1 99.4

0.5

MVAE 16.4 5.5 2.4 79.6 65.4 62.5 38.6 38.4 24.7
MoPoE 31.1 18.5 11.6 54.8 47.2 36.3 59.4 49.6 41.9
MEME 14.5 3.3 1.6 39.6 33.5 22.1 12.3 0.6 0.2
MVP 49.7 33.1 24.5 83.3 72.9 69.9 77.4 73.5 67.3

DCMEM 85.5 72.4 72.7 98.7 96.3 97.1 99.6 98.8 99.1

0.25

MVAE 17.1 5.4 2.7 76.9 63.7 60.6 38.3 31.1 20.7
MoPoE 25.7 13.0 7.4 65.3 53.0 46.3 54.6 44.0 34.3
MEME 15.8 4.9 2.6 51.1 43.0 34.4 20.5 13.0 7.7
MVP 47.6 49.5 33.5 85.7 71.3 68.4 87.2 76.9 76.6

DCMEM 82.6 65.6 65.4 95.2 88.4 89.6 98.5 96.0 96.8

values off-diagonal (mismatched classes). To visualize this, we present the resulting matrices as
heatmaps in Figure 28, where darker colors indicate smaller distances. The baseline results are shown
in Figures 29 and 30.

As shown in Figure 28, our model produces a clear diagonal structure in the class-conditioned
distance matrices, indicating that it effectively aligns semantically corresponding classes across
modalities. This pattern is consistently observed on both the MNIST-SVHN and CUBICC datasets,
suggesting robust class-level semantic alignment in the learned latent space. In comparison, baseline
models such as MVAE, MMVAE+ and CMVAE fail to exhibit a clear diagonal on at least one of
the datasets, revealing their limited ability to consistently model class-level correspondence. Other
models, including MEME and MVP, either produce diagonals with less pronounced contrast or show
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Table 5: Quantitative comparison of clustering performance based on latent representations under
different missing rates in the Image modality on the CUBICC dataset. Fraction indicates the
proportion of paired samples relative to the full training set. Each model is trained on a dataset
consisting of paired data at a proportion of Fraction and unimodal Caption data at a proportion of
1-Fraction, and evaluated on the complete test set.

Fraction Methods Image Representation Caption Representation Joint Representation
ACC NMI ARI ACC NMI ARI ACC NMI ARI

0.75

MVAE 27.2 11.8 7.0 17.8 2.1 0.7 36.9 27.7 18.7
MoPoE 38.1 28.4 17.4 50.8 37.0 27.5 58.5 46.6 35.2
MEME 45.8 42.1 25.0 27.6 16.3 8.5 45.0 37.1 24.1
MVP 53.1 46.6 34.8 44.3 30.2 21.6 72.7 61.7 51.1

DCMEM 83.6 72.4 66.3 62.6 43.9 35.0 84.1 73.5 67.0

0.5

MVAE 27.0 14.3 7.7 17.7 2.4 0.9 36.4 22.1 13.6
MoPoE 32.6 20.2 12.4 46.2 26.6 17.0 42.1 32.6 23.4
MEME 20.4 4.8 2.4 16.9 1.4 0.2 19.8 4.2 1.8
MVP 58.7 45.4 36.4 31.0 18.5 13.0 52.4 44.2 36.4

DCMEM 84.3 75.7 68.0 51.3 37.2 28.0 79.9 68.5 60.3

0.25

MVAE 28.2 13.1 7.9 27.0 12.0 7.3 30.5 17.4 10.5
MoPoE 19.4 5.1 2.4 25.4 11.6 6.1 26.9 10.2 5.8
MEME 16.9 1.7 0.2 16.1 1.0 0.1 17.2 1.8 0.3
MVP 41.7 30.1 20.4 20.6 6.5 4.2 31.4 20.9 17.7

DCMEM 73.6 62.0 51.3 53.1 39.8 32.6 82.7 70.9 64.3

Table 6: Quantitative comparison of clustering performance based on latent representations under
different missing rates in the Caption modality on the CUBICC dataset. Fraction indicates the
proportion of paired samples relative to the full training set. Each model is trained on a dataset
consisting of paired data at a proportion of Fraction and unimodal Image data at a proportion of
1-Fraction, and evaluated on the complete test set.

