
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SYNCPHONY: SYNCHRONIZED AUDIO-TO-VIDEO
GENERATION WITH DIFFUSION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-video and image-to-video generation have made rapid progress in visual
quality, but they remain limited in controlling the precise timing of motion. In
contrast, audio provides temporal cues aligned with video motion, making it a
promising condition for temporally controlled video generation. However, exist-
ing audio-to-video (A2V) models struggle with fine-grained synchronization due
to indirect conditioning mechanisms or limited temporal modeling capacity. We
present Syncphony, which generates 380×640 resolution, 24fps videos synchro-
nized with diverse audio inputs. Our approach builds upon a pre-trained video
backbone and incorporates two key components to improve synchronization: (1)
Motion-aware Loss, which emphasizes learning at high-motion regions; (2) Au-
dio Sync Guidance, which guides the full model using a visually aligned off-
sync model without audio layers to better exploit audio cues at inference while
maintaining visual quality. To evaluate synchronization, we propose CycleSync, a
video-to-audio-based metric that measures the amount of motion cues in the gen-
erated video to reconstruct the original audio. Experiments on AVSync15 and The
Greatest Hits datasets demonstrate that Syncphony outperforms existing methods
in both synchronization accuracy and visual quality.

1 INTRODUCTION

Video generation has achieved remarkable progress especially in text-to-video (T2V) and image-to-
video (I2V). They synthesize visually crisp and temporally coherent videos that match the given text
prompt and/or a starting frame. However, we still need additional ways to control the motions that
are difficult to control by the texts or the starting frames. For example, texts inherently lack explicit
timings of when and how motions would occur, although they may describe motions, e.g., “dog
barking” and “striking bowling”. In what rhythm would the dog bark? When is the ball released,
how fast does it roll, and when does it hit the pins? Similarly, image-based conditions also face
inherent limitations. An image can convey information about the appearance, pose, background, and
layout of the scene, but it represents only a static snapshot of a single moment.

In contrast, audio signals inherently carry temporal clues because audio and video share the same
temporal axis. Returning to the earlier examples, the accompanying audio would provide how many
times and exactly when the dog barks, when the ball is released, how quickly it travels, and when it
hits the pins. Therefore, we tackle generating videos that are synchronized to audios.

Even with audio, text, or image conditions, existing audio-to-video methods (Lee et al., 2023; Jeong
et al., 2023; Yariv et al., 2023; Zhang et al., 2024) struggle with fine-grained synchronization be-
tween audio and motion. These approaches rely on indirect mappings, such as magnitude-based
adjustments (Lee et al., 2023) or audio-to-text projections (Jeong et al., 2023; Yariv et al., 2023),
which fail to reflect the complex and detailed temporal structures in audio signals. Instead, we di-
rectly inject audio features into the visual generation process via a cross-attention mechanism, en-
abling audio-motion alignment. In parallel, compared to T2V models (Jin et al., 2024a; HaCohen
et al., 2024; Blattmann et al., 2023; Wan et al., 2025) which generate high-resolution, high-frame-
rate, temporally coherent videos, Zhang et al. (2024) adds temporal layers to an image backbone,
training them from scratch with limited data (e.g., 6 fps at 256×256 resolution) leading to broken
temporal coherence, such as flickering and saturation artifacts. We address this by leveraging a pre-
trained video backbone with strong temporal modeling capabilities, resulting in more stable and
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consistent motion. While talking-head models excel at lip-sync for speech (Wang et al., 2025), they
are limited to facial motion and human voice. We focus instead on general sounds and diverse visual
motion.

To this end, we propose Syncphony, which generates high-quality videos at 380×640 resolution,
24fps, and up to 5 seconds in length, and most of all, synchronized to audio. We design Syncphony
to have joint self-attention of text-video and audio cross-attention with RoPE on top of a DiT ar-
chitecture. For training, we modify the flow matching loss to put more weight on the regions with
large motion. For sampling, we introduce a new synchronization guidance to strengthen audio-driven
generation while maintaining visual quality.

In this work, we provide a comprehensive set of experiments that evaluate synchronization, vi-
sual quality, and semantic alignment across real-world scenarios. In particular, we propose a novel
synchronization metric, CycleSync, designed for high-frame-rate video generation, overcoming the
limitations of existing metrics that assume unrealistic one-to-one audio-video mappings or operate
only at low temporal resolution. Our method, Syncphony, outperforms existing approaches across
all aspects, and we will release our code, models, and evaluation tools to support future research in
this direction.

2 RELATED WORKS

2.1 TEXT&IMAGE-TO-VIDEO GENERATION

Models. Based on the autoregressive models (Yan et al., 2021; Hong et al., 2022; Jin et al., 2024b)
and diffusion models (Ho et al., 2022; Brooks et al., 2024), video generative models have been
advanced dramatically. Notably, adapting DiT allows huge improvements in high-quality video gen-
eration with scalability (Peebles & Xie, 2023; Chen et al., 2023; Wang et al., 2023; HaCohen et al.,
2024). Chen et al. (2024), and Valevski et al. (2024) proposed a hybrid approach that combines au-
toregressive and diffusion models. Upon them, Jin et al. (2024a) proposes both a spatial and temporal
feature compression enabling the generation of long videos with high fidelity at a lower training cost.
Notably, they only allow text or an image as conditions. On the other hand, our method takes audio
as condition.

Guidance. Guidance mechanisms play a crucial role in improving sample quality across genera-
tive models. Classifier-Free Guidance (Ho & Salimans, 2022) interpolates between conditional and
null-conditional predictions to enhance visual fidelity, but requires models to be explicitly trained
with null conditions. Spatiotemporal Skip Guidance (Hyung et al., 2025) constructs a weak model
by skipping visually sensitive layers, and interpolates its predictions with those of the full model
to improve quality without additional training. However, in T2I and T2V architectures, visual and
semantic representations are often deeply entangled, making such selective skipping difficult.

2.2 AUDIO-TO-VIDEO GENERATION

Recent works on Audio-to-Video (A2V) generation have explored how to synthesize temporally
aligned videos conditioned on audio inputs. Lee et al. (2023) modulates cross-attention weights
based on audio amplitude to control video. Although this approach is simple, amplitude alone does
not transfer the semantic and temporal structure of audio, resulting in weak fine-grained synchro-
nization. On the other hand, Jeong et al. (2023); Yariv et al. (2023) project audio embeddings into
a text embedding space and generate frames using pre-trained text-to-video (T2V) models. This in-
direct audio-to-motion mapping is a bottleneck in delivering temporal expressiveness and hinders
precise alignment between audio cues and motion transitions. AVSyncD (Zhang et al., 2024) in-
jects audio layers into a Stable Diffusion-based text-to-image (T2I) model, but it is limited to the
T2I backbone’s spatial resolution and suffers from relatively shallow temporal modeling capacity.
Although Zhang et al. (2024) further introduces synchronization guidance, this requires additional
training and often causes flickering, degrading visual smoothness. While talking head models have
shown strong lip-sync performance for speech (Wang et al., 2025), they are limited to facial motion
and human voice. We instead focus on non-speech sounds and general visual motion, which could
complement lip-sync systems in real-world audio scenarios.
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Figure 1: Overview of our video generation framework. Given an initial frame, a text prompt,
and an audio waveform, the model autoregressively predicts each video latent through iterative de-
noising. At each timestep, it conditions on previously generated latents, while receiving multimodal
guidance: text features via joint self-attention, and audio features via cross-attention. For brevity,
latents are visualized as RGB frames, but they are spatiotemporal features extracted by VAE.

