
DAG-aware Transformer for Causal Effect Estimation

Manqing Liu ∗

Department of Epidemiology, CAUSALab
Harvard School of Public Health
manqingliu@g.harvard.edu

David R. Bellamy
Flagship Labs 97 Inc.

dbellamy@fl97inc.com

Andrew L. Beam
Department of Epidemiology, CAUSALab

Harvard School of Public Health
andrew_beam@hms.harvard.edu

Abstract

Causal inference is a critical task across fields such as healthcare, economics,
and the social sciences. While recent advances in machine learning, especially
those based on the deep-learning architectures, have shown potential in estimating
causal effects, existing approaches often fall short in handling complex causal
structures and lack adaptability across various causal scenarios. In this paper, we
present a novel transformer-based method for causal inference that overcomes
these challenges. The core innovation of our model lies in its integration of
causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism,
enabling it to accurately model the underlying causal structure. This allows for
flexible estimation of both average treatment effects (ATE) and conditional average
treatment effects (CATE). Extensive experiments on both synthetic and real-world
datasets demonstrate that our approach surpasses existing methods in estimating
causal effects across a wide range of scenarios. The flexibility and robustness of our
model make it a valuable tool for researchers and practitioners tackling complex
causal inference problems.

1 Introduction

The estimation of Average Treatment Effect (ATE) and Conditional Average Treatment Effect
(CATE) plays a pivotal role across various disciplines, significantly impacting decision-making
processes and policy formulation. In medicine, these estimations guide treatment selections and
personalized healthcare strategies [9, 7, 26]. Within the realm of public policy, they inform the
design and evaluation of interventions, from education reforms to social welfare programs [11, 10].
In economics, ATE and CATE estimations are crucial for understanding the impacts of economic
policies, labor market interventions, and consumer behavior [1, 8].

A fundamental challenge in this field lies in the correct specification of propensity score and outcome
models, particularly when employing methods such as Inverse Probability of Treatment Weighting
(IPTW) and Doubly-Robust Estimator (or Augmented IPW) to control for confounding factors
[9, 22, 3]. These methods, while powerful, are sensitive to model misspecification, which can
lead to biased estimates and potentially misleading conclusions [12, 6]. The complexity of real-
world scenarios, characterized by high-dimensional data and complex causal relationships, further
exacerbates this challenge, necessitating more sophisticated and robust approaches to causal inference
[4, 26].
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The integration of machine learning (ML) methods into causal inference has opened new avenues
for addressing complex causal relationships in high-dimensional settings. Athey and Imbens [2]
introduced causal trees and forests, adapting random forest algorithms to estimate heterogeneous
treatment effects with valid statistical inference. Expanding on this, Wager and Athey [26] developed
generalized random forests, extending forest-based methods to a broader class of causal parameters.
These approaches have shown promise in settings with many covariates and potential treatment
effect heterogeneity. Concurrently, Chernozhukov et al. [4] proposed the double machine learning
framework, combining flexible ML methods with orthogonalization techniques to achieve valid
inference on treatment effects in high-dimensional settings. Deep learning methods have also made
significant inroads in causal inference, offering powerful tools for modeling complex relationships.
Shalit et al. [24] introduced representation learning techniques for estimating individual treatment
effects, using neural networks to learn balanced representations of covariates, addressing the funda-
mental problem of unobserved counterfactuals. The emergence of graph neural networks (GNNs)
has further expanded the possibilities in causal inference, particularly for networked data. Ma et al.
[16] demonstrated how GNN-based approaches can estimate heterogeneous treatment effects in the
presence of spillover effects, capturing complex dependencies in networked experiments. Recent
work has also explored transformer architectures for causal inference tasks. Melnychuk et al. [18]
introduced the Causal Transformer for estimating counterfactual outcomes over time, effectively
capturing long-range dependencies in longitudinal data. Zhang et al. [28] proposed TransTEE, a
transformer-based model for Heterogeneous Treatment Effect (HTE) estimation that handles various
types of treatments. Zhang et al. [27] developed Causal Inference with Attention (CInA), enabling
zero-shot causal inference on unseen tasks with new data. These deep learning methods offer new
ways to handle the challenges of high-dimensional data and complex causal structures in modern
causal inference problems.

