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Abstract

CLIP has been a celebrated method for train-
ing vision encoders to generate image/text repre-
sentations facilitating various applications. Re-
cently, it has been widely adopted as the vision
backbone of multimodal large language models
(MLLMs). The success of CLIP relies on align-
ing web-crawled noisy text annotations at image
levels. However, such criteria may be insufficient
for downstream tasks in need of fine-grained
vision representations, especially when under-
standing region-level is demanding for MLLMs.
We improve the localization capability of CLIP
with several advances. Our proposed pre-training
method, Contrastive Localized Language-Image
Pre-training (CLOC), complements CLIP with
region-text contrastive loss and modules. We for-
mulate a new concept, promptable embeddings,
of which the encoder produces image embed-
dings easy to transform into region representa-
tions given spatial hints. To support large-scale
pre-training, we design a visually-enriched and
spatially-localized captioning framework to ef-
fectively generate region-text labels. By scal-
ing up to billions of annotated images, CLOC
enables high-quality regional embeddings for
recognition and retrieval tasks, and can be a drop-
in replacement of CLIP to enhance MLLMs, es-
pecially on referring and grounding tasks.

1. Introduction
Vision-language (VL) pre-training has been an important
foundation for the recent tremendous growth of multimodal
applications. Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021; Jia et al., 2021) is a success-
ful VL representation learning method that connects im-
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ages and text by contrastive training on large-scale data
collected from the Web. Strong transferability and gen-
eralizability have been proven in extensive downstream
tasks such as zero-shot image classification and image-
text retrieval. Even beyond, language-supervised meth-
ods like CLIP have become arguably the default choice
of vision backbone for multimodal large language models
(MLLMs) (Liu et al., 2023; McKinzie et al., 2024) due to
their superior prior knowledge in aligning vision and lan-
guage (Tong et al., 2024).

As VL research gets increasing attention, various advanced
multimodal tasks are demanding stronger vision capabili-
ties. For instance, recent MLLMs (Rasheed et al., 2024;
Ren et al., 2024; Lai et al., 2023; Chen et al., 2023; Peng
et al., 2023; Zhang et al., 2025) have been focusing on
more fine-grained understanding tasks that require com-
prehension of the semantics at region levels such as visual
question answering (VQA) with referring and grounding
instructions. These MLLMs are fine-tuned on referring and
grounding data with CLIP as the vision backbone, as seen
in works like Kosmos-2 (Peng et al., 2023) and Ferret (You
et al., 2023; Zhang et al., 2024). Due to the need for such
region-level understanding, CLIP, which aligns entire im-
ages with text captions, seems insufficient, as its image-text
contrastive loss primarily emphasizes global semantics.

To remedy such core localization capability for CLIP, we
ask a challenging and fundamental question: can we pre-
train a stronger image encoder (1) with enhanced local-
ization capability that can be inherently integrated into
MLLMs, (2) and refine CLIP’s original image embeddings
to the region level for zero-shot recognition/retrieval?

Here, we explore a data-driven approach that complements
the original CLIP image-text pre-training objective with ex-
plicit region-text supervision. Though conceptually simple,
several challenges exist. First, it lacks public datasets with
region-text annotations at scales large enough for CLIP
training, which typically requires hundreds of millions
even billions of images. Existing region-text corpus like
Visual Genome (Krishna et al., 2017) contains about 108K
images, and the largest noisy-labeled grounded dataset
GRIT (Peng et al., 2023) features only around 20M images.
Indeed, such a deficiency of labeled datasets has probably
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Figure 1. Our CLOC pre-training framework. (1) A visually-enriched and spatially-localized captioning pipeline pseudo-labels
bounding boxes with detailed descriptions for key regions. (2) A lightweight Prompter attached on the CLIP image encoder can be
prompted to transform the image embedding into region-focused features. All parameters are trained end-to-end from scratch with our
contrastive localized language-image loss on the annotated region-text datasets. After pre-training, (3a) region features can be generated
via the Prompter for region-text tasks like object classification in a training-free fashion. (3b) The image encoder, along with the
optional Prompter, can also strengthen MLLMs fine-tuning by enhancing their fine-grained image understanding capabilities.

limited the literature to mainly consider semi-supervised
or weakly-supervised approaches as somewhat a compro-
mise (Naeem et al., 2023; Yao et al., 2022; 2023a).

Second, a plausible solution is to scale up training data in
pursuit of image regions pseudo-labeled with text annota-
tions via some open-vocabulary detectors (Minderer et al.,
2024; Zhang et al., 2022). Though it seems feasible, we
found it non-trivial to design such a pipeline as the annota-
tions are noisy and will greatly affect the final model per-
formance. Third, even if the region-text datasets are given,
it is under-explored how to effectively train on them in
terms of co-designs of training objectives, model architec-
ture, and more design details.

To this end, we propose a new pre-training framework illus-
trated in Figure 1, named Contrastive Localized Language-
Image Pre-Training (CLOC), to improve CLIP with bet-
ter localization capability, especially for MLLMs, by over-
coming the above difficulties. Our main contributions are:

• We propose a new learning goal, Promptable Embed-
dings, that a strong vision encoder should produce image
embeddings that can be easily transformed into region
representations, given some spatial hints (e.g., box refer-
ring or text prompts). This formulation not only facili-
tates the encoder as a prior of fine-grained VL alignment,
but also enables new possibilities for the interactions be-
tween the image encoder and the language decoder.

• To optimize towards the goal, we design simple and min-
imal modifications on top of CLIP. We augment the orig-

inal CLIP loss with a region-text contrastive loss, where
the region embeddings are extracted from the image em-
bedding by a lightweight extractor module conditioned
on the spatial hints (i.e., prompts).

• We design a large-scale pseudo-labeling engine to sup-
port CLOC training. We combine visual-enriched image
captioners and open-vocabulary detectors for an effective
recipe that improves previous practice of region anno-
tations (Minderer et al., 2024; Peng et al., 2023). This
approach yields a two-billion image-text dataset with
fine-grained region-text annotations, which serves as the
foundation for training our CLOC model.

• Through extensive experiments across 31 evaluation
tasks, including standard image-text tasks, newly con-
structed region-text tasks, and downstream evaluations
with MLLMs, we demonstrate that CLOC significantly
and consistently outperforms the CLIP counterpart.

• We are working on releasing our pre-trained checkpoints
and the constructed region-text annotations along with
the final version to accelerate future research.

2. Related Work
Vision encoder pre-training. A popular approach to
MLLMs such as LLaVA (Liu et al., 2023), typically con-
nects a vision encoder (e.g., ViT (Dosovitskiy et al., 2021))
to digest visual input and maps them to the input space
of the LLM as tokens. Among various types of vision
encoders (Oquab et al., 2023; He et al., 2022), language-
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supervised methods like CLIP (Radford et al., 2021; Jia
et al., 2021) becomes the popular choice, due to its superior
performance on MLLMs reported (Tong et al., 2024).

Other training approaches like captioning loss (Tschannen
et al., 2024) are also popular; Wan et al. (2024) further in-
corporates bounding box coordinates. However, they need
to train a full encoder-decoder transformer with smaller
batch sizes, which is less efficient than CLIP. Also, the vi-
sion embeddings are not directly aligned with languages,
so more limited for search or retrieval tasks. Therefore, our
scope focuses on improving the CLIP approach.

