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Abstract

Diffusion models have attained state-of-the-art performance in generating realistic objects,
including when conditioning generation on class labels. Current class-conditional diffusion
models, however, implicitly model the diffusion process on all classes in a flat fashion,
ignoring any known relationships between classes. Class-labeled datasets, including those
common in scientific domains, are rife with internal structure. To take advantage of this
structure, we propose hierarchically branched diffusion models as a novel framework for
class-conditional generation. Branched diffusion models explicitly leverage the inherent
relationships between distinct classes in the dataset to learn the underlying diffusion process
in a hierarchical manner. We highlight several advantages of branched diffusion models over
the current state-of-the-art methods for class-conditional diffusion. Firstly, they can be easily
extended to novel classes in a continual-learning setting at scale. Secondly, they enable more
sophisticated forms of conditional generation, such as analogy-based conditional generation
(i.e. transmutation). Finally, they offer a novel interpretability into the class-conditional
generation process. We extensively evaluate branched diffusion models on several benchmark
and large real-world scientific datasets, spanning different data modalities (images, tabular
data, and graphs). We particularly highlight the advantages of branched diffusion models on
a single-cell RNA-seq dataset, where our branched model leverages the intrinsic hierarchical
structure between human cell types.

1 Introduction

Diffusion models have gained major popularity as a method for generating data from complex data distributions
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021). Furthermore, they have also been successful in
performing conditional generation, where we wish to sample some object x conditioned on a label y. Recent
works in conditional diffusion have arguably received the most popular attention (Song et al., 2021; Dhariwal
& Nichol, 2021; Rombach et al., 2022; Ho et al., 2022), and have rapidly become a staple in generative AI.

Current diffusion models, however, are limited in their treatment of class-labeled datasets. Conventional
diffusion models learn the diffusion process flatly for each class, disregarding any known relationships or
structure between them. In reality, class-labeled datasets in many domains, such as those characterizing
scientific applications, have an inherent structure between classes which can be thought of as hierarchical.
For example, human cell types are organized hierarchically by nature: keratinocytes are very distinct from
neurons, but the latter subdivide into excitatory and inhibitory neurons. Additionally, even when a dataset
has no pre-defined hierarchical label set (e.g. an explicit ontology), hierarchical structure can often be found,
because some subsets of classes are invariably more similar than others.
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In order to leverage this intrinsic structure within these datasets, we propose restructuring diffusion models to
be hierarchically branched, where the branching structure reflects the inherent relationships between classes
in the dataset (the underlying diffusion process remains unchanged). By modeling the diffusion process in a
hierarchical fashion, branched diffusion models enjoy several advantages which make them much more suitable
in many applications, particularly in scientific settings. We apply branched diffusion to four different datasets,
including two large real-world scientific datasets, spanning different data modalities (images, tabular data,
and graphs) and showcase the following advantages over the current state-of-the-art method for conditional
diffusion:

• Branched models offer a novel way to perform class-conditional generation via diffusion by organizing
labels hierarchically.

• They can be easily extended to generate new, never-before-seen data classes in a continual-learning
setting.

• They can be used to perform more sophisticated forms of conditional generation, such as analogy-based
conditional generation (or “transmutation”).

• Diffusing across their branched structure offers interpretability into the relationship between classes
from a generative perspective, such as elucidating shared high-level features.

2 Related Work

Most diffusion models today are defined by a pair of forward and reverse stochastic differential equations
(SDEs). The forward equation injects random noise over continuous time to transform the initial data
distribution p0(x) into a tractable prior distribution π(x) from t = 0 to the time horizon t = T :

dx = f(x, t)dt + g(t)dω, (1)
where ω is a standard Wiener process (i.e. Brownian motion). f(x, t) and g(t) are the drift and diffusion
coefficients, respectively. For the variance-preserving SDE, for example, f(x, t) = − 1

2 βtx and g(t) =
√

βt for
some noise schedule βt (yielding a prior π(x) which is an isotropic Gaussian).

In order to sample an object from p0(x), we first tractably sample from π(x), and then follow the associated
reverse SDE to recover a sample from p0(x):

dx =
[
f(x, t)− g(t)2s(x, t)

]
dt + g(t)dω′, (2)

where ω′ is a standard Wiener process in the reverse direction. s(x, t) = ∇x log(pt(x)) is the Stein score of x
at diffusion time t. A neural network is trained to predict sθ(x, t) ≈ s(x, t), made possible by defining f(x, t)
and g(t) such that the true Stein score is tractably defined in closed form (such as with the variance-preserving
SDE).

In order to perform class-conditional generation, the diffusion model needs to learn the conditional distribution
of data for each class of the dataset. The current state-of-the-art method for class-conditional diffusion was
proposed in Ho et al. (2021), termed “classifier-free conditional generation”. In this method, the reverse-
diffusion neural network is given the class label c as an auxiliary input, which guides the generation of objects
to specific classes:

dx =
[
f(x, t)− g(t)2sθ(x, t, c)

]
dt + g(t)dω′, (3)

where sθ(x, t, c) is the trained neural network which approximates the Stein score at x and time t for the
conditional distribution of class c.

This method of conditional generation has achieved state-of-the-art performance in sample quality (Rombach
et al., 2022; Ho et al., 2022), and in contrast to the previous method of classifier guidance (Song et al., 2021),
it can be applied to both continuous- and discrete-time diffusion models.
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Note that the term “hierarchical diffusion” is somewhat overloaded, as there exist other works which use
this term, but describe vastly different methods than the one proposed here. For example, Qiang et al.
(2023) describes applying distinct diffusion processes iteratively to generate coarse-grained features before
fine-grained features. Lu et al. (2023) proposes latent-space diffusion where latent embeddings of various
granularities and sizes are passed to the diffusion denoising model. In contrast, the “hierarchy” in our work
refers to a hierarchy of similarity between classes in the original dataset.

3 Hierarchically branched diffusion models

Suppose our dataset consists of a set of classes C. For example, let us consider MNIST handwritten digits,
where C = {0, 1, ..., 9}. We wish to leverage the fact that some classes are inherently more similar than
others (e.g. the 4s and 9s in MNIST are visually more similar to each other than they are to 0s). As noise
is progressively added to data, there is some point in diffusion time at which any two samples from two
different classes are so noisy that their original class effectively cannot be determined; we call this point
in time a branch point. A branch point is a property of two classes (and the forward diffusion process),
and—importantly—the more similar the two classes are, the earlier the branch point will be.

These branch points underpin the main distinction between a branched diffusion model and a traditional
linear one. We define the branch point between two classes as the earliest diffusion time point when objects
of the two classes are sufficiently similar in distribution, such that reverse diffusion after this point could be
predicted by the same neural-network model (without specifying class identity). More formally, we defined a
criterion for measuring when the distribution of two noisy classes is sufficiently similar (Equation 8), based off
of the well-established metric of energy distance. Mathematical justification and more details can be found
in Appendix A. Note that branch-point discovery is performed once for the dataset at the beginning, and
this proposed procedure’s runtime is orders-of-magnitude smaller than the time taken to train the model.
Alternatively, since branch points reflect the inherent similarity between classes of the dataset, they may also
be entirely defined by domain knowledge (e.g. an ontology describing known similarities between cell types,
or chemical classes of drug-like molecules).

Together, the branch points between all classes in C naturally encode a hierarchy of class similarities
(Figure 1a). This hierarchy separates diffusion time from a single linear track into a branched structure,
where each branch represents the diffusion of a subset of classes, and a subset of diffusion times. For |C|
classes, there are 2|C| − 1 branches. Each branch bi = (si, ti, Ci) is defined by a particular diffusion time
interval [si, ti) (where 0 ≤ si < ti < T ) and a subset of classes Ci ⊆ C (where Ci ̸= ∅). The branches are
constrained such that every class and time (c, t) ∈ C × [0, T ) can be assigned to exactly one branch bi such
that c ∈ Ci and t ∈ [si, ti). The branches form a rooted tree starting from t = T to t = 0. Late branches
(large t) are shared across many different classes, as these classes diffuse nearly identically at later times.
Early branches (small t) are unique to smaller subsets of classes. The earliest branches are responsible for
generating only a single class.

