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ABSTRACT

Universal domain adaptation aims to align the classes and reduce the feature
gap between the same category of the source and target domains. The target
private category is set as the unknown class during the adaptation process, as it
is not included in the source domain. However, most existing methods overlook
the intra-class structure within a category, especially in cases where there exists
significant concept shift between the samples belonging to the same category.
When samples with large concept shifts are forced to be pushed together, it may
negatively affect the adaptation performance. Moreover, from the interpretability
aspect, it is unreasonable to align visual features with significant differences, such
as fighter jets and civil aircraft, into the same category. Unfortunately, due to
such semantic ambiguity and annotation cost, categories are not always classified
in detail, making it difficult for the model to perform precise adaptation. To
address these issues, we propose a novel Memory-Assisted Sub-Prototype Mining
(MemSPM) method that can learn the differences between samples belonging to
the same category and mine sub-classes when there exists significant concept shift
between them. By doing so, our model learns a more reasonable feature space that
enhances the transferability and reflects the inherent differences among samples
annotated as the same category. We evaluate the effectiveness of our MemSPM
method over multiple scenarios, including UniDA, OSDA, and PDA. Our method
achieves state-of-the-art performance on four benchmarks in most cases.

1 INTRODUCTION

Unsupervised Domain Adaptation (UDA) (Ganin and Lempitsky, 2015; Kang et al., 2019; Saito et al.,
2018; Shu et al., 2018; Chen et al., 2016; Hsu et al., 2015; Kalluri et al., 2022) enables models trained
on one dataset to be applied to related but different domains. Traditional UDA assumes a shared
label space, limiting its applicability in diverse target distributions. Universal Domain Adaptation
(UniDA) addresses these limitations by allowing the target domain to have a distinct label set. UniDA
flexibly classifies target samples belonging to shared classes in the source label set, treating others
as "unknown." This approach, not relying on prior knowledge about target label sets, broadens the
adaptability of domain-invariant feature learning across diverse domains.

Despite being widely explored, most existing universal domain adaptation methods (Li et al., 2021;
You et al., 2019; Saito and Saenko, 2021; Saito et al., 2020; Chang et al., 2022; Qu et al., 2023;
Chen et al., 2022; Liang et al., 2021) overlook the internal structure intrinsically presented within
each image category. These methods aim to align the common classes between the source and target
domains for adaptation but usually train a model to learn the class "prototype" representing each
annotated category. This is particularly controversial when significant concept shifts exist between
samples belonging to the same category. These differences can lead to sub-optimal feature learning
and adaptation if the intra-class structure is neglected during training. Since this type of semantic
ambiguity without fine-grained category labels occurs in almost all of the DA benchmarks, all the
methods will encounter this issue.
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Figure 1: Illustration of our motivation. (a) Examples of concept shift and intra-class diversity
in DA benchmarks. For the class of alarm clocks, we find that digital clocks, pointer clocks, and
alarm bells should be set in different sub-classes. For the class of airplane, we find that images
containing more than one plane, single jetliner, and turboprop aircraft should be differently treated for
adaptation. (b) Previous methods utilize one-hot labels to guide classifying without considering the
intra-class distinction. Consequently, the model forces all samples from the same class to converge
towards a single center, disregarding the diversity in the class. Our method clusters samples with
large intra-class differences into separate sub-classes, providing a more accurate representation. (c)
During domain adaptation by our design, the samples in the target domain can also be aligned near
the sub-class centers with similar features rather than just the class centers determined by labels.

In this paper, our objective is to propose a method that learns detailed intra-class distinctions and
extracts ’sub-prototypes’ to enhance alignment and adaptation. These sub-prototypes represent further
subdivisions within each category-level prototype, corresponding to the ’sub-classes’ of the annotated
categories. Our approach revolves around employing a learnable memory structure to derive sub-
prototypes for their respective sub-classes. This can optimize the construction and refinement of the
feature space, bolstering the classifier’s ability to distinguish class-wise relationships and improve the
model’s transferability across domains. As illustrated in Figure 1, the samples that are annotated as
the same category often exhibit significant intra-class differences. However, previous work mainly
forced them to align together for adaptation. Therefore, these methods are more likely to classify
unknown classes into known classes incorrectly. Moreover, features of different sub-classes still have
gaps in the feature space, making it unreasonable to align samples from distinct sub-classes, both
from human perspectives and in the feature space. Aligning target domain samples at the sub-class
level with source domain samples mitigates the drawback of aligning significantly different samples,
making adaptation more reasonable.

