
Toward Mobile Robot Navigation in Unstructured Environments Using
Topology-Aware Efficiently Adaptive State Lattices*

Ashwin Satish Menon, Eric R. Damm, and Thomas M. Howard

Abstract— Contemporary mobile robot navigation architec-
tures that employ a planning algorithm to provide a single
optimal path to follow are flawed in the presence of dynamic
and uncertain environments. As the environment updates and
the robot’s starting state changes, optimal plans often oscil-
late around discrete obstacles, which is problematic for path
following controllers that are strongly biased to follow the
planned route. In this paper, we reformulate the search process
employed by Efficiently Adaptive State Lattices (EASL) to
exploit homotopy classes extracted from an observed environ-
ment. This approach, which we call Topology-Aware Efficiently
Adaptive State Lattices (TAEASL), performs heuristic search
using multiple data structures to control expansion of nodes in
the graph to provide multiple minimum-cost plans in distinct
homotopy classes. Inspired by approaches such as Anytime
Repairing A*, search continues until no further expansions can
be performed or a maximum search time has been reached. To
validate TAEASL’s utility in field robotics, it was tested on
real-world, off-road environment data that was collected by a
Clearpath Warthog unmanned ground vehicle (UGV) and was
able to generate multiple solutions. The paper concludes with a
discussion of applications including high-speed off-road mobile
robot navigation in cluttered obstacle fields.

I. INTRODUCTION

Motion planning algorithms for mobile robots that search
for the optimal route given an environment and robot model
are pervasively applied across various domains. As illustrated
in Figure 1, there are certain applications where a planning
framework that can produce multiple distinct plans is bene-
ficial. Mobile robot path planning is one such application.
Since the cost map is dynamically updated from sensor
observations, the planner may return single, optimal plans
that periodically alternate around either sides of obstacles,
which burdens the path-following controller with a more
difficult obstacle avoidance problem [4] [6]. Recent research
into algorithms that exploit homotopy classes has led to
planning approaches that are capable of returning multiple

*Research was sponsored by the Defense Advanced Research Projects
Agency (DARPA), and was accomplished under Contract Number
HR001121C0189. Any opinions, findings, conclusions or recommendations
expressed herein are those of the author(s) and do not reflect the views
of the Defense Advanced Research Projects Agency or Carnegie Mellon
University. Additional research was also supported by the DEVCOM Army
Research Laboratory (ARL) and was accomplished under Cooperative
Agreement Number W911NF-20-2-0106. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

Ashwin Satish Menon, Eric R. Damm, and Thomas M. Howard are with
the Robotics and Artificial Intelligence Laboratory, Department of Electrical
and Computer Engineering, University of Rochester, Rochester, NY, USA
amenon4@ur.rochester.edu

Fig. 1: Top row: Kinodynamic EASL [1] generating plans
from (2.0, 0.0) to (6.0, 0.0) (left) and from (2.5, -0.75) to (6.0,
0.0) (right). Bottom row: TAEASL generating plans from the
same respective states. The lines emanating from obstacles
in the bottom row are reference frames. They are used to
partition the world into separate homotopy classes (explained
in detail in Section II). Note that as the start state differs
from the left map to the right map, KEASL’s single solution
switches into a different homotopy class. However, TAEASL
generates two solutions in both maps, providing a diversity
of options for a path-following controller in obstacle-dense
environments.

routes for use cases such as the aforementioned one. As
in [5], we adopt a definition of homotopy as a topological
formalism to compare the similarity of paths. Given two
paths that start and terminate at the same states, we describe
the paths as belonging to the same homotopy class if one can
be continuously deformed into the other without encroaching
on any obstacle.