Additionally, as opposed to a conventional (“linear”, or “non-hierarchical”) diffusion model which learns
to reverse diffuse all classes and times using a single-task neural network, a branched diffusion model is
implemented as a multi-task neural network. Specifically, each output task predicts reverse diffusion for a
single branch (e.g. in an SDE-based diffusion framework (Song et al., 2021), each prediction head learns the
Stein score for a specific branch) (Figure 1b). The multi-task architecture allows the model to learn the
reverse-diffusion process distinctly for each branch, while the shared parameters allow the network to learn
shared representations across tasks without an explosion in model complexity:

dx =
[
f(x, t)− g(t)2sθ(x, t)[bc,t]

]
dt + g(t)dω′, (4)

where bc,t is the branch index corresponding to the class c of object x, and t is the diffusion time. Note
that the forward- and reverse-diffusion processes are identical to traditional diffusion models (Equations 1–2).
However, in contrast to traditional linear models where the neural network sθ(x, t, c) takes in the class as an
input to learn class-conditional distributions (Equation 3), the neural network for a branched model explicitly
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Figure 1: Schematic of a branched diffusion model. a) Some classes are more similar than others from a diffusion
perspective: after adding sufficient noise, similar classes become indistinguishable from each other after branch points.
Together, the branch points (purple dots) between all classes define a hierarchical structure. Although there is still
only a single underlying diffusion process, the hierarchy separates diffusion time into branches, where each branch
represents diffusion for a subset of classes and a subset of diffusion times. An example of one diffusion intermediate is
highlighted in blue; this example is an MNIST digit that is a 4 or 9, and is at an intermediate diffusion time. b) A
branched diffusion model is realized as a multi-task neural network (NN) that predicts reverse diffusion (one output
task for each branch). The prediction path for the blue-highlighted MNIST digit in panel a) is also in blue. c) We
show a progression of methods from traditional linear diffusion models to hierarchically branched models. Left: A
traditional linear class-conditional diffusion model trains a single NN for all classes and diffusion times. Both class
label and time are NN inputs. Middle: Consider a modification, where each class has its own NN, each of which is
trained to reverse diffuse the full diffusion timeline for only its associated class. To generate an object of a specific
class, we take reverse-diffusion predictions from the associated NN. Right: At late diffusion times, different classes
diffuse very similarly. A branched diffusion model shares as much diffusion time as possible, thereby leading to a
hierarchy of times, where each branch is learned by an output task of a multi-task NN. To generate a specific class, we
take reverse-diffusion predictions from the appropriate subset of branches which cover the full diffusion timeline from
t = T to t = 0.

learns the conditional distribution of each branch as a separate output task (each branch has an associated
output task with index bc,t).

Training a branched diffusion model follows nearly the same procedure as with a standard linear model,
except for each input, we only perform gradient descent on the associated branch, which corresponds to a
model output task) (see Algorithm 1). To sample an object of class c, we perform reverse diffusion starting
from time T and follow the appropriate branch down (see Algorithm 2).

To better understand branched diffusion models and how they are different from traditional linear models,
consider the following progression of methods (Figure 1c): 1) A traditional class-conditional diffusion model,
where all classes are treated in a flat fashion. A single neural network learns reverse diffusion for all classes
and diffusion times; both the time and class label are inputs to the model (Equation 3). 2) Instead of a
single neural network, train a separate network for each data class (the diffusion process is still the same for
each class). In contrast with method 1), we reverse diffuse a particular class by choosing the appropriate
network. This would allow for benefits like class extension in continual learning (Section 5), but at the cost
of inefficient parameterization and training time. Furthermore, fully separating diffusion timelines for each
class into distinct neural networks ignores inherent class similarities, and as a result, this approach does not
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Algorithm 1 Training a branched diffusion model
Input: training set {(x(k), c(k))}, branches {bi}
repeat

Sample (x0, c) from training data {(x(k), c(k))}
Sample t ∼ Unif(0, T )
Forward diffuse xt ∼ qt(x|x0)
Find branch bi = (si, ti, Ci) s.t. si ≤ t < ti, c ∈ Ci

Gradient descent on p(θs,θi)(xt, t)[i] (on output task i)
until convergence

Algorithm 2 Sampling a branched diffusion model
Input: class c, trained pθ, branches {bi}
Sample x̂← xT from π(x)
for t = T to 0 do

Find branch bi = (si, ti, Ci) s.t. si ≤ t < ti, c ∈ Ci

x̂← pθ(x̂, t)[i] (take output task i)
end for
Return x̂

allow for benefits like transmutation (Section 6) or interpretability of diffusion intermediates (Section 7).
3) Owing to the inherent structure of the dataset, we can leverage the fact that noisy objects of different
classes are indistinguishable after a certain diffusion time (i.e. branch points). Thus, we maximize sharing
of diffusion time between classes via a hierarchy, and we train a multi-task neural network where each task
predicts reverse diffusion for a single branch (Equation 4). We now generate a particular class by choosing
the appropriate set of branches (output tasks). This allows us to retain benefits like class extension, and gain
benefits like transmutation and interpretability, with a much more efficient parameterization and reduced
training time compared to method 2).

Importantly, the underlying diffusion process and subsequent mathematical properties in a branched diffusion
model are directly inherited from and identical to that of a conventional linear model. A branched model is
characterized by the explicit definition of branch points which separate the responsibility of reverse diffusing
different subsets of classes and times into separate branches, where each branch is predicted by a different
head of a multi-task neural network.

4 Class-conditional diffusion via branched diffusion models

Branched diffusion models are a completely novel way to perform class-conditional diffusion. Instead of relying
on external classifiers or labels as auxiliary neural-network inputs, a branched diffusion model generates data
of a specific class simply by reverse diffusing down the appropriate branches.

We demonstrate branched diffusion models on several datasets of different data modalities: 1) MNIST
handwritten-digit images (LeCun et al.); 2) a tabular dataset of several features for the 26 English letters in
various fonts (Frey & Slate, 1991); 3) a real-world, large scientific dataset of single-cell RNA-seq, measuring
the gene expression levels of many blood cell types in COVID-19 patients, influenza patients, and healthy
donors (Lee et al., 2020); and 4) ZINC250K, a large dataset of 250K real drug-like molecules (Irwin et al.,
2012). We trained continuous-time (i.e. SDE-based (Song et al., 2021)) branched diffusion models for all
datasets. The branching structure was inferred by our branch-point discovery algorithm (Supplementary
Tables S1–S8, Appendix A). We verified that our MNIST model generated high-quality digits (Supplementary
Figure S1). For our tabular-letter dataset, we followed the procedure in Kotelnikov et al. (2022) to verify that
the branched model generated realistic letters that are true to the training data (Supplementary Figure S2).

We compared the generative performance of our branched diffusion models to the current state-of-the-art
methods for conditional generation via diffusion, which are label-guided (linear) diffusion models (Ho et al.,
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2021). Note that although Ho et al. (2021) called these “classifier-free” conditional diffusion models, we
will refer to them as “label-guided” in this work, since branched diffusion models also allow for conditional
generation without the use of any external classifier. We trained label-guided diffusion models on the same
data using the analogous architecture. We computed the Fréchet inception distance (FID) for each class,
comparing branched diffusion models and their linear label-guided counterparts (Supplementary Figure S3).
In general, the branched diffusion models achieved similar or better generative performance compared to
the current state-of-the-art label-guided strategy. In many cases, the branched models outperformed the
label-guided models, likely due to the multi-tasking architecture which can help limit inappropriate crosstalk
between distinct classes. This establishes that branched diffusion models offer competitive performance in
sample quality compared to the state-of-the-art methods for conditional diffusion.

Although we will focus our later analyses on continuous-time (i.e. SDE-based (Song et al., 2021)) diffusion
models, we also trained a discrete-time branched model (i.e. based on DDPM (Ho et al., 2020)) to generate
MNIST classes (Supplementary Figure S1). This illustrates the flexibility of branched diffusion models: as
they are generally orthogonal to the underlying diffusion process, they perform equally well in both continuous-
and discrete-time diffusion settings.

5 Extending branched diffusion models to novel classes

The problem of incorporating new data into an existing model is a major challenge in the area of continual
learning, as the emergence of new classes (which were not available during training) typically requires the
whole model to be retrained (van de Ven & Tolias, 2019). Conventional (linear) diffusion models are no
exception, and there is a critical need to improve the extendability of these models in a continual-learning
setting. This requirement is typical of models trained on large-scale, integrated scientific datasets, which grow
steadily as data of new, never-before-seen classes is experimentally produced (Han et al., 2020; Almanzar
et al., 2020; Lotfollahi et al., 2021). For example, large single-cell reference atlases comprising hundreds of
millions of cells across organs, developmental stages, and conditions—such as the Human Cell Atlas (Regev
et al., 2017)—are continuously updated as new research is published.

By separating the diffusion of different classes into distinct branches which are learned by a multi-task neural
network, a branched diffusion model easily accommodates the addition of new training data (e.g. from a
recent experiment). Suppose a branched model has been trained on classes C, and now a never-before-seen
class c′ has been introduced. Instead of retraining the model from scratch on C ∪ {c′} for the entire diffusion
timeline, a branched model can be easily extended by introducing a new branch while keeping the other
branches the same (assuming c′ is sufficiently similar to some existing class). For example, leveraging the
intrinsic structure of cell types (Han et al., 2020), a branched diffusion model can be fine-tuned on a new
study—potentially including new cell types—without retraining the entire model. Formally, we extend an
existing branched diffusion model by adding a new terminal branch (si, ti, Ci) = (0, tb, {c′}), where tb is
determined by the algorithm in Appendix A. The new neural network has parameters θ = (θs, θ0, ..., θbmax),
with shared parameters θs and output-task-specific parameters θi (one for each branch). Let b̃ be the branch
index of the new terminal branch. Then we simply need to learn θb̃, training only on c′ for times t ∈ [0, tb]:

θ∗
b̃

= argminθb̃

{
Ex:class(x)=c′,t<tb

[
L(x, t, sθ(x, t)[b̃])

]}
(5)

To illustrate this extendability, we trained branched diffusion models on MNIST and on our large real-world
RNA-seq dataset. For the MNIST experiment, we trained on three classes: 0s, 4s, and 9s. We then introduced
a new class: 7s. To accommodate this new class, we added a single new branch to the diffusion model (Figure
2a). We then fine-tuned only the newly added branch, freezing all shared parameters and parameters for other
output tasks. That is, we only trained on 7s, and only on times t ∈ [si, ti) for the newly added branch bi.
After fine-tuning, our branched model was capable of generating high-quality 7s without affecting the ability
to generate other digits (Figure 2b).