Our proposed approach, named memory-assisted sub-prototype mining (MemSPM), is inspired by
the memory mechanism works (Gong et al., 2019; Chen et al., 2018; Sukhbaatar et al., 2015; Rae
et al., 2016). In our approach, the memory generates sub-prototypes that embody sub-classes learned
from the source domain. During testing of the target samples, the encoder produces embedding that is
compared to source domain sub-prototypes learned in the memory. Subsequently, an embedding for
the query sample is generated through weighted sub-prototype sampling in the memory. This results
in reduced domain shift before the embedding is passed to the classifier. Our proposal of mining
sub-prototypes, which are learned from the source domain memory, improves the universal domain
adaptation performance by promoting more refined visual concept alignment.

MemSPM approach has been evaluated on four benchmark datasets (Office-31 (Saenko et al., 2010),
Office-Home (Venkateswara et al., 2017), VisDA (Peng et al., 2017), and Domain-Net (Peng et al.,
2019)), under various category shift scenarios, including PDA, OSDA, and UniDA. Our MemSPM
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method achieves state-of-the-art performance in most cases. Moreover, we designed a visualization
module for the sub-prototype learned by our memory to demonstrate the interpretability of MemSPM.
Our contributions can be highlighted as follows:

• We study UniDA problem from a new aspect, focusing on the negative impacts of ignoring
intra-class structures within the same category when using one-hot labels.

• We propose Memory-Assisted Sub-Prototype Mining(MemSPM), which explores the mem-
ory mechanism to learn sub-prototypes for improving the model’s adaption performance
and interpretability. Meanwhile, visualizations reveal the sub-prototypes stored in memory,
which demonstrate the interpretability of the MemSPM approach.

• Extensive experiments on four benchmarks verify the superior performance of our proposed
MemSPM compared with previous works.

2 RELATED WORK

Universal Domain Adaptation (UniDA). You et al. (2019) proposed Universal Adaptation Network
(UAN) deal with the UniDA setting that the label set of the target domain is unknown. Li et al.
(2021) proposed Domain Consensus Clustering to differentiate the private classes rather than treat the
unknown classes as one class. Saito and Saenko (2021) suggested that using the minimum inter-class
distance in the source domain as a threshold can be an effective approach for distinguishing between
“known” and “unknown” samples in the target domain. However, most existing methods (Li et al.,
2021; You et al., 2019; Saito and Saenko, 2021; Saito et al., 2020; Chang et al., 2022; Qu et al., 2023;
Chen et al., 2022; Liang et al., 2021; Liu et al., 2023; Zhou et al., 2022) overlook the intra-class
distinction within the same category, especially there exists significant concept shift in same category.

Concept of Prototypes. In prior research (Kundu et al., 2022; Liu et al., 2022), prototypes have been
discussed, but they differ from our MemSPM. First, in Kundu et al. (2022), subsidiary prototypes lack
complete semantic knowledge and cannot address concept shifts within categories. In contrast, our
sub-prototype can represent a sub-class within a category. Second, the purpose of Liu et al. (2022) is
distinct from MemSPM. They aim to differentiate unknown classes. In contrast, MemSPM identifies
sub-classes within a category. More details are in Appendix C.

3 PROPOSED METHODS

3.1 PRELIMINARIES

In unsupervised domain adaptation, we are provided with labeled source samples Ds = {xs
i , y

s
i )}n

s

i=1

and unlabeled target samples Dt = {(xt
i)}n

t

i=1. As the label set for each domain in UniDA setting
may not be identical, we use Cs and Ct to represent label sets for the two domains, respectively.
Then, we denote C = Cs ∩ Ct as the common label set. Ĉs, Ĉt are denoted as the private label sets
of the source domain and target domain, respectively. We aim to train a model on Ds and Dt to
classify target samples into |C|+ 1 classes, where private samples are treated as unknown classes.

Our method aims to address the issue of intra-class concept shift that often exists within the labeled
categories in most datasets, which is overlooked by previous methods. Our method enables the
model to learn an adaptive feature space that better aligns fine-grained sub-class concepts, taking
into account the diversity present within each category. Let X denote the input query, Z denote the
embedding extracted by the encoder, L denote the data labels, Ẑ denotes the embedding obtained
from the memory, X̂ denote the visualization of the memory, L̂ denotes the prediction of the input
query, and the K denotes the top-K relevant sub-prototypes, respectively. The overall pipeline is
presented in Figure 2. More details will be described in the following sub-sections.

3.2 INPUT-ORIENTED EMBEDDING VS. TASK-ORIENTED EMBEDDING

Typically, the image feature extracted by a visual encoder is directly used for learning downstream
tasks. We call this kind of feature input-oriented embedding. However, it heavily relies on the original
image content. Since different samples of the same category always vary significantly in their visual
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Figure 2: Our model first utilizes a fixed pre-trained model as the encoder to extract input-oriented
embedding given an input sample. The extracted input-oriented embedding is then compared with
sub-prototypes learned in memory to find the closest K. These K are then weighted-averaged into a
task-oriented embedding to represent the input, and used for learning downstream tasks. During the
UniDA process, we adopt the cycle-consistent matching method on the task-oriented embedding Ẑ
generated from the memory. Moreover, a decoder is designed to reconstruct the image, allowing for
visualizing the sub-prototypes in memory and verifying the effectiveness of sub-class learning.

features, categorization based on the input-oriented embedding is sometimes unattainable. In our
pipeline, we simply adopt a CLIP-based (Radford et al., 2021) pre-trained visual encoder to extract
the input-oriented embeddings, which is not directly used for learning our downstream task.

