

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SYNCPHONY: SYNCHRONIZED AUDIO-TO-VIDEO GENERATION WITH DIFFUSION TRANSFORMERS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Text-to-video and image-to-video generation have made rapid progress in visual quality, but they remain limited in controlling the precise timing of motion. In contrast, audio provides temporal cues aligned with video motion, making it a promising condition for temporally controlled video generation. However, existing audio-to-video (A2V) models struggle with fine-grained synchronization due to indirect conditioning mechanisms or limited temporal modeling capacity. We present *Syncphony*, which generates 380×640 resolution, 24fps videos synchronized with diverse audio inputs. Our approach builds upon a pre-trained video backbone and incorporates two key components to improve synchronization: (1) **Motion-aware Loss**, which emphasizes learning at high-motion regions; (2) **Audio Sync Guidance**, which guides the full model using a visually aligned off-sync model without audio layers to better exploit audio cues at inference while maintaining visual quality. To evaluate synchronization, we propose **CycleSync**, a video-to-audio-based metric that measures the amount of motion cues in the generated video to reconstruct the original audio. Experiments on AVSync15 and The Greatest Hits datasets demonstrate that **Syncphony** outperforms existing methods in both synchronization accuracy and visual quality.

## 1 INTRODUCTION

Video generation has achieved remarkable progress especially in text-to-video (T2V) and image-to-video (I2V). They synthesize visually crisp and temporally coherent videos that match the given text prompt and/or a starting frame. However, we still need additional ways to control the motions that are difficult to control by the texts or the starting frames. For example, texts inherently lack explicit timings of when and how motions would occur, although they may describe motions, e.g., “dog barking” and “striking bowling”. In what rhythm would the dog bark? When is the ball released, how fast does it roll, and when does it hit the pins? Similarly, image-based conditions also face inherent limitations. An image can convey information about the appearance, pose, background, and layout of the scene, but it represents only a static snapshot of a single moment.

In contrast, audio signals inherently carry temporal clues because audio and video share the same temporal axis. Returning to the earlier examples, the accompanying audio would provide how many times and exactly when the dog barks, when the ball is released, how quickly it travels, and when it hits the pins. Therefore, we tackle generating videos that are synchronized to audios.

Even with audio, text, or image conditions, existing audio-to-video methods (Lee et al., 2023; Jeong et al., 2023; Yariv et al., 2023; Zhang et al., 2024) struggle with fine-grained synchronization between audio and motion. These approaches rely on indirect mappings, such as magnitude-based adjustments (Lee et al., 2023) or audio-to-text projections (Jeong et al., 2023; Yariv et al., 2023), which fail to reflect the complex and detailed temporal structures in audio signals. Instead, we directly inject audio features into the visual generation process via a cross-attention mechanism, enabling audio-motion alignment. In parallel, compared to T2V models (Jin et al., 2024a; HaCohen et al., 2024; Blattmann et al., 2023; Wan et al., 2025) which generate high-resolution, high-frame-rate, temporally coherent videos, Zhang et al. (2024) adds temporal layers to an image backbone, training them from scratch with limited data (e.g., 6 fps at 256×256 resolution) leading to broken temporal coherence, such as flickering and saturation artifacts. We address this by leveraging a pre-

054 trained video backbone with strong temporal modeling capabilities, resulting in more stable and  
 055 consistent motion.

056  
 057 **Despite these advancements, audio-to-video generation still faces a fundamental challenge: MSE-**  
 058 **based objectives alone are insufficient for modeling accurate motion timing and appropriate motion**  
 059 **magnitude. In diffusion or flow models, MSE is effective for reconstructing overall visual appear-**  
 060 **ance, but it provides weak supervision for localized, precisely timed motion changes. Therefore,**  
 061 **stronger and more targeted supervision is needed in regions that exhibit significant motion.**

062 To this end, we propose Syncphony, which generates high-quality videos at 380×640 resolution,  
 063 24fps, and up to 5 seconds in length, and most of all, synchronized to audio. We design Syncphony  
 064 to have joint self-attention of text-video and audio cross-attention with RoPE on top of a DiT archi-  
 065 tecture.

066 For training, we introduce a motion-focused loss that places greater emphasis on regions exhibiting  
 067 significant visual movement. This encourages the model to better detect motion that is causally  
 068 linked to the audio signal, even when such motion is highly localized. Furthermore, for sampling,  
 069 we introduce a novel synchronization guidance strategy that enhances audio-driven motion without  
 070 compromising visual fidelity. Motivated by the observation that applying traditional classifier-free  
 071 guidance to audio conditions makes it difficult to train scenes without audio, we instead propose a  
 072 guidance method that skips the audio layer itself, rather than dropping the audio condition.

073 Also, we provide a comprehensive set of experiments that evaluate synchronization, visual quality,  
 074 and semantic alignment across real-world scenarios. In particular, we propose a novel synchroniza-  
 075 tion metric, CycleSync, designed for high-frame-rate video generation, overcoming the limitations  
 076 of existing metrics that assume unrealistic one-to-one audio-video mappings or operate only at low  
 077 temporal resolution. **Using CycleSync, we demonstrate that our approach successfully models varied**  
 078 **audio-motion dynamics. Overall, our** method, Syncphony, outperforms existing approaches across  
 079 all aspects, and we will release our code, models, and evaluation tools to support future research in  
 080 this direction.

## 081 2 RELATED WORKS

### 082 2.1 TEXT&IMAGE-TO-VIDEO GENERATION

083 **Models.** Based on the autoregressive models (Yan et al., 2021; Hong et al., 2022; Jin et al., 2024b)  
 084 and diffusion models (Ho et al., 2022; Brooks et al., 2024), video generative models have been  
 085 advanced dramatically. Notably, adapting DiT allows huge improvements in high-quality video gen-  
 086 eration with scalability (Peebles & Xie, 2023; Chen et al., 2023; Wang et al., 2023; HaCohen et al.,  
 087 2024). Chen et al. (2024), and Valevski et al. (2024) proposed a hybrid approach that combines au-  
 088 toregressive and diffusion models. Upon them, Jin et al. (2024a) proposes both a spatial and temporal  
 089 feature compression enabling the generation of long videos with high fidelity at a lower training cost.  
 090 Notably, they only allow text or an image as conditions. On the other hand, our method takes audio  
 091 as condition.

092 **Guidance.** Guidance mechanisms play a crucial role in improving sample quality across genera-  
 093 tive models. Classifier-Free Guidance (Ho & Salimans, 2022) interpolates between conditional and  
 094 null-conditional predictions to enhance visual fidelity, but requires models to be explicitly trained  
 095 with null conditions. Spatiotemporal Skip Guidance (Hyung et al., 2025) constructs a weak model  
 096 by skipping visually sensitive layers, and interpolates its predictions with those of the full model  
 097 to improve quality without additional training. However, in T2I and T2V architectures, visual and  
 098 semantic representations are often deeply entangled, making such selective skipping difficult.

### 099 2.2 AUDIO-TO-VIDEO GENERATION

100 Recent works on Audio-to-Video (A2V) generation have explored how to synthesize temporally  
 101 aligned videos conditioned on audio inputs. Lee et al. (2023) modulates cross-attention weights  
 102 based on audio amplitude to control video. Although this approach is simple, amplitude alone does  
 103 not transfer the semantic and temporal structure of audio, resulting in weak fine-grained synchro-  
 104 nization. On the other hand, Jeong et al. (2023); Yariv et al. (2023) project audio embeddings into

108 a text embedding space and generate frames using pre-trained text-to-video (T2V) models. This  
 109 indirect audio-to-motion mapping is a bottleneck in delivering temporal expressiveness and hinders  
 110 precise alignment between audio cues and motion transitions. AVSyncD (Zhang et al., 2024) in-  
 111 jects audio layers into a Stable Diffusion-based text-to-image (T2I) model, but it is limited to the  
 112 T2I backbone’s spatial resolution and suffers from relatively shallow temporal modeling capacity.  
 113 Although Zhang et al. (2024) further introduces synchronization guidance, this requires additional  
 114 training and often causes flickering, degrading visual smoothness. While talking head models have  
 115 shown strong lip-sync performance for speech (Wang et al., 2025), they are limited to facial motion  
 116 and human voice. We instead focus on non-speech sounds and general visual motion, which could  
 117 complement lip-sync systems in real-world audio scenarios.

118 In contrast to these prior approaches, our method builds on the strengths of diffusion transformer-  
 119 based T2V models to directly incorporate fine-grained temporal audio cues. By leveraging a high-  
 120 capacity backbone capable of high-resolution, high-frame-rate generation and introducing targeted  
 121 synchronization guidance and loss-level modifications, our model achieves accurate audio-motion  
 122 synchronization across diverse domains while preserving visual fidelity.

123 **Synchronization metrics.** Existing synchronization metrics, such as RelSync (Zhang et al., 2024)  
 124 and AlignSync (Zhang et al., 2024), require downsampling to 6 fps, which reduces temporal resolu-  
 125 tion and undermines the evaluation of fine-grained motion. AV-Align (Yariv et al., 2023) assumes a  
 126 one-to-one correspondence between motion and audio peaks, which fails to generalize to real-world  
 127 scenarios involving preparatory or residual motion. For example, a hammer moves before the impact  
 128 sound and stops at the sound. To address these limitations, we propose a new synchronization metric  
 129 that supports high frame rates and generalizes to real-world audio-motion scenarios.

### 131 3 SYNCOPHY

#### 132 3.1 OVERVIEW

133 Our goal is to generate high-quality videos that have motions aligned with audio inputs. We build  
 134 upon a pretrained autoregressive diffusion transformer (Jin et al., 2024a), which sequentially syn-  
 135 thesizes consecutive video chunks by denoising each chunk for given a previous chunk and a text  
 136 prompt. As shown in Figure 1, our model takes an initial frame, a text prompt, and an audio wave-  
 137 form as input. The initial frame is encoded into a latent  $z_0$  using a VAE, which serves as the  
 138 starting point for generating video latents  $\{z_l\}_{l=1}^L$ . Text features are extracted from pretrained en-  
 139 coders (Raffel et al., 2020; Radford et al., 2021), and audio features  $\{a_i\}_{i=0}^{L_{\text{audio}}}$  are obtained from  
 140 DenseAV (Hamilton et al., 2024) encoder. Each transformer block includes a joint self-attention  
 141 layer, which attends over the concatenated sequence of text tokens and video latents. To incorpo-  
 142 rate audio, we insert a cross-attention layer before the joint self-attention layer in the later blocks,  
 143 allowing each video latent to attend to its aligned audio segment for fine-grained synchronization.