Fraction Methods Image Representation Caption Representation Joint Representation
ACC NMI ARI ACC NMI ARI ACC NMI ARI

0.75

MVAE 29.0 12.1 7.5 22.6 11.3 3.8 33.7 26.9 15.1
MoPoE 27.9 15.8 7.8 38.2 23.0 15.2 42.0 27.9 17.0
MEME 24.5 9.1 4.7 24.8 15.7 6.5 24.5 16.2 7.9
MVP 58.8 48.2 37.2 42.9 30.1 21.6 52.3 50.5 36.7

DCMEM 82.0 70.5 63.2 60.8 44.7 33.9 83.9 74.5 67.2

0.5

MVAE 28.0 11.3 6.4 20.4 6.3 3.1 46.2 33.1 23.0
MoPoE 27.8 13.1 8.0 33.0 19.3 12.0 31.0 18.9 11.6
MEME 17.0 1.3 0.3 16.7 1.4 0.2 17.1 1.6 0.3
MVP 50.0 36.0 27.1 45.8 27.4 19.0 64.1 50.9 41.8

DCMEM 81.0 68.4 61.9 57.2 38.8 29.5 82.0 70.1 63.4

0.25

MVAE 29.5 17.3 8.9 21.2 6.0 2.9 35.9 24.6 15.7
MoPoE 24.5 7.6 4.5 25.0 10.3 5.4 27.6 11.7 7.0
MEME 15.9 0.8 0.1 16.4 1.1 0.1 16.3 1.0 0.1
MVP 51.1 33.4 25.8 40.1 24.1 14.7 54.5 41.8 31.1

DCMEM 65.6 55.2 42.2 54.7 40.4 29.3 67.4 62.9 50.4

undesirably low distances in off-diagonal entries, which implies confusion between unrelated classes.
Notably, only our model consistently achieves a strong diagonal with low intra-class distances and
high inter-class distances across both datasets, highlighting its superior capability in capturing and
preserving cross-modal semantic structure.

C.5 Ablation Study

The explicit mathematical definitions of the objective functions used in the ablation study are as
follows:
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Figure 31: Generation performance with different modules ablated. LStru represents the structured
representation learning module and LShar represents the shared representations alignment module.

Table 7: Clustering performance of joint latent representations with different modules ablated.
LStru represents the structured representation learning module and LShar represents the shared
representations alignment module.

Datasets MNIST_SVHN CUBICC
LELBO LStru LShar ACC NMI ARI ACC NMI ARI

✓ 50.6±3.1 32.4±2.1 27.4±2.2 26.4±0.7 13.7±0.2 10.3±0.1
✓ ✓ 91.5±2.4 80.6±1.8 82.0±1.2 84.6±1.8 74.1±0.9 68.6±2.1
✓ ✓ 72.7±1.9 63.5±1.3 57.7±1.2 49.3±1.3 50.7±1.9 35.0±0.9
✓ ✓ ✓ 99.5±0.1 98.4±0.2 98.9±0.1 86.3±1.8 76.8±2.8 71.5±3.1

(1) LELBO denotes the variational lower bound derived in Section 3.1. Under our mutual supervision
setup, it includes both s → z → t and t → z → s directions. For the s → z → t direction, the ELBO
term is given by: Ls→t

ELBO = Eqϕ(zs,ws|s)
[
log

pψz (zs|t)p(ws)pθ(s|zs,ws)
qϕz (zs|s)qϕw (ws|s)

]
+ log qϕz,ϕ(t | s) + log p(t).

A symmetric term is used for the t → z → s direction. Together, they form the total LELBO used in
training.

(2) LStru corresponds to the Structured Representation Learning term introduced in Section 3.1. It
also includes bidirectional modeling. For example, the s → z → t direction includes a reconstruction
term and a latent distribution alignment term: Ls→t

Stru = Eqϕ(zs,ws|s)pD(s) log pθ (s | zs,ws) −
EpD(s,t) [DKL (qϕz (zs = z | s) ||qψz (zt = z | t))] and vice versa for the t → z → s direction.

(3) LShar corresponds to the Shared Representations Alignment term introduced in Section 3.1. It
captures the mutual information between zs and zt, defined as: LShar = αI(zs; zt), where I(·; ·) is
estimated via contrastive learning.