In MemSPM, we propose to generate task-oriented embedding, which is obtained by serving input-
oriented embedding as a query to retrieve the sub-prototypes from our memory unit. We define
ffixed
encode(·) : X → Z to represent the fixed pre-trained encoder and fUniDA

class (·) : Ẑ → L̂ to represent
the UniDA classifier. The input-oriented embedding Z is used to retrieve the relevant sub-prototypes
from the memory. The task-oriented embedding Ẑ is obtained using the retrieved sub-prototypes
for classification tasks. In conventional ways, Ẑ = Z, which means Ẑ is obtained directly from Z.
Our method obtains Ẑ by retrieving the sub-prototypes from the memory, which differentiates Ẑ
from Z and reduces the domain-specific information from the target domain during testing phase.
Therefore, the task-oriented information retrieved from memory will mainly have features from the
source domain. Then, classifier can effectively classify, similar to how it works in source domain.

3.3 MEMORY-ASSISTED SUB-PROTOTYPE MINING

The memory module proposed in MemSPM consists of two key components: a memory unit
responsible for learning sub-prototypes, and an attention-based addressing (Graves et al., 2014)
operator to obtain better task-oriented representation Ẑ for the query, which is more domain-invariant.

3.3.1 MEMORY STRUCTURE WITH PARTITIONED SUB-PROTOTYPE

The memory structure in MemSPM is represented as a matrix denoted by M ∈ RN×S×D, where N
indicates the number of memory items stored, S refers to the number of sub-prototypes partitioned
within each memory item, and D represents the dimension of each sub-prototype. The memory
structure has learnable parameters and we use the uniform distribution to initialize memory items.
For convenience, we assume D is the same to the dimension of Z ∈ RC ( RD=RC). Let the vector
mi,j , ∀i ∈ [N ] denote the i-th row of M , where [N ] denotes the set of integers from 1 to N , ∀j ∈ [S]
denote the j-th sub-prototype of M items, where [S] denotes the set of integers from 1 to S. Each
mi denotes a memory item. Given a embedding Z ∈ RD, the memory module obtains Ẑ through a
soft addressing vector W ∈ R1×D as follows:

Ẑsn = W ·M = Σdwd ·mnsd (Einstein summation), (1)

wi,j=si = argmaxj(wi,j), (2)
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where W is a vector with non-negative entries that indicate the maximum attention weight of each
item’s sub-prototype, si denotes the index of the sub-prototype in the i-th item, and wi,j=si denotes
the i, j = si-th entry of W . The hyperparameter N determines the maximum capacity for memory
items and the hyperparameter S defines the number of sub-prototypes in each memory item. The
effect of different settings of hyper-parameters is evaluated in §4.

3.3.2 SUB-PROTOTYPE ADDRESSING AND RETRIEVING

In MemSPM, the memory M is designed to learn the sub-prototypes to represent the input-oriented
embedding Z. We define the memory as a content addressable memory (Gong et al., 2019; Chen et al.,
2018; Sukhbaatar et al., 2015; Rae et al., 2016) that allows for direct referencing of the content of the
memory being matched. The sub-prototype is retrieved by attention weights W which are computed
based on the similarity between the sub-prototypes in the memory items and the input-oriented
embedding Z. To calculate the weight wi,j , we use softmax operation:

wi,j =
exp(d(z,mi,j))

ΣN
n=1Σ

S
s=1 exp(d(z,mn,s))

, (3)

where d(·, ·) denotes cosine similarity measurement. As indicated by Eq. 1 and 3, the memory
module retrieves the sub-prototype that is most similar to Z from each memory item in order to obtain
the new representation embedding Ẑ. As a consequence of utilizing the adaptive threshold addressing
technique(Section 3.3.3), only the top-K can be utilized to obtain a task-oriented embedding Ẑ, that
serves to represent the encoded embedding Z.

3.3.3 ADAPTIVE THRESHOLD TECHNIQUE FOR MORE EFFICIENT MEMORY

Limiting the number of sub-prototypes retrieved can enhance memory utilization and avoid negative
impacts on unrelated sub-prototypes during model parameter updates. Despite the natural reduction
in the number of selected memory items, the attention-based addressing mechanism may still lead to
combining small attention-weight items into the output embedding Ẑ, which has negative impact on
the classifier and sub-prototypes in memory bank. Therefore, it is necessary to impose a mandatory
quantity limit on the amount of the relevant sub-prototypes retrieved. To address this issue, we apply
adaptive threshold operation to restrict the number of sub-prototypes retrieved in the forward process.