Improving localization of CLIP. Since CLIP was intro-
duced, many follow-up works have been proposed to im-
prove it from various aspects, for different target tasks,
and with different approaches. From the aspect relevant
to our work, improving the localization capability, most
works specifically focus on the downstream dense vision
tasks such as open-vocabulary detection (Minderer et al.,
2024; Yao et al., 2022; Wu et al., 2023). Another, and ar-
guably more challenging, direction is to maintain the gen-
eralizability of CLIP on image-level tasks while improving
localization. Recent works (Naeem et al., 2023; Bica et al.,
2024; Dong et al., 2023) combine localization-enhancing
unsupervised objectives with the CLIP loss, but do not at-
tempt supervision on large-scale explicit pseudo-labeled
data like ours and have more computational overhead.
Alpha-CLIP (Sun et al., 2024) shows that the SAM (Kir-
illov et al., 2023) can provide useful conditions for CLIP.
Another relevant works, UMG-CLIP (Shi et al., 2025),
fine-tunes a pre-trained CLIP model for dense vision tasks
on a 41M image/region-text dataset. Although there is a
technical similarity to ours, the goals and positioning of our
work and theirs are quite different. UMG-CLIP is designed
primarily for vision-centric tasks such as detection and seg-
mentation, whereas our focus is on MLLMs. MLLM VQA
tasks require more extensive language understanding and
thus demand large-scale pre-training data. Our approach
pre-trains from scratch on up to 2B images thanks to our
scalable labeling pipeline. Last but not least, we believe
that a fine-tuning approach like UMG-CLIP is complemen-
tary to CLOC pretraining rather than conflicting with it.

Synthetic annotations for pre-training. The literature has
been exploring scalable ways to generate high-quality syn-
thetic annotations for CLIP. For instance, several works
demonstrate that visually-enriched image captions improve
CLIP (Lai et al., 2024). MOFI (Wu et al., 2024) augments
CLIP with an extreme multi-classification task. However,
these works only consider image-level annotations but not
explicit region-level labels. In the context of dense vision
tasks like open-vocabulary detection and segmentation,
pseudo-labeling in a self-training paradigm has proven an
effective approach (Kirillov et al., 2023; Minderer et al.,
2024). We are inspired by these efforts and combine them

to enhance CLIP’s localization capabilities. Our approach
is promising, since the advances of these labeling methods
can further improve ours in the future.

3. CLOC
3.1. From Image-Text to Region-Text Alignment

CLIP (Radford et al., 2021) contrastively aligns the embed-
ding from a pair of image and text encoders (fI and fT ).
Let a mini-batch of N image-text pairs {(xi,yi)}Ni=1 be
sampled from the large-scale training set during each train-
ing iteration. The contrastive loss is defined as follows:

LCLIP := (LI→T + LT→I)/2. (1)

LI→T := − 1

N

N∑
i=1

log
exp

(
sim(fI(xi), fT (yi))/τ

)∑N
j=1 exp

(
sim(fI(xi), fT (yj))/τ

) ,

where sim(·, ·) is the similarity function and τ is a (learn-
able) temperature. The CLIP loss LCLIP averages the sym-
metrical contrastive loss in which cross-entropy normalized
along image-to-text and text-to-image axes, respectively.

Conceptually, LCLIP aligns images with their associated
text, but it overlooks subimage semantics. We propose aug-
menting this with region-text alignment on top of LCLIP.
Specifically, assume an image-text pair (x,y) can be de-
composed into image regions x(1), . . . ,x(m), and there ex-
ist regional captions y′(m) that describe the correspond-
ing regions x(m). Thus, the original input (x,y) be-
comes region-text pairs {(x(1),y′(1)), . . . , (x(m),y′(m))},
and (x,y) is a special case when the “region” itself is the
whole image. We identify several research questions and
will answer them in the following sections:

1. Considering the goal is to train an image encoder fI
with enhanced localization capability, how should we
formulate a region-text alignment goal that improves
fI? We propose a novel learning task called promptable
embeddings in Section 3.2.

2. How to properly extract region embedding from fI(x)
as an effective joint design? We propose a lightweight
promptable region extractor in Section 3.3.

3. How to generate meaningful image regions with high-
quality captions? Furthermore, in many cases, the ideal
region caption y′(m) may not exist in the image-level
caption, i.e., y′(m) might not be a substring of the orig-
inal y. We design an effective and scalable data engine
as a visually-enriched and spatially-localized labeler to
generate high-quality region-text pairs in Section 4.

4. With the above considerations, we discuss how to train
the model with minimal conflicts towards a drop-in re-
placement of the CLIP model in Section 3.4.
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Figure 2. CLOC promptable embedding architecture. CLOC builds upon the image embedding from CLIP (before pooling and pro-
jection) and transforms it into a region-aware vision embedding given an encoded prompt; e.g., positional encodings of box coordinates
or regional caption encoded by the CLIP text encoder.

3.2. Promptable Embeddings

To optimize CLIP with better feature localization and even-
tually learn an enhanced CLIP vision encoder fI for var-
ious VL downstream tasks, we argue that it will require
at least two capabilities. (i) First, the encoder should rec-
ognize fine-grained small objects (e.g., this image crop is
an “airplane wheel”). (ii) Second, the image embedding
produced by the encoder provides a holistic understand-
ing such that an MLLM can reason more advanced spatial
hierarchy relationships within the scene (e.g., “The plane
is lowering its front landing gear.”). As discussed in Sec-
tion 2, many previous works improve CLIP toward object
detection tasks thus mainly focusing on (i) only; e.g., Re-
gionCLIP (Zhong et al., 2022) that crops out image regions
and uses them as additional input images to re-train the
CLIP encoders for recognizing objects. However, to sup-
port comprehensive VL tasks, (i) is necessary but insuffi-
cient without (ii).

To achieve this, we introduce a new concept, promptable
embedding. We consider a scenario similar to MLLM use
cases, where answers are generated using CLIP image to-
kens alongside a question. We hypothesize that a strong
encoder for MLLMs should produce an image embedding
that can easily be transformed into region representations,
given location cues.

We re-formulate the CLIP loss based on image-text pairs
(x,y) into a localized language-image contrastive loss
for region-text alignment based on triplets of ({l},x,y),
where l is a location representation such as a bounding box,
and possibly there are several boxes as a set {l} per image.
To make it compatible with CLIP training, we construct a
promptable embedding transform module, or in short, re-
gion prompter z = Prompter(l, fI(x)), that extracts the
region embedding specified by l from the image embedding
fI(x). This formulation is inspired by the success of the
segmentation model SAM (Kirillov et al., 2023) which pre-
dicts segmentation masks conditioned on location prompt

(e.g., a box), while CLOC predicts a region embedding
conditioned on l instead.

To this end, we decompose the location-image-text
triplets as localized region-text pairs. Let z

(m)
i =

Prompter(l(m)
i , fI(xi)) and y

(m)
i is the caption of the re-

gion specified by l
(m)
i . l(m)

i ∈ R4 is the m-th box of image
i represented as two coordinates (i.e., top-left and bottom-
right corners). We then formulate a symmetric region-text
contrastive loss similar to Equation 1:

LR→T := − 1

MN

N∑
i=1

∑
l
(m)
i ∼{li}

logp (2)

p =
exp

(
sim

(
z
(m)
i , fT (y

(m)
i )

)
/τ

)
∑N

j=1

∑
l
(m)
j ∼{lj}

exp
(
sim

(
z
(m)
i , fT (y

(m′)
j )

)
/τ

) ,
where M is the number of regions l(m)

i sampled randomly
per image. We set M = 4 by default. We will discuss im-
plementing the Prompter in Section 3.3, and generating
l
(m)
i with y

(m)
i in Section 4. LT→R is the symmetric con-

trastive loss normalized along text-to-region axis, just like
in Equation 1. Intuitively, for each region (m) of image
i, it contrasts with all the other region captions y of other
regions (m′) from the same (when i = j) or other images
(when i ̸= j). We define LCLOC = (LR→T + LT→R)/2.