144 In the following subsections, we propose a motion-aware loss that puts more weight on the regions  
 145 with large motions for training (3.2), introduce a sampling strategy designed to sample the videos  
 146 toward better audio-conditional outputs (3.3), and describe additional architectural details (3.4).

#### 150 3.2 MOTION-AWARE LOSS

151 Conventional video generation models typically use Mean Squared Error (MSE) loss, which mea-  
 152 sures the pixel or latent-level discrepancy between predicted and ground-truth frames. While MSE  
 153 is effective for general reconstruction, it treats all spatial and temporal regions equally, without dis-  
 154 tinguishing between static and dynamic areas. As a result, even when the model produces inaccurate  
 155 motion timing or insufficient movement—e.g., a delayed or insufficient gun firing motion—the er-  
 156 ror remains low if the overall appearance is visually close to the ground truth. This may lead the  
 157 model to interpret poorly synchronized predictions as successful outputs, weakening its ability to  
 158 learn precise audio-visual alignment.

159 This limitation is particularly critical in real-world scenarios where audio cues correspond to dis-  
 160 tinct, temporally localized motion, such as a drum hit or bowling pin collision. In such cases, accu-  
 161 rate timing and appropriate motion magnitude are essential for maintaining natural synchronization.

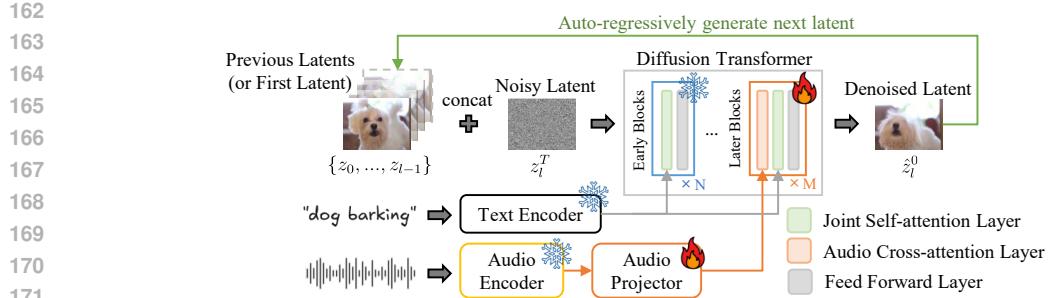


Figure 1: **Overview of our video generation framework.** Given an initial frame, a text prompt, and an audio waveform, the model autoregressively predicts each video latent through iterative denoising. The Diffusion Transformer is divided into two groups of transformer blocks: the early blocks (frozen, blue) and the later blocks (trainable, orange). Text features are injected into all blocks via joint self-attention, whereas audio cross-attention layers are inserted *only into the later (trainable) blocks*. For brevity, latents are visualized as RGB frames, but they are spatiotemporal features extracted by VAE.

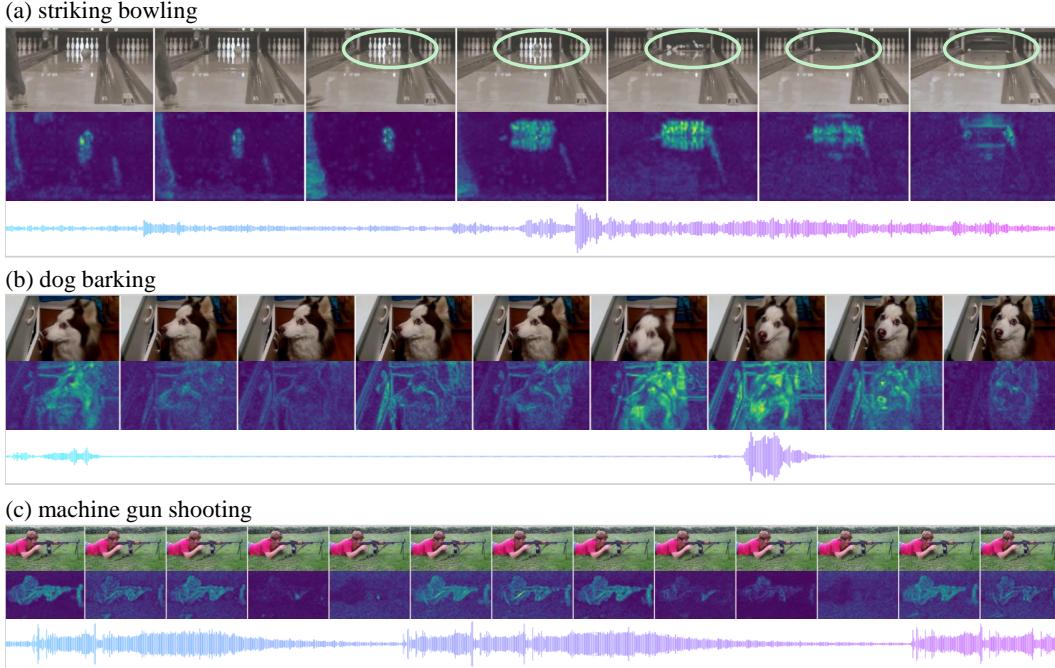


Figure 2: Visualization of video frames (top), latent difference maps (middle), and audio waveforms (bottom) over time. In (a) and (b), the latent differences correspond to key audio events such as pin collisions and barking. In (c), although motion is not clearly visible in raw frames, latent differences still reveal temporal alignment with machine gun audio signals.

Therefore, it is necessary to provide stronger and more focused supervision to areas involved in high-motion events.

In Figure 2, we observe that latent differences between adjacent frames tend to correlate with audio events, even when the corresponding motion is not clearly visible in the video frames, as in (c). Based on this observation, we propose a **Motion-aware Loss** that amplifies the learning signal according to the intensity of ground-truth motion. This amplifies supervision at moments of significant movement, encouraging the model to better capture and align motion with audio cues.

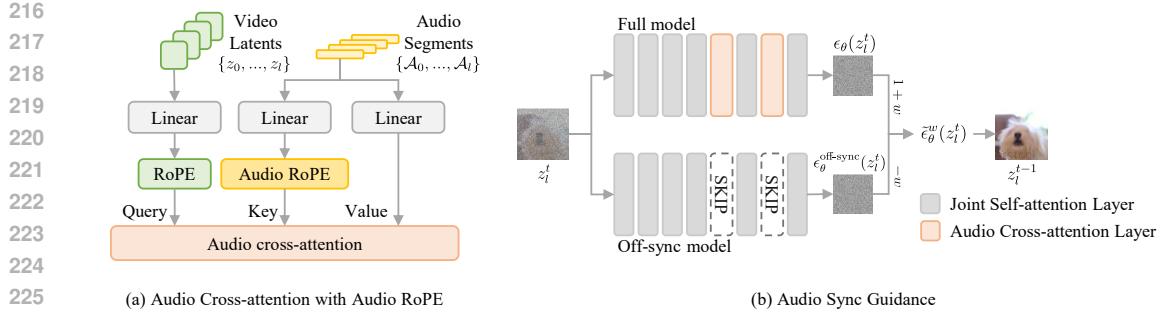


Figure 3: (a) Audio cross-attention with Audio RoPE. Each video latent attends to a local audio segment using cross-attention. RoPE is applied to both video queries and audio keys, using a shared positional embedder to align modalities in relative position space. (b) Audio Sync Guidance. An off-sync model that skips the audio cross-attention layers guides the full model to better utilize audio cues during sampling.

The proposed loss function is defined as:

$$\mathcal{L} = \|\hat{z}_t - z_t^{GT}\|^2 + \lambda \cdot \underbrace{\|(\hat{z}_t - z_t^{GT}) \odot (z_t^{GT} - z_{t-1}^{GT})\|^2}_{\text{motion}}, \quad (1)$$

where  $\hat{z}_t$  and  $z_t^{GT}$  denote the predicted and ground-truth latents at the  $t$ -th position in the video latent sequence, respectively, and  $\odot$  denotes element-wise multiplication. The second term weights prediction errors according to the magnitude of ground-truth motion between consecutive frames, with  $\lambda$  as a hyperparameter (we set  $\lambda = 1$ ).

This design ensures that prediction errors during dynamic motion are penalized more heavily than those in static periods, encouraging the model to better capture the timing and intensity of important motions.

Importantly, we do not directly use audio signal strength as a supervision signal. This is because audio and motion do not always exhibit a one-to-one temporal alignment: motion may precede or follow audio events, or span multiple frames. For instance, a lion may move before roaring, or a bowling ball may roll before impact. By focusing on ground-truth motion magnitude rather than audio signal strength, our loss design allows the model to learn natural synchronization patterns without rigidly assuming direct temporal alignment.

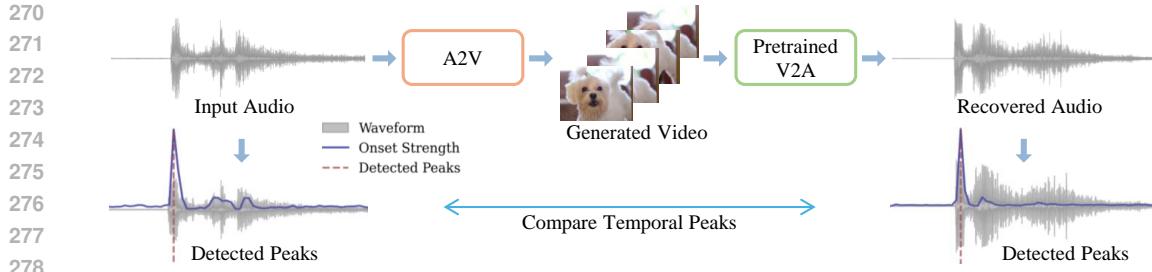
**One might worry that the motion-aware loss could be negatively affected by camera motion or background movement that is unrelated to audio events. However, because our formulation weights the loss based on ground-truth motion intensity itself, the model naturally learns to differentiate between motion that is causally linked to audio cues and motion that is not.**

Overall, Motion-aware Loss strengthens the model’s attention to motion-relevant regions, encouraging the model to learn diverse audio-motion relationships and generate natural, well-aligned motion sequences. Additional notes on motion-aware loss are provided in Appendix A.