ŵi,j=si =

{
wi,j=si , wi,j=si > λ

0, other
(4)

where ŵi,j=si denotes the i, j = si-th entry of ŵ, the λ denotes the adaptive threshold:

λ = argmin(topk(wi)). (5)

Directly implementing backward for the discontinuous function in Eq. 4 is challenging. We utilize
method (Gong et al., 2019) which rewrites operation using continuous ReLU activation function as:

ŵi,j=si =
max(wi,j=si − λ, 0) · wi,j=si

|wi,j=si − λ|+ ϵ
, (6)

where max(·, 0) is commonly referred to as the ReLU activation function, and ϵ is a small positive
scalar. The prototype Ẑ will be obtained by Ẑ = Ŵ · M . The adaptive threshold addressing
encourages model to represent embedding Z using fewer but more relevant sub-prototypes, leading
to learning more effective features in memory and reducing the impact on irrelevant sub-prototypes.

3.4 VISUALIZATION AND INTERPRETABILITY

We denote funfixed
decode (·) : Ẑ → X̂ to represent the decoder. The decoder is trained to visualize

what has been learned in the memory by taking the retrieved sub-prototype as input. From an
interpretability perspective, each encoded embedding Z calculates the cosine similarity to find the
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top-K fitting sub-prototype representation for the given input-oriented embedding. Then, these
sub-prototypes are combined to represent the Z in Ẑ. The sub-prototype in this process can be
regarded as the visual description for the input embedding Z. In other words, the input image is
much like the sub-classes represented by these sub-prototypes. In this way, samples with significant
intra-class differences will be matched to different sub-prototypes, thereby distinguishing different
sub-classes. The use of a reconstruction auxiliary task can visualize the sub-prototypes in memory
to confirm whether our approach has learned intra-class differences for the annotated category. The
results of this visualization are demonstrated in Figure 3.

3.5 CYCLE-CONSISTENT ALIGNMENT AND ADAPTION

Once the sub-prototypes are mined through memory learning, the method of cycle-consistent match-
ing, inspired by DCC (Li et al., 2021), is employed to align the embedding Ẑ. The cycle-consistent
matching is preferred due to it can provide a better fit to the memory structure compared to other
UniDA methods. The other method, One-vs-All Network (OVANet), proposed by Saito et al. (Saito
and Saenko, 2021), needs to train the memory multiple times, which can lead to significant computa-
tional overhead. In brief, the Cycle-Consistent Alignment provides a solution by iteratively learning
a consensus set of clusters between the two domains. The consensus clusters are identified based on
the similarity of the prototypes, which is measured using a similarity metric. The similarity metric is
calculated on the feature representations of the prototypes. For unknown classes, we set the size N of
our memory during the initial phase to be larger than the number of possible sub-classes that may
be learned in the source domain. This size is a hyperparameter that is adjusted based on the dataset
size. Redundant sub-prototypes are invoked to represent the Ẑ, when encountering unknown classes,
allowing for an improved distance separation between unknown and known classes in feature space.

Training Objective. The adaptation loss in our training is similar to that of DCC, as LDA:

LDA = Lce + λ1Lcdd + λ2Lreg , (7)

where the Lce denotes the cross-entropy loss on source samples, Lcdd denotes the domain alignment
loss, and Lreg denotes the regularize (more details in Appendix E). For the auxiliary reconstruction
task, we add a mean-squared-error (MSE) loss function, denoted as Lrec:

L = LDA + λ3Lrec = Lce + λ1Lcdd + λ2Lreg + λ3Lrec. (8)

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We first conduct the experiments in the UniDA setting (You et al., 2019) where private classes exist
in both domains. Moreover, we also evaluate our approach on two other sub-cases, namely Open-Set
Domain Adaptation (OSDA) and Partial Domain Adaptation (PDA).

Datasets. Our experiments are conducted on four datasets: Office-31 (Saenko et al., 2010), which con-
tains 4652 images from three domains (DSLR, Amazon, and Webcam); OfficeHome (Venkateswara
et al., 2017), a more difficult dataset consisting of 15500 images across 65 categories and 4 domains
(Artistic images, Clip-Art images, Product images, and Real-World images); VisDA (Peng et al.,
2017), a large-scale dataset with a synthetic source domain of 15K images and a real-world target
domain of 5K images; and DomainNet (Peng et al., 2019), the largest domain adaptation dataset with
approximately 600,000 images. Similar to previous studies (Fu et al., 2020), we evaluate our model
on three subsets of DomainNet (Painting, Real, and Sketch). Table 3: The division on label set,

Common Class (C) / Source-Private
Class (Ĉs) / Target Private Class (Ĉt).