An algorithm recently developed for mobile robot mo-
tion planning in cluttered environments is the Efficiently
Adaptive State Lattice (EASL) [3]. This method iteratively
refines the search space over multiple planning cycles to
increase the relative optimality of heuristic search. Further
extensions, such as Kinodynamic EASL (KEASL) [1] extend
the representation of the search space to satisfy position
and orientation dependent velocity constraints to generate



trajectories between boundary states. Although these ap-
proaches have improved the efficiency, fidelity, and opti-
mality of heuristic search for mobile robots in unstructured
environments, they are not formulated to exploit homotopy
constraints to return multiple distinct solutions. In an attempt
to remedy the oscillatory behavior seen in planners which
output a single plan, this paper introduces Topology-Aware
Efficiently Adaptive State Lattices (TAEASL). This contri-
bution maintains the benefits of these recombinant motion
planning search spaces but returns one or more optimal
solutions subject to homotopy constraints informed by the
cost map. Results indicate that TAEASL is able to generate
multiple low-cost solutions in dense obstacle fields with
feasible planning time constraints.

II. METHOD

Topology-Aware EASL makes use of the mathematical
formalisms presented in [7] that describe how homotopy
constraints are defined. This involves segmenting the robot’s
surrounding environment by drawing lines in cost maps
which are anchored by a single center point and each ob-
stacle’s centroid. The lines are treated as separate “reference
frames”.

F K

unexplored

open

closed

edge

+x

+y

+ψ

α β

γ

Fig. 2: TAEASL follows the procedure in [7] by sampling
points in the obstacle and generating lines from the center
point of the map that do not result in coincident lines.

In Figure 2, the cost map cells are parsed to find cells of
lethal cost. If such cells exist, the 8-connected neighboring
cells will be recursively searched and combined into the same
obstacle cluster until no neighboring cells are lethal. The
clusters are stored in a vector of obstacle clusters, where the
cluster’s centroid serves as the anchor point for the reference
frame. The figure further illustrates how reference frames are
then drawn with the two points being the obstacle centroid
and the map’s sampled center point. We depart from the
method in [7] by including only sampled lines which are on
the far side of the obstacle relative to the center of the map,
which reduces the number of reference frame crossings to
track. If the frame encounters a new obstacle on its way to
the map boundaries, the frame ends. Each frame has a unique
string identifier for identifying which reference frames a path
may have crossed.

Figure 3 shows the first three expansions of the search
process, which is based on A∗ search [2]. The path begins

with no reference frame crossings, so we describe the path
as belonging to the homotopy class ∅. As search expands
from (H, 0◦) to (I, 0◦) the reference frame α is crossed,
meaning that the path from (F, 0◦) to (I, 0◦) now contains
edges that belong to two different homotopy classes, ∅ and
α. To ensure that we continue searching along paths that go
to the left and right of the first encountered obstacle, we add
a second priority queue that only includes nodes belonging
to the α homotopy class.

A B C D E

F G H I J K

L M N O P

Q R S T

unexplored

open

closed

edge

+x

+y

+ψ

α β

γ

Fig. 3: The edge from (H, 0◦) to (I, 0◦) crosses reference
frame α, meaning a new open list is associated with ho-
motopy class α, whereas the previously expanded nodes
belonged to an open list associated with homotopy class ∅.

Figure 4 shows two expansions for each of the two priority
queues defined by homotopy classes ∅ and α. A solution is
found from (F, 0◦) to (K, 0◦) in homotopy class α. Search
continues in the other priority queues to explore alternative
routes.

A B C D E

F G H I J K

L M N O P

Q R S T

unexplored

open

closed

edge

+x

+y

+ψ

α β

γ

Fig. 4: TAEASL search continues in two directions by
expanding two nodes in each homotopy class ((L, 270◦),
and (S, 0◦) in ∅ and (I, 0◦), and (J, 0◦) in α) and finds a
route from (F, 0◦) to node (K, 0◦) through (G, 0◦), (H, 0◦),
(I, 0◦), and (J, 0◦). Since this route crossed the α boundary,
we describe this solution as belonging to homotopy class α.

Figure 5 shows a second route belonging to homotopy
class ∅ after two additional expansions of that priority
queue. TAEASL continues until no further priority queues
are capable of expanding further or a maximum time of
search is reached.