In contrast to these prior approaches, our method builds on the strengths of diffusion transformer-
based T2V models to directly incorporate fine-grained temporal audio cues. By leveraging a high-
capacity backbone capable of high-resolution, high-frame-rate generation and introducing targeted
synchronization guidance and loss-level modifications, our model achieves accurate audio-motion
synchronization across diverse domains while preserving visual fidelity.

Synchronization metrics. Existing synchronization metrics, such as RelSync (Zhang et al., 2024)
and AlignSync (Zhang et al., 2024), require downsampling to 6 fps, which reduces temporal resolu-
tion and undermines the evaluation of fine-grained motion. AV-Align (Yariv et al., 2023) assumes a
one-to-one correspondence between motion and audio peaks, which fails to generalize to real-world
scenarios involving preparatory or residual motion. For example, a hammer moves before the impact
sound and stops at the sound. To address these limitations, we propose a new synchronization metric
that supports high frame rates and generalizes to real-world audio–motion scenarios.

3 SYNCPHONY

3.1 OVERVIEW

Our goal is to generate high-quality videos that have motions aligned with audio inputs. We build
upon a pretrained autoregressive diffusion transformer (Jin et al., 2024a), which sequentially syn-
thesizes consecutive video chunks by denoising each chunk for given a previous chunk and a text
prompt. As shown in Figure 1, our model takes an initial frame, a text prompt, and an audio wave-
form as input. The initial frame is encoded into a latent z0 using a VAE, which serves as the
starting point for generating video latents {zl}Ll=1. Text features are extracted from pretrained en-
coders (Raffel et al., 2020; Radford et al., 2021), and audio features {ai}Laudio

i=0 are obtained from
DenseAV (Hamilton et al., 2024) encoder. Each transformer block includes a joint self-attention
layer, which attends over the concatenated sequence of text tokens and video latents. To incorpo-
rate audio, we insert a cross-attention layer before the joint self-attention layer in the later blocks,
allowing each video latent to attend to its aligned audio segment for fine-grained synchronization.

In the following subsections, we propose a motion-aware loss that puts more weight on the regions
with large motions for training (3.2), introduce a sampling strategy designed to sample the videos
toward better audio-conditional outputs (3.3), and describe additional architectural details (3.4).

3.2 MOTION-AWARE LOSS

Conventional video generation models typically use Mean Squared Error (MSE) loss, which mea-
sures the pixel or latent-level discrepancy between predicted and ground-truth frames. While MSE
is effective for general reconstruction, it treats all spatial and temporal regions equally, without dis-
tinguishing between static and dynamic areas. As a result, even when the model produces inaccurate
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(a) striking bowling

(b) dog barking

(c) machine gun shooting

Figure 2: Visualization of video frames (top), latent difference maps (middle), and audio waveforms
(bottom) over time. In (a) and (b), the latent differences correspond to key audio events such as pin
collisions and barking. In (c), although motion is not clearly visible in raw frames, latent differences
still reveal temporal alignment with machine gun audio signals.

motion timing or insufficient movement—e.g., a delayed or insufficient gun firing motion—the er-
ror remains low if the overall appearance is visually close to the ground truth. This may lead the
model to interpret poorly synchronized predictions as successful outputs, weakening its ability to
learn precise audio-visual alignment.

This limitation is particularly critical in real-world scenarios where audio cues correspond to dis-
tinct, temporally localized motion, such as a drum hit or bowling pin collision. In such cases, accu-
rate timing and appropriate motion magnitude are essential for maintaining natural synchronization.
Therefore, it is necessary to provide stronger and more focused supervision to areas involved in
high-motion events.

In Figure 2, we observe that latent differences between adjacent frames tend to correlate with audio
events, even when the corresponding motion is not clearly visible in the video frames, as in (c).
Based on this observation, we propose a Motion-aware Loss that amplifies the learning signal ac-
cording to the intensity of ground-truth motion. This amplifies supervision at moments of significant
movement, encouraging the model to better capture and align motion with audio cues.

The proposed loss function is defined as:

L = ∥ẑl − zGT
l ∥2 + λ · ∥(ẑl − zGT

l )⊙ (zGT
l − zGT

t−1︸ ︷︷ ︸
motion

)∥2, (1)

where ẑl and zGT
l denote the predicted and ground-truth latents at the t-th position in the video

latent sequence, respectively, and ⊙ denotes element-wise multiplication. The second term weights
prediction errors according to the magnitude of ground-truth motion between consecutive frames,
with λ as a hyperparameter (we set λ = 1).

This design ensures that prediction errors during dynamic motion are penalized more heavily than
those in static periods, encouraging the model to better capture the timing and intensity of important
motions.
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Figure 3: (a) Audio cross-attention with Audio RoPE. Each video latent attends to a local audio
segment using cross-attention. RoPE is applied to both video queries and audio keys, using a shared
positional embedder to align modalities in relative position space. (b) Audio Sync Guidance. An off-
sync model that skips the audio cross-attention layers guides the full model to better utilize audio
cues during sampling.

Notably, we do not directly use audio signal strength as a supervision signal. This is because audio
and motion do not always exhibit a one-to-one temporal alignment: motion may precede or follow
audio events, or span multiple frames. For instance, a lion may move before roaring, or a bowl-
ing ball may roll before impact. By focusing on ground-truth motion magnitude rather than audio
signal strength, our loss design allows the model to learn natural synchronization patterns without
rigidly assuming direct temporal alignment. Additional notes on motion-aware loss are provided in
Appendix A.

Overall, Motion-aware Loss strengthens the model’s attention to motion-relevant regions, encourag-
ing the model to learn diverse audio-motion relationships and generate natural, well-aligned motion
sequences.

3.3 AUDIO SYNC GUIDANCE

In audio-conditioned video generation, audio-driven layers are responsible for injecting timing cues
into the visual dynamics. However, these cues from audio are not always strong or clear, so it’s hard
for the model to determine whether to reflect them in the generated motion. For example, when a
drumstick hits a plastic surface, a subtle crinkling sound helps specify the exact target. Relying only
on the coarse impact sound can misplace the strike.

