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ABSTRACT

Unified image restoration models for diverse and mixed degradations often suffer
from unstable optimization dynamics and inter-task conflicts. This paper intro-
duces Self-Improved Privilege Learning (SIPL), a novel paradigm that overcomes
these limitations by innovatively extending the utility of privileged information
(PI) beyond training into the inference stage. Unlike conventional Privilege Learn-
ing, where ground-truth-derived guidance is typically discarded after training,
SIPL empowers the model to leverage its own preliminary outputs as pseudo-
privileged signals for iterative self-refinement at test time. Central to SIPL is Proxy
Fusion, a lightweight module incorporating a learnable Privileged Dictionary. Dur-
ing training, this dictionary distills essential high-frequency and structural priors
from privileged feature representations. Critically, at inference, the same learned
dictionary then interacts with features derived from the model’s initial restora-
tion, facilitating a self-correction loop. SIPL can be seamlessly integrated into
various backbone architectures, offering substantial performance improvements
with minimal computational overhead. Extensive experiments demonstrate that
SIPL significantly advances the state-of-the-art on diverse all-in-one image restora-
tion benchmarks. For instance, when integrated with the PromptIR model, SIPL
achieves remarkable PSNR improvements of +4.58 dB on composite degradation
tasks and +1.28 dB on diverse five-task benchmarks, underscoring its effectiveness
and broad applicability.

1 INTRODUCTION

All-in-one image restoration, which aims to tackle diverse and often mixed degradations with a
single, unified model, has emerged as a pivotal research area due to its immense practical value Jiang
et al.| (2025). However, these versatile models confront a fundamental dilemma: forcing a single
network to master the distinct, often confusing or conflicting, feature representations required for
tasks like denoising (local textures) and dehazing (global context) inevitably leads to optimization
challenges and performance compromises |Kong et al.| (2024); Wu et al.|(2024). This heterogeneity
brings unstable training process, resulting in the suboptimal solution. To address this challenge,
we argue for a paradigm shift against the end-to-end learning. We propose to explicitly learn and
leverage a universal prior of what constitutes a high-quality, degradation-free image, using it as a
stable guide to navigate the complex optimization landscape.

To realize this, we draw inspiration from Privilege Learning (PL) Vapnik and Vashist| (2009)); |Vap-
nik et al.| (2015)), where auxiliary information is used to guide training progressively while can be
unavailable at test time. We posit that ground-truth (GT) images can serve as the ultimate privi-
leged information, providing a clear, degradation-agnostic supervisory signal. The incorporation of
privileged information during training establishes an inter-task comprehension bridge, effectively
harmonizing conflicting gradients and stabilizing convergence progressively. For instance, a PL-
enhanced PromptIR model achieves performance comparable to the original baseline in less than
half the training epochs (see Figure[I[a)), showcasing that PL therefore presents an efficient and
straightforward strategy for improving existing all-in-one restoration methods. Nevertheless, vanilla
PL traditionally limits its own impact, as the privileged guidance is often progressively diminished
during training and is entirely unavailable at inference time.

This raises a critical question: can the essence of privileged information be retained and repurposed
to enhance performance at the inference stage? We answer in the affirmative by proposing the novel
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Figure 1: Conceptual comparison of learning frameworks: (a) Privilege Learning (PL) leverages
privileged information during training for improved optimization. (b) Our proposed Self-Improved
Privilege Learning (SIPL) framework introduces Proxy Fusion to retain privileged knowledge,
enabling iterative self-refinement during inference by using intermediate restoration outputs as
pseudo-privileged information. Retrained PromptIR with the proposed SIPL achieves significant
improvement across diverse all-in-one tasks.

Self-Improved Privilege Learning (SIPL) framework, which extends the conventional PL paradigm
in two key stages, as illustrated in Figure[T[b). First, we introduce a the Privileged Dictionary (PD)
to distill and retain universal high-quality priors from privileged information during training.
Second, we propose an iterative self-refinement cycle to reuse these retained priors at inference,
where the model’s own initial restoration serves as pseudo-privileged information for a powerful
self-refinement loop.

In detail, this two-stage concept is realized by our proposed Proxy Fusion mechanism, a straightfor-
ward and efficient module centered around a learnable Privileged Dictionary (PD). During training,
the PD internalizes degradation-agnostic image characteristics from GT-derived features, creating
a compact and persistent knowledge base. At inference, the PD’s role transforms from a student
to a teacher. It interacts with features extracted from the model’s own preliminary restoration (the
pseudo-privileged information). This interaction allows the immutable, pre-trained priors within the
PD to guide a feature-level correction, progressively enhancing the output in a self-driven manner.
The efficacy of this approach is evident when integrating SIPL with the PromptIR model, which
yields remarkable PSNR gains of +4.58 dB on Composite Degradation, +1.23 dB on Allweather, and
+1.38 dB on the Five-Task benchmark, as illustrated in Figure b).

Our contributions can be summarized into four aspects:

* We introduce Privilege Learning (PL) to all-in-one image restoration, achieving a stronger
and more stable optimization baseline by effectively mitigating inter-task conflicts.

* We extend the conventional PL framework with a novel mechanism to retain privileged
knowledge for the inference stage, thus overcoming the ephemeral nature of guidance.

* We further propose a self-refinement strategy to reuse this retained knowledge. This
empowers models with a new capability for iterative self-improvement, leading to promising
performance boosts.

* We propose the Proxy Fusion, a lightweight and plug-and-play module that makes SIPL
a practical reality. Its high efficiency and broad compatibility are validated by significant
performance gains on multiple state-of-the-art architectures.

2 RELATED WORK
2.1 ALL-IN-ONE IMAGE RESTORATION

Traditional image restoration typically targets specific degradations, such as noise or blur, using
specialized models [Zamir et al.|(2022); Huang et al.[(2023);|Cati et al.| (2023). However, real-world
scenarios often involve unknown or mixed degradations, driving the need for all-in-one models that
handle diverse degradation types in a unified framework Su et al.| (2022-05)); Jiang et al.| (2025).

Early efforts toward unified models utilized powerful backbones [Chen et al.| (2022} |2021); [Wang
et al.|(2022)); Zamir et al.| (2022)); [Wang et al.| (2024); |Guo et al|(2024a) or generative approaches
like diffusion models Belhasin et al.| (2024); |Yue and Loy|(2024); [Li et al.| (2025); [Yue et al.| (2025)).
A key challenge is guiding a single network to handle diverse restoration tasks, leading to a focus
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on conditioning mechanisms, from early degradation encoders |Li et al.| (2022) to advanced learn-
able prompts [Potlapalli et al.| (2023)), sometimes refined with frequency priors or dimensionality
reduction |Cui et al.[(2025)); Zhang et al.[(2023)). Other methods use degradation priors from classi-
fiers [Kong et al.| (2024)) or vision-language models like CLIP with textual prompts |Luo et al.| (2024);
Lin et al.|(2024). Additionally, multi-task learning techniques |Wu et al.|(2024; 2025)) and pretraining
strategies |Qin et al.| (2024) address optimization challenges. While these advances improve all-in-one
capabilities, they often focus on architectural or input conditioning changes, overlooking optimization
stability in multi-task learning.

2.2  PRIVILEGE LEARNING AND TEST-TIME ADAPTATION

Privilege Learning (PL) introduced the concept of using extra, training-only information to help a
model learn a more robust representation |Vapnik and Vashist| (2009); |Vapnik et al.[|(2015). While
explored in low-level vision |Lee et al.[(2020), its application has been limited. We first establish PL.
for all-in-one restoration to achieve a more stable training baseline. More importantly, we extend PL
to retain and reuse this privileged knowledge at inference, overcoming its core limitation.
Test-Time Adaptation (TTA) aims to adapt pre-trained models to new test domains via online,
unsupervised fine-tuning [Liang et al.| (2025)). Although our self-refinement also operates at test time,
it is fundamentally different. TTA updates model parameters using gradient-based optimization
on test data to address domain shift Deng et al.| (2023)); |Gou et al.| (2024)); [Yang et al.| (2024)). In
stark contrast, SIPL is a gradient-free inference process that operates on a frozen model. It does not
adapt the model but instead refines the output by reusing pre-distilled knowledge, making it a distinct
paradigm from TTA.