In contrast, label-guided (linear) diffusion models cannot easily accommodate a new class. In our MNIST
experiment, we trained a linear model on 0s, 4s, and 9s. After fine-tuning the linear model on 7s, the model

6



Published in Transactions on Machine Learning Research (08/2024)

Figure 2: Extending a branched model to new classes. a) Schematic of the addition of a new digit class to an existing
branched diffusion model on MNIST. The introduction of the new class is accomplished by adding a singular new
branch (purple dotted line). b) Examples of MNIST digits generated from a branched diffusion model (above) and
a label-guided (linear) diffusion model (below), before and after fine-tuning on the new class. For the label-guided
model, we also show examples of digits after fine-tuning on the whole dataset. c) On the MNIST dataset (left) and
the single-cell RNA-seq dataset (right), we show the FID (i.e. generative performance) of each class, before and after
fine-tuning on the new class. For the label-guided models, we also show the FIDs after fine-tuning on the whole
dataset.

suffered from catastrophic forgetting: it largely lost the ability to generate the other digits (even though
their labels were fed to the model at generation time), and generated almost all 7s for any label (Figure 2b).
For the linear model to retain its ability to generate pre-existing digits, it must be retrained on the entire
dataset, which is far more inefficient, especially when the number of classes is large. In our MNIST example,
retraining the linear model on all data took approximately seven times longer than training the singular new
branch on a branched model. Notably, even after retraining on all data, the linear model still experienced
inappropriate influence from the new task. We observed the same trend of extendability on the branched
model (and inter-class interference on the linear model) in our experiments on the large real-world RNA-seq
dataset.

We then quantified this class-extension ability by computing the FID of branched and label-guided models
before and after fine-tuning (Figure 2c). On both MNIST and the RNA-seq dataset, we found that the
branched models achieved roughly the same FIDs on pre-existing classes after fine-tuning on the new data
class. In contrast, fine-tuning the label-guided models on the new data class caused the FID of other classes
to significantly worsen. The label-guided models needed to be trained on the entire dataset to recover the
FIDs of pre-existing classes, although the FIDs were still generally worse than those of the branched models.

Notably, in our extension of branched models, we were able to generate high-quality samples of the new
class by only training a single branch. Although several upstream branches (i.e. at later diffusion times)
also diffuse over the newly added class c′ (along with pre-existing classes), we found that fine-tuning can be
performed on only the new branch which diffuses solely only c′, and the model still achieved high generative
performance across all classes C ∪ {c′}. This is a natural consequence of our explicit branch points, which are
defined so that reverse diffusion at upstream branches is nearly identical between different classes. Note that
even if fine-tuning were done on all classes for all bi where c′ ∈ Ci, the branched diffusion model is still more
efficient to extend than a linear model because most branches diffuse over only a small subset of classes in C.
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This highlights the advantage of branched diffusion models to accommodate new classes efficiently (i.e. with
little fine-tuning) and cleanly (i.e. without affecting the generation of other classes) compared to the current
state-of-the-art methods for conditional diffusion. Note that although we showed the addition of a brand new
class c′ /∈ C, branched models can also easily accommodate new data of an existing class c ∈ C by fine-tuning
only the appropriate branch(es).

6 Analogy-based conditional generation between classes

In a diffusion model, we can traverse the diffusion process both forward and in reverse. In a branched diffusion
model, this allows for a unique ability to perform analogy-based conditional generation (or transmutation)
between classes. That is, we start with an object of one class, and generate the analogous, corresponding
object of a different class. Formally, consider the set of all branches {(si, ti, Ci)}. Say we have an object x1
of class c1. We wish to transmute this object into the analogous object of class c2. Let tb be the first branch
point (earliest in diffusion time) in which c1 and c2 are both in the same branch. Then, in order to perform
transmutation, we first forward diffuse x1 to xb ∼ qtb

(x|x1). Then we draw an object from the conditional
distribution p0(x|c2, xb), where conditioning is both on class c2 and the noisy object xb (partially diffused
from x1). In summary:

tb := min{si|c1, c2 ∈ Ci}
xb ∼ qtb

(x|x1)
x2 ∼ p0(x|c2, xb).

(6)

In practice, sampling x2 from ∼ p0(x|c2, xb) is performed by reverse diffusing to generate an object of class
c2 (Algorithm 2), as if we started at time tb with object xb ∼ qtb

(x|x1).

Conditional generation via transmutation is a unique and novel way to harness branched diffusion models for
more sophisticated generation tasks which go beyond what is possible with current diffusion models, which
typically condition on a single class or property (Song et al., 2021; Ho et al., 2021). In transmutation, we
enable generation conditioned on both a class and a specific instance (which may be of another class). That is,
conventional conditional generation samples from q0(x|c2), but transmutation samples from q0(x|c2, x1 ∈ c1).
This feature can support discovery in scientific settings. For example, given a model trained on many cell
types C, with each cell type measured in certain conditions h1, ..., hm, transmutation can answer the following
question: “what would be the expression of a specific cell xi of cell type ci and condition hk, if the cell type
were cj instead?”. A branched model is thus distinct from models which simply generate cells with cell type
cj and/or condition hk. For instance, to study how a novel cell type (such as a B-cell) reacts to a drug whose
effects are known for another cell type (such as a T-cell), one can conditionally generate a population of
B-cells starting from a population of T-cells under the particular drug effect.

On our MNIST branched diffusion model, we transmuted between 4s and 9s (Figure 3a). Intriguingly, the
model learned to transmute based on the slantedness of a digit. That is, slanted 4s tended to transmute to
slanted 9s, and vice versa. To quantify analogous conditional generation between classes, we then transmuted
between letters on our tabular branched diffusion model (Figure 3b). Transmuting between V and Y (and
vice versa), we found that for every feature, there was a positive correlation of the feature values before
versus after transmutation. That is to say, letters with a larger feature value tended to transmute to letters
also with a larger feature value, even if the range of the feature is different between the two classes.

We then turned to our branched model trained on the large real-world RNA-seq dataset, and transmuted
a sample of CD16+ NK cells to classical monocytes, and vice versa. In both directions, transmutation
successfully increased critical marker genes of the target cell type, and zeroed the marker genes of the
source cell type (e.g. when transmuting NK cells to monocytes, the expression of NK marker genes such as
MS4A6A were zeroed, and the expression of monocyte marker genes such as SPON2 were elevated) (Figure
3c). Additionally, we found a high correlation of expression in many genes before and after transmutation,
including CXCL10 (r = 0.20), HLA-DRA (r = 0.16), and HLA-DRB1 (r = 0.15). These genes are especially
relevant, as they were explicitly featured in Lee et al. (2020) as key inflammation genes that distinguish
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Figure 3: Transmutation between classes. a) From our branched diffusion model trained on MNIST, we show
examples of 4s transmuted to 9s (left), and 9s transmuted to 4s (right). We also show the diffusion intermediate
xb at the branch point. b) From our branched model trained on tabular letters, we show the scatterplots of some
feature values before and after transmutation from Vs to Ys (left), or Ys to Vs (right). For each of the 16 features,
we correlate the feature value before versus after transmutation and show a histogram of the correlations over all 16
features in either transmutation direction. c) From our branched model trained on the single-cell RNA-seq dataset,
we transmuted between CD16+ NK cells and classical monocytes, and show the distribution of several marker genes
before and after transmutation. The left column shows marker genes of classical monocytes, and the right column
shows marker genes of CD16+ NK cells. d) From our branched model trained on ZINC250K, we transmuted between
acyclic and cyclic molecules, and between non-halogenated and halogenated molecules.

COVID-19-infected cells from healthy cells. Notably, we recovered these strong correlations even though
the original expression of these genes showed little to no distinction between healthy and infected cells
(Supplementary Figure S4). This illustrates how our branched model successfully transmuted COVID-infected
cells of one type into COVID-infected cells of another type (and reflexively, healthy cells from one type into
healthy cells of another type).

Finally, we trained branched diffusion models on ZINC250K (Supplementary Methods), another large real-
world dataset and an entirely different data modality: molecular graphs. We trained branched diffusion
models to conditionally generate acyclic and cyclic molecules, or halogenated and non-halogenated molecules.
We then transmuted molecules from one property class to another, while largely retaining core functional
groups (e.g. amines, esters, sulfonamides, etc.) (Figure 3d). Quantitatively, transmutation from acyclic to
cyclic molecules was 96.5% effective (i.e. from 0% of molecules having a cycle, we transmuted to 96.5% of
molecules having a cycle). We then quantified the preservation of functional groups by computing the Jaccard
index before and after transmutation. A t-test (compared to the whole set of cyclic molecules) returned
p = 7.57× 10−10. On the transmutation of halogenated to non-halogenated molecules, our transmutation
was 100% effective, and a t-test on the preservation of functional groups returned p = 4.55× 10−11.

Across our many datasets, these results together qualitatively and quantitatively show that transmutation
in branched diffusion models is both: 1) effective—defining features of the source class are removed and
defining features of the target class are generated; and 2) analogous—features which characterize the original
object/instance (but do not directly define its class) are preserved.

7 Interpretability of branch-point intermediates

Interpretability is a particularly useful tool for understanding data, and is a cornerstone of AI for science.
Unfortunately, there is limited work (if any) that attempts to improve or leverage diffusion-model inter-
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pretability. By explicitly encoding branch points, a branched diffusion model offers unique insight into the
relationship between classes and individual objects from a generative perspective.