To address this, we propose Audio Sync Guidance (ASG) that reinforces the influence of audio sig-
nals so the model better captures and reflects them in motion. As illustrated in Figure 3(b), we run
two branches that share the same visual backbone: a full model with audio cross-attention layers en-
abled, and an off-sync model where only those layers are disabled. We found that the off-sync model
produces outputs that are visually similar to the full model’s, yet desynchronized (Please see the
supporting experiments in Appendix B.1). Thus, the difference between the two predictions isolates
the synchronization component and could serve as guidance for synchronization. By adding this
difference back into the full model’s output, ASG amplifies the influence of audio and encourages
more synchronized motion generation.

Formally, given a latent zt
l at denoising timestep t, the guided prediction is

ϵ̃wθ (z
t
l ) = ϵθ(z

t
l ) + w

(
ϵθ(z

t
l )− ϵoff-sync

θ (zt
l )
)
, (2)

where ϵθ(z
t
l ) is the denoising output of the full model, ϵoff-sync

θ (zt
l ) is the output with audio layers

skipped, and w is the guidance-strength hyperparameter controlling the degree of audio emphasis.
For clarity, we omit the integration with Classifier-Free Guidance; please see an Appendix B.2 for
the connection to CFG.

In summary, ASG highlights audio cues by disabling only the audio cross-attention layers in the off-
sync model, improving audio–motion alignment while preserving visual fidelity without additional
training.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Pretrained

V2A

Compare Temporal Peaks 

Generated Video

A2V

Input Audio Recovered Audio

Detected Peaks Detected Peaks

Figure 4: CycleSync metric pipeline. The generated video is fed into a pretrained Video-to-Audio
(V2A) model to reconstruct audio. We compare temporal peaks between the reconstructed and orig-
inal audio signals. High peak correspondence indicates that the generated video accurately preserves
the timing structure of the original audio.

3.4 ARCHITECTURAL DETAILS

Training layer selection. To leverage the pretrained video backbone effectively, we identify which
transformer blocks to fine-tune through a layer-wise sensitivity analysis. We find that earlier layers
primarily control spatial structure and semantic fidelity, whereas later layers govern temporal dy-
namics and motion refinement. Based on this, we insert audio-driven cross-attention only into the
later blocks and fine-tune them jointly. This strategy allows the model to focus on synchronizing
motion with audio signals while maintaining high visual fidelity and leveraging the strong general-
ization capability of the pretrained I2V backbone. Details are provided in Appendix D.1.2.

Audio conditioning. To synchronize video motion precisely with audio cues, we apply Rotary
Positional Embedding to inject relative temporal information into the audio features during cross-
attention (Audio RoPE), as illustrated in Figure 3(a). We confirm that Audio RoPE leads to tighter
temporal alignment between motion and sound events. Implementation details and an ablation study
are provided in Appendix D.2.

4 EVALUATING AUDIO–MOTION SYNCHRONIZATION

Although prior synchronization metrics (Zhang et al., 2024; Yariv et al., 2023) are useful, they
require a low fixed frame-rate or introduce wrong assumption that the peak magnitudes of audio
and video should match. It makes them less reliable for high-frame-rate videos or real-world audio-
motion scenarios.

To address these limitations, we propose CycleSync, a synchronization metric based on a video-
to-audio (V2A) reconstruction process. Instead of directly comparing motion and audio peaks, Cy-
cleSync evaluates whether the motion in a video provides enough signal to reconstruct the temporal
structure of the original audio. As illustrated in Figure 4, we feed the generated video into a state-of-
the-art V2A model (Viertola et al., 2025), and compare the resulting audio to the original input audio
by aligning their temporal peaks. By aligning audio peaks between the original and recovered audio,
we can assess whether the generated video contains sufficient timing and motion cues to reproduce
the original audio structure.

Formally, given an original audio signal a and a generated video v̂, we reconstruct the audio â using
a pretrained video-to-audio model fv2a:

â = fv2a(v̂). (3)

Let A = P (a) and Â = P (â) be the sets of onset peaks extracted from a and â, respectively. The
CycleSync score is computed via symmetric temporal matching with tolerance δ:

CycleSync =
1

2|A ∪ Â|

∑
a∈A

1
[
∃ â ∈ Â, |a− â| ≤ δ

]
+

∑
â∈Â

1 [∃a ∈ A, |a− â| ≤ δ]

 , (4)

where δ is a temporal tolerance and 1[·] is the indicator function.
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Table 1: Quantitative results on the AVSync15 dataset.

Input Model FID ↓ FVD ↓ IA ↑ IT ↑ CycleSync ↑ User Study
IQ ↑ FC ↑ Sync ↑

T+A TempoTokens (Yariv et al., 2023) 8.9 4187.2 27.24 27.88 13.10±1.16 - - -

I+T Pyramid Flow (Jin et al., 2024a) 8.9 550.7 34.99 29.34 14.25±1.39 - - -
Pyramid Flow (fine-tuned) 8.5 294.6 36.89 30.02 12.34±1.14 - - -

I+T+A AVSyncD (Zhang et al., 2024) 9.2 491.5 35.23 30.18 16.38±1.38 30 18 78
Ours 8.5 293.1 37.02 30.23 16.48±1.28 270 282 222

Groundtruth - - 37.06 30.18 22.15±1.8

A higher CycleSync score indicates that the generated video preserves the timing structure of the
original audio.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate our model using AVSync151 (Zhang et al., 2024) and TheGreat-
estHits2 (Owens et al., 2016), whose samples have synchronized audio and video.

Baselines. We compare our method against the following baseline models: We employ the Pyra-
mid Flow Video model(I+T2V) (Jin et al., 2024a), which conditions on text and image inputs, Tem-
poTokens(T+A2V), which conditions on audio and text inputs, and AVSyncD(I+T+A2V), which
conditions on audio and image inputs. For a closer comparison between I2V and A2V, we also em-
ploy a fine-tuned version of our model without audio layers, denoted as Pyramid Flow (fine-tuned).

Evaluation metrics. To assess visual quality, we report FID (Heusel et al., 2017) (Fréchet In-
ception Distance) and FVD (Unterthiner et al., 2019) (Fréchet Video Distance). FID measures the
fidelity of individual frames, while FVD evaluates the spatiotemporal coherence of the entire video.
To assess semantic alignment with conditioning modalities, we use Image-Text Similarity (IT) and
Image-Audio Similarity (IA). IT evaluates how well the generated frames correspond to the in-
put text prompt using CLIP (Radford et al., 2021), while IA measures semantic alignment between
audio signals and visual content using ImageBind (Girdhar et al., 2023). To assess audio-motion syn-
chronization, we report CycleSync, which evaluates whether the generated videos contain sufficient
motion cues synchronized with audio signals. We also conduct a user study on 150 videos from the
AVSync15 dataset. Participants compare video pairs across three criteria—synchronization (Sync),
image quality (IQ), and frame consistency (FC). Implementation details of the user study are pro-
vided in Appendix E.