Despite significant advancements, current machine learning (ML) and deep learning (DL) approaches
to causal inference face notable challenges. A primary limitation is their ability to simultaneously
model complex relationships and incorporate structural causal knowledge. Many existing methods
excel at flexible modeling of either the outcome regression or propensity score model, but rarely
both concurrently. Moreover, they often lack natural mechanisms to explicitly integrate causal
knowledge into the learning process. In addition, a particularly persistent challenge in the field is the
incorporation of unmeasured confounding into modern DL models, such as transformers [18, 28, 27].

To address these limitations, we propose a novel approach that harnesses the power of transformer
models while explicitly incorporating causal structure through a DAG-aware attention mechanism.
Our method enables the estimation of crucial causal quantities including the propensity score model
P (A|X), the outcome regression model P (Y |A,X), and the bridge function h(A,W,X). Here, A
represents the treatment, X denotes observed confounders, Y is the outcome, and W serves as a
proxy for the outcome in scenarios with unmeasured confounding. This approach allows for seamless
integration of these estimated models into IPTW, doubly robust estimators, and proximal inference
methods. By doing so, our work bridges the gap between cutting-edge machine learning techniques
and classical causal inference methods, offering a more comprehensive framework for causal analysis
in complex, real-world scenarios.

The key contributions of this paper are:

• Development of a DAG-aware transformer model that explicitly incorporates causal structure
into the attention mechanism, allowing for more accurate modeling of causal relationships.

• Concurrent estimation of propensity score and outcome models within a single, unified
framework, improving efficiency and potentially reducing bias in causal effect estimation.

• Seamless integration of the proposed method with established causal inference techniques
such as IPTW, doubly robust estimation and proximal inference, enhancing their performance
in complex, high-dimensional settings.

• Empirical evaluation of the proposed method on both simulated and real-world datasets,
demonstrating its effectiveness in estimating causal effects across various scenarios.
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2 Preliminaries

2.1 ATE and CATE

Consider treatment A and its effect on outcome Y . Let X denote a vector of observed confounders.
We define Y a as the counterfactual outcome for each individual had they received (a = 1) or not
received (a = 0) the treatment. The Average Treatment Effect (ATE), denoted as τ , is then defined as
τ = E[Y 1 − Y 0].

While the ATE provides an overall measure of the treatment effect across the entire population, in
many cases, it’s important to understand how the treatment effect varies across different subgroups or
individuals. The CATE, denoted as τ(x), measures the average treatment effect for a subpopulation
with a specific set of covariates X = x: τ(x) = E[Y 1 − Y 0|X = x]. The CATE allows us to capture
heterogeneity in treatment effects across different subgroups defined by their covariate values. It’s
particularly useful in personalized medicine, targeted policy interventions, and other scenarios where
the effect of a treatment may vary substantially across different segments of the population.

2.2 Confounding Control Methods assuming Unconfoundedness

In causal inference, several methods have been developed to control for observed confounding and
estimate treatment effects. While we explored multiple approaches, our paper focuses primarily on
two methods: Inverse Probability of Treatment Weighting (IPTW) and Augmented Inverse Probability
Weighting (AIPW), a form of Doubly Robust estimator [9].

1. Inverse Probability of Treatment Weighting (IPTW): IPTW uses the propensity score
to create a pseudo-population in which the treatment assignment is independent of the
measured confounders. The ATE is estimated as:

τIPTW = E
[ AY

π(X)
− (1−A)Y

1− π(X)

]
(1)

where π(X) = P (A = 1|X) is the propensity score. This method is effective when the
propensity score model is correctly specified.

2. Augmented Inverse Probability Weighting (AIPW): AIPW combines IPTW with an
outcome regression model, providing robustness against misspecification of either the
propensity score model or the outcome model. The ATE is estimated as:

τAIPW = E
[(
µ(1, X)+

A

π(X)
(Y −µ(1, X))

)
−
(
µ(0, X)+

1−A

1− π(X)
(Y −µ(0, X))

)]
(2)

where µ(a,X) = E[Y |A = a,X] is the outcome regression function.