In the forward-diffusion process of a branched diffusion model, two branches meet at a branch point when the
classes become sufficiently noisy such that they cannot be distinguished from each other. Symmetrically, in
the reverse-diffusion process, branch points are where distinct classes split off and begin reverse diffusing along
different trajectories. Thus, for two similar classes (or two sets of classes), the reverse-diffusion intermediate
at a branch point naturally encodes features which are shared (or otherwise intermediate or interpolated)
between the two classes (or sets of classes).

In particular, hybrid intermediates represent partially reverse-diffused objects right before a branch splits
into two distinct classes. Formally, consider the set of all branches {(si, ti, Ci)}. For two classes c1 and c2,
let tb be the first branch point (earliest in diffusion time) in which c1 and c2 are both in the same branch.
We define a hybrid object xh between classes c1 and c2 as an object sampled from the partially diffused
distribution at tb from the conditional distribution of c1 or c2:

tb := min{si|c1, c2 ∈ Ci}
xh ∼ ptb

(x|c1) = ptb
(x|c2).

(7)

In practice, sampling xh from ptb
(x, c1) or ptb

(x, c2) is done by performing reverse diffusion following
Algorithm 2 from time T until time tb for either c1 or c2 (it does not matter which, since we stop at tb).

For example, on our MNIST branched diffusion model, hybrids tend to show shared characteristics that
underpin both digit distributions (Figure 4a–b). On our branched model trained on tabular letters, we see
that hybrids tend to interpolate between distinct feature distributions underpinning the two classes, acting as
a smooth transition state between the two endpoints (Figure 4c).

Figure 4: Interpretable hybrids at branch points. a) From our branched model trained on MNIST, we show examples
of hybrids between the digits classes 4 and 9 (left), and between the digit classes 1 and 7 (right). Each hybrid in the
middle row is the reverse-diffusion starting point for both images above and below it. We applied a small amount of
Gaussian smoothing to the hybrids for ease of viewing. b) Averaging over many samples, the aggregate hybrids at
branch points show the collective characteristics that are shared between MNIST classes. c) From our branched model
trained on tabular letters, we show the distribution of some features between two pairs of classes—O and X (left), and
E and F (right)—and the distribution of that feature in the generated hybrids from the corresponding branch point.

Note that although a branched diffusion model can successfully generate distinct classes even with very
conservative branch points (i.e. late in diffusion time), the interpretability of the hybrid intermediates is best
when the branch points are minimal (earliest in diffusion) times of indistinguishability. Taken to the extreme,
branch points close to t = T encode no shared information between classes whatsoever, as the distribution of
objects at time T is independent of class.

10
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8 Efficient multi-class sampling from branched diffusion models

In addition to advantages in continual learning, transmutation, and interpretability, branched models also
offer a minor benefit in generative efficiency, because partially reverse-diffused intermediates at branch points
can be cached and reused. Note that branched models and standard linear models take the same amount
of computation to generate a single class, but branched models enjoy significant savings in computational
efficiency when sampling multiple classes (Supplementary Table S9).

9 Discussion

In this section, we explore some of the trade-offs and caveats of branched diffusion models.

Firstly, the multi-task neural network behind a branched diffusion model is crucial to its efficient parameteri-
zation. As previously discussed, the number of branches scales linearly with the number of classes, so the
multi-task architecture is relatively efficient even for datasets with a large number of classes. Still, we recognize
that an extremely large number of classes could become a bottleneck. In those cases, the branched diffusion
architecture could benefit from recent advancements in efficient multi-task parameterizations (Vandenhende
et al., 2022).

Additionally, the advantages and performance of branched diffusion models rely on appropriately defined
branch points. We performed a robustness analysis and found that although the underlying branch points
are important, the performance of branched diffusion models is robust to moderate variations in these branch
points (Figure S5). Our branch-point discovery algorithm (Appendix A) is also agnostic to the diffusion
process, and although it relies on Euclidean distance between noisy objects (which may be hard to compute
for data types like graphs), the algorithm (and subsequent diffusion) can always be applied in latent space to
guarantee well-defined Euclidean distances.

Finally, branched diffusion models may have difficulties learning on certain image datasets where the class-
defining subject of the image can be in different parts of the image, particularly when data may be sparse.
For datasets like MNIST, the digits are all roughly in the center of the image, thus obviating this problem.
Of course, images and image-like data are the only modalities that suffer from this issue. Additionally, this
limitation on images may be avoided by diffusing in latent space.

10 Conclusion

In this work, we proposed a novel form of diffusion models which introduces branch points which explicitly
encode the hierarchical relationship between distinct data classes. Branched diffusion models are an alternative
method of conditional generation for discrete classes. Compared to the current state-of-the-art conditional
diffusion models, we showed numerous advantages of branched models in conditional generation. We showcased
these advantages across many different datasets, including several standard benchmark datasets and two
large real-world scientific datasets.

Firstly, we showed that branched models are easily extendable to new, never-before-seen classes through
an efficient fine-tuning step which does not lead to catastrophic forgetting of pre-existing classes. This can
enhance diffusion-model training in online-learning settings and in scientific applications where new data is
constantly being produced experimentally. Additionally, branched models are capable of more sophisticated
forms of conditional generation, such as the transmutation of objects from one class into the analogous object
of another class. Using transmutation, we demonstrated the ability of branched diffusion models to discover
relevant biology and chemistry. Furthermore, we showed that branched models can offer some insights into
interpretability. Namely, reverse-diffusion intermediates at branch points are hybrids which encode shared or
interpolated characteristics of multiple data classes.

Finally, because branched diffusion models operate on the same underlying diffusion process as a conventional
linear model, they are flexibly applied to virtually any diffusion-model paradigm (e.g. continuous or discrete
time, SDE based or Markov-chain based, different noise schedules and definitions of the noising process, etc.).
Branched models are also easily combined with existing methods which aim to improve training/sampling
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efficiency or generative performance (Kong & Ping, 2021; Watson et al., 2021; Dockhorn et al., 2021; Song
et al., 2021; Xiao et al., 2022), or other methods which condition based on external properties (Song et al.,
2021; Ho et al., 2021).

Branched diffusion models have many direct applications, and we highlighted their usefulness in scientific
settings. Further exploration in the structure of diffusion models (e.g. branched vs linear) may continue to
have resounding impacts in how these models are used across many areas.
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A Branch-point discovery

As objects from two different classes are forward diffused, their distributions become more and more similar
to each other. At the extreme, it is expected that all objects (regardless of class) reach the same prior
distribution at the time horizon T . Our goal is quantify the earliest time point when objects of two different
classes are sufficiently similar in distribution, such that the reverse diffusion after that point can be predicted
by the same model between the two classes (without specifying class identity).

More formally, we define a branch point between two classes c1 and c2 as the diffusion time tb where the
objects sampled from these two classes are “relatively indistinguishable” from each other. Because the data
distribution is typically complex and high dimensional, we quantify indistinguishability as log-fold change of
expected Euclidean distances, comparing data drawn between the two different classes, and data within the
same class. That is, the branch point tb between classes c1 and c2 is defined as the minimum time t such that:

Ea∈D1,b∈D2,c∈D2

[
Exa∼qt(x|a),xb∼qt(x|b),xc∼qt(x|c)

[
log(∥xa − xb∥2

∥xc − xb∥2
)
]]

< ϵ (8)

where Di is the distribution of data with class label ci.

We discuss theoretical justifications and connections in Appendix B.

The outer expectations are taken over points in the dataset, and the inner expectations are over the forward
noising process. When this log-fold change is a small number ϵ, then we consider the classes relatively
indistinguishable (i.e. the average distance between noisy objects of different classes is comparable to the
average distance between noisy objects of the same class).

Of course, these expectations are extremely intractable to compute in closed-form because of the large dataset
and dimensionality, so instead we approximate these quantities by using Monte Carlo sampling. That is, we
take a sample of objects from each class, apply forward diffusion at many times t spaced regularly between 0
and T , and identify the smallest t such that log-fold change of the distance is sufficiently small.

This procedure gives a branch point tb for every pair of classes ci, cj (i ̸= j).

In a branched diffusion model, each branch bi = (si, ti, Ci) learns to reverse diffuse between times [si, ti) for
classes in Ci. The branches form a tree structure (i.e. hierarchy) with the root at time T and a branch
for each individual class at time 0. In order to convert the branch points between all pairs of classes into
a hierarchy, we simply perform a greedy aggregation starting from individual classes and iteratively merge
classes together by their branch points (from early to late diffusion time) until all classes have been merged
together.

To summarize, the full branch-point discovery algorithm is as follows:

1. Start with a dataset of objects to generate, consisting of classes C.

2. For each class, sample n objects randomly and without replacement.

3. Forward diffuse each object over 1000 time points in the forward-diffusion process (we used 1000
steps, as this matched the number of reverse-diffusion steps we used for sample generation). The
branched diffusion model which will be trained using these branch definitions employs an identical
forward-diffusion process.

4. At each time point t, compute the average Euclidean distance of each pair of classes, resulting in
a |C| × |C| matrix at each of the 1000 time points. For distinct classes ci, cj (i ̸= j), the distance
s(t, ci, cj) is computed over the average of n pairs, where the pairs are randomly assigned between
the two classes; for self-distance of class ci, the distance s(t, ci, ci) is computed over the average of n
pairs within the class, randomly assigned such that the same object is not compared with itself.