Implementation details. We use the pretrained Pyramid Flow Video model (Jin et al., 2024a)
as the backbone. Generated videos are up to 5 seconds long at 24 fps and 380 × 640 resolution.
Audio is sampled at 16kHz. During training, we randomly sample training clips from different tem-
poral segments of each video to improve generalization to various audio-motion alignments. During
evaluation, we extract three 2-second clips at distinct time points per video. The AVSync15 dataset
provides 450 clips, and TheGreatestHits provides 732 clips for evaluation. We use CLIP (Radford
et al., 2021) and DenseAV (Hamilton et al., 2024) audio backbone as our text encoder and audio
encoder, respectively. We train our model on 4 NVIDIA RTX 3090 GPUs (24GB).

5.2 MAIN RESULTS

5.2.1 MODEL COMPARISON

1AVSync15 is a curated subset of the VGGSound dataset consisting of 1,500 videos from 15 action-related
classes.

2TheGreatestHits is a dataset where a person strikes various objects with drumsticks, producing distinct
impact sounds closely tied to visual motion.
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Table 2: Quantitative results on the TheGreatestHits dataset.

Input Model FID ↓ FVD ↓ IA ↑ IT ↑ CycleSync ↑

I+T Pyramid Flow (Jin et al., 2024a) 6.5 350.5 13.95 18.42 7.41±0.83

Pyramid Flow (fine-tuned) 6.9 195.6 14.13 20.86 9.23±0.92

I+T+A AVSyncD (Zhang et al., 2024) 6.8 327.8 12.35 21.77 9.89±0.84

Ours 6.7 166.2 13.83 19.64 16.18±1.26

Groundtruth - - 14.68 19.47 15.99±1.5

Pyramid Flow 

(fine-tuned)

ASyncD

Ours

(a) frog croaking (b) baby babbling crying (c) machine gun shooting

Figure 5: Qualitative comparison of generated videos. Our method produces more explicit and
temporally consistent motion compared to both baselines.

Quantitative results. Tables 1 and 2 show results on AVSync15 and TheGreatestHits. Across both
datasets, our model consistently outperforms baselines in synchronization accuracy while maintain-
ing competitive visual and semantic quality. Compared to AVSyncD, our model achieves higher
CycleSync scores and lower FID/FVD, indicating improved temporal coherence. User study further
confirms these gains, with clear preference for our model in synchronization, image quality, and
frame consistency.

On TheGreatestHits, our model even surpasses the ground-truth CycleSync score. We attribute this
to the generated videos exhibiting strong and clear motion aligned with audio events, whereas
ground-truth videos often contain off-event movements or sounds, such as hovering or background
noise. These results suggest that our model demonstrates greater sensitivity to audio cues under syn-
chronization metrics. Additional results using existing metrics (AV-Align, RelSync, AlignSync) are
reported in Appendix C.4.

Qualitative results. Figure 5 presents qualitative comparisons among ours, Pyramid Flow (fine-
tuned), and AVSyncD. Our method produces clearer motion dynamics and stable appearances,
whereas AVSyncD often suffers from saturation artifacts and weakened motion We recommend
watching the supplemental videos to see additional qualitative results (Appendix F.1).

5.2.2 METRIC COMPARISON

Controlled metric comparison. We analyze synchronization robustness under controlled tempo-
ral shifts. Details are provided in Appendix C.2. As shown in Figure 7, CycleSync is markedly more
sensitive to temporal misalignment than other metrics, clearly differentiating synchronized from
desynchronized cases.

Human alignment validation for CycleSync. We conduct a user study to assess how well Cy-
cleSync aligns with human perception. Details are provided in Appendix C.3. As shown in Table 7
and Table 8, CycleSync achieves the highest positive correlation with human preference, while prior
metrics show weak or negative trends.

5.3 ABLATION STUDY

Effect of Motion-aware Loss. When trained without Motion-aware Loss, the model tends to
produce weaker and less clearly timed motions. As shown in Figure 6, it often fails to initiate or
terminate motion in sync with the corresponding audio events. Incorporating Motion-aware Loss

8
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Table 3: Ablation results on AVSync15.

Model Variant FID ↓ FVD ↓ CycleSync ↑

w/o Motion-aware Loss 8.4 305.9 15.18±1.48

Full model w/o ASG 8.5 299.1 15.31±1.49

Full model w/ ASG (w = 1) 8.5 294.2 15.94±1.56

Full model w/ ASG (w = 2) 8.5 293.1 16.48±1.28

Full model w/ ASG (w = 4) 8.7 298.3 16.26±1.4

(a) frog croaking

w Motion-aware Loss

w/o Motion-aware Loss

(b) striking bowling

Figure 6: Ablation of Motion-aware Loss. (a) Without Motion-aware Loss, the model fails to ter-
minate the motion correctly at the end of the audio. (b) It also fails to trigger motion at the correct
audio onset. In contrast, with Motion-aware Loss, the model generates motion that more accurately
aligns with the beginning and end of the audio event.

improves both the magnitude and temporal precision of motion, particularly at the onset and off-
set of dynamic actions. This is because Motion-aware Loss selectively amplifies learning signals at
points of high motion intensity, guiding the model to learn more precisely on the timing structure of
audio-driven actions.

Effect of Audio Sync Guidance. As shown in Tables 3 , applying Audio Sync Guidance (ASG)
with scale w = 2 improves synchronization metrics while preserving visual fidelity. Increasing the
scale to w = 4 yields marginal gains in synchronization, but introduces over-exaggerated motion
(e.g., frog inflation or recoil motion), which slightly degrades visual realism reflected in higher FVD,
while FID remains stable.

6 CONCLUSION

We introduced Syncphony, a high-quality audio-synchronized video generation framework. By con-
ditioning on text, image, and audio inputs, our model captures both the semantic context and the
fine-grained temporal dynamics of motion. To improve audio-motion alignment, we incorporated
two key techniques: Motion-aware Loss encourages accurate timing by emphasizing high-motion
regions, and Audio Sync Guidance enhances sensitivity to audio signals during inference while
maintaining visual quality. To better evaluate synchronization accuracy, we proposed CycleSync,
a video-to-audio-based metric that measures whether the generated video retains sufficient motion
cues to reconstruct the original audio. This enables a more reliable assessment than the existing
metrics in real-world scenarios.