As the Prompter is a simple transformer encoder, it al-
lows flexible types of prompts besides bounding boxes we
have used, such as points, free-form referring, text, and etc.
We further consider the case where the prompt is free-form
text, and leave others for future study. We add a ground-
ing loss that extracts a region feature from the image (e.g.,
a picture of the bedroom) given its regional caption (e.g.,
“a large TV”), and predicts the bounding box with an MLP
regression head, i.e.,

Lgrounding :=
1

4MN

N∑
i=1

∑
l
(m)
i ∼{li}

∥l(m)
i − Head

(
z(y

(m)
i )

)
∥2,

(3)
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where z(y) := Prompter(fT (y), fI(x)) is the
grounded embedding conditioned on the text (encoded by
the CLIP text encoder). All the learnable parameters are
trained end-to-end. With a scalar λ, the overall loss is

L := LCLIP + λ(LCLOC + Lgrounding). (4)

3.3. CLOC Model Architecture

We implement the promptable embedding introduced
in Section 3.2 with minimal extra modules on top of
the original CLIP. As illustrated in Figure 2, the CLIP
model remains the same for computing LCLIP. For
LCLOC/Lgrounding, the image embedding is re-used from
the CLIP ViT but before the pooled projection and nor-
malization f ′

I . To extract the region embedding z =
Prompter(l, f ′

I(x)) from the image, we consider the lo-
cation representation l as two coordinates (top-left and
bottom-right corners of a box), each vectorized by posi-
tional encoding. The Prompter is a lightweight one-
layer transformer encoder. It takes the positional encod-
ings prepended with the image tokens from ViT together as
the input, and outputs the region embedding with a pooled
projection layer. For the grounding loss, we re-use the
same CLIP text encoder for encoding the region captions
z = Prompter(fT (y), f ′

I(x)) to predict the bounding
boxes with a two-layer MLP head. Overall, CLOC only
adds lightweight additional parameters of the heads. Note
that, the main overheads during forward are from ViT im-
age encoding – CLOC reuses it for multiple prompts.

3.4. Discussions on Design Choices and Extensions

We provide discussions here on the rationale behind our
design choices and some minor extensions.

Extracting region embedding with visual prompts.
Training with LCLOC in Equation 4 requires extracting re-
gion embeddings from the image features given the bound-
ing boxes. Another alternative could be Region-of-Interest
(RoI) pooling/alignment (He et al., 2017) from the spatial
image feature of ViT before pooling. RoI operations are
popular, especially in the object detection literature. How-
ever, as will be evidenced by worse performance in Sec-
tion 5, we found spatial pooling an over-strong premise for
CLOC pre-training here for several reasons.

First, unlike object detection datasets that typically con-
tain golden labels, here the pseudo-labels are much noisier
on the large-scale web-crawled images. The resulting RoI
features may be inaccurate due to the imprecise bounding
boxes, making model training less effective. Second, un-
like dense vision tasks that directly rely on the spatial fea-
tures, MLLM has a transformer decoder that consists of
several attention layers such that the constraint of seman-
tics in the spatial feature space becomes somewhat indirect.

Table 1. Region-text dataset statistics. We summarize the text
token length for both images and regions. Partial statistics of the
proprietary datasets revealed by their papers. ∗The 20M subset of
GRIT is released; we removed the invalid URLs.

Dataset # of
imgs

regions
per
img

img
text
len.

region
text
len.

FlickrEntities (Plummer et al., 2015) 32K 8.7 – –
RefCOCO (Yu et al., 2016) 20K 2.5 – 3.6
RefCOCO+ (Yu et al., 2016) 20K 2.5 – 3.5
RefCOCOg (Mao et al., 2016) 27K 2.1 – 8.4
Visual Genome (Krishna et al., 2017) 108K 38.0 – –

GRIT (prop.) (Peng et al., 2023) 91M 1.5 – 4.7
GRIT (released) (Peng et al., 2023)∗ 17M 1.8 17.2 4.6
Florence-2 (prop.) (Xiao et al., 2024) 126M 5.4 70.5 2.6
OWLv2 (prop.) (Minderer et al., 2024) 2B – – –

Minderer et al. (2024) on WiT 300M 5.1 17.1 3.9
VESL WiT (Ours) 300M 11.6 44.9 2.1
VESL WiT+DFN (Ours) 2B 11.5 35.9 2.1

Table 2. Object hallucination in captions. We evaluate different
captioners and the captions generated by our pipeline using the
CHAIR score (Rohrbach et al., 2018); the lower the better

Model CHAIRi CHAIRs

InstructBLIP (Dai et al., 2023) 14.5 30.0
MiniGPT-4 (Zhu et al., 2023) 8.2 24.2
Shikra (Chen et al., 2023) 7.0 22.0
LLaVA-1.5 (Liu et al., 2023) 6.2 20.6

VESL (Ours) 5.9 19.6

Our Prompter mimics such inductive bias in pre-training
via a single-attention-layer encoder that may leverage bet-
ter global context reasoning compared to RoIs.

Avoiding region-text conflicts. While region annota-
tions introduce location information, a concern of con-
trastive learning may be similar objects within an image
(e.g., “boats” in the harbor) or a mini-batch. To miti-
gate it, we apply two tricks. First, fortunately, we found
it sufficient to sample a few regions per image for each
update, e.g., we set M = 4 in Equation 2 in exper-
iments. Second, we filter similar texts when comput-
ing the negatives in the contrastive loss. More specif-
ically, these pairs of

(
z
(m)
i , fT (y

(m′)
j )

)
are “masked”

and ignored in the denominators of both LR→T/T→R, if

sim
(
fT (y

(m)
i ), fT (y

(m′)
j )

)
> 0.9 (no gradients on fT ).

4. VESL Captioning Pipeline
As discussed in Section 1 and 3.1, a key bottleneck of
CLOC is the region-text datasets in terms of both the data
size and the label quality since there are no public datasets
with region-text annotations at scales large enough for con-
trastive pre-training. Inspired by recent works that en-
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Figure 3. Our Visually-Enriched and Spatially-Localized (VESL) captioning pipeline. We leverage an existing open-vocabulary
detector (e.g., OWLv2) that predicts bounding boxes on the images and assigns the labels from the given text phrase candidates. Previous
methods often use the alt-text attached to the images, which is prone to insufficient region descriptions. We found it crucial to re-caption
images with the visually-enriched captioner VeCap (Lai et al., 2024) for better visual concept exploitation for the detector.

rich image captions for better CLIP training, we make a
step further for Visually-Enriched and Spatially-Localized
(VESL) captioning that generates fine-grained captions
at region level. The goal of VESL is, given an image
with the original web-crawled alt-text, to annotate it with
the grounded bounding boxes, each associated with a cap-
tion in natural language for optimizing Equation 2 in Sec-
tion 3.2.

Concretely, VESL is a pseudo-labeling pipeline with the
following steps, with pseudo codes in Appendix C:

1. Re-captioning with visual concept exploitation: We
follow the VeCap2 (Lai et al., 2024; 2025) to generate long,
diverse, and detailed image captions.

2. Region phrase candidates extraction: We apply
name entity recognition (NER) to extract phrases from the
visually-enriched captions as candidates describing a re-
gion inside the image, inspired by Zhang et al. (2022).