5. For each pair of classes ci, cj (i may be equal to j), smooth the trajectory of s(t, ci, cj) over time by
applying a Gaussian smoothing kernel of standard deviation equal to 3 and truncated to 4 standard
deviations on each side.
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6. For each pair of distinct classes ci, cj (i ̸= j), compute the earliest time in the forward-diffusion
process such that the log-fold change of the average distance between ci and cj over the self-distance
of ci and cj (averaged between the two) is at most a tolerance of ϵ. That is, for each pair of distinct
classes ci, cj (i ̸= j), compute the minimum t such that log( s(t,ci,cj)

1
2 (s(t,ci,ci)+s(t,cj ,cj)) ) < ϵ. This gives each

pair of distinct classes a “minimal time of indistinguishability”, τci,cj
.

7. Order the
(|C|

2
)

minimal times of indistinguishability τ by ascending order, and greedily build a
hierarchical tree by merging classes together if they have not already been merged. This can be
implemented by a set of |C| disjoint sets, where each set contains one class; iterating through the
times τ in order, two branches merge into a new branch by merging together the sets containing the
two classes, unless they are already in the same set.

B Theoretical justification for branch-point-discovery algorithm

The goal of our branch-point discovery algorithm is to find the branch point between any pair of classes c1
and c2. The branch point is the earliest point in diffusion time where c1 and c2 are “indistinguishable” from
each other. Formally, indistinguishability occurs when the conditional distributions of these two classes are
close enough that they can be modeled by a single reverse-diffusion process. That is, we want the branch
point tb to be such that qtb

(x|c1) ≈ qtb
(x|c2).

Of course, this is a difficult condition to formally define and satisfy, and there are several challenges:

1. We only have access to samples of objects from each class’ conditional distribution.

2. The data can be high dimensional, and particularly because we only have limited samples, the curse
of dimensionality emerges quickly, even with as few as 10 dimensions.

3. These noisy conditional distributions qt(x|c) are not tractable to compute or even represent, particu-
larly at earlier diffusion times (when the distribution qt(x) is so close to the unknown and complex
data manifold q0(x)).

4. The noisy conditional distributions for two different classes will generally not be identical (until the
time horizon T ), and they slowly approach indistinguishability asymptotically.

5. In order to find the optimal tb, we must compare qt(x|c1) and qt(x|c2) at potentially all time points
along the diffusion timeline, as well as across all pairs of classes in the dataset, so this comparison
needs to be extremely computationally efficient.

We designed our branch-point-discovery algorithm based on these challenges and desiderata, leading to our
definition of a branch point in Equation 8.

Notably, Equation 8 is closely related to energy distance (Székely & Rizzo, 2013). Energy distance compares
the expected distance between objects of two different distributions, to the average expected distance within
the same distribution:

E(D1,D2) = 2Ea∈D1,b∈D2 [∥a− b∥2]− Ea∈D1,b∈D1 [∥a− b∥2]− Ea∈D2,b∈D2 [∥a− b∥2]

We chose to use energy distance for several reasons:

• Energy distance (by definition) compares the expected distance between two different distributions
to the expected distance within the distributions. This allows us to attain a measure of “relative
indistinguishability”. By picking a time point when the energy distance is low, we ensure that the
model upstream of the branch point has no more difficulty representing and learning both classes
together, as it would to learn only a single class (as in a standard, linear diffusion model). This
addresses Challenge 4.
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• Energy distance is much more robust in high dimensions. In high dimensions, particularly with
sparser samples, metrics such as MMD and significance testing such as t-tests can be unreliable
(Ramdas et al., 2014; Bischoff et al., 2024). This addresses Challenges 1 and 2.

• Energy distance does not require any distributional assumptions. Furthermore, we modify the
energy distance formulation slightly, so that instead of taking the difference between expected inter-
distribution and intra-distribution distances, we take the ratio, as this allows for the energy distance to
be more comparable in magnitude across different classes and times, even as the distributions change
drastically across diffusion time. It also allows us to select ϵ in a more principled and comparative
manner across different datasets. In contrast, most frameworks for significance testing relies on
strong distributional assumptions, particularly in high dimensions. This addresses Challenge 3.

• Energy distance is also extremely efficient to compute. It involves computing expected distance
between objects of the two distributions, as well as between objects of the same distribution. In
our algorithm, we perform Monte Carlo sampling over possible random couplings between objects
to compute these expected distances. This make energy distance far more suitable for our needs
compared to other metrics such as Wasserstein distance, which requires minimizing over all possible
couplings. This addresses Challenge 5.

• Energy distance is calculated simply using Euclidean distance, and there is intuitive reason for why
Euclidean distance in diffusion space is a meaningful measurement of distance between distributions.
The Euclidean distance can measure how much “work” a diffusion model does to push objects from
one point to another. In particular, we can view the reverse-diffusion process as taking a sampled
object from π(x) and pushing the feature values to a final generated sample. For a single branch
representing multiple classes over some diffusion time interval, distances between objects reflect the
expected distance the branch will be pushing objects, and we would like this distance to be no more
for objects of different classes versus objects of the same class in that branch.
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C Supplementary Figures and Tables

Figure S1: Examples of generated MNIST images. We show (uncurated) images of MNIST digits generated by
branched diffusion models. Since branched diffusion models naturally output each class separately, generation of
individual classes does not require supplying labels or pretrained classifiers. We show a sample of digits generated
from a continuous-time (score-matching) diffusion model (Song et al., 2021), and a discrete-time diffusion model
(denoising diffusion probabilistic model) (Ho et al., 2020). Branched diffusion models for multi-class generation fit
neatly into practically any diffusion-model framework.
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Figure S2: Examples of generated letters. We show some examples of distributions generated from a branched diffusion
model trained on tabular data: English letters of various fonts, featurized by a hand-engineered set of 16 features
(Frey & Slate, 1991). a) For each letter class and each of the 16 numerical features, we computed the Wasserstein
distance (i.e. earthmover’s distance) between the true data distribution and the generated data distribution. We
compare this distribution of Wasserstein distances to the distribution of Wasserstein distances between different true
features as a baseline. On average, the branched diffusion model learned to generate features which are similar in
distribution to the true data. b) We show an example of the true and generated feature distributions for a particular
feature, comparing two letter classes: P and Q. Although the two classes show a very distinct distribution for this
feature, the branched diffusion model captured this distinction well and correctly generated the feature distribution
for each class. c) Over all 16 numerical features, we computed the Pearson correlation between the features, and
compared the correlation heatmaps between the true data and the generated examples. In each of these three classes,
the branched diffusion model learned to capture not only the overarching correlational structure shared by all three
classes, but also the subtle secondary correlations unique to each class.
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Figure S3: Sample quality of branched diffusion vs label-guided (linear) diffusion. We compare the quality of generated
data from branched diffusion models to label-guided (linear) diffusion models of similar capacity and architecture.
For each class, we computed the Fréchet inception distance (FID) between the generated examples and a sample of
the true data. A lower FID is better. We show the FID for generated a) MNIST digits; b) tabular letters; and c)
single-cell RNA-seq. We find that our branched diffusion model achieved comparable sample quality compared to
the current state-of-the-art method of label-guided diffusion. In some cases, the branched model even consistently
generated better examples.
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Table S1: MNIST branch definitions
Branch start (si) Branch end (ti) Branch classes (Ci)

0.4855 1 0,1,2,3,4,5,6,7,8,9
0.4474 0.4855 1,2,3,4,5,6,7,8,9
0.4334 0.4474 2,3,4,5,6,7,8,9
0.4164 0.4334 2,3,4,5,7,8,9
0.3744 0.4164 3,4,5,7,8,9
0.3684 0.3744 3,4,5,8,9
0.3524 0.3684 3,4,5,9
0.3483 0.3524 3,4,5
0.2713 0.3483 3,5

0 0.4855 0
0 0.4474 1
0 0.4334 6
0 0.4164 2
0 0.3744 7
0 0.3684 8
0 0.3524 9
0 0.3483 4
0 0.2713 5
0 0.2713 3

Branch definitions for model on all MNIST digits.

Table S2: MNIST (discrete) branch definitions
Branch start (si) Branch end (ti) Branch classes (Ci)

761 1000 0,1,2,3,4,5,6,7,8,9
760 761 0,2,3,4,5,6,7,8,9
712 760 2,3,4,5,6,7,8,9
709 712 3,4,5,6,7,8,9
700 709 3,5,6,8
685 709 4,7,9
659 700 3,5,8
656 659 3,5
527 685 4,9
0 761 1
0 760 0
0 712 2
0 700 6
0 685 7
0 659 8
0 656 5
0 656 3
0 527 4
0 527 9

Branch definitions for discrete-time model on all MNIST digits.

22



Published in Transactions on Machine Learning Research (08/2024)

Table S3: MNIST branch definitions for 0, 4, 9
Branch start (si) Branch end (ti) Branch classes (Ci)

0.5 1 0,4,9
0 0.5 0

0.35 0.5 4,9
0 0.35 4
0 0.35 9

Branch definitions for model on MNIST digits 0, 4, and 9.