III. EXPERIMENTS

TAEASL was tested on multiple real-world, off-road envi-
ronments in a Mid-Atlantic forest biome, with one second to



A B C D E

F G H I J K

L M N O P

Q R S T

unexplored

open

closed

edge

+x

+y

+ψ

α β

γ

Fig. 5: After two additional expansions, a second route
is found from (F, 0◦) to node (K, 0◦) through (L, 270◦),
(S, 0◦), (N, 90◦), and (J, 0◦). Since this solution crossed no
reference frames, we describe this solution as belonging to
homotopy class ∅.

generate plans. There were two types of hardware validation
performed. First, the environment data was collected on-
robot and then TAEASL was used to generate plans offline
in the logged maps. This is the data shown in Figures 6 and
7. Second, TAEASL ran live on the robot in the same test
environments where the original map data was collected.

Figure 6 shows two and Figure 7 shows three resulting
trajectories from TAEASL during physical field testing ex-
periments. Red cells are obstacles, gray cells are traversable
space, and black cells are unobserved space. Green segments
of the solution indicate faster planned robot velocities while
blue segments indicate slower velocities. In both examples,
as the robot moves away from the most clearly observed
part of the map towards the edge of the map, the planned
velocity decreases. This is done by the kinodynamic search
space being used to plan slower speeds where the perceptual
horizon is filled with greater uncertainty. In the same way a
human driver would slow down if they did not know their
surroundings, the robot reduces speed when its environment
is largely unknown.

The multicolored lines emanating from the centers of the
maps are the reference frames. Note that only a few obstacles
in the center of each map have associated reference frames.
Specifically, in Figure 6, there are only four obstacles with
frames emanating from them. In this map, the frame radius
parameter was set to 5.0 meters. Figure 7 contains many
more reference frames due to the frame radius being set
to 10.0 meters. This parameter dictates which obstacles are
are chosen for frame initialization. Only those within the
specified radius from either the center of the map or the
robot’s position are selected. Figure 6 is measured from
the map center and Figure 7 is measured from the robot’s
position.

This parameter exists to limit the number of solutions
TAEASL can generate. Ignoring winding topologies, there
are 2n possible plans our approach can return, where n is the
number of obstacles initialized with reference frames in the
map. In dense, forested areas such as the ones TAEASL was
tested in, there would be too many hypothetical solutions

(if every obstacle in the map had an associated frame),
often with not enough topological deviation between them.
For a path-following controller, three solutions across three
sufficiently different homotopy classes is more useful than
20 or more solutions where many of those solutions are very
similar to each other. TAEASL and KEASL [1] were inte-
grated and used to enable topologically aware, kinodynamic
motion planning through an unstructured forest environment.

IV. DISCUSSION

The motivation behind this contribution emerged when
observing EASL [3] run on an Ackermann-steered robot in
tandem with a path-following controller in an unstructured,
off-road environment. As the robot got progressively closer
to a large, lethal obstacle, the optimal plan would “jump”
back and forth across the obstacle, essentially switching ho-
motopy classes every second. The perceptual horizon would
change due to the robot moving through the world, meaning
the cost map was dynamically updated, yielding minimum-
cost-to-goal plans which did not necessarily maintain a
solution within the same homotopy class.

While the path was oscillating across homotopy classes,
the controller would still attempt to track it. Due to the
vehicle’s steering angle constraints, it would drive closer to
the obstacle it was trying to avoid in the first place until
it was close enough that a manual safety intervention was
necessary. In this same scenario but with TAEASL as the
planner instead of EASL, the controller would have had
various options to choose from, including the option to track
a path that exists in the same homotopy class the controller’s
current action was in, hypothetically avoiding the need for a
manual intervention.

Thus, the TAEASL approach presented here is the first
of two steps in creating a planner-controller interface that
can be inserted into an autonomous navigation stack which
has existing perception and state estimation pipelines. As
mentioned in Section III, TAEASL has been run live on
a Clearpath Warthog in obstacle-dense forested areas. Ini-
tial field testing has been successful in generating optimal
plans in distinct homotopy classes, indicating that hardware
validation has been shown via two different modalities:
collected data logs and live robot runs. The second step will
be to develop a path-following controller that has a multi-
plan interface (MP-PFC) such that it can consider several
TAEASL plans at once.