### 3.3 AUDIO SYNC GUIDANCE

In audio-conditioned video generation, audio-driven layers are responsible for injecting timing cues into the visual dynamics. However, these cues from audio are not always strong or clear, so it’s hard for the model to determine whether to reflect them in the generated motion. For example, when a drumstick hits a plastic surface, a subtle crinkling sound helps specify the exact target. Relying only on the coarse impact sound can misplace the strike.

To address this, we propose **Audio Sync Guidance** (ASG) that reinforces the influence of audio signals so the model better captures and reflects them in motion. As illustrated in Figure 3(b), we run two branches that share the same visual backbone: a *full* model with audio cross-attention layers enabled, and an *off-sync* model where only those layers are disabled. We found that the off-sync model produces outputs that are visually similar to the full model’s, yet desynchronized (Please see the



279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323

Figure 4: **CycleSync** metric pipeline. The generated video is fed into a pretrained Video-to-Audio (V2A) model to reconstruct audio. We compare temporal peaks between the reconstructed and original audio signals. High peak correspondence indicates that the generated video accurately preserves the timing structure of the original audio.

supporting experiments in Appendix B.2). Thus, the difference between the two predictions isolates the synchronization component and could serve as guidance for synchronization. By adding this difference back into the full model’s output, ASG amplifies the influence of audio and encourages more synchronized motion generation.

Formally, given a latent  $z_l^t$  at denoising timestep  $t$ , the guided prediction is

$$\tilde{\epsilon}_\theta^w(z_l^t) = \epsilon_\theta(z_l^t) + w \left( \epsilon_\theta(z_l^t) - \epsilon_\theta^{\text{off-sync}}(z_l^t) \right), \quad (2)$$

where  $\epsilon_\theta(z_l^t)$  is the denoising output of the full model,  $\epsilon_\theta^{\text{off-sync}}(z_l^t)$  is the output with audio layers skipped, and  $w$  is the guidance-strength hyperparameter controlling the degree of audio emphasis. For clarity, we omit the integration with Classifier-Free Guidance; please see an Appendix B.3 for the connection to CFG.

In summary, ASG highlights audio cues by disabling only the audio cross-attention layers in the off-sync model, improving audio–motion alignment while preserving visual fidelity without additional training.

### 3.4 ARCHITECTURAL DETAILS

**Training layer selection.** To leverage the pretrained video backbone effectively, we identify which transformer blocks to fine-tune through a layer-wise sensitivity analysis. We find that earlier layers primarily control spatial structure and semantic fidelity, whereas later layers govern temporal dynamics and motion refinement. Based on this, we insert audio-driven cross-attention only into the later blocks and fine-tune them jointly. This strategy allows the model to focus on synchronizing motion with audio signals while maintaining high visual fidelity and leveraging the strong generalization capability of the pretrained I2V backbone. Details are provided in Appendix D.1.2.

**Audio conditioning.** To synchronize video motion precisely with audio cues, we apply Rotary Positional Embedding to inject relative temporal information into the audio features during cross-attention (Audio RoPE), as illustrated in Figure 3(a). We confirm that Audio RoPE leads to tighter temporal alignment between motion and sound events. Implementation details and an ablation study are provided in Appendix D.2.

## 4 EVALUATING AUDIO–MOTION SYNCHRONIZATION

Although prior synchronization metrics (Zhang et al., 2024; Yariv et al., 2023) are useful, they require a low fixed frame-rate or introduce wrong assumption that the peak magnitudes of audio and video should match. It makes them less reliable for high-frame-rate videos or real-world audio–motion scenarios.

To address these limitations, we propose **CycleSync**, a synchronization metric based on a video-to-audio (V2A) reconstruction process. Instead of directly comparing motion and audio peaks, CycleSync evaluates whether the motion in a video provides enough signal to reconstruct the temporal

324 structure of the original audio. As illustrated in Figure 4, we feed the generated video into a state-of-  
 325 the-art V2A model (Viertola et al., 2025), and compare the resulting audio to the original input audio  
 326 by aligning their temporal peaks. By aligning audio peaks between the original and recovered audio,  
 327 we can assess whether the generated video contains sufficient timing and motion cues to reproduce  
 328 the original audio structure.

329 Formally, given an original audio signal  $\mathbf{a}$  and a generated video  $\hat{\mathbf{v}}$ , we reconstruct the audio  $\hat{\mathbf{a}}$  using  
 330 a pretrained video-to-audio model  $f_{\text{v2a}}$ :

$$\hat{\mathbf{a}} = f_{\text{v2a}}(\hat{\mathbf{v}}). \quad (3)$$

333 Let  $\mathbb{A} = P(\mathbf{a})$  and  $\hat{\mathbb{A}} = P(\hat{\mathbf{a}})$  be the sets of onset peaks extracted from  $\mathbf{a}$  and  $\hat{\mathbf{a}}$ , respectively. The  
 334 CycleSync score is computed via symmetric temporal matching with tolerance  $\delta$ :

$$\text{CycleSync} = \frac{1}{2|\mathbb{A} \cup \hat{\mathbb{A}}|} \left( \sum_{\mathbf{a} \in \mathbb{A}} \mathbf{1} \left[ \exists \hat{\mathbf{a}} \in \hat{\mathbb{A}}, |\mathbf{a} - \hat{\mathbf{a}}| \leq \delta \right] + \sum_{\hat{\mathbf{a}} \in \hat{\mathbb{A}}} \mathbf{1} \left[ \exists \mathbf{a} \in \mathbb{A}, |\mathbf{a} - \hat{\mathbf{a}}| \leq \delta \right] \right), \quad (4)$$

339 where  $\delta$  is a temporal tolerance and  $\mathbf{1}[\cdot]$  is the indicator function.

340 A higher CycleSync score indicates that the generated video preserves the timing structure of the  
 341 original audio.

## 344 5 EXPERIMENT

### 346 5.1 EXPERIMENTAL SETUP

348 **Dataset.** We evaluate our model using AVSync15<sup>1</sup> (Zhang et al., 2024) and TheGreatestHits<sup>2</sup> (Owens et al., 2016), whose samples have synchronized audio and video.

351 **Baselines.** We compare our method against the following baseline models: We employ the Pyramid  
 352 Flow Video model (**I+T2V**) (Jin et al., 2024a), which conditions on text and image inputs,  
 353 TempoTokens (**T+A2V**), which conditions on audio and text inputs, and AVSyncD (**I+T+A2V**),  
 354 which conditions on audio and image inputs. For a closer comparison between I2V and A2V, we  
 355 also employ a fine-tuned version of our model without audio layers, denoted as Pyramid Flow (fine-  
 356 tuned).

357 **Evaluation metrics.** To assess visual quality, we report **FID** (Heusel et al., 2017) (Fréchet In-  
 358 ception Distance) and **FVD** (Unterthiner et al., 2019) (Fréchet Video Distance). FID measures the  
 359 fidelity of individual frames, while FVD evaluates the spatiotemporal coherence of the entire video.  
 360 To assess semantic alignment with conditioning modalities, we use **Image-Text Similarity (IT)** and  
 361 **Image-Audio Similarity (IA)**. IT evaluates how well the generated frames correspond to the in-  
 362 put text prompt using CLIP (Radford et al., 2021), while IA measures semantic alignment between  
 363 audio signals and visual content using ImageBind (Girdhar et al., 2023). To assess audio-motion syn-  
 364 chronization, we report **CycleSync**, which evaluates whether the generated videos contain sufficient  
 365 motion cues synchronized with audio signals. We also conduct a user study on 150 videos from the  
 366 AVSync15 dataset. Participants compare video pairs across three criteria—**synchronization (Sync)**,  
 367 **image quality (IQ)**, and **frame consistency (FC)**. Implementation details of the user study are pro-  
 368 vided in Appendix E.

369 **Implementation details.** We use the pretrained Pyramid Flow Video model (Jin et al., 2024a)  
 370 as the backbone. Generated videos are up to 5 seconds long at 24 fps and  $380 \times 640$  resolution.  
 371 Audio is sampled at 16kHz. During training, we randomly sample training clips from different tem-  
 372 poral segments of each video to improve generalization to various audio-motion alignments. During  
 373 evaluation, we extract three 2-second clips at distinct time points per video. The AVSync15 dataset

374  
 375 <sup>1</sup> AVSync15 is a curated subset of the VGGSound dataset consisting of 1,500 videos from 15 action-related  
 376 classes.

377 <sup>2</sup> TheGreatestHits is a dataset where a person strikes various objects with drumsticks, producing distinct  
 378 impact sounds closely tied to visual motion.