Limitation. While our Motion-aware Loss improves synchronization in audio-to-video generation
by emphasizing motion intensity, it assumes that the motion intensity corresponds to the audio sig-
nal, and it does not distinguish semantically meaningful movements from noisy movements, which
may induce wrong supervision. Addressing this limitation by incorporating semantic understanding
of motion or refining the noisy movements could not only improve synchronization but also enable
broader applicability to general video generation tasks without audio, where dynamic and expressive
motion is important. We also note that the limitations of CycleSync as a synchronization metric are
discussed in Appendix C.5.
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7 ETHICS STATEMENT

As a generative model, our method could be used to facilitate deceptive interactions that would cause
harm, such as fraud. It could be used to impersonate public figures and influence political processes,
or as a tool to promote hate speech or abuse. To address this, we will include explicit license terms
and usage guidelines to promote ethical and lawful use, referencing best practices such as the Adobe
Generative AI User Guidelines. If the model is released, implement safeguards such as prompt or
image filtering to restrict high-risk applications, including impersonation or politically manipulative
content.

8 REPRODUCIBILITY STATEMENT

Key components of our implementation are provided in the supplementary materials, and detailed
descriptions of our method, training, inference, and evaluation are included in the appendix. We will
release our code, trained models, and evaluation tools to ensure reproducibility.
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Table 4: Analysis of Audio Sync Guidance. The full model includes audio layers, whereas the off-
sync model skips them.

Model Variant FID ↓ FVD ↓ CycleSync ↑

Off-sync model 8.5 294.6 12.34±1.14

Full model 8.5 299.1 15.31±1.49

Full model w/ ASG 8.5 293.1 16.48±1.28
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A ADDITIONAL NOTES ON MOTION-AWARE LOSS

Motion-aware Loss is designed based on ground-truth motion magnitude, not audio amplitude. This
reflects the fact that motion peak and audio peak do not always exhibit one-to-one temporal align-
ment. Instead, audio events are often accompanied by diverse motion patterns that vary by context.

For example, some events, such as a gunshot or a dog’s bark, occur with motion and sound nearly
perfectly aligned. However, many others do not. A lion may start moving its mouth and body before
emitting a roar. A person winds up before throwing a ball. A hammering motion may start before the
sound and end just as the impact occurs. A trombone player moves the instrument before the sound
begins. A bowling ball rolls with a low rumble before producing a sharp impact sound when it hits
the pins.

Therefore, synchronizing motion to audio does not mean matching peak amplitudes. Rather, it in-
volves capturing the causal and contextual patterns of motion that correspond to different types of
audio events. Our loss focuses on motion regions, encouraging the model to learn this alignment
without relying on rigid audio-based timing. This design encourages the model to learn various
audio-motion relationships, leading to natural audio-visual aligned video generation.

B AUDIO SYNC GUIDANCE

B.1 DIFFERENCES BETWEEN FULL AND OFF-SYNC MODEL IN AUDIO SYNC GUIDANCE

To better understand how Audio Sync Guidance contributes to synchronization, we evaluate whether
an off-sync model—formed by skipping the audio layers—can still retain appearance and overall
motion. As shown in the last row of Figure 5 and “Off-sync model” of Table 4, the model remains out
of synchronization but still preserves appearance (FID) and motion quality (FVD). Since the visual
quality remains similar between the full and off-sync models, their difference primarily captures
audio-related motion cues. By adding this difference back into the full model’s output, Audio Sync
Guidance amplifies the influence of audio and encourages more synchronized motion generation.

B.2 INTEGRATION OF CFG AND AUDIO SYNC GUIDANCE

Classifier-Free Guidance (Ho & Salimans, 2022) interpolates between conditional (full) and null-
conditional predictions to enhance visual fidelity:

ϵ̃θ(z
t
l ) = ϵθ(z

t
l , c) + wt

(
ϵθ(z

t
l , c)− ϵθ(z

t
l , c∅)

)
(5)

At inference time, the Audio Sync Guidance and CFG are combined additively:

ϵ̃θ(z
t
l ) = ϵθ(z

t
l , c) + wa

(
ϵθ(z

t
l , c)− ϵoff-sync

θ (ztl , c)
)
+ wt

(
ϵθ(z

t
l , c)− ϵθ(z

t
l , c∅)

)
(6)

In our implementation, we use wa = 2 and wt = 4.
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B.3 AUDIO SYNC GUIDANCE COMPARED TO PRIOR SKIP-BASED METHOD

Audio Sync Guidance (ASG) is inspired by Hyung et al. (2025) but differs in both purpose and
design.

Hyung et al. (2025) improves visual fidelity by constructing a weak model that skips visually sensi-
tive layers and using it to guide the full model. In T2I/T2V settings, however, semantic and visual
features are heavily entangled, making such selective skipping difficult, model-dependent, and prone
to unintended degradations.

ASG instead targets synchronization. We skip only the audio-injection layers, creating an off-sync
model that preserves appearance but ignores audio cues. The difference between this off-sync and
the full model isolates synchronization as the guidance signal (see Appendix B.1).

This design is suited to A2V architectures, where audio and visual pathways are explicitly separated.
Skipping only the audio pathway perturbs synchronization without affecting visual fidelity, enabling
precise and stable guidance for improved audio–motion alignment.

C EVALUATION METRICS FOR SYNCHRONIZATION

C.1 IMPLEMENTATION DETAILS OF CYCLESYNC

We use V-AURA (Viertola et al., 2025) as the pretrained video-to-audio model fv2a, selected for its
demonstrated effectiveness in generating general-class, temporally aligned audio from videos. For
peak detection, we use librosa.onset.onset detect, and δ is fixed at 5 milliseconds.

C.2 CONTROLLED METRIC COMPARISON

To evaluate the effectiveness of CycleSync, we compare it with three existing synchronization met-
rics: AV-Align (Yariv et al., 2023), AlignSync, and RelSync (Zhang et al., 2024). We apply six
levels of synchronization shift to video clips from the AVSync15 (Zhang et al., 2024) and TheGreat-
estHits (Owens et al., 2016) datasets.

implementation detail. We extract three 2-second clips per video with linear intervals. To ensure
valid comparison under delay shifts, clips are sampled starting 0.5 seconds into the video, allowing
up to 0.5 seconds of temporal shift. Videos shorter than 2.5 seconds are excluded. It results in 438
clips from 150 videos in AVSync15, and 732 clips from 244 videos in TheGreatestHits.

AlignSync and RelSync are evaluated on videos downsampled to 6 fps. AV-Align is measured at 6
fps unless otherwise noted as 24 fps. CycleSync (Ours) is evaluated at 24 fps videos.

Synchronization configurations. A sample type with ”Perfect Sync” represents that Ground-
truth audio pairs with its original video. The other sample types with ”Delay 0.1s–0.5s” represent
that the video is temporally shifted by the indicated delay relative to its audio.

C.2.1 RESULTS AND ANALYSIS

Figure 7 shows how each metric responds to increasing audio-video misalignment. We observe that
existing metrics often struggle to clearly separate perfectly synchronized samples from delayed ones,
whereas CycleSync scores drop sharply with the misalignments. For absolute metric values, please
refer to Table 5 and Table 6.