Dataset Class Split(C/Ĉs/Ĉt)
PDA OSDA UniDA

Office-31 10 / 21 / 0 10 / 0 / 11 10 / 10 / 11
OfficeHome 25 / 40 / 0 25 / 0 / 40 10 / 5 / 50

VisDA 6 / 6 / 0 6 / 0 / 6 6 / 3 / 3
DomainNet —— —— 150 / 50 / 145

As in previous work (Li et al., 2021; Saito et al., 2018; Busto
et al., 2018; Cao et al., 2018; You et al., 2019), we divide the
label set into three groups: common classes C, source-private
classes Ĉs, and target-private classes Ĉt. The separation of
classes for each of the four datasets is shown in Table 3 and
is determined according to alphabetical order.
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Table 1: H-score (%) comparison in UniDA scenario on DomainNet, VisDA and Office-31,some
results are cited from (Li et al., 2021; Qu et al., 2023)

Method Pretrain
DomainNet VisDA Office-31

P2R P2S R2P R2S S2P S2R Avg S2R A2D A2W D2A D2W W2A W2D Avg
UAN (You et al., 2019)

ImageNet

41.9 39.1 43.6 38.7 38.9 43.7 41.0 34.8 59.7 58.6 60.1 70.6 60.3 71.4 63.5
CMU (Fu et al., 2020) 50.8 45.1 52.2 45.6 44.8 51.0 48.3 32.9 68.1 67.3 71.4 79.3 72.2 80.4 73.1
DCC (Li et al., 2021) 56.9 43.7 50.3 43.3 44.9 56.2 49.2 43.0 88.5 78.5 70.2 79.3 75.9 88.6 80.2

OVANet (Saito and Saenko, 2021) 56.0 47.1 51.7 44.9 47.4 57.2 50.7 53.1 85.8 79.4 80.1 95.4 84.0 94.3 86.5
UMAD (Liang et al., 2021) 59.0 44.3 50.1 42.1 32.0 55.3 47.1 58.3 79.1 77.4 87.4 90.7 90.4 97.2 87.0
GATE (Chen et al., 2022) 57.4 48.7 52.8 47.6 49.5 56.3 52.1 56.4 87.7 81.6 84.2 94.8 83.4 94.1 87.6

UniOT (Chang et al., 2022) 59.3 47.8 51.8 46.8 48.3 58.3 52.0 57.3 83.7 85.3 71.4 91.2 70.9 90.84 82.2
GLC (Qu et al., 2023) 63.3 50.5 54.9 50.9 49.6 61.3 55.1 73.1 81.5 84.5 89.8 90.4 88.4 92.3 87.8
GLC Qu et al. (2023)

CLIP
74.4 63.4 60.0 62.9 52.0 74.3 64.5 80.3 80.5 80.4 77.5 95.6 77.7 96.9 84.8

DCC (Li et al., 2021) 61.1 38.8 51.8 49.3 49.1 60.3 52.2 61.2 82.2 76.9 83.6 75.2 85.8 88.7 82.1
MemSPM+DCC 72.4 62.8 58.5 63.3 50.4 72.6 63.3 80.5 88.0 84.6 88.7 87.6 87.9 94.3 88.5

Table 2: H-score (%) comparison in UniDA scenario on Office-Home, some results are cited from
(Li et al., 2021; Qu et al., 2023)

Method Pretrain
Office-Home

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg
UAN (You et al., 2019)

ImageNet

51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
CMU (Fu et al., 2020) 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6
DCC (Li et al., 2021) 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2

OVANet (Saito and Saenko, 2021) 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8
UMAD (Liang et al., 2021) 61.1 76.3 82.7 70.7 67.7 75.7 64.4 55.7 76.3 73.2 60.4 77.2 70.1
GATE (Chen et al., 2022) 63.8 75.9 81.4 74.0 72.1 79.8 74.7 70.3 82.7 79.1 71.5 81.7 75.6

UniOT (Chang et al., 2022) 67.2 80.5 86.0 73.5 77.3 84.3 75.5 63.3 86.0 77.8 65.4 81.9 76.6
GLC (Qu et al., 2023) 64.3 78.2 89.8 63.1 81.7 89.1 77.6 54.2 88.9 80.7 54.2 85.9 75.6
GLC (Qu et al., 2023)

CLIP
79.4 88.9 90.8 76.3 84.7 89.0 71.5 72.9 85.7 78.2 79.4 90.0 82.6

DCC (Li et al., 2021) 62.6 88.7 87.4 63.3 68.5 79.3 67.9 63.8 82.4 70.7 69.8 87.5 74.4
MemSPM+DCC 78.1 90.3 90.7 81.9 90.5 88.3 79.2 77.4 87.8 78.8 76.2 91.6 84.2

Evaluation Metrics. We report the average results of three runs. For the PDA scenario, we calculate
the classification accuracy over all target samples. The usual metrics adopted to evaluate OSDA
are the average class accuracy over the known classes OS∗, and the accuracy of the unknown
class UNK. In the OSDA and UniDA scenarios, we consider the balance between “known” and
“unknown” categories and report the H-score (Bucci et al., 2020):

H-score = 2× OS∗ × UNK

OS∗ + UNK
, (9)

which is the harmonic mean of the accuracy of “known” and “unknown” samples.