3 METHOD

In this section, we detail our Self-Improved Privilege Learning (SIPL) framework. We first provide
an overview of how SIPL integrates into a general restoration architecture. We then elaborate on its
two core stages: (1) the PL-enhanced training process that retains privileged knowledge, and (2) the
inference-time interation that reuses this knowledge for iterative self-refinement.

3.1 PRELIMINARIES

Privilege Learning Paradigm As established in Section 1, all-in-one image restoration faces
fundamental optimization challenges stemming from task competition and conflicting gradient
directions. Privilege Learning [Vapnik and Vashist| (2009); [Vapnik et al.| (2015)) offers an elegant
solution by leveraging additional information during training that enhances the learning process.
Given a degraded image I; and its corresponding ground truth I, PL incorporates privileged
information (derived from I,;) into the training process. This is achieved through a simple yet
effective feature fusion approach:

Frysea =(1—a) - Fg+a- Fpy, (D

where Fj represents features extracted from the degraded image,
F’p; denotes features derived from the ground truth (privileged infor-

mation), and « € [0, 1] controls the degree of privileged guidance. W 4/
L]

During training, « typically follows a decreasing schedule, ensuring

Privileged Dictionary D,

the model gradually adapts to operating without privileged guid-
ance. At inference time, « is set to 0, as privileged information is
unneeded.

This straightforward mechanism provides substantial benefits for &% %
all-in-one restoration. It stabilizes training and mitigates task com- Input

petition by providing clear guidance, particularly for challenging FeatureF___ §

degradation types. Meanwhile, our introduced PL paradigm remains
agnostic to model architecture, enhancing all-in-one image restora-

tion generally. l

3.2 SELF-IMPROVED PRIVILEGE LEARNING Feat(l)l::p;‘l:eﬁne

Beyond the vanilla PL paradigm, we propose a novel extension to  Proxy Fusion

retain the privileged information at the inference stage. Our key
insight is that the restoration output, though imperfect, contains
valuable information closer to the ground truth than the original

Figure 2: Implementation of
the proxy fusion module.
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degraded input. This observation motivates our proxy fusion module, which enables the model to
leverage its own outputs as pseudo-privileged information during inference.

Proxy Fusion The cornerstone of SIPL is our novel Proxy Fusion mechanism, which creates a
persistent bridge between training-time privileged knowledge and inference-time self-improvement.
Unlike the direct feature blending in conventional PL (Eq.[I)), Proxy Fusion employs a learnable
Privileged Dictionary (PD) to distill and retain essential knowledge from privileged information:

PD € RV*Y, 2)

where N represents the number of dictionary entries and C' is the feature dimension. This dictionary
interacts with privileged features through cross-attention:

Fp; = CrossAttention(Q = PD, K = Fp;,V = Fpy), 3)

This interaction allows the PD to capture and internalize high-frequency details and statistical patterns
characteristic of high-quality images. The distilled knowledge is then integrated with features from
the degraded image:

Fpysea = CrossAttention(Q = Fy, K = Fp;,V = Fp;). 4)

During training, the entire framework, including the Privileged Dictionary, learns to extract and
utilize privileged information effectively. Crucially, the learned PD persists into inference, serving as
a knowledge repository that enables self-improvement without requiring actual ground truth.

Self-Improvement Mechanism The distinguishing feature of SIPL is its iterative self-refinement
capability during inference:

1. Initial Restoration: The model produces an initial output I T(gitore 4 using only the degraded
input:
10 F(I 5
(La). )

restored
2. Self-Improvement: This initial output serves as pseudo-privileged information. Features

extracted from [ T(Sitore o interact with the learned PD through the Proxy Fusion mechanism,

guiding subsequent restoration:
I(l) ‘F(Id7 Iﬁgitored)' (6)

restored —

3. Iterative Refinement (Optional): This process can continue for multiple iterations, with
each step potentially improving quality:
) _ (t=1)
Irestored - ‘F(Id7 Irestm“ed)7 t>1 (7)
This elegant self-correction loop enables progressive quality enhancement without requiring actual
ground truth during deployment. In practice, we find that a single refinement step (f = 1) typically
provides substantial improvements with minimal computational overhead.

The key advantage of our Proxy Fusion approach over direct feature blending is its ability to distill
and retain essential high-quality image characteristics in the learned PD parameters. This creates
a persistent knowledge repository that facilitates self-improvement during inference, a capability
absent in conventional PL frameworks.

3.3 REMARKS

Our SIPL framework focuses exclusively on the learning paradigm rather than specific architectural
choices. The Proxy Fusion module serves as a plug-and-play component that can enhance virtually
any existing restoration architecture. This architectural agnosticism ensures broad applicability across
diverse restoration models and tasks. For experimental validation, we integrate SIPL into multiple
distinct backbone architectures, including PromptIR [Potlapalli et al.|(2023). As demonstrated in
Section[d] SIPL consistently improves performance across all tested models, confirming its generality
and effectiveness as an optimization framework for all-in-one image restoration.

4 EXPERIMENTS
In this section, we evaluate our SIPL framework on diverse benchmarks (multi-task, deweathering,

composite degradation). All models were retrained from scratch following original protocols for
fairness. Detailed setups are in the Appendix.
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Table 1: Quantitative results (PSNR/SSIM) on the Three-Task Setting. Our results are highlighted in
bold, and best results are underlined.

Denoising (BSD68) Dehazing | Deraining
o=15 o =25 o =50 SOTS Rain100L
CVPR’21 33.27/0.920 30.76/0.871 27.29/0.761 | 28.00/0.958 | 33.86/0.958 | 30.63/0.894
CVPR’22 33.72/0.930 30.67/0.865 27.63/0.792 | 27.78/0.958 | 33.78/0.958 | 30.75/0.901
ECCV’22 | 33.03/0.918 30.47/0.865 27.12/0.754 | 24.11/0.928 | 33.64/0.956 | 29.67/0.844
TPAMI'23 | 33.81/0.930 30.84/0.872 27.69/0.792 | 29.14/0.968 | 35.61/0.969 | 31.42/0.906
CVPR’23 33.28/0.921 30.55/0.862 27.58/0.786 | 29.02/0.968 | 35.89/0.970 | 31.26/0.902
ECCV’24 | 33.88/0.931 30.95/0.874 27.74/0.793 | 29.57/0.970 | 35.42/0.969 | 31.51/0.907
TPAMI'19 | 33.05/0.914 30.41/0.861 26.90/0.740 | 26.92/0.391 | 32.62/0.931 | 29.98/0.875

Type | Method Venue

Average

General

ﬂ@ CVPR’22 33.92/0.932 31.26/0.888 28.00/0.797 | 27.94/0.962 | 34.90/0.967 | 31.20/0.910
IDR*{Zhang et al.|( CVPR’23 33.89/0.931 31.32/0.884 28.04/0.798 | 29.87/0.970 | 36.03/0.971 | 31.83/0.911

é Gridformer*|Wang et al.|(2024 1JCv 24 33.93/0.931 31.37/0.887 28.11/0.801 | 30.37/0.970 | 37.15/0.972 | 32.19/0.912
§ NDR TIP’24 34.01/0.932 31.36/0.887 28.10/0.798 | 28.64/0.962 | 35.42/0.969 | 31.51/0.910
E: InstructIR ECCV’24 | 34.15/0.933 31.52/0.890 28.30/0.804 | 30.22/0.959 | 37.98/0.978 | 32.43/0.913
TextualDegRemoval CVPR’24 34.01/0.933  31.39/0.890 28.18/0.802 | 31.63/0.980 | 37.58/0.979 | 32.63/0.917
AdalR Cui et al.|(2025 ICLR’25 34.12/0.935 31.45/0.892 28.19/0.802 | 31.06/0.980 | 38.64/0.983 | 32.69/0.918

PromptIR [Potlapalli etal.12023' NeurIPS’23 | 33.98/0.933 31.31/0.888 28.06/0.799 | 30.58/0.974 | 36.37/0.972 | 32.06/0.913
PromptIR + SIPL 2025 34.12/0.933  31.48/0.889 28.22/0.800 | 31.09/0.977 | 38.43/0.984 | 32.67/0.917

Table 2: Quantitative results (PSNR/SSIM) on the Five-Task Setting. Our results are highlighted in
bold, and best results are underlined.