2.3 Proximal Inference

In proximal inference [25], we aim to estimate the expected potential outcome E[Y a] for each
treatment level a, in the presence of unobserved confounders U , given a set of proxies (W,Z) and
observed confounders X . The key assumptions are:

Assumption 1 Given (A,U,W,X, Y, Z), Y ⊥⊥ Z|A,U,X and W ⊥⊥ (A,Z)|U,X .

Assumption 2 For all f ∈ L2 and all a ∈ A, x ∈ X , E[f(U)|A = a,X = x, Z = z] = 0 for all
z ∈ Z if and only if f(U) = 0 almost surely.

Assumption 3 For all f ∈ L2 and all a ∈ A, x ∈ X , E[f(Z)|A = a,W = w,X = x] = 0 for all
w ∈ W if and only if f(Z) = 0 almost surely.

Under these assumptions, there exists a bridge function h satisfying:

E[Y |A = a,X = x, Z = z] =

∫
W

h(a,w, x)p(w|a, x, z)dw (3)
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The expected potential outcomes are given by:

E[Y a] = EW,X [h(a,W,X)] (4)

The ATE then can be derived from the empirical mean of ĥ with a fixed to the value of interest,
Ê[Y a] = 1

M

∑M
i=1 ĥ(a,wi, xi).

3 Methodology assuming unconfoundedness

We propose a novel DAG-aware Transformer model for causal effect estimation that explicitly
incorporates causal structure into the attention mechanism. Given a dataset of N observations,
we define input nodes X , which include the treatment A, observed confounding variables X, and
outcome Y . The output nodes are Â and Ŷ .

3.1 DAG-aware Transformer Architecture

See Figure 1 for an illustration of our model architecture. We encode the causal DAG into an
adjacency matrix Madj ∈ {0, 1}D×D, where D is the number of nodes. Each element Madj

ij = 1
indicates that there is a directed edge from node i to node j. We then transform this into an attention
mask M:

Mij =

{
0 if Madj

ji = 1 or i = j

1 otherwise
(5)

Input Nodes (A, X, Y )

Embedding Layer

Transformer Encoder

X A Y

Causal DAG

X A Y
X 0 1 1
A 0 0 1
Y 0 0 0

Adjacency Matrix

DAG-aware Attention

Output Nodes (Â, Ŷ )

Figure 1: Architecture of the DAG-aware Transformer model. The
Transformer Encoder incorporates the DAG-aware attention mechanism
(highlighted with dashed lines), which utilizes the causal structure rep-
resented by the DAG. The adjacency matrix derived from the causal
DAG informs the DAG-aware attention computation. For simplicity,
layer normalization and feed-forward networks within the Transformer
Encoder are not shown.

This mask ensures attention flows only along
causal pathways and allows self-attention for
each node. Our key innovation lies in incorporat-
ing the causal structure into the attention mech-
anism. In each multi-head attention layer, we
compute attention scores A = QKT

√
E

and apply
the DAG-based mask Amask = A+M ·(−∞),
where Q,K ∈ RN×D×E are the query and key
matrices, and E is the embedding dimension.
This operation effectively sets attention scores to
zero (after softmax) for node pairs not causally
linked in the DAG.

The masked attention scores are then normalized
using softmax and used to compute the output:

Attention(Q,K,V) = softmax(Amask)V
(6)

where V is the value matrix.

A key feature of our approach is the simulta-
neous estimation of both the propensity score
model and the outcome regression model within
the same architecture. The propensity score
model π̂(x) = P (A = 1|X = x) is estimated
through the output head for node A. Given in-
put features X , the model outputs a probabil-
ity distribution over treatment assignment. Si-
multaneously, the outcome model µ̂(a, x) =
E[Y |A = a,X = x] is estimated through the
output head for node Y , considering both X
and A. These estimates are then plugged into
the IPTW and AIPW estimators to compute the
ATE and CATE.
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3.2 Model Training and Objective Function

Building upon the work of [23], we train our DAG-aware Transformer model in an end-to-end
manner. The model learns representations Φ(X) for the treatment and h(Φ(X), A) for the outcome
simultaneously. We employ the Adam optimizer with weight decay regularization [15] for training.