Table S4: MNIST branch definitions for 0, 4, 7, and 9
Branch start (si) Branch end (ti) Branch classes (Ci)

0.5 1 0,4,7,9
0 0.5 0

0.38 0.5 4,7,9
0 0.38 7

0.35 0.38 4,9
0 0.35 4
0 0.35 9

Branch definitions for model on MNIST digits 0, 4, 7, and 9.
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Table S5: Letters branch definitions
Branch start (si) Branch end (ti) Branch classes (Ci)

0.5235 1 A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
0.5165 0.5235 A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,X,Y,Z
0.5115 0.5165 B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,X,Y,Z
0.4945 0.5115 B,C,D,E,F,G,H,I,J,K,M,N,O,P,Q,R,S,T,U,V,X,Y,Z
0.4795 0.4945 I,J
0.4725 0.4945 B,C,D,E,F,G,H,K,M,N,O,P,Q,R,S,T,U,V,X,Y,Z
0.4565 0.4725 B,C,D,E,G,H,K,M,N,O,Q,R,S,U,X,Z
0.4364 0.4725 F,P,T,V,Y
0.4174 0.4565 B,C,D,E,G,H,K,N,O,Q,R,S,U,X,Z
0.4134 0.4174 B,C,D,E,G,H,K,N,O,Q,R,S,X,Z
0.4094 0.4134 B,D,G,H,K,N,O,Q,R,S,X,Z
0.4024 0.4364 F,T,V,Y
0.3864 0.4094 B,D,G,H,K,O,Q,R,S,X,Z
0.3814 0.3864 B,G,H,K,O,Q,R,S,X,Z
0.3734 0.3814 B,G,H,O,Q,R,S,X,Z
0.3604 0.4024 F,T,Y
0.3564 0.4134 C,E
0.3534 0.3604 T,Y
0.3514 0.3734 B,R,S,X,Z
0.3413 0.3734 G,H,O,Q
0.3223 0.3514 B,S,X,Z
0.2763 0.3223 B,S,X
0.2643 0.3413 G,H,O
0.2573 0.2643 G,O
0.1562 0.2763 S,X

0 0.5235 W
0 0.5165 A
0 0.5115 L
0 0.4795 J
0 0.4795 I
0 0.4565 M
0 0.4364 P
0 0.4174 U
0 0.4094 N
0 0.4024 V
0 0.3864 D
0 0.3814 K
0 0.3604 F
0 0.3564 E
0 0.3564 C
0 0.3534 Y
0 0.3534 T
0 0.3514 R
0 0.3413 Q
0 0.3223 Z
0 0.2763 B
0 0.2643 H
0 0.2573 G
0 0.2573 O
0 0.1562 S
0 0.1562 X

Branch definitions for model on all letters.
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Table S6: Single-cell RNA-seq branch definitions
Branch start (si) Branch end (ti) Branch classes (Ci)

0.6436 1 CD16+ NK, Cl. Mono., Late Eryth., Macroph., Megakar.,
Mem. B, NK, Plasmabl., Tem/Eff. H. T

0.5405 0.6436 CD16+ NK, Cl. Mono., Late Eryth., Macroph., Megakar.,
NK, Plasmabl., Tem/Eff. H. T

0.5085 0.5405 Cl. Mono., Late Eryth., Macroph., Megakar., NK, Tem/Eff.
H. T

0.4505 0.5405 CD16+ NK, Plasmabl.
0.3724 0.5085 Cl. Mono., Late Eryth., Megakar., NK, Tem/Eff. H. T
0.3644 0.3724 Megakar., NK, Tem/Eff. H. T
0.2292 0.3724 Cl. Mono., Late Eryth.
0.1842 0.3644 Megakar., NK

0 0.6436 Mem. B
0 0.5085 Macroph.
0 0.4505 CD16+ NK
0 0.4505 Plasmabl.
0 0.3644 Tem/Eff. H. T
0 0.2292 Cl. Mono.
0 0.2292 Late Eryth.
0 0.1842 NK
0 0.1842 Megakar.

Branch definitions for model on all single-cell RNA-seq cell types.

Table S7: Single-cell RNA-seq branch definitions for CD16+ NK and Classical Monocytes
Branch start (si) Branch end (ti) Branch classes (Ci)

0.5796 1 CD16+ NK, Cl. Mono.
0 0.5796 CD16+ NK
0 0.5796 Cl. Mono.

Branch definitions for model on all single-cell RNA-seq cell types CD16+ NK and Classical Monocytes

Table S8: Single-cell RNA-seq branch definitions for CD16+ NK, Classical Monocytes, and Memory B
Branch start (si) Branch end (ti) Branch classes (Ci)

0.6787 1 CD16+ NK, Cl. Mono., Mem. B
0.5796 0.6787 CD16+ NK, Cl. Mono.

0 0.6787 Mem. B
0 0.5796 CD16+ NK
0 0.5796 Cl. Mono.

Branch definitions for model on all single-cell RNA-seq cell types CD16+ NK, Classical Monocytes, and
Memory B
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Figure S4: True expression of genes by cell population. We show the distribution of true (normalized) expression of
CXCL10, HLA-DRA, and HLA-DRB1 across different cell populations (i.e. healthy/normal, COVID-19, etc.). The
average expression in each population is denoted by a black line. Due to complex interactions between genes and
the highly noisy measurements that are characteristic of single-cell RNA-seq, the distribution of the expression of
these genes generally shows no trivial differences in cell populations infected with COVID-19 relative to healthy cells.
However, important differences in the distribution of these genes between COVID-19 and healthy cell populations can
be recovered through more advanced computational methods, as detailed in (Lee et al., 2020).
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Table S9: Efficiency of multi-class conditional generation

Dataset Linear model Branched model
MNIST 78.73 ± 0.11 37.30 ± 0.03
Letters 110.42 ± 0.14 67.54 ± 0.04
Single-cell RNA-seq 275.81 ± 0.02 132.37 ± 0.01

When generating data from multiple classes, intermediates at branch points can be cached in a branched
diffusion model. For three datasets, we measure the time taken to generate one batch of each class from a
branched diffusion model, and from a label-guided (linear) model of identical capacity. Averages and standard
errors are shown over 10 trials each. All values are reported as seconds.
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Figure S5: Robustness of branch points. a) We computed branch points and hierarchies for the MNIST dataset
10 times, each time resulting in a slightly different branching structure. The variation results from randomness in
sampling from the dataset, and stochasticity in the forward-diffusion process. The 10 branching structures vary not
only in their branching times, but also in their topologies (above). To emphasize the variation in the hierarchies,
we also overlay all 10 hierarchies on the same axes (below). b) Compared to randomly generated hierarchies, the
branching structures generated by our algorithm (Appendix A) have a much lower branch-score distance between
themselves (p < 10−25 by Wilcoxon test). c) We trained a branched diffusion model on each of the hierarchies, and
quantified generative performance using Fréchet inception distance (FID). Over all 10 hierarchies, the FID from the
branched models were relatively consistent with each other, and also generally better than the label-guided (linear)
model.
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Table S10: Relative size and capacity of branched models vs relative training time

Branched model Number of classes Total branch length Model capacity Actual epochs
MNIST 10 11.49 8.48 3
Fashion MNIST 10 4.81 8.48 2
Letters 26 10.05 11.06 1
Single-cell RNA-seq 9 4.29 6.38 1.2
ZINC250K 2 1.15 1.89 1

Because branched diffusion models separate the diffusion process into branches, they naturally often require
more epochs to train than their linear counterparts. We found, however, that the time taken to train these
models was still far less than what would be expected if the training time were an additive function of total
branch length or model capacity. Here, we show (for each of our main branched models) the total branch

length (i.e. the sum of diffusion times over all branches bi:
2|C|−1∑

i=1
(ti − si)), the approximate model capacity,

and the actual training time in epochs. All values in the table above are relative (i.e. divided by) the branched
model’s linear counterpart. Although training time for branched models was already far less than what is
expected based on branch length or model capacity, we also suggest that training with larger batch sizes or
accumulating gradient updates between batches (particularly for shorter branches) may also allow for these
models to be trained even faster. We leave the exploration of this for future work.