Denoising | Dehazing | Deraining | Deblurring | Low-light
BSD68 SOTS Rain100L GoPro LOL
ICCVW’21 | 30.59/0.868 | 21.50/0.891 | 30.78/0.923 | 24.52/0.773 | 17.81/0.723 | 25.04/0.835
CVPR’22 31.49/0.884 | 24.09/0.927 | 34.81/0.962 | 27.22/0.829 | 20.41/0.806 | 27.60/0.881
ECCV’22 | 31.02/0.883 | 25.23/0.939 | 35.56/0.967 | 26.53/0.808 | 20.49/0.809 | 27.76/0.881

Type | Method Venue Average

§ CVPR’23 30.97/0.881 | 24.66/0.931 | 33.45/0.953 | 25.56/0.780 | 21.77/0.821 | 27.28/0.873
3 ICCV’23 30.84/0.880 | 24.81/0.933 | 32.68/0.940 | 25.09/0.779 | 22.76/0.834 | 27.24/0.873
TPAMI'23 | 31.33/0.883 | 25.53/0.943 | 36.07/0.968 | 28.32/0.869 | 22.29/0.829 | 28.71/0.898

ECCV’24 | 31.41/0.884 | 25.81/0.944 | 36.55/0.971 | 28.61/0.875 | 22.49/0.832 | 28.97/0.901

TPAMI'19 | 23.09/0.745 | 20.54/0.826 | 21.96/0.762 | 19.86/0.672 | 19.83/0.712 | 21.05/0.743

ECCV’22 | 30.18/0.855 | 22.16/0.861 | 29.67/0.904 | 24.47/0.763 | 18.97/0.621 | 25.09/0.801

o CVPR’22 29.00/0.841 | 21.32/0.885 | 29.43/0.905 | 25.12/0.757 | 21.21/0.792 | 25.22/0.836
S CVPR’22 30.91/0.882 | 21.04/0.884 | 32.98/0.951 | 24.35/0.781 | 18.18/0.735 | 25.49/0.846
& CVPR’23 31.60/0.887 | 25.24/0.943 | 35.63/0.965 | 27.87/0.846 | 21.34/0.826 | 28.34/0.893
ﬁ cv’24 31.45/0.885 | 26.79/0.951 | 36.61/0.971 | 29.22/0.884 | 22.59/0.831 | 29.33/0.904
ECCV’24 | 31.40/0.887 | 27.10/0.956 | 36.84/0.973 | 29.40/0.886 | 23.00/0.836 | 29.55/0.907

AdalR Cui et al. ) ICLR’25 31.35/0.889 | 30.53/0.978 | 38.02/0.981 | 28.12/0.858 | 23.00/0.845 | 30.20/0.910
PromptIR*|Potlapalli et al. M NeurIPS’23 | 31.47/0.886 | 26.54/0.949 | 36.37/0.970 | 28.71/0.881 | 22.68/0.832 | 29.15/0.904
PromptIR + SIPL 2025 31.45/0.888 | 30.51/0.975 | 38.09/0.982 | 29.35/0.886 23.23/0.856 | 30.53/0.917

Inpﬁt AirNet PromptIR InstructIR AdalR Ours GT

Figure 3: Visual comparison on the Five-Task benchmark. Our method demonstrates superior restora-
tion quality across diverse degradations, effectively recovering finer details and image structures
compared to other approaches.

4.1 MAIN RESULTS

We now present the quantitative comparison of our SIPL framework, integrated with the PromptIR
backbone (denoted as “PromptIR + SIPL”), against the original PromptIR and other state-of-the-art
methods across the four benchmark settings.

Results on Three-Task Setting As detailed in Table [I] integrating our SIPL framework with
the PromptIR backbone yields significant performance gains. SIPL boosts the average PSNR by a



Under review as a conference paper at ICLR 2026

Table 3: Quantitative results (PSNR/SSIM) on the Deweathering Setting. Our results are highlighted
in bold, and best results are underlined.

Snowl00K-S Snowl00K-L Outdoor-Rain  RainDrop Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

All-in-One|Li et al. CVPR’20 - - 28.33 0.8820 24.71 0.8980 31.12 0.9268 28.05 0.9023
Transweather CVPR’22 3251 0.9341 29.31 0.8879 28.83 0.9000 30.17 0.9157 30.20 0.9094
WGWSNet|Zhu et al. CVPR’22 3431 0.9460 30.16 0.9007 29.32 0.9207 32.38 0.9378 31.54 0.9263
WeatherDiff4 |Ozdenizci and Legensleinl 2023) TPAMI’'23 35.83 0.9566 30.09 0.9041 29.64 0.9312 30.71 0.9312 31.57 0.9308
WeatherDiff;o5|Ozdenizci and Legenstein|(2023) TPAMI‘23  35.02 0.9516 29.58 0.8941 29.72 0.9216 29.66 0.9225 31.00 0.9225
ICCV’23 3692 0.9652 31.92 0.9341 31.39 0.9329 31.93 0.9314 33.04 0.9409
ICV’24 3746 09640 31.71 0.9231 31.87 0.9335 32.39 0.9362 33.36 0.9392
CVPR’24 36.23 0.9571 31.02 0.9164 31.25 0.9246 33.21 0.9294 3293 0.9319
CVPR’24  37.01 0.9663 30.92 0.9174 30.99 0.9340 32.72 0.9440 3291 0.9404

Method Venue

Histoformer|Sun et al.| 2024l ECCV’24 37.41 0.9656 32.16 0.9261 32.08 0.9389 33.06 0.9441 33.68 0.9437
PromptIR [Potlapalli et al. 12023| NeurIPS’23 36.88 0.9643 31.34 0.9200 30.80 0.9229 32.20 0.9359 32.80 0.9357
PromptIR + SIPL 2025 3791 0.9673 32.34 0.9291 32.91 0.9469 32.99 0.9462 34.03 0.9473

Testl L i 1 = = - Pl j = = = .

[

np Transweather WSWGNet " WeatherDiff Histoformer Ours

Figure 4: Qualitative examples from the AllWeather dataset. Our method exhibits robust performance
in removing various challenging weather conditions. It yields visually superior results with better
detail preservation and fewer artifacts.

notable +0.61 dB over the baseline. The benefits are particularly pronounced in challenging tasks like
deraining, where SIPL achieves a substantial +2.06 dB improvement, and in dehazing (+0.51 dB).
Our SIPL-enhanced model is highly competitive against recent state-of-the-art methods, including

TextualDegRemoval (2024) and AdaIR (2025).

Results on Five-Task Setting On the more demanding five-task benchmark, the advantages of our
SIPL framework become even more apparent (Table 2)). SIPL significantly elevates the PromptIR
baseline, boosting the average PSNR by a substantial +1.38 dB. The improvements are particularly
striking in tasks where the baseline struggles due to task competition, such as dehazing (+3.97 dB)
and deraining (+1.72 dB), alongside a solid gain in low-light enhancement (+0.55 dB). The visual
results in Figure 3] corroborate these findings, showing superior detail and texture preservation across
a range of degradations.

Results on Deweathering Setting The deweathering benchmark, summarized in Table 3] evaluates
performance on removing diverse adverse weather conditions. Our approach again demonstrates
superior capabilities, achieving the new SOTA average PSNR of 34.03 dB and SSIM of 0.9473.
Consistent performance enhancements are recorded across all four test datasets. These results
underscore SIPL’s robustness in complex deweathering scenarios, outperforming specialized methods
and recent deweathering models like Histoformer (2024) and GridFormer
(2024). Qualitative results in Figure [4] corroborate these metrics, showing that our method more
effectively removes severe weather artifacts while better preserving fine details and color fidelity.