To evaluate the contribution of each component in our model, we perform an ablation study by
selectively removing the structured representation learning (LStru) and the shared representations
alignment (LShar). The results are summarized in Figure 31 and Table 7. As shown in Figure 31,
we evaluate the contribution of each module to generation performance using FID and coherence
scores across three tasks. The full model consistently achieves the lowest FID and highest coherence
scores, indicating superior visual fidelity and semantic consistency. Removing either LStru or LShar
leads to a clear decline in performance, confirming the necessity of both components. Table 7
reports the clustering performance of different ablation settings on MNIST-SVHN and CUBICC
datasets. We observe that omitting LShar results in a modest performance drop as the model loses the
alignment constraint for shared latent features, leading to suboptimal cross-modal representation. In
contrast, removing LStru causes a significant decline in all metrics. This suggests that without proper
disentanglement of shared and modality-specific information, the model fails to preserve meaningful
semantic structure in the shared space. Overall, the ablation results demonstrate that both structured
representation learning and shared representations alignment are indispensable for achieving strong
performance in both generation and clustering tasks.

To further isolate our architectural contribution, we conduct experiments on the CUBICC dataset by
enhancing MVP with the VampPrior mechanism. MVP is selected as the strongest non-VampPrior
baseline in terms of cross-modal generation and its competitive performance in clustering and
classification under various pairing rates (Figures 12, 23; Tables 5, 6). The resulting variant, MVP_VP,
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Table 8: Generation performance of MVP_VP (The subscript of each metric indicates the observed
modality. For example, Coherence_Image (Fraction = 0.25) denotes that the training data consists of
25% paired samples and 75% unimodal Image samples).

Fraction Methods Coherence_Image FID_Image Coherence_Caption FID_Caption

0.75
MVP 0.242 253.243 0.239 250.773

MVP_VP 0.241 265.464 0.234 251.384
DCMEM 0.497 203.981 0.515 207.708

0.5
MVP 0.237 256.383 0.224 255.310

MVP_VP 0.215 260.604 0.223 259.447
DCMEM 0.517 204.286 0.471 212.218

0.25
MVP 0.231 259.064 0.195 256.498

MVP_VP 0.217 250.562 0.187 271.769
DCMEM 0.313 214.203 0.294 221.351

Table 9: Classification accuracy of MVP_VP (The subscript of each metric indicates the observed
modality. For example, Image Representation_Image (Fraction = 0.25) denotes that the training data
consists of 25% paired samples and 75% unimodal Image samples).

Fraction Methods Image Repres
entation_Image

Caption Repres
entation_Image

Image Repres
entation_Caption

Caption Repres
entation_Caption

0.75
MVP 0.864 0.561 0.877 0.566

MVP_VP 0.824 0.512 0.804 0.532
DCMEM 0.866 0.631 0.873 0.645

0.5
MVP 0.865 0.557 0.825 0.537

MVP_VP 0.754 0.520 0.755 0.485
DCMEM 0.871 0.618 0.879 0.620

0.25
MVP 0.702 0.518 0.676 0.458

MVP_VP 0.635 0.453 0.647 0.386
DCMEM 0.712 0.526 0.717 0.576

uses pseudo-points from the missing modality to construct a Gaussian mixture prior, which guides
latent learning from the observed modality. As shown in the Tables 8, 9 and 10, MVP_VP does not
yield consistent improvements over the original MVP baseline. On the contrary, it often leads to a
degradation in generation metrics, classification accuracy and clustering performance, particularly at
lower pairing rates. We hypothesize that this is due to a mismatch in modeling assumptions: MVP
relies on cycle-consistency alignment, which degenerates to a trivial alignment (i.e., with itself) when
only one modality is present, yielding zero loss for such cases. The introduction of VampPrior forces
these unpaired samples to align with a prior constructed from the missing modality, introducing a
non-trivial loss term that may disrupt the overall optimization, especially since the alignment does
not follow the same cyclic mechanism as MVP’s original design. Apart from these results, it is worth
noting that two baseline models, MMVM and MEME , which use a similar VampPrior strategy, also
underperform compared to our model. This further indicates that our performance gains stem not
only from the use of VampPrior, but from the integration of disentangled representation learning
and mutual information alignment within a unified mutual supervision framework, which ensures
consistent robustness under both paired and missing data scenarios.