AV-Align. The performance of AV-Align varies significantly depending on the frame rate. At 24
fps, we would expect the highest score for perfectly synchronized samples, but in both AVSync15
and TheGreatestHits, delayed samples receive higher scores than the ground-truth alignment. At 6
fps, AV-Align becomes more stable, but the separation between perfect and delayed cases remains
limited. This suggests that the metric may not reliably reflect fine-grained temporal misalignment at
higher frame rates.
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Moreover, as shown in Appendix C.4, there are cases where models without audio conditioning
obtain higher AV-Align scores than models explicitly guided by audio. This is because AV-Align
assumes a strict one-to-one correspondence between peaks in the audio and motion signals—an
assumption that often does not hold in natural scenarios, where motion may precede or follow audio
cues.

AlignSync and RelSync. AlignSync and RelSync generally show decreasing scores as the degree
of delay increases, indicating sensitivity to misalignment. However, they do not show clear dif-
ferences between perfectly synchronized samples and delayed ones, especially on TheGreatestHits
dataset. In addition, both metrics are designed for evaluation at 6 fps, which makes it difficult to
assess the performance of models operating at higher frame rates, such as 24 fps.

We also observe cases where models without audio conditioning receive higher scores than those
guided by audio (see Appendix C.4). One possible explanation is that these metrics are more effec-
tive when evaluating sequences that are simple temporal shifts of the same ground-truth content, as
assumed during training. In contrast, when the evaluated sequence differs from the original ground-
truth content, the metrics may no longer provide reliable scores.

CycleSync. CycleSync clearly distinguishes perfectly synchronized samples from those with tem-
poral misalignment. Once the delay exceeds a certain threshold, the differences between misaligned
cases become less pronounced. In other words, the score is not strictly monotonically decreasing.

This is due to CycleSync’s use of a fixed 0.05s tolerance window to determine alignment between
onset peaks in the original and reconstructed audio. While this allows for robust separation between
synchronized and unsynchronized cases, it does not explicitly quantify how far misaligned peaks
fall beyond the threshold.

This behavior arises because the tolerance hyperparameter is set to 0.05s, and CycleSync determines
alignment between onset peaks in the original and reconstructed audio within this fixed tolerance
window. While this design provides robust separation between synchronized and unsynchronized
cases, it does not explicitly quantify how far misaligned peaks fall beyond the threshold. It could
be addressed by incorporating multi-scale tolerance or continuous scoring mechanisms to capture
varying degrees of misalignment. We leave this as future work.
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Figure 7: Comparison of relative synchronization scores under increasing audio-video delays on
AVSync15 and TheGreatestHits datasets. The vertical axis denotes each metric’s score normalized
by its value under perfect synchronization (0.0s).

C.3 HUMAN ALIGNMENT VALIDATION FOR CYCLESYNC

Human evaluation is essential for establishing a reliable synchronization metric. To assess how well
CycleSync aligns with human perception, we conduct a user study with 9 participants, who rate the
sync quality of 20 videos, sampled from Pyramid Flow and Syncphony, on a 1–5 scale. We then
compute Pearson correlations between the human ratings and the metric scores.
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Table 5: Comparison of synchronization metric scores on the AVSync15 dataset. Parentheses show
percentage change from perfect synchronization (positive = increase, negative = decrease).

Sample Type AV-Align (24fps) ↑ AV-Align ↑ AlignSync ↑ RelSync ↑ CycleSync ↑

Perfect Sync 24.22 (0.0%) 20.30 (-0.0%) 25.04 (-0.0%) 50.00 (0.0%) 20.97 (0.0%)
Delay 0.1s 24.29 (+0.3%) 19.76 (-2.7%) 24.89 (-0.6%) 49.70 (-0.6%) 17.48 (-16.6%)
Delay 0.2s 24.63 (+1.7%) 19.06 (-6.1%) 24.39 (-2.6%) 48.70 (-2.6%) 13.96 (-33.4%)
Delay 0.3s 24.49 (+1.1%) 19.03 (-6.3%) 24.05 (-4.0%) 48.04 (-3.9%) 12.03 (-42.6%)
Delay 0.4s 24.25 (+0.1%) 19.71 (-2.9%) 23.74 (-5.2%) 47.41 (-5.2%) 12.43 (-40.7%)
Delay 0.5s 25.24 (+4.2%) 19.20 (-5.4%) 23.70 (-5.4%) 47.33 (-5.3%) 11.11 (-47.0%)

Table 6: Comparison of synchronization metric scores on TheGreatestHits dataset. Parentheses show
percentage change from perfect synchronization (positive = increase, negative = decrease).

Sample Type AV-Align (24fps) ↑ AV-Align ↑ AlignSync ↑ RelSync ↑ CycleSync ↑

Perfect Sync 14.84 (0.0%) 27.27 (0.0%) 25.07 (0.0%) 50.00 (0.0%) 16.52 (0.0%)
Delay 0.1s 17.71 (+19.3%) 26.05 (-4.5%) 24.86 (-0.8%) 49.59 (-0.8%) 6.97 (-57.9%)
Delay 0.2s 14.67 (-1.2%) 25.48 (-6.6%) 24.76 (-1.2%) 49.40 (-1.2%) 7.30 (-55.8%)
Delay 0.3s 15.25 (+2.8%) 24.20 (-11.3%) 24.61 (-1.8%) 49.11 (-1.8%) 8.06 (-51.2%)
Delay 0.4s 14.91 (+0.5%) 24.45 (-10.3%) 24.63 (-1.8%) 49.15 (-1.7%) 9.29 (-43.77%)
Delay 0.5s 15.21 (+2.5%) 25.15 (-7.8%) 24.59 (-1.9%) 49.06 (-1.9%) 10.30 (-37.65%)

Correlation with human ratings. As shown in Table 7, CycleSync achieved the highest positive
correlation with human judgments (r = 0.486, 95% CI [0.053, 0.919]).

Model ranking agreement. We further compared model-level rankings derived from each metric
against human ratings (Table 8). Only CycleSync correctly reflected the human preference between
the models.

These results provide strong empirical evidence that CycleSync is both quantitatively sensitive to
temporal misalignment and best aligned with human perception, making it a more reliable synchro-
nization metric than existing metrics.

C.4 RESULTS OF BASELINES AND SYNCPHONY WITH EXISTING METRICS

We additionally report the performance of baseline models and ours using existing synchronization
metrics on the AVSync15 and TheGreatestHits datasets in Table 9 and Table 10, respectively.

On AVSync15, the fine-tuned Pyramid Flow model, which generates audio-independent but plau-
sible motion, achieves the highest AV-Align score. A similar pattern is observed in TheGreat-
estHits, where the same model also obtains higher AlignSync and RelSync scores than other audio-
conditioned models.

These results reveal a limitation of existing metrics, which tend to favor models that produce highly
dynamic motion with plausible timing, even if that motion is not aligned with the audio signal.