378  
379  
380 Table 1: Quantitative results on the AVSync15 dataset.  
381  
382  
383  
384  
385  
386  
387

| Input              | Model                            | FID ↓      | FVD ↓        | IA ↑         | IT ↑         | CycleSync ↑      | User Study |            |            |
|--------------------|----------------------------------|------------|--------------|--------------|--------------|------------------|------------|------------|------------|
|                    |                                  | IQ ↑       | FC ↑         | Sync ↑       |              |                  |            |            |            |
| T+A                | TempoTokens (Yariv et al., 2023) | 8.9        | 4187.2       | 27.24        | 27.88        | $13.10 \pm 1.16$ | -          | -          | -          |
| I+T                | Pyramid Flow (Jin et al., 2024a) | 8.9        | 550.7        | 34.99        | 29.34        | $14.25 \pm 1.39$ | -          | -          | -          |
|                    | Pyramid Flow (fine-tuned)        | <b>8.5</b> | <u>294.6</u> | <u>36.89</u> | 30.02        | $12.34 \pm 1.14$ | -          | -          | -          |
| I+T+A              | AVSyncD (Zhang et al., 2024)     | 9.2        | 491.5        | 35.23        | <u>30.18</u> | $16.38 \pm 1.38$ | 30         | 18         | 78         |
|                    | Ours                             | <b>8.5</b> | <b>293.1</b> | <b>37.02</b> | <b>30.23</b> | $16.48 \pm 1.28$ | <b>270</b> | <b>282</b> | <b>222</b> |
| <i>Groundtruth</i> |                                  | -          | -            | 37.06        | 30.18        | $22.15 \pm 1.8$  |            |            |            |

388  
389 Table 2: Quantitative results on the TheGreatestHits dataset.  
390  
391  
392  
393  
394  
395  
396  
397

| Input              | Model                            | FID ↓      | FVD ↓        | IA ↑         | IT ↑         | CycleSync ↑           |
|--------------------|----------------------------------|------------|--------------|--------------|--------------|-----------------------|
| I+T                | Pyramid Flow (Jin et al., 2024a) | <b>6.5</b> | 350.5        | 13.95        | 18.42        | $7.41 \pm 0.83$       |
|                    | Pyramid Flow (fine-tuned)        | 6.9        | <u>195.6</u> | <b>14.13</b> | <u>20.86</u> | $9.23 \pm 0.92$       |
| I+T+A              | AVSyncD (Zhang et al., 2024)     | 6.8        | 327.8        | 12.35        | <b>21.77</b> | $9.89 \pm 0.84$       |
|                    | Ours                             | <u>6.7</u> | <b>166.2</b> | <u>13.83</u> | 19.64        | <b>16.18 \pm 1.26</b> |
| <i>Groundtruth</i> |                                  | -          | -            | 14.68        | 19.47        | $15.99 \pm 1.5$       |

398 provides 450 clips, and TheGreatestHits provides 732 clips for evaluation. We use CLIP (Radford  
399 et al., 2021) and DenseAV (Hamilton et al., 2024) audio backbone as our text encoder and audio  
400 encoder, respectively. We train our model on 4 NVIDIA RTX 3090 GPUs (24GB).

401  
402 5.2 MAIN RESULTS403  
404 5.2.1 MODEL COMPARISON

405 **Quantitative results.** Tables 1 and 2 show results on AVSync15 and TheGreatestHits. Across both  
406 datasets, our model consistently outperforms baselines in synchronization accuracy while maintain-  
407 ing competitive visual and semantic quality. Compared to AVSyncD, our model achieves higher  
408 CycleSync scores and lower FID/FVD, indicating improved temporal coherence. User study further  
409 confirms these gains, with clear preference for our model in synchronization, image quality, and  
410 frame consistency.

411 On TheGreatestHits, our model even surpasses the ground-truth CycleSync score. We attribute this  
412 to the generated videos exhibiting strong and clear motion aligned with audio events, whereas  
413 ground-truth videos often contain off-event movements or sounds, such as hovering or background  
414 noise. These results suggest that our model demonstrates greater sensitivity to audio cues under syn-  
415 chronization metrics. Additional results using existing metrics (AV-Align, RelSync, AlignSync) are  
416 reported in Appendix C.4.

417 **Qualitative results.** Figure 5 presents qualitative comparisons among ours, Pyramid Flow (fine-  
418 tuned), and AVSyncD. Our method produces clearer motion dynamics and stable appearances,  
419 whereas AVSyncD often suffers from saturation artifacts and weakened motion. We recommend  
420 watching the supplemental videos to see additional qualitative results (Appendix F.1).

422  
423 5.2.2 METRIC COMPARISON

424 **Controlled metric comparison.** We analyze synchronization robustness under controlled tempo-  
425 ral shifts. Details are provided in Appendix C.2. As shown in Figure 7, CycleSync is markedly more  
426 sensitive to temporal misalignment than other metrics, clearly differentiating synchronized from  
427 desynchronized cases.

428 **Human alignment validation for CycleSync.** We conduct a user study to assess how well Cy-  
429 cleSync aligns with human perception. Details are provided in Appendix C.3. As shown in Table 7  
430 and Table 8, CycleSync achieves the highest positive correlation with human preference, while prior  
431 metrics show weak or negative trends.

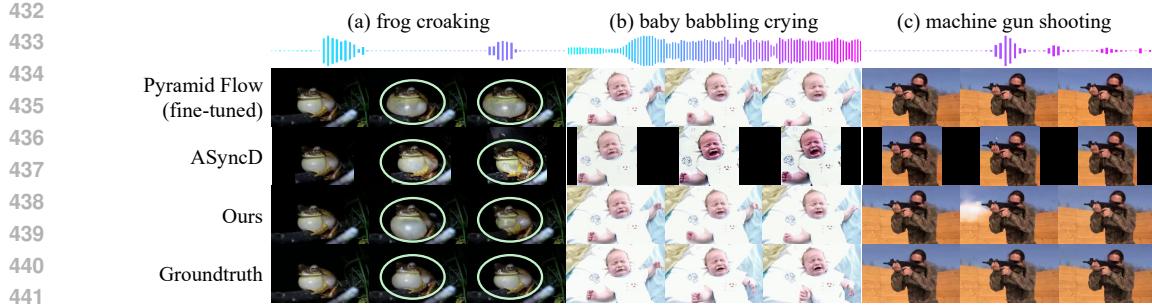


Figure 5: **Qualitative comparison of generated videos.** Our method produces more explicit and temporally consistent motion compared to both baselines.

Table 3: Ablation results on AVSync15.

| Model Variant                                 | FID $\downarrow$ | FVD $\downarrow$ | CycleSync $\uparrow$               |
|-----------------------------------------------|------------------|------------------|------------------------------------|
| w/o Motion-aware Loss                         | <b>8.4</b>       | 305.9            | $15.18 \pm 1.48$                   |
| Full model w/o ASG                            | 8.5              | 299.1            | $15.31 \pm 1.49$                   |
| Full model w/ ASG ( $w = 1$ )                 | 8.5              | 294.2            | $15.94 \pm 1.56$                   |
| Full model w/ ASG ( $w = 4$ )                 | 8.7              | 298.3            | $16.26 \pm 1.4$                    |
| <b>Full model w/ ASG (<math>w = 2</math>)</b> | <b>8.5</b>       | <b>293.1</b>     | <b><math>16.48 \pm 1.28</math></b> |

### 5.3 ABLATION STUDY

**Effect of Motion-aware Loss.** When trained without Motion-aware Loss, the model tends to produce weaker and less clearly timed motions. As shown in Figure 6, it often fails to initiate or terminate motion in sync with the corresponding audio events. Incorporating Motion-aware Loss improves both the magnitude and temporal precision of motion, particularly at the onset and offset of dynamic actions. This is because Motion-aware Loss selectively amplifies learning signals at points of high motion intensity, guiding the model to learn more precisely on the timing structure of audio-driven actions.

**Effect of Audio Sync Guidance.** As shown in Tables 3, applying Audio Sync Guidance (ASG) with scale  $w = 2$  improves synchronization metrics while preserving visual fidelity. Increasing the scale to  $w = 4$  yields marginal gains in synchronization, but introduces over-exaggerated motion (e.g., frog inflation or recoil motion), which slightly degrades visual realism reflected in higher FVD, while FID remains stable.

## 6 CONCLUSION

We introduced *Syncphony*, a high-quality *audio-synchronized video* generation framework. By conditioning on text, image, and audio inputs, our model captures both the semantic context and the fine-grained temporal dynamics of motion. To improve audio-motion alignment, we incorporated two key techniques: **Motion-aware Loss** encourages accurate timing by emphasizing high-motion regions, and **Audio Sync Guidance** enhances sensitivity to audio signals during inference while maintaining visual quality. To better evaluate synchronization accuracy, we proposed **CycleSync**, a video-to-audio-based metric that measures whether the generated video retains sufficient motion cues to reconstruct the original audio. This enables a more reliable assessment than the existing metrics in real-world scenarios.

**Limitation.** While our Motion-aware Loss improves synchronization in audio-to-video generation by emphasizing motion intensity, it assumes that the motion intensity corresponds to the audio signal, and it does not distinguish semantically meaningful movements from noisy movements, which may induce wrong supervision. Addressing this limitation by incorporating semantic understanding of motion or refining the noisy movements could not only improve synchronization but also enable

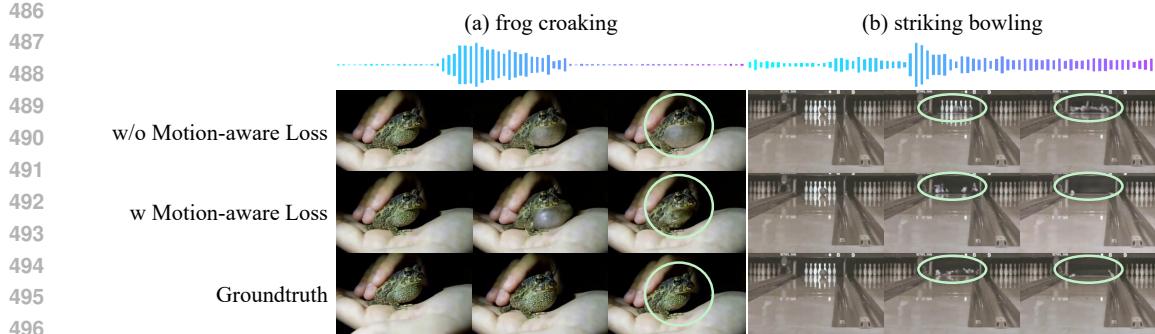


Figure 6: **Ablation of Motion-aware Loss.** (a) Without Motion-aware Loss, the model fails to terminate the motion correctly at the end of the audio. (b) It also fails to trigger motion at the correct audio onset. In contrast, with Motion-aware Loss, the model generates motion that more accurately aligns with the beginning and end of the audio event.

broader applicability to general video generation tasks without audio, where dynamic and expressive motion is important. We also note that the limitations of CycleSync as a synchronization metric are discussed in Appendix C.5.

## 7 ETHICS STATEMENT

As a generative model, our method could be used to facilitate deceptive interactions that would cause harm, such as fraud. It could be used to impersonate public figures and influence political processes, or as a tool to promote hate speech or abuse. To address this, we will include explicit license terms and usage guidelines to promote ethical and lawful use, referencing best practices such as the Adobe Generative AI User Guidelines. If the model is released, implement safeguards such as prompt or image filtering to restrict high-risk applications, including impersonation or politically manipulative content.

## 8 REPRODUCIBILITY STATEMENT

Key components of our implementation are provided in the supplementary materials, and detailed descriptions of our method, training, inference, and evaluation are included in the appendix. We will release our code, trained models, and evaluation tools to ensure reproducibility.

## REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. *OpenAI Blog*, 1:8, 2024.

Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. *Advances in Neural Information Processing Systems*, 37:24081–24125, 2024.

Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter1: Open diffusion models for high-quality video generation, 2023.

Ho Kei Cheng, Masato Ishii, Akio Hayakawa, Takashi Shibuya, Alexander Schwing, and Yuki Mitsuishi. Mmaudio: Taming multimodal joint training for high-quality video-to-audio synthesis.

540 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 28901–28911,  
 541 2025.

542 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand  
 543 Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *CVPR*, 2023.

544 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,  
 545 Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models  
 546 without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

547 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,  
 548 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, et al. Ltx-video: Realtime video latent diffusion.  
 549 *arXiv preprint arXiv:2501.00103*, 2024.

550 Mark Hamilton, Andrew Zisserman, John R Hershey, and William T Freeman. Separating the “  
 551 chirp” from the “chat”: Self-supervised visual grounding of sound and language. In *Proceedings  
 552 of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 13117–13127, 2024.

553 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.  
 554 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances  
 555 in Neural Information Processing Systems*, 2017.

556 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS Workshop on Deep  
 557 Generative Models and Downstream Applications*, 2022.

558 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J  
 559 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–  
 560 8646, 2022.

561 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-  
 562 training for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.

563 Junha Hyung, Kinam Kim, Susung Hong, Min-Jung Kim, and Jaegul Choo. Spatiotemporal skip  
 564 guidance for enhanced video diffusion sampling. In *Proceedings of the Computer Vision and  
 565 Pattern Recognition Conference*, pp. 11006–11015, 2025.

566 Yujin Jeong, Wonjeong Ryoo, Seunghyun Lee, Dabin Seo, Wonmin Byeon, Sangpil Kim, and Jinkyu  
 567 Kim. The power of sound (tpos): Audio reactive video generation with stable diffusion. In  
 568 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7822–7832,  
 569 2023.

570 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,  
 571 Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.  
 572 *arXiv preprint arXiv:2410.05954*, 2024a.

573 Yang Jin, Zhicheng Sun, Kun Xu, Liwei Chen, Hao Jiang, Quzhe Huang, Chengru Song, Yuliang  
 574 Liu, Di Zhang, Yang Song, et al. Video-lavit: Unified video-language pre-training with decoupled  
 575 visual-motional tokenization. *arXiv preprint arXiv:2402.03161*, 2024b.

576 Seungwoo Lee, Chaerin Kong, Donghyeon Jeon, and Nojun Kwak. Aadiff: Audio-aligned video  
 577 synthesis with text-to-image diffusion. In *CVPR Workshop on Content Generation*, 2023.

578 Andrew Owens, Phillip Isola, Josh McDermott, Antonio Torralba, Edward H. Adelson, and  
 579 William T. Freeman. Visually indicated sounds. In *CVPR*, 2016.

580 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of  
 581 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

582 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 583 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.  
 584 Learning transferable visual models from natural language supervision. In *ICML*, 2021.

585 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi  
 586 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text  
 587 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

594 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-  
 595 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.  
 596

597 Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,  
 598 and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. In  
 599 *arXiv*, 2019.

600 Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time  
 601 game engines. *arXiv preprint arXiv:2408.14837*, 2024.

602 Ilpo Viertola, Vladimir Iashin, and Esa Rahtu. Temporally aligned audio for video with autore-  
 603 gression. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal  
 604 Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

605

606 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haim-  
 607 ing Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.  
 608 *arXiv preprint arXiv:2503.20314*, 2025.

609 Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-  
 610 elscope text-to-video technical report, 2023.

611

612 Mengchao Wang, Qiang Wang, Fan Jiang, Yaqi Fan, Yunpeng Zhang, Yonggang Qi, Kun Zhao, and  
 613 Mu Xu. Fantasytalking: Realistic talking portrait generation via coherent motion synthesis. *arXiv  
 614 preprint arXiv:2504.04842*, 2025.

615 Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using  
 616 vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021.

617

618 Guy Yariv, Itai Gat, Sagie Benaim, Lior Wolf, Idan Schwartz, and Yossi Adi. Diverse and aligned  
 619 audio-to-video generation via text-to-video model adaptation, 2023.

620 Lin Zhang, Shentong Mo, Yijing Zhang, and Pedro Morgado. Audio-synchronized visual animation.  
 621 In *European Conference on Computer Vision*, pp. 1–18. Springer, 2024.

622

623

## 624 A ADDITIONAL NOTES ON MOTION-AWARE LOSS

625

626 Motion-aware Loss is designed based on ground-truth motion magnitude, not audio amplitude. This  
 627 reflects the fact that motion peak and audio peak do not always exhibit one-to-one temporal align-  
 628 ment. Instead, audio events are often accompanied by diverse motion patterns that vary by context.

629 For example, some events, such as a gunshot or a dog’s bark, occur with motion and sound nearly  
 630 perfectly aligned. However, many others do not. A lion may start moving its mouth and body before  
 631 emitting a roar. A person winds up before throwing a ball. A hammering motion may start before the  
 632 sound and end just as the impact occurs. A trombone player moves the instrument before the sound  
 633 begins. A bowling ball rolls with a low rumble before producing a sharp impact sound when it hits  
 634 the pins.

635 Therefore, synchronizing motion to audio does not mean matching peak amplitudes. Rather, it in-  
 636 volves capturing the causal and contextual patterns of motion that correspond to different types of  
 637 audio events. Our loss focuses on motion regions, encouraging the model to learn this alignment  
 638 without relying on rigid audio-based timing. This design encourages the model to learn various  
 639 audio-motion relationships, leading to natural audio-visual aligned video generation.

## 640 B AUDIO SYNC GUIDANCE

641

### 642 B.1 CLASSIFIER FREE GUIDANCE FOR AUDIO GUIDANCE

643

644 Conventional classifier-free guidance (CFG) is trained by randomly dropping conditioning inputs,  
 645 a strategy that has proven highly effective in models such as text-to-image and class-conditional  
 646 image generation. However, we observe that directly applying this random-drop strategy to audio  
 647 conditioning leads to degraded performance.

648  
649  
650  
651 Table 4: **Analysis of Audio Sync Guidance.** The full model includes audio layers, whereas the off-  
652 sync model skips them.  
653  
654  
655

| Model Variant            | FID ↓      | FVD ↓        | CycleSync ↑                        |
|--------------------------|------------|--------------|------------------------------------|
| Off-sync model           | 8.5        | 294.6        | $12.34 \pm 1.14$                   |
| Full model               | 8.5        | 299.1        | $15.31 \pm 1.49$                   |
| <b>Full model w/ ASG</b> | <b>8.5</b> | <b>293.1</b> | <b><math>16.48 \pm 1.28</math></b> |

656  
657 Unlike text, audio carries a meaningful semantic interpretation even when its value is *zero*. In other  
658 words, *silence* is itself an informative condition. When audio inputs are randomly dropped during  
659 training, the model becomes unable to properly model silence and fails to understand its distinct role  
660 compared to the absence of conditioning. Our experiments show that this mismatch significantly  
661 harms synchronization quality.

662 To address this issue, instead of dropping audio conditions, we propose an Audio Sync Guidance  
663 mechanism that selectively skips audio-conditioning layers during inference. This approach pre-  
664 serves the semantic meaning of silence while preventing the model from being exposed to ambigu-  
665 ous training signals. In the following section, we describe this strategy in more detail.  
666

## 667 B.2 DIFFERENCES BETWEEN FULL AND OFF-SYNC MODEL IN AUDIO SYNC GUIDANCE

668  
669 To better understand how Audio Sync Guidance contributes to synchronization, we evaluate whether  
670 an off-sync model—formed by skipping the audio layers—can still retain appearance and overall  
671 motion. As shown in the last row of Figure 5 and “Off-sync model” of Table 4, the model remains out  
672 of synchronization but still preserves appearance (FID) and motion quality (FVD). Since the visual  
673 quality remains similar between the full and off-sync models, their difference primarily captures  
674 audio-related motion cues. By adding this difference back into the full model’s output, Audio Sync  
675 Guidance amplifies the influence of audio and encourages more synchronized motion generation.  
676

## 677 B.3 INTEGRATION OF CFG AND AUDIO SYNC GUIDANCE

678 Classifier-Free Guidance (Ho & Salimans, 2022) interpolates between conditional (full) and null-  
679 conditional predictions to enhance visual fidelity:

$$680 \tilde{\epsilon}_\theta(z_l^t) = \epsilon_\theta(z_l^t, c) + w_t (\epsilon_\theta(z_l^t, c) - \epsilon_\theta(z_l^t, c_\emptyset)) \quad (5)$$

682 At inference time, the Audio Sync Guidance and CFG are combined additively:  
683

$$684 \tilde{\epsilon}_\theta(z_l^t) = \epsilon_\theta(z_l^t, c) + w_a \left( \epsilon_\theta(z_l^t, c) - \epsilon_\theta^{\text{off-sync}}(z_l^t, c) \right) + w_t (\epsilon_\theta(z_l^t, c) - \epsilon_\theta(z_l^t, c_\emptyset)) \quad (6)$$

686 In our implementation, we use  $w_a = 2$  and  $w_t = 4$ .  
687

## 688 B.4 AUDIO SYNC GUIDANCE COMPARED TO PRIOR SKIP-BASED METHOD

689  
690 Audio Sync Guidance (ASG) is inspired by Hyung et al. (2025) but differs in both purpose and  
691 design.

692 Hyung et al. (2025) improves visual fidelity by constructing a weak model that skips visually sensi-  
693 tive layers and using it to guide the full model. In T2I/T2V settings, however, semantic and visual  
694 features are heavily entangled, making such selective skipping difficult, model-dependent, and prone  
695 to unintended degradations.