Our objective function combines a weighted empirical risk term with a regularization term based
on the Integral Probability Metric (IPM). This formulation allows us to balance between fitting the
observed data and ensuring that the learned representations (Φ(X)) are similar for the treated and
control groups. The objective function is defined as:

h∗ = min
h

[
1

n

n∑
i=1

w′
a(xi)L(h(Φ(xi), ai), yi)︸ ︷︷ ︸
empirical weighted risk

+α IPMG ({Φ(xi)}i:ai=0, {Φ(xi)}i:ai=1)︸ ︷︷ ︸
distributional distance

]
(7)

In this equation, w′
a(xi) = wa(xi)

2 ( ai

π̂1
+ 1−ai

π̂0
) represents the sample weight, where π̂a =

1
n

∑n
i=1 I{ai = a} is the empirical probability of treatment assignment. The stabilizing weight

wa(xi) is defined as wa(xi) =
a(1−2e(xi))+e(xi)

2

e(xi)(1−e(xi))
, with e(xi) being the propensity score. The trade-

off hyperparameter α controls the balance between the empirical risk and the distributional distance.
For the Integral Probability Metric IPMG, we use the Wasserstein distance in our experiments. It’s
important to note that while the IPM term encourages balancing between the treated and control
groups, excessive balancing could potentially increase the Representation-Induced Confounding
Bias (RICB) [19]. This occurs because strong balancing might lead to a loss of information about
confounders in the learned representations. Therefore, careful tuning of the hyperparameter α is
crucial to achieve an optimal trade-off between balancing and preserving important confounding
information.

3.3 Hyperparameter Tuning and Model Selection

Hyperparameter tuning and model selection present unique challenges in causal inference, as unlike
traditional machine learning tasks with observed labels and cross-validation procedures, we cannot
directly observe counterfactual potential outcomes [23, 17]. To address this issue, several methods
have been developed [21, 23]. In our work, we adopt the approach proposed by [23], which aligns
well with our training scheme and offers a straightforward implementation.

Given the unobservable nature of true causal effects, we estimate surrogate metrics that approximate
these effects. Our procedure is as follows:

1. We train a plug-in estimator τ̂ on the validation set using generalized random forests [26].
2. We then select models and tune hyperparameters by finding estimators τ̃ that minimize the

difference between τ̂ and τ̃ .

Formally, we select the optimal estimator τ̃∗ according to τ̃∗ = argminτ̃∈T NRMSE (τ̂ , τ̃), where
T is the set of candidate estimators, and Normalized Root Mean Squared Error (NRMSE) is defined

as NRMSE =

√
1

n−1

∑n
i=1(τ̂(Xi)−τ̃(Xi))2

V̂ (τ̂(X))
. Here, {τ̃(Xi)}ni=1 is a set of ATE or CATE predictions by

τ̃(·), and V̂ (τ̂(X)) is the empirical variance of the ground-truth ATE or CATE approximated by τ̂(·).

4 Methods for Proximal Inference

Building upon [13], we use our DAG-aware transformer to estimate the bridge function h. For proxi-
mal inference, in addition to A and X, X also includes proxy of treatment Z and proxy of outcome W ,
and output node is Ŷ . Our empirical investigations found that the direct application of a transformer
encoder to our low-dimensional data (D = 3) resulted in suboptimal performance compared to the
benchmark Multilayer Perceptron (MLP) model. We hypothesize that this performance degradation is
attributable to information loss during the encoding process, a phenomenon particularly pronounced
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in low-dimensional settings. To address this, we propose a two-stage architecture: 1. A transformer
encoder with DAG-masked self-attention layers, ensuring nodes attend only to their causal parents
and themselves; 2. A Multilayer Perceptron (MLP) that combines the encoder output with raw inputs
(treatment A and proxies W ) to preserve information potentially lost during encoding. The weight of
encoder output is a hyperparameter we can tune. The model output Ŷ estimates the bridge function ĥ.
We compute its empirical mean using both U-statistics and V-statistics kernel from [13].

5 Experiments

We evaluate our proposed method on four diverse datasets. We use the LaLonde datasets to assess
Average Treatment Effect (ATE) estimation, and the ACIC dataset for Conditional Average Treatment
Effect (CATE) estimation. We also extend our evaluation to proximal inference using the Demand
dataset described in [13]. The specifications of baseline models are provided in Appendix B.1. Causal
assumptions of these experiments were listed in Appendix A.