Results on Composite Degradation Setting The advantages of SIPL are most pronounced on
the challenging Composite Degradation benchmark (Table ), where multiple degradations interact.
Here, our approach achieves a remarkable +4.58 dB average PSNR improvement over the PromptIR
baseline. This substantial gain, far exceeding that of PL-enhanced training alone, underscores the
power of our inference-time self-refinement. The performance leap is particularly notable on severe
combined degradations like haze+snow (+9.01 dB) and haze+rain (+8.16 dB). As shown in Figure 5]
unlike baseline methods that typically address only one degradation, SIPL. demonstrates superior
generalization, effectively mitigating all co-occurring artifacts and restoring details and color fidelity.

6
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Table 4: Quantitative results (PSNR/SSIM/LPIPS) on the Composite Degradation Setting. Our results
are highlighted in bold, and best results are underlined.

Method Venue 1 h r s I+h I+r l+s h+r h+s  l+h+r I+h+s  Avg.

AirNefLi et al.|(2022 CVPR’22 2483 2421 2655 2679 2323 2282 2329 2221 2329 2180 2224 2375
TransWeatheiValanarasu et al. M CVPR’22 2339 2395 2669 2574 2224 2262 21.80 23.10 2234 2155 2101 23.13
WeatherDif{(")zdenizci and Legenslein”20231 TPAMI'23 2358 21.99 2485 2480 21.83 2269 2212 2125 2199 2123 21.04 2249
WGWSNeiZhu et al. (2023 CVPR’23 2439 2790 33.15 3443 2427 2506 24.60 2723 27.65 2390 2397 26.96
InstructIRConde et al. 1 ECCV'24 2670 32.61 33.51 3445 2436 2541 2563 28.80 29.64 24.84 2432 2821
OneRestor¢Guo et al. |(2024b; ECCV’24 2655 3271 3348 3450 2615 2583 2556 3027 3046 2518 2528 2847
PromptIRPotlapalli et al. |(2023 NeurIPS’23 2632 26.10 31.56 31.53 2449 2505 2451 2454 2370 2374 2333 2590
PromptIR + SIPL) 2025 27.62 3682 35.66 36.85 27.03 2679 26.68 3270 32.71 2620 2620 30.48

OneRestore

Figure 5: Visual results on the composite degradation tasks, showcasing performance on mixed
degradations. Our method more effectively mitigates multiple interacting degradations, restoring
clearer images with improved color fidelity and detail.

4.2  ABLATION STUDIES
In this section, we conduct comprehensive ablation studies to meticulously validate the efficacy of
our proposed SIPL framework and dissect the contributions of its core components.

Architectural Agnosticism of SIPL. A core strength of our SIPL framework lies in its architectural
agnosticism and ease of integration. To substantiate this plug-and-play capability, we applied SIPL
to a spectrum of distinct backbone architectures, moving beyond the PromptIR
(2023). These included Restormer [Zamir et al|(2022), a prominent Transformer-based network;
NAFNet|Chen et al| (2022), known for its high CNN efficiency; and AdalR [Cui et al.|(2025), a recent
state-of-the-art method notable for its frequency domain processing. All models were retrained on
the five-task benchmark with and without the SIPL framework integrated. The results, presented in
Figure [6] unequivocally showcase SIPL’s ability to consistently elevate performance across these
diverse architectural paradigms. More detailed results are available at Appendix.

Dissecting the Contributions of SIPL. Components 3 . —
To meticulously evaluate SIPL’s core components, D Duline o] i
we ablate PromptIR on a five degradation tasks, with 30 3020
quantitative and qualitative results presented in Fig-
ure [7] The baseline PromptIR model achieves a
PSNR of 36.37 dB. Introducing privilege learning

solely during training (“+PL”) substantially boosts 2 2e
27.76
27.60

29.12

PSNR (dB)
2

28.57

performance to 37.49 dB. This underscores PL’s ef-
ficacy in stabilizing multi-task optimization by lever- NAFNet Restormer PrompiR AdaIR
aging privileged information, thereby establishing

a stronger foundation. Building upon this, the full Figure 6: Ablation study on the interaction of
SIPL framework, by incorporating the Proxy Fusion = SIPL with diverse backbone architectures on
module for its initial inference application (“+SIPL”), the five-task benchmark.

further elevates the PSNR to 37.91 dB (+0.42 dB over

“+PL”). This increment highlights the Proxy Fusion

module’s critical role, with its Privileged Dictionary, in effectively distilling, preserving, and transfer-
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Figure 7: Ablation study dissecting the contributions of SIPL’s components. The figure illustrates the
progressive improvements from the baseline, through the addition of privilege learning (“+PL”), the
initial application of SIPL (“+SIPL”), and subsequent iterative self-refinement stages (“+SIPL-IterX”).
Performance is benchmarked against an approximate upper bound using GT-guidance (“+SIPL-GT”).

ring privileged knowledge for tangible improvement at inference time. The iterative self-improvement
mechanism, a key innovation of SIPL, demonstrates further significant refinement. Crucially, when
the model’s output from the “+SIPL” stage is first fed back as pseudo-privileged information (result-
ing in “+SIPL-Iter1”), performance impressively surges to 38.43 dB—an additional +0.52 dB gain.
This substantial improvement from the initial feedback loop powerfully demonstrates the innovation
and effectiveness of using self-generated outputs for refinement. While subsequent iterations show
diminishing returns, they affirm the model’s capacity for self-correction. This iterative process using
pseudo-PI effectively narrows the gap towards the performance upper bound of 38.79 dB, achieved
when utilizing true ground truth as privileged input during inference.

Table 5: Average PSNR (dB) across ten self-refinement iterations on the Three-Task and Five-Task
benchmarks. The most significant performance gain occurs at the first iteration (¢ = 1), after which
the performance rapidly converges to a stable plateau, demonstrating the robustness and stability of
our iterative refinement mechanism. Detailed per-task metrics are available in the appendix.

Benchmark Baseline t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

Three-Task 32.06 32.669 32.670 32.673 32.673 32.673 32.671 32.670 32.669 32.669 32.669
Five-Task 29.15 30.53  30.58  30.58  30.60 30.58 30.55 30.53 3054 3052 30.53

Evaluation on Multi-Step Refinement To comprehensively analyze the behavior and stability
of our iterative self-refinement, we evaluated its performance over ten successive steps. Table 3]
presents the average PSNR progression on both the Three-Task and Five-Task benchmarks, with
peak performance highlighted in bold. The results reveal two crucial insights into our framework’s
dynamics. First, the most substantial performance leap universally occurs at the initial refinement
step (¢ = 1). On the Three-Task benchmark, this single step yields a gain of +0.609 dB, while on
the more complex Five-Task benchmark, the improvement is an even more remarkable +1.38 dB.
This demonstrates that our mechanism can immediately and effectively correct the most significant
errors in the initial restoration. Second, beyond this initial jump, the performance rapidly saturates
and converges to a stable plateau. Subsequent iterations from ¢ = 2 to ¢ = 10 result in only marginal
fluctuations (e.g., within +0.004 dB on the Three-Task benchmark), with performance remaining
consistently high and peaking around the fourth iteration. This graceful convergence is a hallmark
of our method’s robustness. It stands in stark contrast to naive feedback loops, which, as our prior
ablation showed, lead to catastrophic performance collapse due to error amplification. The stability
of SIPL is attributed to the Privileged Dictionary (PD), which acts as a constant, reliable guide,
ensuring that the feature-level corrections do not diverge. Based on this analysis, our choice of a
single refinement step (¢ = 1) for the main experiments is a principled one, offering an optimal
balance between substantial performance enhancement and computational efficiency.

Analysis of the Self-Improvement Mechanism To rigorously validate superiority of our proposed
self-improvement mechanism, we compare it against two common inference-time enhancement
strategies: naive iteration and self-ensembling. As shown in Table [6] simply feeding a model’s
output back as its input (Naive Iteration) results in a catastrophic performance collapse of -3.82 dB.
This failure is anticipated: the initially restored image, while visually improved, constitutes an
out-of-distribution (OOD) input for a model trained on heavily degraded data. This domain mismatch
leads to the amplification of residual artifacts and color shifts, causing the model to diverge. This
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Table 6: Ablation study on different inference-time enhancement strategies on the Three-Task
benchmark. Our proposed SIPL framework not only significantly outperforms the baselines in
restoration quality (PSNR/SSIM) but also demonstrates superior computational efficiency compared
to standard self-ensembling.