In contrast, CycleSync consistently assigns the lowest scores to the same model across both datasets.
This is because CycleSync penalizes mismatches in temporal structure between the original audio
and the reconstructed audio from the generated video. Rather than comparing audio and motion
peaks directly, CycleSync compares the temporal structure of the original and reconstructed audio
signals, enabling more precise assessment of synchronization quality.

C.5 LIMITATION OF CYCLESYNC.

As a reconstruction-based metric, CycleSync relies on the quality and behavior of the underlying
video-to-audio (V2A) model. The reconstructed audio may sometimes reflect dataset-level biases
rather than the visual content of the input video itself.
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Table 7: Correlation with human ratings. CycleSync achieves the highest positive correlation with
human judgments, while other metrics show weak or negative trends.

Metric Correlation 95% CI Lower 95% CI Upper

CycleSync 0.486 0.053 0.919
AV-Align 0.043 -0.451 0.538
RelSync -0.623 -1.011 -0.236
AlignSync -0.625 -1.011 -0.238

Table 8: Model ranking agreement with human ratings. Only CycleSync correctly reflects human
preference, ranking Syncphony above Pyramid Flow.

Model Human Score CycleSync AV-Align RelSync AlignSync

Pyramid Flow (I2V) 2.68 8.15 24.96 55.36 27.75
Syncphony (Ours) 4.30 22.04 21.88 50.44 25.19

For example, in frog videos, although only a single frog may be visible, many clips in the dataset
include ambient sounds from nearby frogs. As a result, the reconstructed audio sometimes contains
multiple frog sounds, regardless of the actual motion in the video. Similarly, bowling videos in the
dataset often include background music, which can occasionally appear in the reconstructed audio
even if it is not visually implied. Such cases may affect CycleSync scores in specific contexts. This
issue could potentially be addressed by improving the V2A model or applying post-processing,
which we leave for future work.

D ARCHITECTURAL DETAILS

D.1 TRAINING LAYER SELECTION

D.1.1 VIDEO GENERATION BACKBONE

We adopt Pyramid Flow (Jin et al., 2024a) as the video generation backbone due to its efficiency
and scalability in generating long, high-resolution videos. Pyramid Flow is an autoregressive diffu-
sion transformer trained with a flow-matching objective, which sequentially synthesizes consecutive
video chunks by denoising each chunk for given a previous chunk and a text prompt.

To capture temporal and spatial consistency, it employs 3D Rotary Positional Encoding (RoPE) (Su
et al., 2024) within its self-attention layers, enabling the model to encode relative positions across
time, height, and width. In addition, the model dynamically adjusts resolution throughout the denois-
ing process—using low-resolution frames at early (noisier) timesteps and high-resolution frames at
later (cleaner) stages—thereby reducing computational cost while maintaining visual detail.

This design enables resource-efficient training and generation, supporting high-resolution and long-
duration video synthesis even under constrained computational resources.

D.1.2 TRAINING LAYER SELECTION IN VIDEO BACKBONE

Pyramid Flow consists of 24 transformer blocks. To identify which layers to fine-tune, we individ-
ually skip each of the 24 transformer blocks during inference and observe the effects on image-to-
video (I2V) generation (see Figures 10 and 11).

Skipping early blocks (0–7) significantly degrades appearance, often causing artifacts in the back-
ground and object structure. In contrast, skipping later blocks (8–23) mostly preserves the appear-
ance of the input image (first frame) in the generated video, primarily affecting the motion. This
suggests that early blocks are critical for preserving the input’s appearance, whereas later blocks
are responsible for refining motion. This separation aligns with the architecture: early blocks use
separate attention weights for text and video, while later blocks share them. Based on this functional
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Table 9: Quantitative results on the AVSync15 dataset.

Input Model AV-Align ↑ AlignSync ↑ RelSync ↑ CycleSync ↑
T+A TempoTokens (Yariv et al., 2023) 15.51 22.38 46.91 13.10

I+T Pyramid Flow (Jin et al., 2024a) 18.85 23.65 47.56 14.25
Pyramid Flow (fine-tuned) 20.69 23.97 47.76 12.34

I+T+A
AVSyncD (Zhang et al., 2024) 19.31 24.61 48.99 16.38
Ours w/o ASG (w = 0) 20.01 24.24 48.28 15.31
Ours w/ ASG (w = 2) 19.89 24.45 48.74 16.48
Ours w/ ASG (w = 4) 20.00 24.58 49.04 16.26

Groundtruth 20.84 25.10 50.00 22.15

Table 10: Quantitative results on TheGreatestHits dataset.

Input Model AV-Align ↑ AlignSync ↑ RelSync ↑ CycleSync ↑
I+T Pyramid Flow (Jin et al., 2024a) 25.24 25.12 50.46 7.41

Pyramid Flow (fine-tuned) 26.76 26.67 53.35 9.23

I+T+A
AVSyncD (Zhang et al., 2024) 23.29 26.55 53.07 9.89
Ours w/o ASG (w = 0) 27.11 26.08 52.21 11.70
Ours w/ ASG (w = 2) 26.92 26.10 52.27 16.18
Ours w/ ASG (w = 4) 26.81 27.04 54.14 17.71

Groundtruth 26.00 25.07 50.00 15.99

and structural separation, we fine-tune only the last 16 blocks (8–23) with minimal impact on the
pretrained model’s visual fidelity.

D.2 AUDIO ROPE

D.2.1 IMPLEMENTATION DETAILS

To encode the temporal structure of audio features explicitly, we apply Rotary Positional Encod-
ing (RoPE) to inject relative temporal information directly into the cross-attention mechanism, as
illustrated in Figure 3(a).

We first obtain video latents {zl}Lvideo
l=0 from a VAE encoder, where each zl represents a compressed

spatiotemporal feature at the l-th position in the video sequence. Simultaneously, we extract audio
features {ai}Laudio

i=0 from a DenseAV encoder, capturing the temporal and semantic structure of the
audio input.

To align these modalities, we divide the audio sequence into local segments corresponding to each
video latent. For each target video latent zl, we define the corresponding audio segment Al as:

Al = {ai | i ∈ [α(l −∆), α(l +∆)]}, (7)

where α is a scaling factor mapping video indices to audio indices (accounting for the different
sequence lengths), and ∆ determines the width of the temporal window(we set ∆=1).

Then, we apply Audio RoPE to the audio segments. The procedure is as follows:

Step 1. Assign positional indices.

• Each video latent zl is assigned 3D coordinates (l, h, w) representing its temporal and spatial
location within the video sequence.

• For each audio segment Al, the constituent audio features are assigned linearly interpolated tem-
poral indices within the range [l − (∆ + 0.5), l + (∆ + 0.5)], such that the center of the segment
aligns exactly with l.
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Table 11: Ablation of Audio RoPE.