5.1 Lalonde dataset for ATE estimation

The LaLonde datasets, derived from the National Supported Work (NSW) Demonstration program,
include the Current Population Survey (CPS) and Panel Study of Income Dynamics (PSID) [14].
We define the treatment (A) as participation in the NSW program, the outcome (Y) as earnings in
1978, and the covariates (X) as age, education, race, marital status, earnings in 1974, and earnings
in 1975. The LaLonde CPS dataset comprises 15,992 control units and 185 treated units, while the
LaLonde PSID dataset consists of 2,490 control units and the same 185 treated units. The true ATE
for both datasets is 1,794.34. To ensure robust evaluation, we create 10 distinct samples from each
dataset using bootstrap with replacement with different random seeds. Figures 2 and 3 present the
Normalized Root Mean Squared Error (NRMSE) results with standard errors for the LaLonde CPS
and PSID datasets, respectively. Tables 1 and 2 in Appendix B.2 provide the corresponding numerical
values.

Figure 2: Mean NRMSE with Standard Error for
LaLonde CPS Dataset

Figure 3: Mean NRMSE with Standard Error for
LaLonde PSID Dataset

Our proposed AIPW method achieves the lowest NRMSE on both datasets, with 48.2% and 23.2%
reductions compared to AIPW (GRF) for LaLonde CPS and PSID, respectively. The performance gap
is more pronounced in the LaLonde CPS dataset, suggesting better generalization to diverse control
populations. Notably, our method consistently achieves lower NRMSE with smaller standard errors,
indicating more accurate and stable causal effect estimations in challenging real-world scenarios. We
chose not to use the RealCause simulated LaLonde data [20] due to significant discrepancies in the
true ATE, which could lead to misleading comparisons.

5.2 ACIC dataset for CATE estimation

The ACIC dataset from the 2016 Atlantic Causal Inference Conference data challenge [5] is based
on real covariates with synthetically simulated treatment assignment and potential outcomes. We
analyze 10 instances from different data-generating processes, each containing 58 pre-treatment
variables, a binary treatment assignment, observed outcome, and ground truth potential outcomes.
Figure 4 presents the NRMSE with standard errors with respect to the 10 instances of datasets for
each method.
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Figure 4: Mean NRMSE with Standard Error for
ACIC Dataset

Our proposed AIPW method demonstrates supe-
rior performance, achieving the lowest NRMSE
of 0.894, closely followed by AIPW (GRF) with
0.920. The IPW methods show higher error rates,
with our IPW variant outperforming IPW (GRF)
and IPW (Naive). Importantly, our proposed
methods (both IPW and AIPW variants) consis-
tently outperform their GRF counterparts, un-
derscoring the effectiveness of our approach in
CATE estimation tasks. Table 3 in Appendix B.3
provide the corresponding numerical values.

5.3 Demand for proximal inference

The goal of this experiment is to estimate the effect of airline ticket price A on sales Y , confounded
by unobserved demand U . We use fuel cost Z as a treatment-inducing proxy and website views W
as an outcome-inducing proxy (Figure 6). We train our model on simulated datasets with sample
sizes ranging from 1,000 to 50,000. Performance is evaluated using causal mean squared error
(c-MSE) across 10 equally-spaced price points between 10 and 30, comparing estimated potential
outcomes Ê[Y a] against Monte Carlo simulations of the true E[Y a]. We use a heldout dataset of
1,000 draws from W to compute predictions. We perform 20 replicates for each sample size. Figure
5 summarizes the c-MSE distribution across sample sizes. Our model consistently outperforms
the previous state-of-the-art model (MLP) reported in [13]. Table 4 in Appendix B.4 provides the
corresponding numerical values.