Implementation Details. Our implementation is based on PyTorch (Paszke et al., 2019). We use
CLIP (Dosovitskiy et al., 2020) as the backbone pretrained by CLIP (Radford et al., 2021) for
the MemSPM is hard to train with a randomly initialized encoder. The classifier consists of two
fully-connected layers, which follow the previous design (Cao et al., 2018; You et al., 2019; Saito
et al., 2018; Fu et al., 2020; Li et al., 2021). The weights in the L are empirically set as λ1 = 0.1,
λ2 = 3 and λ3 = 0.5 following DCC (Li et al., 2021). For a fair comparison, we also adopt CLIP
as backbone for DCC (Li et al., 2021) and state-of-art method GLC (Qu et al., 2023). We use the
official code of DCC (Li et al., 2021) and GLC (Qu et al., 2023) (Links in Appendix D). Regarding
computational resources, MemSPM demonstrates efficient training on the Office-Home dataset using
a single RTX 3090. The entire training process is completed within one day.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

We compare our method with previous state-of-the-art algorithms in three sub-cases of unsupervised
domain adaptation, namely, object-specific domain adaptation (OSDA), partial domain adaptation
(PDA), and universal domain adaptation (UniDA).

Results on UniDA. In the most challenging setting, i.e. UniDA, our MemSPM approach achieves
state-of-the-art performance. Table 7 shows the results on DomainNet, VisDA, and Office-31, and
the result of Office-Home is summarized in Table 2. We mainly compare with GLC and DCC using
ViT-B/16 as the backbone. On Office-31, the MemSPM+DCC outperforms the previous state-of-art
method GLC by 3.7% and surpasses the DCC by 6.4%. On visda, our method surpasses the DCC
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Table 4: H-score (%) comparison in OSDA scenario on Office-Home, VisDA and Office-31, some
results are cited from (Li et al., 2021; Qu et al., 2023)

Method Pretrain
Office-Home Office-31 VisDA

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg Avg Avg
OSBP (Saito et al., 2018)

ImageNet

55.1 65.2 72.9 64.3 64.7 70.6 63.2 53.2 73.9 66.7 54.5 72.3 64.7 83.7 52.3
CMU (Fu et al., 2020) 55.0 57.0 59.0 59.3 58.2 60.6 59.2 51.3 61.2 61.9 53.5 55.3 57.6 65.2 54.2
DCC (Li et al., 2021) 56.1 67.5 66.7 49.6 66.5 64.0 55.8 53.0 70.5 61.6 57.2 71.9 61.7 72.7 59.6

OVANet (Saito and Saenko, 2021) 58.6 66.3 69.9 62.0 65.2 68.6 59.8 53.4 69.3 68.7 59.6 66.7 64.0 91.7 66.1
UMAD (Liang et al., 2021) 59.2 71.8 76.6 63.5 69.0 71.9 62.5 54.6 72.8 66.5 57.9 70.7 66.4 89.8 66.8
GATE (Chen et al., 2022) 63.8 70.5 75.8 66.4 67.9 71.7 67.3 61.5 76.0 70.4 61.8 75.1 69.0 89.5 70.8
ROS (Chang et al., 2022) 60.1 69.3 76.5 58.9 65.2 68.6 60.6 56.3 74.4 68.8 60.4 75.7 66.2 85.9 66.5

GLC (Qu et al., 2023) 65.3 74.2 79.0 60.4 71.6 74.7 63.7 63.2 75.8 67.1 64.3 77.8 69.8 89.0 72.5
GLC (Qu et al., 2023)

CLIP
68.4 81.7 84.5 76.0 82.4 83.8 69.9 59.6 84.6 73.3 66.8 83.9 76.2 90.1 81.6

DCC (Li et al., 2021) 62.9 73.3 78.4 49.8 69.2 75.0 59.3 61.5 80.9 68.1 62.5 80.0 68.4 81.9 66.2
MemSPM+DCC 69.7 83.2 85.2 72.0 79.2 81.2 72.3 66.7 85.2 72.7 66.0 84.5 76.5 95.6 79.7