C.6 Parameter Analysis

To evaluate the impact of the shared representations alignment component, we conduct a parameter
analysis on its weighting factor α. As illustrated in Figure 32, we plot the FID and Coherence scores
under different values of α across three cross-modal generation tasks. The results reveal that the model
achieves optimal performance when α is set to 0.5 or 1. In this range, the alignment module effectively
bridges modality gaps by aligning latent representations, thereby preserving semantic consistency
and enhancing generation quality. In contrast, when α is too small, the alignment term contributes
minimally and results in suboptimal cross-modal coherence. On the other hand, excessively large α
values may lead to overfitting or over-alignment which adversely affects performance. In addition,
Table 11 reports the clustering performance of joint latent representations under different α values.
We observe that the model maintains strong performance when α ranges from 0.1 to 1. However,
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Table 10: Clustering accuracy of MVP_VP (The subscript of each metric indicates the observed
modality. For example, Image Representation_Image (Fraction = 0.25) denotes that the training data
consists of 25% paired samples and 75% unimodal Image samples).

Fraction Methods Image Repres
entation_Image

Caption Repres
entation_Image

Joint Repres
entation_Image

0.75
MVP 58.8 42.9 52.3

MVP_VP 29.4 32.2 34.5
DCMEM 82.0 60.8 83.9

0.5
MVP 50.0 45.8 64.1

MVP_VP 40.2 36.7 44.2
DCMEM 81.0 57.2 82.0

0.25
MVP 51.1 40.1 54.5

MVP_VP 25.0 25.4 27.8
DCMEM 65.6 54.7 67.4

Fraction Methods Image Repres
entation_Caption

Caption Repres
entation_Caption

Joint Repres
entation_Caption

0.75
MVP 53.1 44.3 72.7

MVP_VP 41.9 32.3 39.6
DCMEM 83.6 62.6 84.1

0.5
MVP 58.7 31.0 52.4

MVP_VP 37.8 34.0 42.9
DCMEM 84.3 51.3 79.9

0.25
MVP 41.7 20.6 31.4

MVP_VP 24.8 19.9 22.7
DCMEM 73.6 53.1 82.7
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Figure 32: Generation performance under different α values.

Table 11: Clustering performance of joint latent representations under different α values.
Datasets MNIST_SVHN CUBICC

α ACC NMI ARI ACC NMI ARI
0.01 94.4±1.2 90.0±1.0 91.4±1.5 84.5±2.1 74.1±1.7 68.6±1.7
0.1 97.9±0.3 95.8±0.2 96.7±0.3 86.7±1.1 75.7±1.4 69.8±1.9
0.5 99.1±0.2 98.6±0.4 97.9±0.3 85.6±1.6 76.4±1.3 71.2±1.5
1 99.5±0.1 98.4±0.2 98.9±0.1 86.3±1.8 76.8±2.8 71.5±3.1
5 96.5±1.1 91.1±1.3 92.4±1.2 83.4±1.4 72.3±0.8 66.6±1.6

10 92.3±1.9 82.1±1.4 83.8±1.7 75.0±1.3 69.7±0.7 59.3±0.9
100 85.9±1.7 72.6±1.4 71.8±1.8 67.0±1.1 49.3±1.4 40.4±1.3

when α exceeds this range, the clustering performance degrade significantly, further confirming the
importance of a well-balanced alignment strength. Based on both generation and clustering results,
we recommend setting α between 0.5 and 1 in practice for robust and consistent performance.
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C.7 Computational Resources

All experiments are conducted on a machine equipped with an NVIDIA GeForce RTX 2080 Ti GPU
and 64 GB of RAM. For the MNIST-SVHN dataset, each run uses 4 CPU workers and approximately
10 GB of GPU memory, with an average training time of around 8 hours per run. We evaluate 9
different methods, each with 3 random seeds, resulting in a total compute time of approximately 216
GPU hours (8 × 9 × 3). For the CUBICC dataset, each run uses 2 CPU workers and approximately
9 GB of GPU memory. Each training run takes about 16 hours on average. Evaluating 9 methods
over 3 seeds results in a total compute time of roughly 432 GPU hours (16 × 9 × 3). For the Human
Breast Cancer dataset, each run uses 2 CPU workers and around 4 GB of GPU memory. The average
runtime is approximately 2 hours. With 14 methods and 3 seeds, the total compute time amounts to
about 84 GPU hours (2 × 14 × 3). In total, the experiments require approximately 732 GPU hours.
Additional GPU time is used during model development and hyperparameter tuning, which is not
included in the above calculation.
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