Figure 5: Median (IQR) of c-MSE for Demand Dataset

6 Conclusion

In this paper, we introduced a novel transformer-based approach for causal inference that addresses key
limitations in existing methods. Our model’s primary innovation lies in its ability to encode any causal
DAGs into the attention mechanism, allowing it to handle a wide range of causal scenarios. The causal-
aware attention mechanism we developed explicitly models the encoded causal structure, leading to
more accurate estimation of treatment effects. Our experimental results demonstrate the effectiveness
of our approach across various synthetic and real-world datasets, showing improved performance
compared to existing methods. While our work represents a significant step forward in causal
inference using transformer architectures, there are several directions for future research. First, we
recognize the importance of swift adaptability to a wider range of causal structures. Future work can
explore developing a more generalized encoding mechanism that can quickly accommodate diverse
causal graphs without requiring extensive retraining. This could involve creating a meta-learning
framework that learns to adapt to new causal structures efficiently. Additionally, we acknowledge the
need to investigate the robustness of our approach against potential noise or misspecifications in the
input DAG. Future studies can systematically introduce perturbations to the causal graph to assess
how our model’s performance degrades under various levels of DAG uncertainty.
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A Causal Assumptions

To ensure valid causal inference, several key assumptions must hold. In this paper, we primarily focus
on three fundamental assumptions:

1. Positivity (or Overlap): For every x ∈ support(X), and ∀a ∈ {0, 1}, P (A = a|X = x) >
0.
This assumption ensures that there is a non-zero probability of receiving each treatment
level for all possible values of the observed covariates. It is crucial for estimating treatment
effects across the entire covariate space and prevents extrapolation to regions where we have
no information about one of the treatment groups.

2. Exchangeability (or Unconfoundedness): Y a ⊥⊥ A|X,∀a ∈ {0, 1}.
This assumption implies that, conditional on the observed confounders X , the potential out-
comes Y a are independent of the treatment assignment A. In other words, after controlling
for X , there are no unmeasured confounders that affect both the treatment assignment and
the outcome. This is also known as the "no unmeasured confounding" assumption.

3. Consistency: If A = a, then Y a = Y .
This assumption states that the potential outcome under a particular treatment level is the
same as the observed outcome if the individual actually receives that treatment level. It
ensures that the observed outcomes can be used to estimate the potential outcomes.

For the Lalonde and ACIC experiments, we assume that all three of these assumptions hold. For the
proximal inferernce experiment, we remove the strong assumption of no unmeasured confounding
(Assumption 2).

B Experiments

B.1 Baseline models

For Lalonde and ACIC datasets, our baseline models include Naive Inverse Probability Weighting
(IPW), which uses uniform weights, and IPW with Generalized Random Forests (GRF) [26] for
propensity score estimation. Additionally, we consider Augmented IPW (AIPW) with GRF, which
employs a doubly robust estimation approach. All baseline models (except the naive model) were
fine-tuned using the grf package in R. For Demand dataset, we used the Multilayer Perceptron
(MLP) as our baseline models (the hyper parameters of the MLP were fine-tuned in [13]).

B.2 LaLonde Dataset Results

Table 1: Results on LaLonde CPS Dataset
Method NRMSE SE of NRMSE
IPW (Naive) 5.106 0.340
IPW (GRF) 6.342 1.227
IPW (Ours) 4.209 0.414
AIPW (GRF) 1.596 0.294
AIPW (Ours) 0.826 0.194

Table 2: Results on LaLonde PSID Dataset
Method NRMSE SE of NRMSE
IPW (Naive) 9.280 0.168
IPW (GRF) 9.408 1.108
IPW (Ours) 8.857 0.118
AIPW (GRF) 2.517 0.242
AIPW (Ours) 1.934 0.177

B.3 ACIC Dataset Results

B.4 Proximal inference
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Table 3: Results on ACIC Dataset
Method NRMSE SE of NRMSE
IPW (Naive) 5.473 1.421
IPW (GRF) 2.342 0.637
IPW (Ours) 1.669 0.378
AIPW (GRF) 0.920 0.082
AIPW (Ours) 0.894 0.033

A: Price

Z: Cost
U : Demand

Y : Sales

W : Views

Figure 6: Causal DAG for the Demand experiment.

Table 4: Demand Median (IQR) values

Method Training set size

1000 5000 10000 50000

NMMR-V (MLP) 23.41 (11.26) 30.74 (17.73) 42.88 (29.45) 62.18 (16.97)
NMMR-V (Ours) 21.54 (17.42) 24.46 (17.93) 21.37 (10.12) 27.50 (16.30)
NMMR-U (MLP) 23.68 (8.02) 16.21 (10.55) 14.25 (4.46) 14.27 (12.47)
NMMR-U (Ours) 10.69 (14.72) 7.67 (6.70) 5.56 (6.72) 6.51 (5.90)
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