3. Open-vocabulary detection with extracted phrases:
the final region-text annotations are generated by a pre-
trained open-vocabulary detector. It matches the phrases
extracted from Step 2 to the bounding boxes proposed by
the detector. We adopted OWLv2 detector (Minderer et al.,
2024) which combines the CLIP image/text encoders with
detection heads. The boxes with confidence larger than
0.1 are kept as the region location and the most confident
phrases are considered as their captions.

Remarks. We highlight our insights behind the proposed
recipe. The most relevant work was proposed in (Minderer
et al., 2024) that scales up open-vocabulary (OV) detection

via self-training. We are inspired by its success and extend
it to CLOC contrastive learning with important modifica-
tions. Different from (Minderer et al., 2024) that generates
candidate phrases from the n-grams of the web-crawled alt-
text of the images for OV detection, we found the alt-text
might not have enough details describing the image region
content, thus limiting the diversity and quality of the an-
notations predicted by the OV detector. We thus caption
each image augmented with more visual details. How-
ever, the long captions make the n-grams candidates ver-
bose and grow exponentially, thus we generate high-quality
candidates via name entity recognition instead. We found
that such a pipeline produces training data more suitable
for CLOC, as will be validated in Section 5. We believe
our approach is promising, as it could enjoy future im-
provements from better building blocks we rely on such as
re-captioning (Li et al., 2024; Fan et al., 2024) and open-
vocabulary detection (Minderer et al., 2024) models.

Our pre-training datasets. Our pre-training data consists
of two parts: (i) image-text pairs, and (ii) region-text pairs.
For image-text pairs, we reproduce the image re-captioning
pipeline from VeCap (Lai et al., 2024), and generate syn-
thetic captions for WiT-300M (Wu et al., 2024) and DFN-
5B (Fang et al., 2023) images. For region-text pairs, we
pseudo-label WiT-300M and a 2B-image subset of DFN-
5B using our VESL pipeline. In VESL, we adopted the
official OWLv2 L/14 model (Minderer et al., 2024) as the
open-vocabulary detector. All images are pseudo-labeled
with 448 × 448 resolution, where a maximum number of
20 phrase queries are sampled for moderate computation
budget. Table 1 summarizes the statistics of existing region-
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text datasets and ours. Notably, we also ablate annotating
WiT-300M following (Minderer et al., 2024) and found it
detects less objects with longer region text, likely due to
the verbose n-grams of alt-text are in lower quality than
our approach, as discussed in the remarks.

Although synthetic captions are generated as detailed de-
scriptions, one may wonder if hallucinations would be in-
troduced into the captions. As VESL grounded the objects
into the captions, we expect that hallucinations are miti-
gated. In Table 2, we evaluate the hallucination metric, the
CHAIR score (Rohrbach et al., 2018), where lower is bet-
ter, to assess the quality of synthetic captions. As shown
in the table, our captioner demonstrates high quality com-
pared to other models.

5. Experiments
5.1. Setup (more details in Appendix B)

Pre-training. We follow OpenAI-CLIP (Radford et al.,
2021) to train both our CLIP baseline and CLOC model
using a similar budget of around 14B images seen. Many
previous models are trained on quite different data, labels,
training cost, architectures, and etc. This makes it hard to
draw a fair comparison directly, and some of them are not
open-sourced. For a faithful comparison of our proposed
methodology, we use the same hyper-parameters and im-
age datasets for both the CLIP baseline and CLOC. We
experimented with the ViT B/16 and L/14 architectures,
pre-trained with 224 × 224 and 336 × 336 image resolu-
tions, respectively. All parameters are trained end-to-end
from scratch. We implement the above in JAX (Bradbury
et al., 2018).

Evaluation tasks. The image encoders are evaluated
across a wide range of downstream tasks. First, we assess
performance on ImageNet image classification (Deng et al.,
2009; Shankar et al., 2020) and COCO retrieval (Lin et al.,
2014). Second, we construct region-level tasks, including
COCO object recognition and region-text retrieval using
the GRIT dataset (Peng et al., 2023). Furthermore, we
show CLOC is particularly useful for MLLMs, validated
by the Ferret model (You et al., 2023) which requires fine-
grained image understanding for referring and grounding
tasks. We also evaluate on general multimodal benchmarks
using LLaVA-1.5 (Liu et al., 2023) and Open-LLaVA-
NeXT (Liu et al., 2024; Chen & Xing, 2024), which both
use the 7B Vicuna LLM. For all evaluation tasks, we use the
same official hyper-parameters, fine-tuning datasets, and
codebase for all the image encoders we experimented with,
without specific tuning.

5.2. Image and Region Classification and Retrieval

CLOC encoder produces not only image embedding but
also region embeddings. It can be used directly for region-
level tasks without further training, in analogy to the zero-
shot capability of CLIP on images. This emergent capabil-
ity enables us to construct region-level zero-shot tasks for
fast development and ablation studies.

In addition to image-level evaluation like ImageNet clas-
sification and COCO image-text retrieval, we additionally
construct region-level tasks, including region object recog-
nition and text retrieval. More specifically, the region-level
tasks leverage the labeled bounding boxes in the evaluation
set for CLOC to extract region embedding. For region re-
trieval, we use a validation set of the GRIT dataset (Peng
et al., 2023) and encode both the image regions and the re-
gion captions. For region classification, the class names are
encoded as text embedding (80 / 1203 classes for COCO /
LVIS, respectively), and the highest cosine similarity for
each region embedding is predicted as its class. We high-
light important variables for the performance in Table 3
with the following observations:

• CLOC performs decently on region-level tasks1 with
strong image-level performance ( 2 vs. 8 13 ).

• The Prompter is an important ingredient for CLOC’s
success to go beyond CLIP ( 3 8 13 vs. 4 9 14 ). We
replace the Prompter with RoI alignment to extract re-
gion features and train with LCLOC (similar to (Shi et al.,
2025)). We found it performs much worse on region-
level tasks, possibly due to difficulties of strong RoI con-
straints and the noisy labels as discussed in Section 3.4.

• VESL helps, as the visually-enriched captions improve
image retrieval tasks (as expected (Lai et al., 2024)) and
the versatile visual concepts candidates facilitate the OV
detector, supporting Section 4 ( 3 13 vs. 5 15 ).

• OV detector OWLv2 > GLIPv2 in VESL ( 3 vs. 6 ).
• Tricks in Section 3.4 offer slight performance gains, but
LCLOC is already highly effective on its own ( 10 11).

• Practically, sampling 2/4 boxes works (12 ) well already.
• Scaling up images saturated on region tasks but further

improved on MLLM tasks ( 3 8 ; Table 4.
• Scaling up the ViT model sizes can further improve both

image and region tasks ( 13 16 17 ).

Overall, CLOC not only achieves strong performance on
image-level tasks, but unlocks zero-shot region-level capa-
bility. Below, with our design choices validated, 13 will be
used by default if not specified.

1For reference, in a different setup, Wu et al. (2023) reports
46.5% mAcc on the COCO region classification task, trained with
320 × 320 COCO images directly. In contrast, our approach
achieves over 70% mAcc, pre-trained on a 224×224 web-crawled
dataset with our object labels (thus not a fair comparisons).
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Table 3. Zero-shot evaluation on image-level tasks (recall@1 of COCO retrieval and accuracy of ImageNet (IN) classification) and
region-level tasks (recall@10 of GRIT region retrieval and mAcc of region object recognition on COCO and LVIS), using ViT-B/16 as
the default encoder backbone. The indentation with different symbols denotes removing (–) or changing a component (◦).