Method PSNR (Avg.) SSIM (Avg.) Forward Passes Mechanism

Baseline (PromptIR) 32.06 0.913 1x Standard Inference

+ Naive Iteration 28.24 (-3.82) 0.892 2% Pixel-level Reprocessing

+ Self-Ensembling 32.42 (+0.36) 0.915 8% Averaging Augmented Outputs
+ SIPL (Ours) 32.67 (+0.61) 0.917 2X PD-Guided Feature Refinement

experiment unequivocally demonstrates that effective self-correction is a non-trivial task that cannot
be achieved by simple looping. Unlike naive iteration’s pixel-level reprocessing, SIPL performs a
principled feature-level refinement. The initial output’s features are not used to generate a new
image directly, but rather to query the pre-learned Privileged Dictionary (PD). This PD, having
distilled the essence of high-quality images during training, acts as a robust guardrail, providing a
stable, gradient-free correction signal in the latent space.

Moreover, self-ensembling, which averages the outputs from eight geometrically augmented inputs,
provides a moderate performance gain (+0.36 dB). However, our SIPL framework surpasses it
with a more substantial improvement of +0.61 dB. Notably, SIPL achieves this superior result with
only 2 forward passes (for one refinement step as the default), making it approximately 4 X more
computationally efficient than the 8-pass self-ensembling process. The stability of this process is
further corroborated by our multi-iteration experiments (as shown in Table[6)), where performance
gracefully saturates near the GT-guided upper bound rather than collapsing. This highlights the
robustness and fundamental advantage of our PD-guided self-improvement paradigm. Further
analyses are detailed in the Appendix.

4.3 LIMITATION AND FUTURE WORK

While our experiments have demonstrated the significant success and versatility of the SIPL frame-
work, we identify several limitations and promising avenues for future research. First, while we
empirically validate that Privilege Learning (PL) stabilizes multi-degradation training, a deeper theo-
retical understanding of its optimization dynamics in this context remains an open question. A more
formal understanding in this area is a critical challenge for the community, which could unlock even
more profound improvements. Second, our iterative refinement, while more efficient than ensembling,
still increases latency over single-pass baselines; optimizing this performance-cost trade-off is a key
priority. Looking forward, SIPL’s task- and model-agnostic design makes it a promising candidate
for a wider range of restoration problems, especially in complex real-world scenarios. More broadly,
our self-refinement concept resonates with the reasoning capabilities of recent large models. Future
work could explore integrating principles from paradigms like Chain-of-Thought|Wei et al.| (2022)),
potentially using large vision models to guide more sophisticated, multi-step correction processes
and unlock new capabilities in low-level vision.

5 CONCLUSION

In this work, we propose Self-Improved Privilege Learning (SIPL), a novel framework that effectively
tackles critical optimization impediments in all-in-one image restoration. SIPL uniquely extends the
paradigm of privilege learning to the inference stage: models are empowered to iteratively self-refine
their outputs by leveraging them as pseudo-privileged information. This is realized through our
proposed proxy fusion module, which employs a privileged dictionary, distilled from ground-truth
priors during training, to guide this self-correction process with retrained privileged prior. Extensive
evaluations across multiple challenging benchmarks, particularly those with complex composite
degradations, confirm that SIPL substantially boosts the performance of diverse state-of-the-art
methods, significantly enhancing their robustness and overall restoration quality. We hope that the
principles and methodologies presented in SIPL will offer fresh perspectives to the community and
stimulate further exploration into more effective strategies for all-in-one image restoration.
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A ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSES

This section presents supplementary experimental results, including single-task performance bench-
marks, out-of-distribution (OOD) generalization analyses, computational complexity comparisons,
further iterative inference studies, and additional qualitative results.

A.1 DETAILED EXPERIMENTAL SETUP

In this section, we provide the detailed experimental setup for the benchmarks used to evaluate our
SIPL framework. We evaluate SIPL across four comprehensive all-in-one settings that encompass a
wide range of real-world image degradation scenarios:

1. Three-Task Setting: Following the established protocol in |Li et al.| (2022); |Potlapalli
et al.|(2023), we address three distinct degradation tasks: image denoising (with synthetic
Gaussian noise), deraining (using the Rain100L dataset), and dehazing (on the RESIDE
dataset). For denoising, we use BSD400 |Arbelaez et al.|(2011) and WED Ma et al.|(2017)
for training, and test on BSD68 with noise levels of 15, 25, and 50. For deraining, we
employ the Rain100L |Yang et al.[(2017)) dataset, and for dehazing, we use the outdoor subset
of RESIDE [Li et al.| (2019a).

2. Five-Task Setting: To evaluate our model’s capacity to handle a broader spectrum of
degradations, we utilize a five-task benchmark, including deraining (Rain100L Yang et al.
(2017)), dehazing (RESIDE Indoor Training Set), denoising (BSD400 + WED), motion
deblurring (GoPro|Nah et al.|(2017))), and low-light enhancement (LOL |Wei et al.|(2018)).
This setting follows [Zhang et al| (2023) and tests the model’s ability to handle diverse
degradation types in real-world scenarios.

3. Deweathering Setting: Based on previous work |Valanarasu et al.| (2022), we use the
AllWeather |Valanarasu et al.| (2022)) dataset for training, containing images from Raindrop
Qian et al.| (2018)), Outdoor-Rain [Li et al.|(2019b), and Snow 100K |Liu et al.| (2018]).

4. Composite Degradation Setting: Following the protocol established in|Guo et al.| (2024b)),
we evaluate our method on the Composite Degradation Dataset (CDD-11), which represents
a more challenging scenario with mixed degradations. CDD-11 encompasses 11 categories
of image degradations including single degradations (low-light, haze, rain, snow) and
their combinations (low+haze, low+rain, low+snow, haze+rain, haze+snow, low+haze+rain,
low+haze+snow). The dataset is constructed using standard benchmarks: the LOw-Light
dataset (LOL) |Wei et al.|(2018), the REalistic Single Image DEhazing Outdoor Training
Set (RESIDE-OTS) [Li et al.| (2019a), the Rain1200 dataset Zhang and Patel| (2018), and
the Snow 100k dataset|Liu et al.|(2018). This setting particularly evaluates our framework’s
capability to handle complex, interacting degradations that better reflect real-world scenarios.

For all settings, we adopt the same training/testing splits and protocols as in the original works
to ensure fair comparisons. We integrate our proposed SIPL framework into various backbone
architectures to demonstrate its versatility and effectiveness.

A.2 SINGLE-TASK PERFORMANCE EVALUATION

To further assess the efficacy of SIPL, we evaluated its performance on individual restoration tasks,
aligning our experimental setup with that of PromptIR [Potlapalli et al.| (2023)) and AdalR |Cu1 et al.
(2025). These evaluations test the capability of our all-in-one model, enhanced with SIPL, on
specialized degradation scenarios.

Table 7: Deraining results in the single-task setting on the Rain100L dataset. Our SIPL approach
obtains a significant performance boost of 1.98 dB PSNR over baseline PromptIR and 0.12 dB over
the AdalR.

Method ‘ DIDMDN UMR SIRR MSPFN LPNet AirNet Restormer PromptIR AdalR PromptIR + SIPL (Ours)

PSNR 23.79 3239 3237 3350 33.61 34.90 36.74 37.04 38.90 39.02
SSIM 0.773 0921 0926  0.948 0.958 0977 0.978 0.979 0.985 0.986
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Table 8: Quantitative comparison for single-task dehazing. Our SIPL achieves significant improve-
ment over baseline PromptIR with 0.51 dB PSNR.
Method \ DehazeNet MSCNN AODNet EPDN FDGAN AirNet Restormer PromptIR AdalR PromptIR + SIPL

PSNR 22.46 22.06 20.29 22.57 23.15 23.18 30.87 31.31 31.80 31.82
SSIM 0.851 0.908 0.877 0.863 0.921 0.900 0.969 0.973 0.981 0.982

Deraining on Rain100L: The Rainl100L dataset|Yang et al.|(2017) serves as a standard benchmark
for single-image deraining. As presented in Table[/| PromptIR augmented with our SIPL framework
achieves state-of-the-art performance. Specifically, it obtains a PSNR of 39.02 dB and an SSIM of
0.986. This represents a substantial improvement of 1.98 dB in PSNR over the original PromptIR
baseline and also surpasses the strong AdalR model by 0.12 dB, demonstrating the significant benefits
of SIPL in effectively removing rain streaks while preserving image fidelity.