Figure S6: Robustness of ϵ in branch-point discovery algorithm. The value ϵ is used in the branch-point discovery
algorithm (Appendix A) to determine when two classes are sufficiently similar to be combined in a branch. Although
ϵ is relatively easy to select by simply choosing a value where the branch points are not all too close to t = 0 or t = T ,
here we explore the robustness of branched diffusion models to different choices of ϵ. a) We sampled 10 values of
ϵ between 10−5 and 10−1 (uniformly sampled in logarithmic space), and computed branch points for each in our
MNIST dataset. The two largest values of ϵ yielded hierarchies where the terminal branches were all length 0, so they
were removed from this analysis. We show an overlay of the hierarchies. Note the similarity of the hierarchies here
(which arise from different values of ϵ) compared to the distribution of hierarchies in Supplementary Figure S5a (which
arise from random variation in sampling and forward diffusion from the same value of ϵ). b) We trained a branched
diffusion model on each of the hierarchies, and quantified generative performance using Fréchet inception distance
(FID). Over all hierarchies, the FID from the branched models were mostly consistent with each other, and also mostly
better than the label-guided (linear) model. The model which performed the worst arose from the largest value of ϵ in
the analysis, which resulted in the hierarchy with the shortest terminal branches (gray hierarchy in panel a).
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Figure S7: Multi-step continual learning. We continue the same analysis as shown in Figure 5, but show a multi-step
continual-learning scheme, in which 3 never-before-seen classes are iteratively introduced to a model. We started with
a branched diffusion model trained to generate 0s, 4s, and 9s. We then iteratively introduced 7s, 1s, and 2s. With the
introduction of each new digit class, we added a single new terminal branch, using the branch point computed using
the branch-point discovery algorithm (Appendix A). We then fine-tuned only that branch for only that class. For the
label-guided model, we also began with a model trained to generate 0s, 4s, and 9s. We then iteratively introduced 7s,
1s, and 2s. With the introduction of each new digit class, we fine-tuned the model on only that digit class. We also
attempted fine-tuning the label-guided model by training on all digits (old and new). a) We show examples of digits
generated after each fine-tuning step. The branched model was able to generate high-quality digits upon the addition
of each new digit class, without affecting the ability to generate pre-existing classes. The label-guided model, however,
suffered from catastrophic forgetting upon being fine-tuned at each step, and largely forgot how to generate all other
digits. Upon fine-tuning on all digit classes (which is a highly inefficient procedure), the label-guided model was able
to generate all classes once more, but still suffered from inappropriate crosstalk between the classes. b) We quantified
the generative performance of each model using Fréchet inception distance (FID). The branched models achieved
roughly the same FIDs upon fine-tuning on each new data class, whereas the FID of the label-guided models suffered
enormously as a result of catastrophic forgetting.

30



Published in Transactions on Machine Learning Research (08/2024)

Figure S8: Transmutation in a (label-guided) linear model. Transmutation is most naturally performed in a branched
diffusion model, where branch points have been explicitly defined and trained with. However, it is possible to perform
a transmutation-like procedure in a label-guided (linear) model by first forward diffusing to some intermediate point
(which we will call a “turn-back point”), and then reverse-diffusing from that point while supplying a desired target
label. a) We show a random sample of 4s and 9s from MNIST, and perform transmutation using a branched diffusion
model, with a well-defined branch point. The resulting digits show that transmutation in the branched model was both
efficacious (i.e. the digit was successfully transformed from one class to the other) and analogous (i.e. non-class-specific
features like slantedness were preserved). We then attempted transmutation in a linear model, using various turn-back
points. Notably, in a linear model, the appropriate turn-back point is not known ahead of time (unlike in a branched
model). As such, it is difficult to select the optimal turn-back point. Turn-back points which are too early cause
transmutation to fail at efficacy: the target class is not generated at all. Turn-back points which are too late cause
transmutation to fail at analogy: non-class-specific features like slantedness are no longer preserved. Additionally,
some turn-back points (e.g. t = 0.25) cause some objects to be transmuted efficaciously, and others to fail to generate
the target class entirely. Furthermore, even by setting the turn-back point to be the branch point in the branched
model (t = 0.35), the transmuted results from the linear model are lower quality than in the branched model, likely
because of crosstalk between the classes which is not controlled for at all in the training of the linear model.

Figure S9: Interpreting hybrids of less-related classes. Branch points between less-related classes can still be
interpreted, but between very unrelated classes, the interpretations are naturally less meaningful, as only very
high-level (and relatively uninformative) features will be shared between these classes. a) We show the distribution of
feature values for highly distinct features between less similar letters. The hybrids show a feature-value distribution
which is intermediate and interpolated between the two classes, exhibiting properties of both. b) We show the hybrid
resulting from interpreting the branch point between 6s and 9s or between 1s and 8s (dissimilar digits which were
selected due to their late branch points) from our branched model trained on MNIST. The resulting hybrids show the
common features between each pair of digit classes, which are generally fairly high-level, including: 1) the digits are in
the center of the image; and 2) areas which are generally empty, coinciding with the “holes” of how most people draw
their 6s or 9s, or their 8s.
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Figure S10: Branched models on Fashion MNIST. In addition to MNIST, we also show additional results on branched
diffusion models trained on a more complex image dataset, but which does not suffer from the problem of centering.
a) We found significantly better performance in all classes (except for one) compared to the linear model, and this
difference was oftentimes stark. b) We show hybrids between certain classes, which show shared shapes between
certain types of clothing. c) Transmuting between shirts and coats, certain analogous features are preserved, such as
overall color (light vs dark) and relative sleeve length (shorter vs longer).

Figure S11: Distribution of distance between objects at branch point. We verify that distances between noisy objects
of the same class are roughly the same compared to distances between noisy objects of different classes at the branch
points. Here, we show the distance between noisy 4s, between noisy 9s, and between noisy 4s and 9s at the branch
point. The distributions are almost identical, signifying that it takes no more “work” or “effort” for the diffusion model
to generate various objects of the same class (e.g. 4s or 9s) compared to objects of different classes (e.g. 4s vs 9s).
The observation that these distributions match is a direct consequence of how branch points are defined (Equation 8).
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D Supplementary Methods

We trained all of our models and performed all analyses on a single Nvidia Quadro P6000.

D.1 Training data

We downloaded the MNIST dataset and used all digits from http://yann.lecun.com/exdb/mnist/ (LeCun
et al.). We rescaled and recentered the values from [0, 256) to [-1, 1). This rescaling and symmetrization
about 0 were to assist in the forward-diffusion process, which adds noise until the distribution approaches a
standard (0-mean, identity-covariance) Gaussian.

We used the Fashion MNIST dataset as loaded from TorchVision.

We downloaded the tabular letter-recognition dataset from the UCI repository:
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition (Frey & Slate, 1991). We cen-
tered and scaled each of the 16 tabular features to zero mean and unit variance (pooled over the entire
dataset, not for each individual letter class).

We downloaded the single-cell RNA-seq dataset from GEO (GSE149689) (Lee et al., 2020). We used Scanpy
to pre-process the data, using a standard workflow which consisted of filtering out low-cell-count genes and
low-gene-count cells, filtering out cells with too many mitochondrial genes, and retaining only the most
variable genes and known marker genes (Wolf et al., 2018). We assigned cell-type labels using CellTypist
(Conde et al., 2022). Of the annotated cell types, we retained 9 non-redundant cell types for training: CD16+
NK cells, classical monocytes, late erythrocytes, macrophages, megakaryocytes/platelets, memory B cells,
NK cells, plasmablasts, and TEM/effector helper T cells. After pre-processing, the dataset consisted of 37102
cells (i.e. data points) and 280 genes (i.e. features). To train our diffusion models, we projected the gene
expressions down to a latent space of 200 dimensions, using the linearly decoded variational autoencoder in
scVI (Gayoso et al., 2022). The autoencoder was trained for 500 epochs, with a learning rate of 0.005.

We downloaded the ZINC250K dataset and converted the SMILES strings into molecular graphs using RDKit.
We kekulized the graphs and featurized according to (Jo et al., 2022). We explored two methods of labeling
the molecules for branched diffusion. First, we labeled molecules based on whether they were acyclic or had
one cycle (molecules with multiple cycles were removed for simplicity). Secondly, we labeled molecules based
on whether or not they possessed a halogen element (i.e. F, Cl, Br, I).

D.2 Diffusion processes

For all of our continuous-time diffusion models, we employed the “variance-preserving stochastic differential
equation” (VP-SDE) (Song et al., 2021). We used a variance schedule of β(t) = 0.9t + 0.1. We set our time
horizon T = 1 (i.e. t ∈ [0, 1)). This amounts to adding Gaussian noise over continuous time. Our ZINC250K
models were an exception, and we used the same diffusion processes (different for the node features and
adjacency matrix) that were used in (Jo et al., 2022).

For our discrete-time diffusion model, we defined a discrete-time Gaussian noising process, following Ho et al.
(2020). We defined βt = (1× 10−4) + (1× 10−5)t. We set our time horizon T = 1000 (i.e. t ∈ [0, 1000]).

D.3 Defining branches

To discover branch points, we applied our branch-point discovery algorithm (Appendix A).

For our continuous-time branched model on MNIST (and Fashion MNIST), we used ϵ = 0.005. For our
discrete-time branched model on MNIST, we used ϵ = 0.001. For our continuous-time branched model on
tabular letters, we used ϵ = 0.01. For our single-cell RNA-seq dataset, we used ϵ = 0.005. These values were
selected such that the branch points were not all too close to 0 or T .

The final branch definitions can be found in the Supplementary Figures and Tables.

For our ZINC250K dataset, we always used a branch point of 0.15.
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D.4 Model architectures

Our model architectures are designed after the architectures presented in Song et al. (2021) and Kotelnikov
et al. (2022).

Our MNIST and Fashion MNIST models were trained on a UNet architecture consisting of 4 downsampling and
4 upsampling layers. In our branched models, the upsampling layers were shared between output tasks. We
performed group normalization after every layer. The time embedding was computed as [sin(2π t

T ), cos(2π t
T )].

For each layer in the UNet, the time embedding was passed through a separate dense layer (unique for every
UNet layer) and concatenated with the input to the UNet layer. For a label-guided model, we learned an
embedding for each discrete label. As with the time embedding, the label embedding was passed through a
separate dense layer (unique for every UNet layer) and concatenated to the input to each UNet layer.