Models Training Labels Image tasks Region tasks Avg.
Image Region COCO-i2t COCO-t2i INv1 INv2 GRIT-r2t GRIT-t2r RecCOCO RecLVIS Image Region

1 OpenAI-CLIP proprietary - 52.4 33.1 68.3 62.3 - - - - 54.0 -
2 CLIP WiT+DFN - 66.3 45.1 76.2 69.6 - - - - 64.3 -

3 CLOC WiT WiT 68.8 50.1 66.7 59.7 65.1 67.2 70.6 26.7 61.3 57.4
4 – Prompter WiT WiT 67.0 49.7 65.6 58.6 44.8 4.4 55.3 13.2 60.2 29.4
5 – VESL WiT WiT 53.9 36.3 66.6 59.5 71.5 63.8 62.2 22.2 54.1 54.9
6 ◦ w/ GLIPv2 WiT WiT 68.8 50.0 65.8 59.2 67.9 71.1 64.9 23.1 61.0 56.8

8 CLOC WiT+DFN WiT 66.1 46.5 75.5 68.6 65.8 67.4 70.1 27.2 64.2 57.6
9 – Prompter WiT+DFN WiT 65.8 46.5 75.7 68.0 55.5 18.4 67.1 24.6 64.0 41.4
10 – text filtering WiT+DFN WiT 65.4 46.0 75.7 68.4 66.3 66.5 68.7 24.8 63.9 56.6
11 – Lgrounding WiT+DFN WiT 66.0 46.3 75.7 67.9 66.0 66.8 70.0 25.8 64.0 57.2
12 ◦M = 2 WiT+DFN WiT 66.6 46.2 75.5 67.9 66.5 67.0 69.8 25.8 64.1 57.3

13 CLOC WiT+DFN WiT+DFN 69.2 49.3 74.9 67.0 63.9 65.9 71.1 28.5 65.1 57.3
14 – Prompter WiT+DFN WiT+DFN 70.2 49.7 74.7 67.6 65.7 23.0 67.1 25.4 65.6 45.3
15 – VESL WiT+DFN WiT+DFN 65.3 46.6 75.5 67.7 55.7 22.3 66.3 25.3 63.8 42.4

16 ◦ ViT L/14 WiT+DFN WiT+DFN 74.8 54.4 80.1 73.2 66.9 68.3 72.9 32.6 70.6 60.2
17 ◦ ViT H/14 WiT+DFN WiT+DFN 75.7 55.1 81.3 74.7 67.4 69.4 73.0 35.6 71.7 61.3

Table 4. Ferret-Bench for referring and grounding VQA, based on
Ferret (You et al., 2023) equipped with different image encoders.
Models are evaluated with OpenAI gpt-4o API. ∗replace Ferret
visual sampler with Prompter; Details in Section 5.3.

Method ViT Region
Align

#images
w/ region

labels

Ref-
Descript.

Ref-
Reason.

Ground
Conv.

Avg.
∆CLIP

CLIP B/16 None None 47.5 50.3 45.3 47.7
CLOC B/16 RoI-Align 300M 48.0 48.4 40.0 45.5
CLOC B/16 Prompter 300M 50.2 55.5 41.5 49.1
CLOC B/16 Prompter 2B 53.6 53.7 42.2 49.8 (+2.1)
CLOC ∗ B/16 Prompter 2B 54.8 54.9 44.7 51.5 (+3.7)

OAI-CLIP L/14 None None 50.8 55.4 45.7 50.6
CLIP L/14 None None 54.2 54.6 43.3 50.7
CLOC L/14 Prompter 300M 51.0 65.7 44.9 53.9
CLOC L/14 Prompter 2B 55.9 63.3 46.0 55.1 (+4.4)
CLOC ∗ L/14 Prompter 2B 56.3 67.4 47.1 56.9 (+6.2)

5.3. Referring and Grounding with Ferret

As discussed in Section 1, a key motivation is to provide
an enhanced image encoder for training MLLMs, particu-
larly for tasks requiring fine-grained image understanding.
A notable example is Ferret (You et al., 2023), a recently
proposed MLLM that builds on LLaVA and aims to handle
more advanced spatial interactions, such as referring and
grounding in VQA tasks. Ferret can take region prompts
such as a box, a point, or a free-form location referring to
the input image as input, and answer a question specific to
the region such as “Do you know when the object[region]
was invented?” Ferret thus requires fine-grained image fea-
tures from the vision encoder for spatial reasoning.

We evaluate CLOC by replacing the CLIP ViT encoder

with our CLOC ViT as a drop-in replacement. We use the
official codebase for training the Ferret model. We further
consider a variant based on Ferret: the Ferret model im-
plements a spatial-aware visual sampler that samples im-
age features from the region specified in the question. We
replace the sophisticated visual sampler with our simple
Prompter introduced in Section 3.3 to extract region em-
bedding with z = Prompter(l, f ′

I(x)) instead, as illus-
trated in Figure 1(right).

In Table 4, we evaluate different pre-trained image en-
coders on the Ferret-Bench benchmark (You et al., 2023).
Ferret-Bench includes challenging multimodal dialogue-
style VQA of three tasks constructed with GPT-4. Results
show that our Prompter is essential to improve upon the
CLIP baseline – RoI-Align may even slightly degrade per-
formance. Scaling region labels from 300M to 2B further
improves performance. Interestingly, our Prompter (de-
noted as ∗) can be a replacement of the FERRET visual
sampler in fine-tuning, which is simpler and performs even
better up to 6% against both the OpenAI-CLIP and our in-
house CLIP. We also evaluate CLOC (2B labeled) on other
referring and grounding tasks ranging from referring ob-
ject classification, referring expression comprehension, and
phrase grounding across multiple datasets. As summarized
in Table 5, CLOC is also superior evidenced by 1 ∼ 3%
improvements in average of 13 evaluation sets.

5.4. General VQA with LLaVA-1.5 and LLaVA-NeXT

We further show that the CLOC encoder is also competi-
tive against CLIP on general VQA tasks without regression
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Table 5. Results on referred-LVIS object classification, referring expression comprehension (0.5 IoU on RefCOCO, RefCOCO+, Ref-
COCOg), and phrase grounding (0.5 IoU on Flickr30k Entities). FERRET ∗: replace visual sampler in FERRET with CLOC prompter.

Model Encoder RefLVIS RefCOCO RefCOCO+ RefCOCOg Flickr Avg.

box point free-
form

val testA testB val testA testB val test val test (∆ to CLIP)

FERRET CLIP B/16 72.5 56.9 57.2 80.7 84.2 77.1 71.9 76.1 63.7 75.9 76.2 76.2 78.3 72.8
FERRET CLOC B/16 74.3 56.7 60.2 84.2 87.0 80.0 74.7 80.0 67.0 78.8 79.5 80.0 81.5 75.7 (+2.9)
FERRET ∗ CLOC B/16 78.9 58.2 61.4 84.4 86.8 78.9 74.0 78.7 65.5 78.0 78.7 80.1 81.4 75.8 (+3.0)

Shikra (Chen et al., 2023) OpenAI-CLIP L/14 57.8 67.7 n/a 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2 75.8 76.5 -
FERRET (Zhang et al., 2024) OpenAI-CLIP L/14 79.4 67.9 69.8 87.5 91.4 82.5 80.8 87.4 73.1 83.9 84.8 80.4 82.2 80.8
FERRET CLIP L/14 78.7 66.9 70.2 88.0 90.4 83.5 80.1 85.8 73.3 82.8 83.4 79.0 80.1 80.2
FERRET CLOC L/14 81.6 67.9 69.9 89.0 91.0 84.7 81.4 86.8 74.7 84.0 85.2 82.3 83.3 81.7 (+1.5)
FERRET ∗ CLOC L/14 79.8 67.9 69.1 88.2 91.1 84.5 80.6 86.7 73.9 84.8 85.1 82.4 83.5 81.4 (+1.2)

Table 6. Results on multimodal benchmarks using LLaVA-1.5
and Open-LLaVA-NeXT with ViT-L/14 and Vicuna-7B.