Dehazing on SOTS Outdoor: For evaluating dehazing performance, we utilize the outdoor test
set from SOTS, part of the RESIDE dataset [Li et al.|(2019a). The results in Table B] indicate that
SIPL notably enhances PromptIR’s dehazing capabilities. Our approach (PromptIR + SIPL) achieves
a PSNR of 31.82 dB and an SSIM of 0.982. This is a gain of 0.51 dB in PSNR compared to the
PromptIR baseline. Furthermore, our method slightly outperforms AdalR (31.80 dB PSNR /0.981
SSIM), underscoring SIPL’s efficacy in restoring clarity and detail in hazy conditions.

Table 9: Image denoising results of directly applying the pre-trained model under the five-degradation
setting to the Urban100Huang et al.|(2015), Kodak24 Franzen|(1999) and BSD68 |Martin et al.[(2001)
datasets. The results are PSNR scores. Our SIPL achieves significant improvement across all test
datasets compared to previous SOTA method AdaIRCui et al.|(2025).

Urban100 Kodak24 BSD68
Method oc=15 0=25 0=50|0=15 0=25 0=50|0=15 o0=25 o=250 | Average
DL [Fan et al.|(2019) 21.10 21.28 20.42 22.63 22.66 21.95 23.16 23.09 22.09 22.04
Transweather|Valanarasu et al.|(2022) | 29.64 27.97 26.08 31.67 29.64 26.74 31.16 29.00 26.08 28.66
TAPE Liu et al.|(2022) 32.19 29.65 25.87 33.24 30.70 27.19 32.86 30.18 26.63 29.83
AirNet|Li et al.|(2022) 33.16 30.83 27.45 34.14 31.74 28.59 33.49 3091 27.66 30.89
IDR [Zhang et al.|(2023) 33.82 31.29 28.07 34.78 32.42 29.13 34.11 31.60 28.14 31.48
AdalR 34.10 31.68 28.29 34.89 32.38 29.21 34.01 31.35 28.06 31.55
PromptIR + SIPL 35.39 32.74 29.17 34.98 32.50 29.36 34.08 31.45 28.16 31.98

Denoising using Five-Task Pre-trained Model: To assess robustness and generalization for de-
noising, we employed the all-in-one model pre-trained on five distinct degradation tasks (including
denoising) and evaluated it directly on three commonly used denoising benchmark datasets: Ur-
ban100|Huang et al.[(2015)), Kodak24 Franzen| (1999)), and BSD68 Martin et al.|(2001). This setup
tests the model’s ability to denoise effectively without task-specific fine-tuning. As detailed in Table[9}
PromptIR + SIPL demonstrates superior performance, achieving an average PSNR of 31.98 dB across
all datasets and noise levels (o € {15,25,50}). This is a notable improvement over AdalR (31.55 dB
average PSNR). Particularly on the Urban100 dataset, which often contains complex structures, our
method shows significant gains (e.g., +1.29 dB for ¢ = 15, +1.06 dB for ¢ = 25). Consistent,
positive improvements are also observed across the Kodak24 and BSD68 datasets for all noise levels.
These results, especially on datasets potentially unseen during the denoising phase of the five-task
training, highlight the advanced robustness and generalization capabilities endowed by the SIPL
framework.

Table 10: Performance of all-in-one models on the single task of deblurring (GoPro dataset).
PSNR/SSIM values are reported. Our SIPL-enhanced model demonstrates superior transferability.

Method AirNet|Li et al.|(2022)  PromptIR [Potlapalli et al.|(2023)  Perceive-IR ~ PromptIR + SIPL (Ours)
Venue CVPR’22 NeurIPS’23 IEEE TIP’25 2025
PSNR / SSIM 31.64/0.945 32.41/0.956 32.83/0.960 32.77/0.961
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Enhancing All-in-One Model Transfer for Deblurring To evaluate how SIPL enhances a gener-
alist model’s capability on a specialist task, we fine-tuned our SIPL-enhanced PromptIR (originally
trained on five tasks) for the single task of deblurring on the GoPro dataset. As shown in Table[T0}
our approach achieves a significant improvement over the baseline PromptIR and obtains a highly
competitive performance against the recently proposed Perceive-IR. This result validates that the
priors learned via SIPL improve the model’s transferability, allowing it to effectively adapt and excel
in dedicated, single-task scenarios.

Beyond validating SIPL’s ability to enhance the transferability of all-in-one models, we further sought
to evaluate its effectiveness in boosting a dedicated, high-performance single-task architecture. To
this end, we integrated our SIPL framework into the strong NAFNet baseline and retrained it from
scratch on two standard benchmarks: the GoPro dataset for deblurring and the SIDD dataset for
denoising.

Table 11: Single-task state-of-the-art comparison for deblurring on the GoPro dataset. SIPL provides
a clear performance boost to the strong NAFNet baseline.

Method Restormer UFormer MalR NAFNet NAFNet+SIPL(Iter-0) NAFNet+SIPL(Iter-1)
Venue CVPR’22 CVPR’22 ECCV’22 ECCV’22 2025 2025
PSNR/SSIM  32.92/0.961 33.06/0.967 33.69/0.969 33.69/0.966 33.76 / 0.968 33.82/0.970

Evaluation on Image Deblurring Task To further demonstrate SIPL’s architectural agnosticism
and effectiveness, we integrated it into a strong, dedicated single-task baseline, NAFNet, and retrained
it from scratch on the GoPro dataset. The results in Table|11|show that our PL-enhanced training
(Iter-0) already provides a better starting model than the original NAFNet. The subsequent self-
refinement step (Iter-1) yields an additional performance boost, setting a new state-of-the-art result.
This confirms that SIPL is not limited to enhancing all-in-one models but also serves as a general and
effective framework for pushing the performance of specialized, high-performing architectures.

Table 12: Single-task denoising results on the SIDD validation set. Our SIPL framework again
demonstrates its value by improving the performance of the NAFNet baseline.

Method MAXIM CGNet NAFNet  NAFNet+SIPL(Iter-0) NAFNet+SIPL(Iter-1)
Venue CVPR’22 TMLR’24 ECCV’22 2025 2025
PSNR (dB) 40.02 40.39 39.93 40.10 40.19

Evaluation on Image Denoising Task To validate SIPL’s versatility across different tasks, we
applied it to the single-task denoising benchmark on the SIDD dataset, again using NAFNet as
the backbone. As presented in Table [I2] the results are consistent with our other findings. The
PL-enhanced training (Iter-0) establishes a stronger baseline model compared to the original NAFNet.
Subsequently, the inference-time self-refinement step (Iter-1) provides a further boost, achieving a
final PSNR of 40.19 dB. These comprehensive single-task results strongly validate that SIPL is an
efficient and general framework for improving image restoration models across diverse tasks, datasets,
and backbone architectures.

Summary of Single-Task Evaluations. While SIPL is designed to excel in challenging all-in-one
settings, these comprehensive single-task evaluations confirm its broad effectiveness and versatility.
The experiments demonstrate two key strengths: first, SIPL significantly enhances the transferability
of a generalist model (PromptIR) to specialized tasks. Second, it provides a substantial performance
boost to a dedicated, high-performance single-task model (NAFNet) trained from scratch. The
consistent improvements across diverse tasks like deraining, dehazing, and denoising validate that
SIPL is a truly task- and model-agnostic framework, effectively improving restoration capabilities in
both multi-task and single-task scenarios.
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Table 13: OOD performance on Rain100L with Gaussian noise (¢ =15, 25, and 50). Models were
trained on three distinct tasks and test on this unseen dataset directly. Iter-N denotes N iterative
refinement steps. Best results are underlined, our method is highlighted.