Our letter models were trained on a dense architecture consisting of 5 dense layers. In our branched
models, the first two layers were shared between output tasks. The time embedding was computed as
[sin(2π t

T z), cos(2π t
T z)], where z is a set of Gaussian parameters that are not trainable. The time embeddings

were passed through a dense layer, and the output was added to the input after the first dense layer. For a
label-guided model, we again learned an embedding for each discrete label. The label embedding was passed
through a dense layer, and the result was concatenated to the summation of the time embedding and the
input after the first layer, before being passed to the remaining 4 layers.

Our single-cell RNA-seq models were trained on a dense residual architecture consisting of 5 dense layers.
Each dense layer has 8192 hidden units. The input to each dense layer consisted of the sum of all previous
layers’ outputs. In our branched models, the first 3 layers were shared between output tasks. The time
embedding was computed as [sin(2π t

T z), cos(2π t
T z)], where z is a set of Gaussian parameters that are not

trainable. At each layer (other than the last), the time embedding was passed through a layer-specific dense
mapping and added to the input to that layer. For a label-guided model, we again learned an embedding for
each discrete label. The label embedding was passed through a dense layer and added to the very first layer’s
input.

Our ZINC250K branched models were trained on an architecture almost identical to that presented in Jo
et al. (2022). In order to multi-task the model, we duplicate the last layers of the score networks for the
node features or the adjacency matrix. For the node-feature score network, we multi-tasked only the final
MLP layers. For the adjacency-matrix score network, we multi-tasked the final AttentionLayer and the
final MLP layers. To incorporate t, we computed a time embedding as [sin(2π t

T z), cos(2π t
T z)], where z is a

set of Gaussian parameters that are not trainable. This embedding was passed through a dense layer which
projected this embedding down to a scalar, which was directly multiplied onto the final output of the score
networks.

These neural-network architectures described above are the standard architectures used for linear (traditional)
diffusion models for the associated data type (e.g. images, tabular data, or molecules). In order to turn these
neural network architectures into multi-task architectures for branched diffusion models, we converted each
model by multiplexing the last few layers (literally copying the last few layers 2|C| − 1 times for |C| classes),
thereby turning the model into a multi-task model. The exact number of multiplexed layers multiplexed
naturally depends on the data type and architecture, and is discussed below. This multiplexing was done
such that the prediction path from the input to any single output head is architecturally identical to the
standard single-task architecture.

For MNIST and Fashion MNIST, we multiplexed the last 4 layers of the U-Net (i.e. the upsampling layers).
Note that because the U-Net concatenates downsampling (early) layers’ outputs to the upsampler inputs, we
effectively duplicate the downsamplers’ outputs multiple times, as well, to feed into each output head. For
letters, we multiplexed the last 2 layers. For RNA-seq, we multiplexed the last 3 layers. For molecules, we
multiplexed the last 4 layers for the adjacency-matrix score, and the last 2 layers for the node-features score.
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D.5 Training schedules

For all of our models, we trained with a batch size of 128 examples, drawing uniformly from the entire dataset.
This naturally ensures that branches which are longer (i.e. take up more diffusion time) or are responsible for
more classes are upweighted appropriately.

For all of our models, we used a learning rate of 0.001, and trained our models until the loss had converged.

For our label-guided MNIST model, we trained for 30 epochs. For our label-guided letter model, we trained
for 100 epochs. For our label-guided single-cell RNA-seq model, we trained for 100 epochs. In all cases, we
noted that the loss had converged after training.

For our branched continuous-time MNIST model, we trained for 90 epochs. For our branched discrete-time
MNIST model, we trained for 200 epochs. For our branched letter model (continuous-time), we trained
for 100 epochs. For our branched single-cell RNA-seq model, we trained for 120 epochs. For our branched
ZINC250K model labeled by cyclicity, we trained for 200 epochs; for our branched ZINC250K model labeled
by halogenation, we trained for 50 epochs. Again, we noted that the loss had converged after training. Our
branched model on Fashion MNIST used the same training procedure as with MNIST.

For our analysis on extending branched models and label-guided (linear) models to new classes, we also
trained MNIST models on a subset of the dataset (i.e. only 0/4/9 or only 0/4/7/9), and single-cell RNA-seq
models on a subset of the dataset (i.e. only CD16+ NK/classical monocytes or only CD16+ NK/classical
monocytes/memory B cells). In these cases, we followed the same training parameters as above, except we
trained for fewer epochs. In the class-extension analysis on MNIST, we started with branched or label-guided
models trained on 0s, 4s, and 9s. These models we trained for 30 epochs each. In the class-extension analysis
on single-cell RNA-seq, we started with a branched or label-guided model trained on CD16+ NK and classical
monocytes. The branched model was trained for 120 epochs, and the label-guided model was trained for 100
epochs.

D.6 Sampling procedure

When generating samples from a continuous-time diffusion model, we used the predictor-corrector algorithm
defined in Song et al. (2021), using 1000 time steps from T to 0. For our discrete-time diffusion model, we
used the sampling algorithm defined in Ho et al. (2020). Note that we employed Algorithm 2 for branched
models.

D.7 Analyses

Sample quality

We compared the quality of samples generated from our branched diffusion models to those generated by our
label-guided (linear) diffusion models using Fréchet Inception Distance (FID). For each class, we generated
1000 samples of each class from the branched model, 1000 samples of each class from the linear model, and
randomly selected 1000 samples of each class from the true dataset. We computed FID over these samples,
comparing each set of generated classes against the true samples. For the tabular letters dataset, there were
not enough letters in the dataset to draw 1000 true samples of each letter, so we drew 700 of each letter from
the true dataset. For the single-cell RNA-seq dataset, we generated 500 of each cell type from the diffusion
models, and we sampled as many of each cell as possible from the true dataset (up to a maximum of 500).

Class extension

For our MNIST dataset, we started with a branched diffusion model trained on 0s, 4s, and 9s. To extend
a new branch to reverse diffuse 7s, we simply created a new model with one extra output task and copied
over the corresponding weights. For the new branch, we initialized the weights to the same as those on the
corresponding 9 branch (with si = 0). We trained this new branch on only 7s, only for the time interval of
that new branch. On the corresponding label-guided (linear) model, we fine-tuned on only 7s or on 0s, 4s, 7s,
and 9s. In each experiment, we started with the linear model trained on 0s, 4s, and 9s.
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For our single-cell RNA-seq dataset, we repeated the same procedure, but started with a branched diffusion
model trained on CD16+ NK cells and classical monocytes, and introduced memory B cells as a new task.
We trained the new branch on only memory B cells, only for the time interval of the new branch. On the
corresponding label-guided (linear) model, we fine-tuned on only memory B cells or on all three cell types. To
fine-tune on only memory B cells, we started with the linear model trained on CD16+ NK cells and classical
monocytes only. To fine-tune on all three cell types, we again started with the linear model trained only on
the original two cell types.

As above, we always fine-tuned until the loss converged. We note that this took much longer for the linear
models compared to the branched model.

Hybrid intermediates and transmutation

For certain pairs of MNIST digits or letters, we found the earliest branch point for which they belong to
the same branch, and generated hybrids by reverse diffusing to that branch point. To generate the average
MNIST hybrids, we sampled 500 objects from the prior and reverse diffused to the branch point, and averaged
the result.

Transmuted objects were computed by forward diffusing from one class to this branch point, and then reverse
diffusing down the path to the other class from that intermediate.

To compute the preservation of functional groups in the transmutation of ZINC250k, we used the following
list of functional groups:

https://github.com/Sulstice/global-chem/blob/development/
global_chem/global_chem/miscellaneous/open_smiles.py

Multi-class sampling efficiency

We computed the amount of time taken to generate 64 examples of each class from our branched diffusion
models, with and without taking advantage of the branch points. We took the average time over 10 trials
each.

When leveraging the branching structure to generate samples, we ordered the branches by start time si in
descending order. For each branch bi in that order, we reverse diffused down the branch, starting with a
cached intermediate at ti for the branch that ended at ti. For the very first branch (the root), we started
reverse diffusion by sampling π(x). This guarantees that we will have a cached batch of samples at every
branch point before we encounter a branch that starts at that branch point. Eventually, this algorithm
generates a batch of samples for each class. For each branch, we performed reverse diffusion such that the
total number of steps for any one class from t = T to t = 0 was 1000.

To generate samples without leveraging the branching structure, we simply generated each class separately
from the branched model, without caching any intermediates. Note that this takes the same amount of time
as a purely linear model (of identical capacity and architecture) without any branching structure.

Robustness of branch points

To quantify the robustness of branched diffusion models to the underlying branch points, we computed the
branch points for MNIST (continuous-time, all 10 digits) 10 times, each time following the procedure in
Appendix A. Variation in the branch points resulted from variation in the randomly sampled objects, and in
the forward-diffusion process. For each set of branch definitions, we trained a branched diffusion model using
the procedure above. We then computed FID using the same procedure as above for other MNIST models,
and compared the values to the FIDs of the corresponding label-guided MNIST model.

To quantify the similarity of the hierarchies, we computed the pairwise branch-score distance between all
(10

2
)

pairs of hierarchies discovered from our algorithm. We then generated 10 random hierarchies in a greedy
fashion: start with all classes, and uniformly pick a random partition; uniformly pick a branch point bt

between 0 and 1; recursively generate the two hierarchies below with a maximum time of bt, until all class
sets have been reduced to singletons. We used a Wilcoxon test to compare the distribution of branch-score
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distances between the hierarchies discovered by our proposed algorithm, and the distances between the
random hierarchies. Branch-score distance was computed using PHYLIP (Felsenstein).
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