Method LLaVAW TextVQA GQA MMVet POPE MMEp MMEc

LLaVA-1.5

CLIP 59.3 53.3 62.2 30.0 86.7 1451.4 254.3
CLOC 64.3 54.9 62.7 31.5 87.3 1482.0 288.9

Open-LLaVA-NeXT

CLIP 67.3 61.4 63.5 38.5 87.9 1486.1 279.6
CLOC 69.5 61.9 64.2 40.2 88.3 1451.1 312.5

and can even provide performance improvements. We use
the Vicuna 7B LLM decoder for two experiments based
on LLaVA-1.5 (frozen encoder) and Open-LLaVA-NeXT
(unfrozen encoder with AnyRes (Liu et al., 2024) inputs).
Since general VQA does not provide spatial referring in-
puts, we simply replace the ViT in LLaVA. Table 6 sum-
marizes the results. Encouragingly, with our CLOC de-
signs, the improved region-level alignment is also benefi-
cial to some general multimodal benchmarks, as they may
also require fine-grained image understanding.

5.5. Open-Vocabulary Detection

In Table 3, our models demonstrate that on the region
classification task (predicting class names given a bound-
ing box), our approach achieves over 70% mAcc in
COCO, significantly outperforming 47% reported in pre-
vious work (Wu et al., 2023).

As introduced in subsection 3.2, CLOC consists of a re-
gion regression head and a classification head. Here we
further benchmark CLOC as an open-vocabulary detec-
tion model. We provide zero-shot evaluation results in Ta-
ble 7 on COCO Detection (minival), ODinW (test-dev),
and LVIS-Det (minival). When comparing GLIP (Li et al.,
2022) and CLOC, we observe that CLOC consistently
achieves better results than GLIP across all datasets across

Table 7. Results on open-vocabulary detection.

Method ViT COCO-Det
(minival)

ODinW
(test)

LVIS-Det
(minival)

GLIP-T T/16 46.6 46.5 26.0
GLIP-L L/14 49.8 52.1 37.3
CLOC-B B/16 47.3 48.4 29.6
CLOC-L L/14 50.8 53.6 38.1

different ViT backbones, suggesting that CLOC offers ad-
vantages in localization and object detection performance.
Notably, GLIP employs DyHead (Dai et al., 2021), a strong
detector head module, on top of the encoder, whereas our
ablation study uses only two simple heads for classifica-
tion and regression. This further supports that the encoder
representation in CLOC is indeed superior.

6. Conclusion
Please see Appendix D for more discussions where we
comment on the limitations, future directions, computation
cost, design rationales, etc.

We tackle a deficiency of CLIP, to make the seman-
tics aligned in the vision space for both image and re-
gion level. We propose a pre-training framework that en-
ables a strong encoder to adapt seamlessly for downstream
use in MLLMs, supporting feature interaction via input
prompts. Our encoder creates a new possibility for adapt-
ing the features with input prompts of interaction together
with MLLMs. To resolve the need for large-scale region-
text training data, we carefully design a pseudo-labeling
pipeline for visually-enriched and spatially-localized cap-
tions. Our pre-trained encoder is essentially a drop-in
replacement of CLIP with competitive image-text perfor-
mance and extra capability demonstrated in region-text
tasks and VQA tasks with MLLMs.
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Appendix
A. Reproducibility Statement
We made our best efforts to exhaustively state the imple-
mentation details. Training hyper-parameters and model
architectures are discussed in Section 3.2, 3.3, and 5.1, with
a summary in Appendix B and Table A. For evaluation,
as mentioned in Section 5.1, we strictly follow the official
setup with the codebase released by the original authors if
applicable, with details provided in Section B.2. For our
datasets, we provide data processing details in Section 4
and example codes in Appendix C. We are working hard
on releasing the annotations with internal approvals.

B. Experiment Details
We provide the omitted experiment details for pre-training
and the downstream evaluation tasks.

B.1. Pre-training Hyper-parameters

For pre-training both the in-house CLIP baseline and
CLOC, we mainly follow the hyper-parameters in (Rad-
ford et al., 2021) to train on our in-house datasets. The
training images are identical for CLIP and CLOC, while
CLOC is trained on the extra region-text annotations of the
same images via the proposed VESL pipeline (details in
Section C). Table A summarizes the general training hyper-
parameters used for all experiments and the setup for com-
ponents specific to CLOC.

In terms of the CLOC architecture, as illustrated in Fig-
ure 2, the image and text encoders including the attention
pooling and projection layers follow the same as OpenAI-
CLIP (Radford et al., 2021). Our Prompter consists of
a positional encoding matrix for bounding boxes, and a
single-layer single-head transformer encoder with another
set of the global average pooler and a projection layer to
map the region embeddings into the same dimension as the
CLIP text/image embeddings.

B.2. Evaluation Tasks

We provide more details about the tasks constructed for
evaluating the encoders in Section 5.

Zero-shot region tasks. Our CLOC training augments a
new capability for CLIP to generate region-level embed-
dings. This enables us to perform zero-shot region-text
tasks, in analogy to the image-text zero-shot tasks like Im-
ageNet classification and COCO text-image retrieval that
CLIP has been evaluated on.

In a similar rationale of image-level evaluation, we further
construct region-level tasks including region object recog-
nition and region-text retrieval. For region object recogni-

tion, the class names are encoded by the text encoder into
class embedding. We do not add the text prompts (e.g., “a
photo of ...”) to object classes used when CLIP (Radford
et al., 2021) evaluated on image classification. The CLOC
model takes all the labeled bounding boxes in the images to
generate a region embedding z = Prompter(l, fI(x)).
The class embedding with the highest similarity is pre-
dicted as the class of the region (i.e., out of 80 / 1203
classes for COCO / LVIS).

For region retrieval, similarly, the CLOC model encodes
both the image regions and the region captions from the
public region-text GRIT dataset that the regions are anno-
tated by the Kosmos-2 pipeline (Peng et al., 2023). We
randomly sampled a 2K image validation set for fast eval-
uation. We have verified it is statistically stable compared
to the whole set that contains about 20M in total. Unlike
image-text retrieval the image captions are likely unique,
the objects in regions of many images might be duplicated.
Therefore, we opt to report recall@10 rather than recall@1
for GRIT region retrieval in Table 3.

MLLM tasks. To demonstrate our CLOC can benefit
MLLM end tasks as a better image backbone, we consider
two sets of MLLM experiments.

First, we experiment with the FERRET MLLM that is ca-
pable of taking spatial referring inputs for grounding and
referring VQA tasks2. FERRET can consume a point, a
bounding box, or a free-form referring. It designs a quite
complicated visual sampler module that involves point
sampling and kNN grouping. We suggest the readers re-
fer to Figure 3 and Section 3.2 in (You et al., 2023) for
more details. Here we consider two variants of use cases of
CLOC compatible with FERRET: (1) we only take the ViT
encoder in CLOC to replace the CLIP ViT and still use the
original FERRET visual sampler or (2) we further replace
the visual sampler with our simple Prompter (essentially
a lightweight transformer encoder with box positional en-
codings) in Section 3.3 as illustrated in Figure 1(3b). More
specifically, we simply convert all types of spatial refer-
ring as boxes. As evidenced by Table 4 and Table 5,
our Prompter can indeed be a much simpler alternative
and may perform even better as it is more consistent with
CLOC pre-training.