696 ASG instead targets synchronization. We skip only the audio-injection layers, creating an off-sync  
697 model that preserves appearance but ignores audio cues. The difference between this off-sync and  
698 the full model isolates synchronization as the guidance signal (see Appendix B.2).  
699

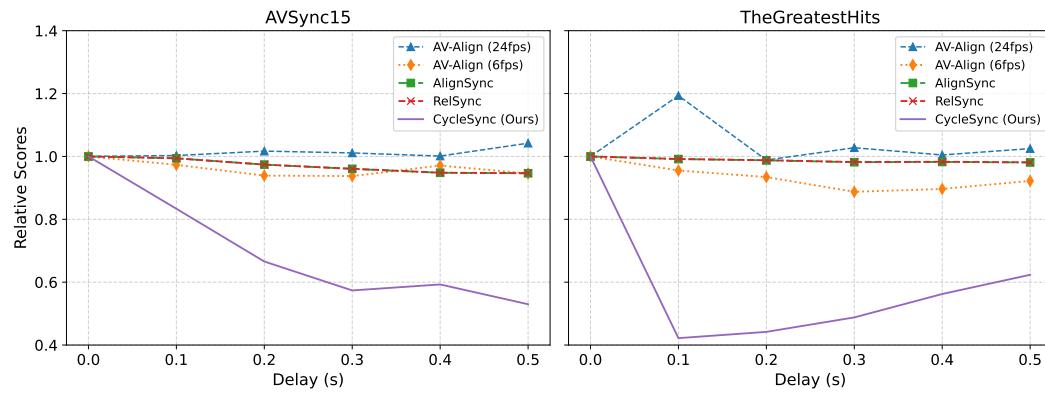
700 This design is suited to A2V architectures, where audio and visual pathways are explicitly separated.  
701 Skipping only the audio pathway perturbs synchronization without affecting visual fidelity, enabling  
precise and stable guidance for improved audio–motion alignment.

702 C EVALUATION METRICS FOR SYNCHRONIZATION  
703704 C.1 IMPLEMENTATION DETAILS OF CYCLESYNC  
705706 We use V-AURA (Viertola et al., 2025) as the pretrained video-to-audio model  $f_{v2a}$ , selected for its  
707 demonstrated effectiveness in generating general-class, temporally aligned audio from videos. For  
708 peak detection, we use `librosa.onset.onset_detect`, and  $\delta$  is fixed at 5 milliseconds.  
709710 C.2 CONTROLLED METRIC COMPARISON  
711712 To evaluate the effectiveness of CycleSync, we compare it with three existing synchronization met-  
713 rics: AV-Align (Yariv et al., 2023), AlignSync, and RelSync (Zhang et al., 2024). We apply six  
714 levels of synchronization shift to video clips from the AVSync15 (Zhang et al., 2024) and TheGreat-  
715 estHits (Owens et al., 2016) datasets.  
716717 **implementation detail.** We extract three 2-second clips per video with linear intervals. To ensure  
718 valid comparison under delay shifts, clips are sampled starting 0.5 seconds into the video, allowing  
719 up to 0.5 seconds of temporal shift. Videos shorter than 2.5 seconds are excluded. It results in 438  
720 clips from 150 videos in AVSync15, and 732 clips from 244 videos in TheGreatestHits.  
721722 AlignSync and RelSync are evaluated on videos downsampled to 6 fps. AV-Align is measured at 6  
723 fps unless otherwise noted as 24 fps. CycleSync (Ours) is evaluated at 24 fps videos.  
724725 **Synchronization configurations.** A sample type with "*Perfect Sync*" represents that Ground-  
726 truth audio pairs with its original video. The other sample types with "*Delay 0.1s–0.5s*" represent  
727 that the video is temporally shifted by the indicated delay relative to its audio.  
728729 C.2.1 RESULTS AND ANALYSIS  
730731 Figure 7 shows how each metric responds to increasing audio-video misalignment. We observe that  
732 existing metrics often struggle to clearly separate perfectly synchronized samples from delayed ones,  
733 whereas CycleSync scores drop sharply with the misalignments. For absolute metric values, please  
734 refer to Table 5 and Table 6.  
735736 **AV-Align.** The performance of AV-Align varies significantly depending on the frame rate. At 24  
737 fps, we would expect the highest score for perfectly synchronized samples, but in both AVSync15  
738 and TheGreatestHits, delayed samples receive higher scores than the ground-truth alignment. At 6  
739 fps, AV-Align becomes more stable, but the separation between perfect and delayed cases remains  
740 limited. This suggests that the metric may not reliably reflect fine-grained temporal misalignment at  
higher frame rates.  
741742 Moreover, as shown in Appendix C.4, there are cases where models without audio conditioning  
743 obtain higher AV-Align scores than models explicitly guided by audio. This is because AV-Align  
744 assumes a strict one-to-one correspondence between peaks in the audio and motion signals—an  
assumption that often does not hold in natural scenarios, where motion may precede or follow audio  
cues.  
745746 **AlignSync and RelSync.** AlignSync and RelSync generally show decreasing scores as the degree  
747 of delay increases, indicating sensitivity to misalignment. However, they do not show clear dif-  
748 ferences between perfectly synchronized samples and delayed ones, especially on TheGreatestHits  
749 dataset. In addition, both metrics are designed for evaluation at 6 fps, which makes it difficult to  
750 assess the performance of models operating at higher frame rates, such as 24 fps.  
751752 We also observe cases where models without audio conditioning receive higher scores than those  
753 guided by audio (see Appendix C.4). One possible explanation is that these metrics are more effec-  
754 tive when evaluating sequences that are simple temporal shifts of the same ground-truth content, as  
755 assumed during training. In contrast, when the evaluated sequence differs from the original ground-  
truth content, the metrics may no longer provide reliable scores.  
756

756     **CycleSync.** CycleSync clearly distinguishes perfectly synchronized samples from those with temporal misalignment. Once the delay exceeds a certain threshold, the differences between misaligned cases become less pronounced. In other words, the score is not strictly monotonically decreasing.

759     This is due to CycleSync’s use of a fixed 0.05s tolerance window to determine alignment between onset peaks in the original and reconstructed audio. While this allows for robust separation between synchronized and unsynchronized cases, it does not explicitly quantify how far misaligned peaks fall beyond the threshold.

760     This behavior arises because the tolerance hyperparameter is set to 0.05s, and CycleSync determines alignment between onset peaks in the original and reconstructed audio within this fixed tolerance window. While this design provides robust separation between synchronized and unsynchronized cases, it does not explicitly quantify how far misaligned peaks fall beyond the threshold. It could be addressed by incorporating multi-scale tolerance or continuous scoring mechanisms to capture varying degrees of misalignment. We leave this as future work.



783     Figure 7: Comparison of relative synchronization scores under increasing audio-video delays on  
784     AVSync15 and TheGreatestHits datasets. The vertical axis denotes each metric’s score normalized  
785     by its value under perfect synchronization (0.0s).

788     Table 5: Comparison of synchronization metric scores on the AVSync15 dataset. Parentheses show  
789     percentage change from perfect synchronization (positive = increase, negative = decrease).

| Sample Type         | AV-Align (24fps) $\uparrow$ | AV-Align $\uparrow$  | AlignSync $\uparrow$ | RelSync $\uparrow$  | CycleSync $\uparrow$ |
|---------------------|-----------------------------|----------------------|----------------------|---------------------|----------------------|
| <b>Perfect Sync</b> | 24.22 (0.0%)                | <b>20.30</b> (-0.0%) | <b>25.04</b> (-0.0%) | <b>50.00</b> (0.0%) | <b>20.97</b> (0.0%)  |
| Delay 0.1s          | 24.29 (+0.3%)               | 19.76 (-2.7%)        | 24.89 (-0.6%)        | 49.70 (-0.6%)       | 17.48 (-16.6%)       |
| Delay 0.2s          | 24.63 (+1.7%)               | 19.06 (-6.1%)        | 24.39 (-2.6%)        | 48.70 (-2.6%)       | 13.96 (-33.4%)       |
| Delay 0.3s          | 24.49 (+1.1%)               | 19.03 (-6.3%)        | 24.05 (-4.0%)        | 48.04 (-3.9%)       | 12.03 (-42.6%)       |
| Delay 0.4s          | 24.25 (+0.1%)               | 19.71 (-2.9%)        | 23.74 (-5.2%)        | 47.41 (-5.2%)       | 12.43 (-40.7%)       |
| Delay 0.5s          | <b>25.24</b> (+4.2%)        | 19.20 (-5.4%)        | 23.70 (-5.4%)        | 47.33 (-5.3%)       | 11.11 (-47.0%)       |

800     Table 6: Comparison of synchronization metric scores on TheGreatestHits dataset. Parentheses show  
801     percentage change from perfect synchronization (positive = increase, negative = decrease).

| Sample Type         | AV-Align (24fps) $\uparrow$ | AV-Align $\uparrow$ | AlignSync $\uparrow$ | RelSync $\uparrow$  | CycleSync $\uparrow$ |
|---------------------|-----------------------------|---------------------|----------------------|---------------------|----------------------|
| <b>Perfect Sync</b> | 14.84 (0.0%)                | <b>27.27</b> (0.0%) | <b>25.07</b> (0.0%)  | <b>50.00</b> (0.0%) | <b>16.52</b> (0.0%)  |
| Delay 0.1s          | <b>17.71</b> (+19.3%)       | 26.05 (-4.5%)       | 24.86 (-0.8%)        | 49.59 (-0.8%)       | 6.97 (-57.9%)        |
| Delay 0.2s          | 14.67 (-1.2%)               | 25.48 (-6.6%)       | 24.76 (-1.2%)        | 49.40 (-1.2%)       | 7.30 (-55.8%)        |
| Delay 0.3s          | 15.25 (+2.8%)               | 24.20 (-11.3%)      | 24.61 (-1.8%)        | 49.11 (-1.8%)       | 8.06 (-51.2%)        |
| Delay 0.4s          | 14.91 (+0.5%)               | 24.45 (-10.3%)      | 24.63 (-1.8%)        | 49.15 (-1.7%)       | 9.29 (-43.77%)       |
| Delay 0.5s          | 15.21 (+2.5%)               | 25.15 (-7.8%)       | 24.59 (-1.9%)        | 49.06 (-1.9%)       | 10.30 (-37.65%)      |

810  
811 **Table 7: Correlation with human ratings.** CycleSync achieves the highest positive correlation with  
812 human judgments, while other metrics show weak or negative trends.  
813

| Metric        | Correlation  | 95% CI Lower  | 95% CI Upper |
|---------------|--------------|---------------|--------------|
| CycleSync     | <b>0.486</b> | 0.053         | 0.919        |
| AV-Align      | 0.043        | -0.451        | 0.538        |
| RelSync       | -0.623       | -1.011        | -0.236       |
| AlignSync     | -0.625       | -1.011        | -0.238       |
| <b>DeSync</b> | <b>0.206</b> | <b>-0.279</b> | <b>0.690</b> |