Table 5: H-score (%) comparison in PDA scenario on Office-Home, VisDA and Office-31, some
results are cited from (Li et al., 2021; Qu et al., 2023)

Method Pretrain
Office-Home Office-31 VisDA

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg Avg Avg
ETN (Cao et al., 2019)

ImageNet

59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.4 96.7 59.8
BA3US (Liang et al., 2020) 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0 97.8 54.9

DCC (Li et al., 2021) 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9 93.3 72.4
OVANet (Saito and Saenko, 2021) 34.1 54.6 72.1 42.4 47.3 55.9 38.2 26.2 61.7 56.7 35.8 68.9 49.5 74.6 34.3

UMAD (Liang et al., 2021) 51.2 66.5 79.2 63.1 62.9 68.2 63.3 56.4 75.9 74.5 55.9 78.3 66.3 89.5 68.5
GATE (Chen et al., 2022) 55.8 75.9 85.3 73.6 70.2 83.0 72.1 59.5 84.7 79.6 63.9 83.8 74.0 93.7 75.6

GLC (Qu et al., 2023) 55.9 79.0 87.5 72.5 71.8 82.7 74.9 41.7 82.4 77.3 60.4 84.3 72.5 94.1 76.2
GLC (Qu et al., 2023)

CLIP
63.2 80.7 86.5 76.0 77.9 84.1 74.5 56.8 84.7 79.8 57.4 83.0 75.4 91.5 86.2

DCC (Li et al., 2021) 59.4 78.8 83.2 61.95 78.6 79.3 64.2 44.4 82.9 76.5 70.7 84.6 72.1 93.7 79.8
MemSPM+DCC 64.7 81.1 84.5 74.8 74.7 77.5 58.7 60.3 84.2 70.3 77.2 85.8 74.5 94.4 87.9

by a huge margin of 16.1%. Our method also surpasses the GLC by 9.9% and the DCC by 4.5% on
DomainNet. On the Office-Home, we surpass the DCC by 9.8% and the GLC by 3.7%.

Results on OSDA and PDA. In table 4 and table 5, we present the results on Office-Home, Office-
31, and VisDA under OSDA and PDA scenarios. In the OSDA scenario, MemSPM+DCC still
achieves state-of-the-art performance. Specifically, MemSPM+DCC obtains 95.6% H-score on
Office-31, with an improvement of 5.5% compared to GLC and 13.7% compared to DCC. In the
PDA scenario, MemSPM still achieves comparable performance compared to methods tailored for
PDA. The MemSPM+DCC surpasses the DCC by 8.1% on the VisDA.

4.3 ABLATION STUDIES

Visualization with Reconstruction and tSNE We first visualize what the memory learns from Office-
Home by sampling a single sub-prototype and adapting an auxiliary reconstruction task: X → X̂ . We
also provide the tSNE of the Ẑ which retrieves the most related sub-prototypes. The visualization is
shown in Figure 3. The tSNE visualization depicts the distribution of sub-classes within each category,
indicative of MemSPM’s successful mining of sub-prototypes. The reconstruction visualization shows
what has been learned by MemSPM, demonstrating its ability to capture intra-class diversity.

Memory-Assisted Sub-Prototype Mining (MemSPM) Impact. As shown in Tables 7, 2, 4,
and 5, MemSPM+DCC outperforms DCC across UniDA, OSDA, and PDA scenarios. MemSPM
significantly enhances DCC performance with CLIP as the backbone. CLIP is applied because
MemSPM’s memory module, with large latent space initialized by the random normal distribution,
faces challenges in retrieving diverse sub-prototypes early in training.

Sensitivity to Hyper-parameters. We conducted experiments on the VisDA dataset under the
UniDA setting to demonstrate the impact of hyperparameters S and N on the performance of our
method. The impact of S is illustrated in Figure 3. When S ≥ 20, the performance reaches a
comparable result; for the best performance on Office-Home, S ≥ 40 is achieved. At the same time,
the performance of the model is not sensitive to the value of N , when S = 30. For parameter K, we
conducted experiments with K = 1, signifying the selection of only the most relevant item. In the
visualization results, the visualizations of memory items displayed meaningless images. The value of
K is determined based on the attention values. During the design process, we observed that the fifth
attention value is nearly zero. Consequently, we employ a top-K approach (K = 5) to filter out other
noisy memory items. We will add these results analysis and visualizations to the revised manuscript.
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Figure 3: (a) The tSNE visualization shows the feature space of the sub-classes belonging to each
category, which demonstrates the MemSPM mining the sub-prototypes successfully. (b) The results
of different values of S and N . (c) The reconstruction visualization shows what has been learned in
the memory, which demonstrates the intra-class diversity has been learned by MemSPM. (d) The
visualization of varying K shows that insufficient values hinder the learning of appearance features.