Second, we evaluate on general VQA tasks that do not con-
sider extra spatial referring inputs. The pre-trained ViT
of CLOC is a drop-in-replacement of CLIP ViT in two
sets of experiments of LLaVA-1.5 (Liu et al., 2023) and
LLaVA-NeXT (Liu et al., 2024). The main difference in-
cludes different supervised fine-tuning (SFT) sets. Also,
LLaVA-NeXT uses the AnyRes technique that decomposes
an image into several subimages that are encoded inde-

2We use the official Ferret codebase: https://github.
com/apple/ml-ferret.
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Table A. Pre-training hyper-parameters and settings for the in-house CLIP baseline and CLOC.

General

Batch size 32768
Image size 224× 224 (ViT B/16) or 336× 336 (ViT L/14, H/14)
Image pre-processing long-side resizing with padding (i.e., tf.image.resize with pad)
Text tokenizer T5 (Raffel et al., 2020), lowercase
Text maximum length 77 tokens
Steps 439087 (i.e., ∼ 14B examples seen)
Optimizer AdamW (β1 = 0.9, β2 = 0.98)
Peak learning rate (LR) 0.0005
LR schedule cosine decays with linear warm-up (first 2k steps)
Weight decay 0.2
Dropout rate 0.0

CLOC

# of sampled regions maximum M = 4 per image
CLOC loss weight λ = 1.0× #of images contain region text in the mini-batch

batch size (in Equation 4)
Encoding box prompts sinusoidal positional encoding of coordinates (top-left and bottom right of a box)
Encoding text prompts encoded by re-using the text encoder (w/ pooling & projection)
Prompter architecture a single-layer single-head transformer encoder (same feature dimension as the ViT)
BoxHead architecture 2-layer MLP with GELUs activations (Hendrycks & Gimpel, 2016)

pendently with the ViT and concatenated together as the
input for the decoder. LLaVA-1.5 by default freezes the
ViT while LLaVA-NeXT fine-tunes all parameters during
SFT. Since the official LLaVA-NeXT is trained on some
proprietary datasets that are not reproducible, we use the
Open-LLaVA-NeXT repository3. Our experiments in Ta-
ble 6 demonstrate CLOC not only slightly improves such
general VQA besides FERRET tasks but also generalizes
well for both LLaVA-1.5 and LLaVA-NeXT settings.

C. VESL Data Engine
We provide more information about our pseudo-labeling
data pipeline proposed in Section 4.

C.1. Implementation Details

As already mentioned in Section 4, there are three steps for
VESL: image re-captioning, region phrase candidates ex-
traction from the captions, and open-vocabulary (OV) de-
tection given the region candidates as queries.

For the re-captioning, the goal is to replace AltText with
long, diverse, and detailed captions that can be used to gen-
erate more visual concepts as the region candidate phrases
for the OV detector. Technically, any strong image cap-
tioner can be an option. In our paper, we adopt the VeCap
pipeline (Lai et al., 2024) and leverage their images with
enriched captions.

To extract region phrase candidates from the long captions,
we adopt name entity recognition (NER) to extract leaf en-
tities from the captions, inspired by (Zhang et al., 2022).

3https://github.com/xiaoachen98/Open-LLaVA-NeXT

The code listing below shows the Python example imple-
mentation, where stop-words and common generic words
are filtered, following (Minderer et al., 2024).

Generating bounding boxes and assigning region captions
can be done by querying an OV objection detector. We
adopted the OWLv2 detector (Minderer et al., 2024) with
their pre-trained L/14 checkpoint4 to annotate inputs with
448× 448 image resolutions.

1 from typing import Iterable, List
2 import nltk
3
4 # STOPWORDS_EN and COMMON_GENERIC_WORDS are following:
5 # Section A.2 (Minderer et al., 2024)
6
7 # Stopwords from nltk.corpus.stopwords.words("english")

:
8 STOPWORDS_EN = frozenset({
9 "a", "about", "above", "after", "again", "against",

"all", "am", "an",
10 "and", "any", "are", "as", "at", "be", "because", "

been", "before", "being",
11 "below", "between", "both", "but", "by", "can", "

did", "do", "does",
12 "doing", "don", "down", "during", "each", "few", "

for", "from", "further",
13 "had", "has", "have", "having", "he", "her", "here"

, "hers", "herself",
14 "him", "himself", "his", "how", "i", "if", "in", "

into", "is", "it", "its",
15 "itself", "just", "me", "more", "most", "my", "

myself", "no", "nor", "not",
16 "now", "of", "off", "on", "once", "only", "or", "

other", "our", "ours",
17 "ourselves", "out", "over", "own", "s", "same", "

she", "should", "so",
18 "some", "such", "t", "than", "that", "the", "their"

, "theirs", "them",
19 "themselves", "then", "there", "these", "they", "

this", "those", "through",
20 "to", "too", "under", "until", "up", "very", "was",

4OWLv2 CLIP L/14 ST+FT in: https://github.com/google-
research/scenic/tree/main/scenic/projects/owl vit
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"we", "were", "what",
21 "when", "where", "which", "while", "who", "whom", "

why", "will", "with",
22 "you", "your", "yours", "yourself", "yourselves"
23 })
24
25 # These words were found by manually going through the

most common 1000 words
26 # in a sample of alt-texts and selecting generic words

without specific meaning:
27 COMMON_GENERIC_WORDS = frozenset({
28 "alibaba", "aliexpress", "amazon", "available", "

background", "blog", "buy",
29 "co", "com", "description", "diy", "download", "

facebook", "free", "gif",
30 "hd", "ideas", "illustration", "illustrations", "

image", "images", "img",
31 "instagram", "jpg", "online", "org", "original", "

page", "pdf", "photo",
32 "photography", "photos", "picclick", "picture", "

pictures", "png", "porn",
33 "premium", "resolution", "royalty", "sale", "sex",

"shutterstock", "stock",
34 "svg", "thumbnail", "tumblr", "tumgir", "twitter",

"uk", "uploaded", "vector",
35 "vectors", "video", "videos", "wallpaper", "

wallpapers", "wholesale", "www",
36 "xxx", "youtube"
37 })
38
39
40 def _is_all_stopwords(query_words: Iterable[str]) ->

bool:
41 return set(query_words).issubset(STOPWORDS_EN)
42
43
44 def _get_name_entities(words: List[str]) -> List[str]:
45 """
46 Returns name entities of image caption as queries,

similar to GLIP.
47 """
48 pos_tags = nltk.pos_tag(words)
49 grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}"
50 cp = nltk.RegexpParser(grammar)
51 result = cp.parse(pos_tags)
52
53 queries = []
54 for subtree in result.subtrees():
55 if subtree.label() == "NP":
56 query_words = [t[0] for t in subtree.leaves

()]
57 # Don’t use it if it only consists of stop

words.
58 if _is_all_stopwords(query_words):
59 continue
60 queries.append(" ".join(query_words))
61 return queries
62
63
64 def find_noun_phrases(
65 caption: str, max_num_queries: int = 20,
66 ) -> List[str]:
67 caption = caption.lower()
68 tokens = nltk.word_tokenize(caption)
69 # Remove common generic words.
70 words = [w for w in tokens if w not in

COMMON_GENERIC_WORDS]
71 queries = _get_name_entities(words)[:

max_num_queries]
72 return queries
73
74 candidate_quries = find_noun_phrases(caption)

Listing 1. Python example codes for Step 2 of VESL in Section
4 for extracting text candidate queries from a caption.