Model Variant CycleSync ↑

w/o Audio RoPE 14.41±1.40

w/ Audio RoPE 15.31±1.49

Step 2. Project into query and key spaces.

ql = WQzl, Kl = {WKai | ai ∈ Al}, (8)

where WQ and WK are learnable linear projection matrices.

Step 3. Apply RoPE rotations.

qrope
l = RoPE(ql, (l, hl, wl)), Krope

l = {RoPE(WKai, (ti, 0, 0)) | ai ∈ Al}, (9)

where ti denotes the interpolated temporal index assigned to each ai.

Step 4. Compute cross-attention between video latent zl and audio segment Al:

Attention(zl,Al) = Softmax
(
qrope
l (Krope

l )⊤√
d

)
zl, (10)

where zl = {WV ai | ai ∈ Al} is the set of value projections of the audio features, and d is the
dimension of the projected space.

By explicitly injecting temporally aligned positional cues into both video and audio features, our
model captures the sequential structure of audio signals more effectively, leading to improved syn-
chronization between generated video motion and corresponding audio events.

D.3 ABLATION STUDY

We conduct ablation experiments to examine the effect of Audio RoPE. The results in Table 11
indicate that using Audio RoPE leads to higher synchronization quality compared to the model
without it. Without applying RoPE to audio features, the model frequently exhibits misalignments,
with motions often preceding or lagging behind the corresponding audio cues. In contrast, applying
RoPE to the audio features results in tighter temporal alignment between motion and sound events,
enabling the model to better capture the sequential structure of the audio input. Additional ablation
examples are included in the supplementary materials (Appendix G).

E USER STUDY

To assess the perceptual quality of our generated videos, we conducted a user study comparing our
method with the state-of-the-art Audio-to-Video model AVSyncD (Zhang et al., 2024). We select
AVSyncD as the sole baseline in the user study, as other baselines generate noticeably unsynchro-
nized motion. The evaluation focused on three aspects: synchronization with audio, image quality,
and frame consistency.

The study was conducted using all 150 test videos from the AVSync15 dataset. These were divided
into five subsets of 30 videos each, with each subset assigned to two participants (10 participants
total). For every video, participants were shown two versions—one generated by our model and one
by AVSyncD based on the same audio input and initial image. Participants were asked to answer the
three questions for each video pair:

• Synchronization: Which video is better synchronized with the audio in terms of motion timing?
• Image Quality: Which video has better image quality in terms of realism and clarity?
• Frame Consistency: Which video is more visually consistent across frames, without flickering

or sudden jumps?
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As illustrated in Figure 9, participants evaluated video pairs using a web interface showing both
videos and three corresponding questions.

The results, summarized in Figure 8, show that our model was consistently preferred: 74% for syn-
chronization, 90% for image quality, and 94% for frame consistency.

Frame Consistency

Image Quality

Synchronization

94%

90%

74%
Ours vs. AVSyncD

Figure 8: Human preference rates (%) for our method over ASyncD across three evaluation criteria.

These results demonstrate that our model is consistently favored by human evaluators across all
three aspects. This further validates the effectiveness of our synchronization mechanisms and the
visual fidelity of our methods.

F ADDITIONAL VIDEO SAMPLES

F.1 SAMPLES FROM SYNCPHONY

Please see the top sections of the attached HTML file ("Html_Suppl/index.html") for gen-
erated videos from Syncphony.

G ABLATION SAMPLES

Please refer to Section Ablations in the attached HTML file ("Html_Suppl/index.html"),
which includes ablation results for Motion-aware Loss, Audio Sync Guidance, and Audio RoPE.

H COMPARISON SAMPLES

Please refer to Section Comparison in the attached HTML file ("Html_Suppl/index.html"),
which compares videos generated by our model, AVSyncD Zhang et al. (2024), and Pyramid Flow
(fine-tuned), a variant of our model without audio cross-attention layers.

I IMPLEMENTATION AND EXPERIMENTAL DETAILS

I.1 WHY IMAGE-TO-VIDEO BACKBONE?

We also applied our method to a Text-to-Video (T2V) model, AnimateDiff (Guo et al., 2023), and
trained it on the AVSync15 dataset, which contains limited 1,350 training samples. We found the
model generates motion aligned with audio, but it shows overfitting, with limited diversity in appear-
ance. This is because T2V models have to generate both appearance and motion without a reference
image. With a small dataset, it becomes difficult to produce diverse appearances, and even harder to
learn various audio-driven motion patterns.

In contrast, Image-to-Video (I2V) models, such as Pyramid Flow (Jin et al., 2024a), are conditioned
on an initial image and focus on predicting motion rather than full appearance. This simplifies the
learning process and reduces the risk of overfitting. For these reasons, we adopt the I2V model as
our video generation backbone.

I.2 TRAINING AND INFERENCE SETTINGS

We train our model using 4 NVIDIA RTX 3090 GPUs (24GB each) with a total batch size of 32.
Training takes 34 hours to reach 33,000 steps. For all experiments, we use 30 denoising steps. We
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follow Pyramid Flow in setting the classifier-free guidance (CFG) strength to 7.0 for the first latent
and 4.0 for the rest. For Audio Sync Guidance, we use w = 2, where w = 0 disables the guidance.

Inference time for a 5-second video (with pre-encoded audio and text features) is as follows:

• Audio Guidance: 2 min 53 sec
• w/o Audio Guidance: 2 min 01 sec
• w/o Audio Layers: 1 min 43 sec

At least 16 GB of GPU memory is required to generate 5-second videos.

I.3 TRAINING AND EVALUATION DATASETS

We use two datasets for training and evaluation:

• AVSync15 (Zhang et al., 2024): 1,350 videos for training and 150 for testing. For evaluation, we
linearly extract 3 clips per video, resulting in 450 evaluation clips.

• TheGreatestHits (Owens et al., 2016): 733 videos for training and 244 for testing, resulting in
732 evaluation clips.

During training, we randomly sample clips from different temporal regions of each video to improve
generalization to various audio-motion alignments.

J APPLICABILITY OF SYNCPHONY TECHNIQUES TO OTHER MODALITIES

While Syncphony focuses on audio-to-video generation, we believe the proposed techniques are
applicable to other modalities.

Motion-aware Loss, by amplifying learning signals in high-motion regions, encourages the model
to focus on dynamic cues that reflect physically grounded movements. This can benefit tasks like
audio-to-3D animation, text-to-video, and text-to-3D, where generating realistic motion is essential.

In contrast, Audio Sync Guidance are designed to improve synchronization between audio and mo-
tion. This technique is applicable to tasks such as audio-to-3D animation, provided that the model
adopts an attention-based architecture with functionally well-separated layers, which enables clean
injection of audio signals into the network.
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Figure 9: Screenshot of the user study interface of each video pair with questions.
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Figure 10: Frame results of skipping each transformer block individually.
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Figure 11: Frame results of skipping each transformer block individually.
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