Rain100L + Gaussian Noise
Method oc=15 o0=25 o =250 | Average
PromptIR |Potlapalli et al.|(2023) | 24.92 24.50 23.79 24.40
AdalR [Cui et al.|(2025) 2491 24.50 23.77 24.39
PromptIR + SIPL (initial) 24.95 24.59 23.86 24.46
+ Iter-1 26.90 25.59 23.96 25.48
+ Iter-2 31.74 29.53 26.41 29.23
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Figure 8: Visual illustration of OOD performance on a challenging Rain100L + Gaussian Noise
(o = 50) example. From left to right: Degraded Input, PromptIR, AdalR, SIPL (Initial), SIPL (Tter-1),
SIPL (Iter-2), and Ground Truth (GT). The iterative application of SIPL progressively enhances
image clarity, restores fine details, and reduces artifacts, significantly outperforming baseline methods

and demonstrating effective generalization to unseen composite degradations.

A.3 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION ANALYSIS

A critical attribute of advanced image restoration models is their capacity to generalize effectively to
previously unseen degradation types. This section investigates the OOD generalization capabilities of
our SIPL-enhanced framework, drawing comparisons with established methods like PromptIR and
AdalR. Our analysis specifically focuses on performance when encountering complex, composite
degradations not present during the training phase.

Performance on Unseen Composite Degradation (Rain100L + Noise): We evaluate models
originally trained on three distinct restoration tasks (deraining, dehazing, denoising individually)
on a challenging synthetic dataset: Rainl00L combined with varying levels of Gaussian noise
(o € {15,25,50}). This composite degradation scenario was deliberately excluded from the training
set to rigorously test OOD performance.

The quantitative results are presented in Table[I3] Baseline models, PromptIR and AdalR, achieve
average PSNR scores of 24.40 dB and 24.39 dB, respectively, on this unfamiliar task. Our PromptIR
+ SIPL model, in its initial single-pass inference (“PromptIR + SIPL (initial)”), yields a comparable
average PSNR of 24.46 dB. However, the transformative advantage of SIPL becomes strikingly
evident through its iterative self-improvement mechanism. With just one iteration (“+Iter 1), the
average PSNR significantly jumps to 25.48 dB. A second iteration (“+lter 2”) further elevates the
performance dramatically to an average PSNR of 29.23 dB. This represents a remarkable +4.77 dB
improvement over its initial state and far surpasses the static performance of the baseline models.
This progressive and substantial enhancement underscores the robust OOD generalization conferred
by SIPL, particularly its ability to iteratively refine results when faced with novel degradations.

The qualitative improvements are visualized in Figure [§] using an example from the Rain100L +
Noise (o = 50) set. While the input image exhibits significant degradation, and baseline methods like
PromptIR and AdalR offer limited restoration, our SIPL demonstrates clear visual enhancements. The
initial output (“SIPL-Init”) shows some improvement, but subsequent iterations (“SIPL-Iterl”, “SIPL-
Iter2”) progressively recover finer details, enhance sharpness, and reduce artifacts more effectively,
approaching the ground truth quality. This visual evidence corroborates the quantitative gains and
highlights the practical efficacy of iterative refinement in complex OOD scenarios.

Efficacy of Self-Improvement in OOD Contexts: The marked success of PromptIR + SIPL in
handling these unseen composite degradations, especially through iteration, is attributable to its core
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design featuring the Privileged Dictionary (PD) and the self-improvement learning strategy. Unlike
baseline models such as PromptIR and AdalR, which are not inherently designed to leverage their
own outputs for iterative refinement on OOD tasks without a guiding mechanism, SIPL excels in this
regard. Standard architectures, if naively iterated on OOD inputs, might see performance stagnate
or even degrade due to the accumulation of errors or model biases when processing unfamiliar data
distributions.

In stark contrast, SIPL’s PD, trained to distill essential characteristics of high-quality images, provides
robust guidance even when the pseudo-privileged information is derived from an imperfectly restored
OOD image. The iterative process allows the model to progressively correct errors and enhance
image quality by repeatedly consulting these learned priors. This capacity for effective self-correction
and refinement in the face of novel, complex degradations is a key differentiator of our approach.

This OOD analysis strongly suggests that our self-improved iteration paradigm offers a novel and
potent pathway for advancing all-in-one image restoration. Beyond striving for optimal performance
in a single forward pass, SIPL demonstrates the significant potential of empowering models to
adapt and improve their outputs dynamically at test time. This is particularly crucial for real-world
scenarios where diverse and unforeseen degradations are common, showcasing a promising direction
for developing more versatile and robust restoration solutions.

A.4 ANALYSIS OF EFFICIENCY AND PERFORMANCE TRADE-OFFS

A core aspect of the SIPL framework is its flexibility, offering different trade-offs between compu-
tational cost and restoration quality. In this section, we provide a comprehensive analysis of this
trade-off, first by dissecting the costs of SIPL’s components on a large-scale model (PromptIR), and
second, by comparing SIPL’s iterative refinement against the common strategy of brute-force model
scaling (on NAFNet).

Cost-Benefit Analysis on PromptIR. As summarized in Table[I4] our methodology provides a
spectrum of enhancements. The foundational Privilege Learning (PL), as a training-only strategy,
offers a zero-cost inference boost, improving the PromptIR baseline by +0.9 dB on the five-task
benchmark without any additional parameters or FLOPs. Building on this, our full SIPL framework
in a single-pass configuration (Iter-0) adds a marginal cost (3M parameters and 20G FLOPs) for a
further performance increase to 30.17 dB. This demonstrates the high efficiency of the Proxy Fusion
module in retaining and applying privileged knowledge.

The full potential of SIPL is unlocked via iterative refinement (Iter-1), which, while increasing the
computational load to 434G FLOPs, delivers the highest performance at 30.53 dB. We acknowledge
this increased cost. However, this configuration represents a valuable trade-off, providing a power-
ful mechanism for tackling the most challenging restoration scenarios (e.g., composite and OOD
degradations) where single-pass models often fall short.

Table 14: Comparison of model parameters and computational complexity for the PromptIR backbone
on the five-task benchmark. FLOPs are calculated for a 256 x 256 input.

Method Parameters FLOPs Avg. PSNR (dB)
AirNet|Li et al.|(2022) IM 301G 25.44
Transweather|Valanarasu et al.|(2022) 21.5M 115.2G 25.22
PromptIR |Potlapalli et al.|(2023) 36M 173G 29.15
AdalR |Cui et al.|(2025) 29M 162G 30.20
PromptIR + PL 36M 173G 30.05
PromptIR + SIPL (Iter-0) 39M 193G 30.17
PromptIR + SIPL (Iter-1) 39M 434G 30.53

SIPL as an Efficient Alternative to Model Scaling. To further contextualize SIPL’s efficiency,
we investigate a crucial question: is it better to apply SIPL to a smaller model or to simply train a
larger one (such as NAFNet-32+SIPL vs NAFNet-64)? To answer this, we compare the performance
and cost of applying SIPL to NAFNet-32 against a much larger NAFNet-64 baseline on the SIDD
denoising task.
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Table 15: Performance vs. FLOPs comparison on the SIDD benchmark. SIPL on a smaller model
(NAFNet-32) nearly matches the performance of a much larger model (NAFNet-64) with significantly
less computation.

Method PSNR (dB) on SIDD FLOPs
NAFNet-32 (baseline) 39.96 16.08 G
NAFNet-64 (larger model) 40.30 6328 G
NAFNet-32 + SIPL (Iter-0) 40.10 17.63 G
NAFNet-32 + SIPL (Iter-1) 40.19 4393 G

The results in Table|15|are compelling. NAFNet-32 + SIPL (Iter-1) achieves a PSNR of 40.19 dB,
closing nearly all of the performance gap to the much larger NAFNet-64 (40.30 dB). Critically,
it does so while requiring approximately 31% fewer FLOPs (43.93G vs. 63.28G). This analysis
compellingly demonstrates that SIPL is not merely an add-on for performance gain; it represents a
more computationally efficient strategy for achieving top-tier results than simply scaling up a model’s
architecture. It validates that intelligently distilling and reusing privileged priors provides a more
robust and efficient path to improvement.