814  
815  
816  
817  
818  
819 **Table 8: Model ranking agreement with human ratings.** CycleSync correctly reflects human preference,  
820 ranking Syncphony above Pyramid Flow.  
821

| Model              | Human Score $\uparrow$ | CycleSync $\uparrow$ | AV-Align $\uparrow$ | RelSync $\uparrow$ | AlignSync $\uparrow$ | DeSync $\downarrow$ |
|--------------------|------------------------|----------------------|---------------------|--------------------|----------------------|---------------------|
| Pyramid Flow (I2V) | 2.68                   | 8.15                 | <b>24.96</b>        | <b>55.36</b>       | <b>27.75</b>         | <b>0.88</b>         |
| Syncphony (Ours)   | <b>4.30</b>            | <b>22.04</b>         | 21.88               | 50.44              | 25.19                | <b>0.86</b>         |

### 822 C.3 HUMAN ALIGNMENT VALIDATION FOR CYCLESYNC

823 Human evaluation is essential for establishing a reliable synchronization metric. To assess how well  
824 CycleSync aligns with human perception, we conduct a user study with 9 participants, who rate the  
825 sync quality of 20 videos, sampled from Pyramid Flow and Syncphony, on a 1–5 scale. We then compute  
826 Pearson correlations between the human ratings and the metric scores. We compare CycleSync  
827 against existing synchronization metrics: AV-Align (Yariv et al., 2023), AlignSync, RelSync (Zhang  
828 et al., 2024), and DeSync (Cheng et al., 2025).  
829

830 **Correlation with human ratings.** As shown in Table 7, CycleSync shows the strongest positive  
831 correlation with human ratings ( $r = 0.486$ ), whereas prior metrics exhibit weak or even negative  
832 correlations. DeSync also shows a positive trend ( $r = 0.206$ ), but remains notably weaker than  
833 CycleSync.  
834

835 **Model ranking agreement.** We further compared model-level rankings derived from each metric  
836 against human ratings (Table 8). CycleSync accurately captures the human-preferred ordering be-  
837 tween the two models. DeSync also reflects the correct direction of preference, though with lower  
838 discriminative strength.  
839

840 These results provide strong empirical evidence that CycleSync is both quantitatively sensitive to  
841 temporal misalignment and best aligned with human perception, making it a more reliable synchro-  
842 nization metric than existing metrics.  
843

### 844 C.4 RESULTS OF BASELINES AND SYNCAPHONY WITH EXISTING METRICS

845 We additionally report the performance of baseline models and ours using existing synchronization  
846 metrics on the AVSync15 and TheGreatestHits datasets in Table 9 and Table 10, respectively.  
847

848 On AVSync15, the fine-tuned Pyramid Flow model, which generates audio-independent but plau-  
849 sible motion, achieves the highest AV-Align score. A similar pattern is observed in TheGreatest-  
850 Hits, where the same model also obtains higher AlignSync and RelSync scores than other audio-  
851 conditioned models.  
852

853 These results reveal a limitation of existing metrics, which tend to favor models that produce highly  
854 dynamic motion with plausible timing, even if that motion is not aligned with the audio signal.  
855

856 In contrast, CycleSync consistently assigns the lowest scores to the same model across both datasets.  
857 This is because CycleSync penalizes mismatches in temporal structure between the original audio  
858 and the reconstructed audio from the generated video. Rather than comparing audio and motion  
859 peaks directly, CycleSync compares the temporal structure of the original and reconstructed audio  
860 signals, enabling more precise assessment of synchronization quality.  
861

Table 9: Quantitative results on the AVSync15 dataset.

| Input              | Model                            | AV-Align ↑   | AlignSync ↑  | RelSync ↑    | CycleSync ↑  |
|--------------------|----------------------------------|--------------|--------------|--------------|--------------|
| T+A                | TempoTokens (Yariv et al., 2023) | 15.51        | 22.38        | 46.91        | 13.10        |
| I+T                | Pyramid Flow (Jin et al., 2024a) | 18.85        | 23.65        | 47.56        | 14.25        |
|                    | Pyramid Flow (fine-tuned)        | <b>20.69</b> | 23.97        | 47.76        | 12.34        |
| I+T+A              | AVSyncD (Zhang et al., 2024)     | 19.31        | <b>24.61</b> | 48.99        | 16.38        |
|                    | Ours w/o ASG ( $w = 0$ )         | <u>20.01</u> | 24.24        | 48.28        | 15.31        |
|                    | Ours w/ ASG ( $w = 2$ )          | 19.89        | 24.45        | 48.74        | <b>16.48</b> |
|                    | Ours w/ ASG ( $w = 4$ )          | 20.00        | <u>24.58</u> | <b>49.04</b> | 16.26        |
| <i>Groundtruth</i> |                                  | 20.84        | 25.10        | 50.00        | 22.15        |

Table 10: Quantitative results on TheGreatestHits dataset.

| Input              | Model                            | AV-Align ↑   | AlignSync ↑  | RelSync ↑    | CycleSync ↑  |
|--------------------|----------------------------------|--------------|--------------|--------------|--------------|
| I+T                | Pyramid Flow (Jin et al., 2024a) | 25.24        | 25.12        | 50.46        | 7.41         |
|                    | Pyramid Flow (fine-tuned)        | 26.76        | <u>26.67</u> | <u>53.35</u> | 9.23         |
| I+T+A              | AVSyncD (Zhang et al., 2024)     | 23.29        | 26.55        | 53.07        | 9.89         |
|                    | Ours w/o ASG ( $w = 0$ )         | <b>27.11</b> | 26.08        | 52.21        | 11.70        |
|                    | Ours w/ ASG ( $w = 2$ )          | <u>26.92</u> | 26.10        | 52.27        | <b>16.18</b> |
|                    | Ours w/ ASG ( $w = 4$ )          | 26.81        | <b>27.04</b> | <b>54.14</b> | <b>17.71</b> |
| <i>Groundtruth</i> |                                  | 26.00        | 25.07        | 50.00        | 15.99        |

### C.5 LIMITATION OF CYCLESYNC.

As a reconstruction-based metric, CycleSync relies on the quality and behavior of the underlying video-to-audio (V2A) model. The reconstructed audio may sometimes reflect dataset-level biases rather than the visual content of the input video itself.

For example, in frog videos, although only a single frog may be visible, many clips in the dataset include ambient sounds from nearby frogs. As a result, the reconstructed audio sometimes contains multiple frog sounds, regardless of the actual motion in the video. Similarly, bowling videos in the dataset often include background music, which can occasionally appear in the reconstructed audio even if it is not visually implied. Such cases may affect CycleSync scores in specific contexts. This issue could potentially be addressed by improving the V2A model or applying post-processing, which we leave for future work.

## D ARCHITECTURAL DETAILS

### D.1 TRAINING LAYER SELECTION

#### D.1.1 VIDEO GENERATION BACKBONE

We adopt Pyramid Flow (Jin et al., 2024a) as the video generation backbone due to its efficiency and scalability in generating long, high-resolution videos. Pyramid Flow is an autoregressive diffusion transformer trained with a flow-matching objective, which sequentially synthesizes consecutive video chunks by denoising each chunk for given a previous chunk and a text prompt.

To capture temporal and spatial consistency, it employs 3D Rotary Positional Encoding (RoPE) (Su et al., 2024) within its self-attention layers, enabling the model to encode relative positions across time, height, and width. In addition, the model dynamically adjusts resolution throughout the denoising process—using low-resolution frames at early (noisier) timesteps and high-resolution frames at later (cleaner) stages—thereby reducing computational cost while maintaining visual detail.

This design enables resource-efficient training and generation, supporting high-resolution and long-duration video synthesis even under constrained computational resources.

918 D.1.2 TRAINING LAYER SELECTION IN VIDEO BACKBONE  
919920 Pyramid Flow consists of 24 transformer blocks. To identify which layers to fine-tune, we individually  
921 skip each of the 24 transformer blocks during inference and observe the effects on image-to-  
922 video (I2V) generation (see Figures 10 and 11).923 Skipping early blocks (0–7) significantly degrades appearance, often causing artifacts in the back-  
924 ground and object structure. In contrast, skipping later blocks (8–23) mostly preserves the appear-  
925 ance of the input image (first frame) in the generated video, primarily affecting the motion. This  
926 suggests that early blocks are critical for preserving the input’s appearance, whereas later blocks  
927 are responsible for refining motion. This separation aligns with the architecture: early blocks use  
928 separate attention weights for text and video, while later blocks share them. Based on this functional  
929 and structural separation, we fine-tune only the last 16 blocks (8–23) with minimal impact on the  
930 pretrained model’s visual fidelity.931 D.2 AUDIO RoPE  
932933 D.2.1 IMPLEMENTATION DETAILS  
934935 To encode the temporal structure of audio features explicitly, we apply **Rotary Positional Encod-  
936 ing (RoPE)** to inject relative temporal information directly into the cross-attention mechanism, as  
937 illustrated in Figure 3(a).938 We first obtain video latents  $\{\mathbf{z}_l\}_{l=0}^{L_{\text{video}}}$  from a VAE encoder, where each  $\mathbf{z}_l$  represents a compressed  
939 spatiotemporal feature at the  $l$ -th position in the video sequence. Simultaneously, we extract audio  
940 features  $\{\mathbf{a}_i\}_{i=0}^{L_{\text{audio}}}$  from a DenseAV encoder, capturing the temporal and semantic structure of the  
941 audio input.942 To align these modalities, we divide the audio sequence into local segments corresponding to each  
943 video latent. For each target video latent  $\mathbf{z}_l$ , we define the corresponding audio segment  $\mathbb{A}_l$  as:

944 
$$\mathbb{A}_l = \{\mathbf{a}_i \mid i \in [\alpha(l - \Delta), \alpha(l + \Delta)]\}, \quad (7)$$

945 where  $\alpha$  is a scaling factor mapping video indices to audio indices (accounting for the different  
946 sequence lengths), and  $\Delta$  determines the width of the temporal window (we set  $\Delta=1$ ).