C.2. More Visualizations

As mentioned in the remarks of Section 4, we found the
AltText sourced from the original web-crawled images
might not have enough details describing the subimage
content, thus limiting the diversity and quality of the text
candidate queries for the OV detector to detect more mean-
ingful objects. In Figure A we show some cherry-picked
examples (since the web-crawled images are quite noisy)
just to demonstrate the reasons why high-quality captions
can help our region-text annotation pipeline. In (Minderer
et al., 2024), the queries are generated by the n-grams of
the AltText, while ours are by NER as described in Sec-
tion C.1 on top of the visually-enriched re-captions. Note
that, in both methods we use the same pre-trained OV de-
tector but with different approaches to generate the queries.

As shown in Figure A, for easier images like the first row,
both methods are doing reasonably well to detect “mes-
sage card”. However, when the scene becomes compli-
cated (e.g., the second row), our methods can detect more
objects since more visual concepts can be extracted from
our rich caption as queries for the detector. Similarly, it
can be seen that our method captures more items that the
AltText missed, e.g., “banana”, “eggs”, “butter”, etc in the
third row; “drawstring” in the fourth row; “apples” and
“vases” in the last row. Also, it is more likely to extract
a more detailed description of the region rather than a class
name, such as “green-roofed cottage nestles” in Figure 3
and “decorative metal tree sculptures” in the image in the
last row of Figure A. We believe such high-quality re-
gion labels essentially contribute to better supervision for
CLOC pre-training.

D. More Discussions
Limitations. One limitation for CLOC is the labeling ef-
forts in preparing the training data. As we discussed in Sec-
tion 1, there are no public large-scale region-text datasets
since it is expensive to infer such labels up to the scales we
consider here. Unlike previous work (Zhong et al., 2022)
that cropping boxes from images for annotating, our VESL
inference in image-level thus the cost does not scale with
the number of detected regions. With that being said, such
inference still requires hundreds of GPUs running in par-
allel for days to scale up to billions of images. We are
working on releasing the annotations to accelerate future
research for the community.

For CLOC, we focus on the training objective and frame-
work formulation, while making minimal efforts on hyper-
parameter tuning, architecture search, dataset cleaning, and
etc., thus better performance could be achieved. Besides,
although we have included extensive standard evaluation
tasks, the fine-grained region knowledge could also be use-
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ful on more other under-explored tasks.

Future directions. We suggest promising future direc-
tions. In Section 3.2, our Prompter formulation can take
flexible prompts to guide the embeddings for specific tasks.
In this work, we consider a prompt as a single bounding
box or a text caption, but it has the potential to expand to
various types such as points, a mask, users’ free-form re-
ferring, or multiple prompts in multiple types together. We
think a more versatile Prompter with co-designs for dif-
ferent objectives can have a big potential. Similarly, our
VESL labeling pipeline limits to detection box format. An-
notators supported for more formats may further boost it.
We believe our approach is promising, as more attention
has been drawn recently for better re-captions (Li et al.,
2024; Fan et al., 2024) that VESL relies on. In addition,
CLOC model provides a new capability to extract region
features without further training, and thus can be used as a
foundation model for exploring new VL applications.

Training cost. We comment on the computation cost of our
framework. Our large models (ViT L/14) were trained on
1024 v5p TPUs for about 6 days. To optimize Equation 2,
CLOC needs extra computation. The main overheads
come from the contrastive matrix but not the lightweight
Prompter. Fortunately, we found it feasible since (1)
only a few boxes in each image need to be sampled per
update; (2) the loss computation becomes a smaller pro-
portion when the ViT scales up. Overall, we found the
computation acceptable compared to CLIP. More memory-
efficient optimization like SigLIP (Zhai et al., 2023) can be
implemented with JAX shard map5 ops.

Discussions on design rationals. Besides the main discus-
sions we have stressed in the main text, here we provide
more thoughts behind our design rationales that a reader
may be wondering.

(1) Why not use a local-enhanced encoder? We would
like to note that many encoders with great localization like
DINOv2 (Oquab et al., 2023), OWLv2 (Minderer et al.,
2024), CLIP-Self (Wu et al., 2023), etc. are developed
specifically for dense vision tasks that cannot perform im-
age zero-shot tasks like CLIP and CLOC. We would like to
emphasize that our goal is to build a drop-in-replacement of
CLIP encoder with better localization, without sacrificing
CLIP’s original capabilities such as image zero-shot tasks
and its important backbone position for MLLMs. Further-
more, perhaps well-known within the MLLMs community,
these encoders have been shown in recent reports that they
are not comparable enough to compete with CLIP as the vi-
sion backbone for MLLM tasks (Tong et al., 2024) due to
CLIP’s superiority in vision-language alignment. We thus
believe enhancing CLIP itself is more demanding as this

5https://jax.readthedocs.io/en/latest/jep/14273-shard-
map.html

paper focuses on.

(2) Why not just train a CLIP with object detection? One
may wonder why we do not just train an encoder with joint
optimization of the CLIP contrastive loss with some object
detection loss instead of the CLOC design of Equation 4.

Although it sounds like a plausible approach, we would
like to point out that contrastive pre-training and object de-
tection are fundamentally quite different in their technical
rationales. CLIP pre-training is often on large batches of
low-resolution and noisy images, while object detection is
trained on small batches of high-resolution images. CLIP is
by default trained from scratch and object detection is typ-
ically initialized from pre-trained encoders and focuses on
the detection head. Furthermore, detection requires heavy
computation on box proposals to detect all boxes appear-
ing in an image, while our region-text contrastive design
allows us to flexibly sample fewer regions per image as
motivated in Equation 3. Overall, their data pipeline and
distributed training setup are not on the same scale thus
such joint training may not be very reasonable.

With that being said, some previous works do have attempts
that are the exceptions but only for some but not all of the
mentioned aspects, and mainly for the purpose of detection.
For instance, DetCLIP-v2 (Yao et al., 2023b) adds image-
text contrastive loss into detection loss to improve open-
vocabulary capability for detection. OWLv2 pre-trains the
detector with rather small resolutions but still with a batch
size of a maximum 256 since each image will need to pre-
dict up to 100 boxes during training. Both DetCLIP-v2 and
OWLv2 fine-tune from a pre-trained encoder.

On the contrary, we study pre-training the encoder from
scratch, which may be complementary to the previous ef-
forts. CLOC maximizes the similarity in co-design with
CLIP, thus making it much easier to develop within the
same codebase.

(3) Do we really need to train CLOC from scratch? What
if we fine-tune from CLIP? As CLIP pre-training is expen-
sive, one may wonder if it is necessary to train from scratch
on the proposed region-text datasets, or if we can initial-
ize from a standard CLIP trained on image-text pairs only
and fine-tunes with CLOC for a shorter stage. Our early
investigation, even with extensive hyper-parameter tuning,
suggests it is likely to be suboptimal compared to training
from scratch directly. For instance, we initialize from the
CLIP model 2 in Table 3 and fine-tunes it for another extra
100K steps with the CLOC training loss Equation 4. The
model reaches 64.1%/19.1% mAcc on COCO/LVIS region
recognition, which is much worse than 70.1%/27.2% of
the trained-from-scratch model 8 , even with more overall
training steps.
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Figure A. Examples comparing our VESL and the labeling approach in (Minderer et al., 2024) that directly uses the n-grams of the
crawled AltText. For VESL, each image is annotated with the visual-enriched caption to replace the AltText, which is used to generate
region text candidates that capture the image content better.
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