Concluding Remarks. In summary, our efficiency analysis positions SIPL as a highly practical and
versatile framework. It offers practitioners a flexible toolkit: from a zero-cost training enhancement
(PL) to a powerful iterative refinement that can serve as a more efficient alternative to training
ever-larger models. This makes SIPL a valuable contribution for developing high-performance image
restoration solutions within specific computational budgets.

A.5 QUANTITATIVE RESULTS OF MULTI-STEP REFINEMENT

This section provides a comprehensive analysis of the behavior of our Self-Improved Privilege Learn-
ing (SIPL) framework across multiple iterative refinement steps. While the main paper establishes
that a single iteration (¢ = 1) offers an optimal trade-off between performance and efficiency, a deeper
examination of the iterative process reveals crucial insights into the stability and robustness of our
proposed mechanism. We present detailed quantitative results for both the Three-Task and Five-Task
benchmarks over ten iterations, followed by an in-depth discussion.

Tables [16] and [T7] detail the performance progression from the first to the tenth refinement step
(t = 10). We also include the performance of a "GT-guided" oracle, where the ground-truth image is
used as privileged information during inference, representing a practical upper bound for our method.

Table 16: Detailed performance metrics (PSNR) across ten iterations on the Three-Task Benchmark.
The performance rapidly improves at £ = 1 and then converges to a stable plateau, demonstrating the
robustness of the self-refinement process. The average PSNR is shown with three decimal places to
highlight the subtle changes in later iterations.

Method Average Deraining Dehazing Denoising (0 = 15) Denoising (0 = 25) Denoising (0 = 50)
PromptIR (Baseline) 32.060 36.37 30.58 33.98 31.31 28.06
+SIPL (Iter-1) 32.669 38.431 31.092 34.119 31.481 28.220
+SIPL (Iter-2) 32.670 38.428 31.095 34.122 31.482 28.225
+SIPL (Iter-3) 32.673 38.432 31.096 34.123 31.484 28.228
+SIPL (Iter-4) 32.673 38.433 31.098 34.122 31.483 28.230
+SIPL (Iter-5) 32.673 38.432 31.101 34.121 31.482 28.229
+SIPL (Iter-6) 32.671 38.431 31.097 34.120 31.481 28.227
+SIPL (Iter-7) 32.670 38.430 31.096 34.120 31.480 28.226
+SIPL (Iter-8) 32.669 38.429 31.094 34.119 31.480 28.225
+SIPL (Iter-9) 32.669 38.428 31.093 34.119 31.479 28.224
+SIPL (Iter-10) 32.669 38.428 31.094 34.118 31.480 28.224
with GT (Upper Bound)  33.099 38.792 31.551 34.615 31.838 28.701
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Table 17: Detailed performance metrics (PSNR) across ten iterations on the Five-Task Benchmark.
Similar to the three-task setting, the most significant gain is achieved in the first step, followed by
stable convergence.

Method Average Deraining Dehazing Denoising Deblurring Low-Light
PromptIR (Baseline) 29.15 36.37 26.54 31.47 28.71 22.68
+SIPL (Iter-1) 30.53 38.09 30.51 31.45 29.35 23.23
+SIPL (Iter-2) 30.58 38.22 30.52 31.50 29.39 23.26
+SIPL (Iter-3) 30.58 38.24 30.52 31.53 29.37 23.26
+SIPL (Tter-4) 30.60 38.38 30.53 31.50 29.37 23.21
+SIPL (Iter-5) 30.58 38.28 30.53 31.48 29.34 23.28
+SIPL (Iter-6) 30.55 38.10 30.54 31.46 29.35 23.24
+SIPL (Iter-7) 30.53 38.08 30.53 31.48 29.34 23.24
+SIPL (Tter-8) 30.54 38.15 30.52 31.47 29.33 23.23
+SIPL (Iter-9) 30.52 38.07 30.51 31.44 29.35 23.22
+SIPL (Iter-10) 30.53 38.09 30.52 31.45 29.35 23.22
with GT (Upper Bound)  30.82 38.40 30.60 31.54 29.43 24.11

Rapid Initial Improvement and Graceful Convergence A consistent pattern emerges from both
benchmarks: the vast majority of the performance improvement is achieved within the very first
iteration (¢ = 1). On the Five-Task benchmark, this initial step accounts for a +1.38 dB PSNR gain,
which is over 95% of the total improvement observed towards the peak performance at ¢ = 4 (+1.45
dB). This indicates that our Proxy Fusion mechanism is highly effective at providing a strong initial
correction signal.

Beyond the first step, the performance exhibits graceful convergence, quickly settling onto a stable
plateau. The fluctuations in subsequent iterations are minimal (e.g., within +0.004 dB on the
Three-Task average PSNR after ¢ = 2). This is a critical finding. As demonstrated in our main
paper’s ablation study, a naive iterative loop (feeding the output pixels back as input) leads to
catastrophic performance degradation due to the amplification of artifacts from out-of-distribution
inputs. The stability of SIPL empirically proves that our feature-level refinement, guided by the
Privileged Dictionary (PD), is a fundamentally different and robust process. The PD acts as a constant,
degradation-agnostic anchor, ensuring the iterative process does not diverge but instead converges
towards the learned manifold of high-quality images.

Understanding Performance Saturation and the Role of Pseudo-PI The performance saturation
observed in later iterations is an expected and desirable behavior. Our iterative process relies on the
model’s own output as pseudo-privileged information (pseudo-PI). While this output is significantly
cleaner than the original degraded input, it is still imperfect. The model iteratively refines its output
until the pseudo-PI is no longer informative enough to elicit further significant improvements from the
PD. The remaining performance gap between the saturated performance (e.g., 30.60 dB on Five-Task)
and the GT-guided upper bound (30.82 dB) quantifies the inherent limitation of using a pseudo-guide
instead of a perfect one. This gap highlights a potential avenue for future research in improving the
fidelity of the pseudo-PI.

Justification for Single-Step Refinement in Main Experiments This detailed analysis provides
a strong empirical foundation for our choice of a single refinement step (¢ = 1) as the default
configuration in the main paper. This single step captures the most substantial portion of the
performance gain while being computationally efficient (requiring only two forward passes). While
further iterations can yield marginal improvements, the diminishing returns suggest that a single,
powerful refinement step offers the most practical and compelling trade-off between restoration
quality and inference latency.
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A.6 ETHICS STATEMENT

This work is in full compliance with the ICLR Code of Ethics. Our research proposes a foundational
algorithm for low-level image enhancement, aiming to contribute to the scientific community by
providing a more effective and efficient solution.

We uphold the principles of scientific excellence and transparency. All datasets utilized in our
experiments are publicly available and open-source, and we provide a detailed description of our
methodology and experimental setup to ensure reproducibility. As a computer vision algorithm, our
work does not directly involve personal data or raise immediate concerns regarding privacy or societal
fairness. We have, however, transparently discussed the potential limitations of our method in Section
4.3 of this paper. While we have not identified direct negative societal impacts, we acknowledge
that as a foundational technology, its subsequent applications should be developed and deployed
responsibly by others. We declare no competing interests in this work.

A.7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide comprehensive documentation of our
methodology, experimental setup, and resources. The complete source code, including scripts to re-
produce all experiments and results presented in this paper, is available in the supplementary materials.
A detailed description of our proposed model and algorithm is provided in Section 3 of the main paper.
Further implementation details, including all hyperparameter settings, library dependencies, and the
computational environment used for our experiments, are thoroughly documented in Appendix.

A.8 THE USE OF LARGE LANGUAGE MODELS

The authors affirm that Large Language Models (LLMs) were not used for the core scientific
contributions of this work. Specifically, LLMs were not utilized in the ideation phase, for the
development of the proposed methodology, in the design or execution of experiments, or for the
analysis of results. The conclusions presented in this paper were drawn entirely by the authors.

Following the completion of the main manuscript, an LLM-based tool was used as a general-purpose
writing assistant. Its role was strictly limited to performing grammar checks and providing suggestions
for improving the clarity and flow of sentences to enhance readability. The scientific content and
integrity of the paper were not influenced by the use of the LLM.
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