In order for the MP-PFC to correctly make use of
TAEASL, it must have a parameterized cost threshold value.
We define ∆costab as the difference between the cost to
goal of the robot’s current controller action, in homotopy
class a, to the cost to goal of the action needed to track a
TAEASL plan in homotopy class b. The robot will cease to
track the path in a and begin to track the path in b if and
only if ∆costab > cost threshold. If ∆costab is very small
and only yields a marginal improvement in cost to goal (<
cost threshold), the robot will continue tracking the path in a.
This threshold is necessary to enable TAEASL’s utility — if
no such value was supplied, the robot would greedily select



Fig. 6: TAEASL generates two kinodynamic solutions from
the start state (magenta) to the goal state (cyan). Green path
segments = higher robot velocities, blue path segments =
lower robot velocities. Red cells = obstacles, gray cells =
traversable space, black cells = unobserved space. Note the
reduction in planned speed as the robot moves towards an
area with more uncertainty.

Fig. 7: TAEASL generates three kinodynamic solutions from
the start state (magenta) to the goal state (cyan). Green path
segments = higher robot velocities, blue path segments =
lower robot velocities. Red cells = obstacles, gray cells =
traversable space, black cells = unobserved space. Note the
reduction in planned speed as the robot moves towards an
area with more uncertainty.

the control action that would minimize cost at the risk of
unsafe driving behavior. This would cause a reoccurrence of
the very problem the TAEASL/MP-PFC paradigm attempts
to solve. Put simply, cost threshold must be large enough to
be worth the risk that is associated with tracking a path in a
different homotopy class.

V. CONCLUSION

In this paper, we have presented an extension of the
Efficiently Adaptive State Lattice algorithm, termed the
Topology-Aware Efficiently Adaptive State Lattice algo-
rithm. By introducing homotopy constraints, we are able to
enforce that our planner returns multiple solutions in a re-
combinant search space, each of which is the optimal path in
a given homotopy class. This has been done primarily to ease
the burden of a path-following controller in an autonomous
navigation stack when negotiating through cluttered environ-
ments. The results of this contribution indicate that TAEASL
is able to generate multiple high-quality solutions, even when
restricted to aggressive search time constraints such as one
second.

TAEASL was tested in a real-world environment and
was successful in returning multiple solutions, even when
incorporating kinodynamic constraints. Future work will
consist of running TAEASL in tandem with a controller
that has a multi-path interface in similar environments to
the ones shown in Figures 6 and 7. By supplying a path-
following controller with a diversity of solutions across

homotopy classes, the goal is to both reduce the controller’s
burden with regard to collision avoidance and increase the
likelihood of safer autonomous navigation in very obstacle-
dense environments.

REFERENCES

[1] Eric R. Damm, Jason M. Gregory, Eli S. Lancaster, Felix A. Sanchez,
Daniel M. Sahu, and Thomas M. Howard. Terrain-aware kinodynamic
planning with efficiently adaptive state lattices for mobile robot nav-
igation in off-road environments. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 9918–
9925, 2023.

[2] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions
on Systems, Science, and Cybernetics, SSC-4(2):100–107, 1968.

[3] Benned Hedegaard, Ethan Fahnestock, Jacob Arkin, Ashwin Menon,
and Thomas M Howard. Discrete optimization of adaptive state lattices
for iterative motion planning on unmanned ground vehicles. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5764–5771. IEEE, 2021.

[4] Thomas M Howard, Colin J Green, and Alonzo Kelly. Receding
horizon model-predictive control for mobile robot navigation of intricate
paths. In Field and Service Robotics: Results of the 7th International
Conference, pages 69–78. Springer, 2010.

[5] Steven M LaValle. Planning algorithms. Cambridge university press,
2006.

[6] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model
predictive path integral control using covariance variable importance
sampling. arXiv preprint arXiv:1509.01149, 2015.

[7] Daqing Yi, Michael A Goodrich, and Kevin D Seppi. Homotopy-
aware rrt*: Toward human-robot topological path-planning. In 2016
11th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 279–286. IEEE, 2016.