947 Then, we apply Audio RoPE to the audio segments. The procedure is as follows:

948 Step 1. Assign positional indices.  
949950 • Each video latent  $\mathbf{z}_l$  is assigned 3D coordinates  $(l, h, w)$  representing its temporal and spatial  
951 location within the video sequence.  
952 • For each audio segment  $\mathbb{A}_l$ , the constituent audio features are assigned linearly interpolated tem-  
953 poral indices within the range  $[l - (\Delta + 0.5), l + (\Delta + 0.5)]$ , such that the center of the segment  
954 aligns exactly with  $l$ .955 Step 2. Project into query and key spaces.  
956

957 
$$\mathbf{q}_l = \mathbf{W}_Q \mathbf{z}_l, \quad \mathbf{K}_l = \{\mathbf{W}_K \mathbf{a}_i \mid \mathbf{a}_i \in \mathbb{A}_l\}, \quad (8)$$

958 where  $\mathbf{W}_Q$  and  $\mathbf{W}_K$  are learnable linear projection matrices.959 Step 3. Apply RoPE rotations.  
960

961 
$$\mathbf{q}_l^{\text{rope}} = \text{RoPE}(\mathbf{q}_l, (l, h_l, w_l)), \quad \mathbf{K}_l^{\text{rope}} = \{\text{RoPE}(\mathbf{W}_K \mathbf{a}_i, (t_i, 0, 0)) \mid \mathbf{a}_i \in \mathbb{A}_l\}, \quad (9)$$

962 where  $t_i$  denotes the interpolated temporal index assigned to each  $\mathbf{a}_i$ .963 Step 4. Compute cross-attention between video latent  $\mathbf{z}_l$  and audio segment  $\mathbb{A}_l$ :

964 
$$\text{Attention}(\mathbf{z}_l, \mathbb{A}_l) = \text{Softmax} \left( \frac{\mathbf{q}_l^{\text{rope}} (\mathbf{K}_l^{\text{rope}})^{\top}}{\sqrt{d}} \right) \mathbf{z}_l, \quad (10)$$

972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
Table 11: Ablation of Audio RoPE.  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999

| Model Variant  | CycleSync $\uparrow$ |
|----------------|----------------------|
| w/o Audio RoPE | $14.41 \pm 1.40$     |
| w/ Audio RoPE  | $15.31 \pm 1.49$     |

980 where  $z_l = \{\mathbf{W}_V \mathbf{a}_i \mid \mathbf{a}_i \in \mathbb{A}_l\}$  is the set of value projections of the audio features, and  $d$  is the  
981 dimension of the projected space.  
982

983 By explicitly injecting temporally aligned positional cues into both video and audio features, our  
984 model captures the sequential structure of audio signals more effectively, leading to improved syn-  
985 chronization between generated video motion and corresponding audio events.  
986

### 987 D.3 ABLATION STUDY 988

989 We conduct ablation experiments to examine the effect of Audio RoPE. The results in Table 11  
990 indicate that using Audio RoPE leads to higher synchronization quality compared to the model  
991 without it. Without applying RoPE to audio features, the model frequently exhibits misalignments,  
992 with motions often preceding or lagging behind the corresponding audio cues. In contrast, applying  
993 RoPE to the audio features results in tighter temporal alignment between motion and sound events,  
994 enabling the model to better capture the sequential structure of the audio input. Additional ablation  
995 examples are included in the supplementary materials (Appendix G).  
996

## 997 E USER STUDY 998

1000 To assess the perceptual quality of our generated videos, we conducted a user study comparing our  
1001 method with the state-of-the-art Audio-to-Video model AVSyncD (Zhang et al., 2024). We select  
1002 AVSyncD as the sole baseline in the user study, as other baselines generate noticeably unsynchro-  
1003 nized motion. The evaluation focused on three aspects: synchronization with audio, image quality,  
1004 and frame consistency.  
1005

1006 The study was conducted using all 150 test videos from the AVSync15 dataset. These were divided  
1007 into five subsets of 30 videos each, with each subset assigned to two participants (10 participants  
1008 total). For every video, participants were shown two versions—one generated by our model and one  
1009 by AVSyncD based on the same audio input and initial image. Participants were asked to answer the  
1010 three questions for each video pair:  
1011

- 1012 • **Synchronization:** Which video is better synchronized with the audio in terms of motion timing?  
1013
- 1014 • **Image Quality:** Which video has better image quality in terms of realism and clarity?  
1015
- 1016 • **Frame Consistency:** Which video is more visually consistent across frames, without flickering  
1017 or sudden jumps?  
1018

1019 As illustrated in Figure 9, participants evaluated video pairs using a web interface showing both  
1020 videos and three corresponding questions.  
1021

1022 The results, summarized in Figure 8, show that our model was consistently preferred: 74% for syn-  
1023 chronization, 90% for image quality, and 94% for frame consistency.  
1024

1025 These results demonstrate that our model is consistently favored by human evaluators across all  
1026 three aspects. This further validates the effectiveness of our synchronization mechanisms and the  
1027 visual fidelity of our methods.  
1028

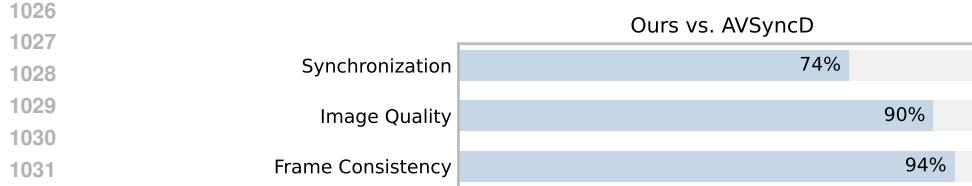


Figure 8: Human preference rates (%) for our method over ASyncD across three evaluation criteria.

## F ADDITIONAL VIDEO SAMPLES

### F.1 SAMPLES FROM SYNCAPHONY

Please see the top sections of the attached HTML file ("Html\_Suppl/index.html") for generated videos from Syncaphony.

## G ABLATION SAMPLES

Please refer to Section **Ablations** in the attached HTML file ("Html\_Suppl/index.html"), which includes ablation results for Motion-aware Loss, Audio Sync Guidance, and Audio RoPE.

## H COMPARISON SAMPLES

Please refer to Section **Comparison** in the attached HTML file ("Html\_Suppl/index.html"), which compares videos generated by our model, AVSyncD Zhang et al. (2024), and Pyramid Flow (fine-tuned), a variant of our model without audio cross-attention layers.

## I IMPLEMENTATION AND EXPERIMENTAL DETAILS

### I.1 WHY IMAGE-TO-VIDEO BACKBONE?

We also applied our method to a Text-to-Video (T2V) model, AnimateDiff (Guo et al., 2023), and trained it on the AVSync15 dataset, which contains limited 1,350 training samples. We found the model generates motion aligned with audio, but it shows overfitting, with limited diversity in appearance. This is because T2V models have to generate both appearance and motion without a reference image. With a small dataset, it becomes difficult to produce diverse appearances, and even harder to learn various audio-driven motion patterns.

In contrast, Image-to-Video (I2V) models, such as Pyramid Flow (Jin et al., 2024a), are conditioned on an initial image and focus on predicting motion rather than full appearance. This simplifies the learning process and reduces the risk of overfitting. For these reasons, we adopt the I2V model as our video generation backbone.

### I.2 TRAINING AND INFERENCE SETTINGS

We train our model using 4 NVIDIA RTX 3090 GPUs (24GB each) with a total batch size of 32. Training takes 34 hours to reach 33,000 steps. For all experiments, we use 30 denoising steps. We follow Pyramid Flow in setting the classifier-free guidance (CFG) strength to 7.0 for the first latent and 4.0 for the rest. For Audio Sync Guidance, we use  $w = 2$ , where  $w = 0$  disables the guidance.

Inference time for a 5-second video (with pre-encoded audio and text features) is as follows:

- Audio Guidance: 2 min 53 sec
- w/o Audio Guidance: 2 min 01 sec
- w/o Audio Layers: 1 min 43 sec

1080 At least 16 GB of GPU memory is required to generate 5-second videos.  
 1081

1082 **I.3 TRAINING AND EVALUATION DATASETS**  
 1083

1084 We use two datasets for training and evaluation:  
 1085

- 1086 • **AVSync15 (Zhang et al., 2024):** 1,350 videos for training and 150 for testing. For evaluation, we  
 1087 linearly extract 3 clips per video, resulting in 450 evaluation clips.
- 1088 • **TheGreatestHits (Owens et al., 2016):** 733 videos for training and 244 for testing, resulting in  
 1089 732 evaluation clips.

1090 During training, we randomly sample clips from different temporal regions of each video to improve  
 1091 generalization to various audio-motion alignments.  
 1092

1093 **J APPLICABILITY OF SYNCOPHY TECHNIQUES TO OTHER MODALITIES**  
 1094

1095 While Syncphony focuses on audio-to-video generation, we believe the proposed techniques are  
 1096 applicable to other modalities.  
 1097

1098 Motion-aware Loss, by amplifying learning signals in high-motion regions, encourages the model  
 1099 to focus on dynamic cues that reflect physically grounded movements. This can benefit tasks like  
 1100 audio-to-3D animation, text-to-video, and text-to-3D, where generating realistic motion is essential.  
 1101

1102 In contrast, Audio Sync Guidance are designed to improve synchronization between audio and  
 1103 motion. This technique is applicable to tasks such as audio-to-3D animation, provided that the model  
 1104 adopts an attention-based architecture with functionally well-separated layers, which enables clean  
 1105 injection of audio signals into the network.  
 1106

1107 10. frog croaking



1120 Q1. Which video has better image quality in terms of realism and clarity?

1121  Video 1  
 1122  Video 2

1123 Q2. Which video is more visually consistent across frames, without flickering or sudden jumps?

1124  Video 1  
 1125  Video 2

1126 Q3. Which video is better synchronized with the audio in terms of motion timing?

1127  Video 1  
 1128  Video 2

1129 1130 Figure 9: Screenshot of the user study interface of each video pair with questions.  
 1131

1132  
 1133



Figure 10: Frame results of skipping each transformer block individually.

1180  
 1181  
 1182  
 1183  
 1184  
 1185  
 1186  
 1187