Table 6: Ablation Studies
Method Pretrain Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg

CLIP-Baseline CLIP 64.6 84.3 78.1 73.7 88.2 86.5 68.1 68.7 89.6 68.5 69.4 86.6 77.2
DCC+MemSPM ImageNet 57.1 85.0 88.4 60.8 61.1 85.2 83.5 76.1 87.5 82.7 77.3 76.4 76.7
DCC+MemSPM CLIP 78.1 90.3 90.7 81.9 90.5 88.3 79.2 77.4 87.8 78.8 76.2 91.6 84.2
DCC+MemSPM None 50.7 78.4 85.6 50.2 60.7 67.1 58.2 44.1 77.9 67.1 50.3 81.7 64.33

Fixed Threshold=0.005 DCC+MemSPM CLIP 64.6 86.7 87.4 63.3 68.5 79.3 65.9 65.8 81.4 70.7 68.8 85.5 73.9
DCC+MemSPM Without Lcdd CLIP 75.9 75.4 86.4 80.1 71.6 87.5 70.1 87.1 88.7 74.2 73.5 88.8 79.8

Effect of CLIP-based Feature. As shown in Table 6, we have conducted experiments to compare
ViT-B/16 (pre-trained by CLIP), ViT-B/16 (pre-trained on ImageNet), and ViT-B/16 (without pre-
training). The performance of MemSPM on Officehome using ViT-B/16 (ImageNet) is 76.7%
(H-score), which is 7.5% lower than MemSPM using ViT-B/16 (pre-trained on CLIP). Additionally,
the ViT-B/16 (without pre-training) only achieves 64.3%, which is 19.9% lower than that using
ViT-B/16 (pre-trained on CLIP).

Effect of Adaptive Threshold As shown in Table 6, to demonstrate the effectiveness of the adaptive
threshold, we find a best-performed fixed threshold of 0.005 through experiments. It limits the
memory to learn sub-prototypes, which only achieved 73.9% (H-score) on Officehome.

Effect of Loss As shown in Table 6, we experimented with loss contributions. Lce for classification
is essential; removing Lcdd led to a 4.4% drop (79.8%). Optimal coefficients for Lce (λ1 = 0.1)
and Lcdd (λ2 = 3) achieves the best performance. The reconstruction loss (Lrec) slightly improved
performance, mainly for visualizing sub-prototypes.

5 CONCLUSION

In this paper, we propose the Memory-Assisted Sub-Prototype Mining (MemSPM) method, which can
learn the intra-class diversity by mining the sub-prototypes to represent the sub-classes. Compared
with previous methods, which overlook the intra-class structure by using the one-hot label, our Mem-
SPM can learn the class feature from a more subdivided sub-class perspective to improve adaptation
performance. At the same time, the visualization of the tSNE and reconstruction demonstrates the
sub-prototypes have been well learned as we expected. Our MemSPM method exhibits superior
performance in most cases compared with previous state-of-the-art methods on four benchmarks.
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Appendix
In the supplementary material, we provide additional visualization results, limitations, potential
negative societal impacts and compute requirements of the MemSPM. In the pursuit of reproducible
research, we will make the demo and network weights of our code available to the public.

This supplementary is organized as follows:

• Section A: Notations
• Section B: Limitation
• Section C: Comparison Between Related Prototype Concepts
• Section D: Implementation details

◦ Baseline details
◦ Compute requirements

• Section E: Discussion of Motivation
• Section F: Visualization Results
• Section G: Details of Domain Consensus Clustering
• Section H: Potential societal impact

A NOTATIONS

Table 7:
Symbol Description

Model

ffixed
encode(·) Fixed image encoder

funfixed
decode (·) Unfixed reconstruction decoder
fUniDA
class UniDA classifier
M Memory unit
W Weight vector

Space

Ds Labeled source dataset
Dt Unlabeled target dataset
C Common label set
Cs Source label set
Ct Target label set
Ĉs Source private label set
Ĉt Target private label set

Samples

X Input image
X̂ Reconstruction of image
Z Input-oriented embedding
Ẑ Task-oriented embedding
L Label of the image
L̂ Prediction of image

Measures
wi,j Attention weight measurement between Z and sub-prototype
d(·, ·) Cosine similarity measurement
ŵi,j Adaptive threshold operation on wi,j

Hyperparameters
N Number of memory items
S Number of sub-prototypes partitioned in each memory item
D Dimension of each sub-prototype
K Top-K relevant sub-prototypes of Z
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B LIMITATION

Training the memory unit of MemSPM is challenging when adopting the commonly used ResNet-50
as the backbone. This is due to the memory unit’s composition of massive randomly initialized
tensors. During the early stage of training, there is a lack of discriminability in the input-oriented
embedding, which leads to addressing only a few sub-prototypes. This decoupling of the memory unit
from the input data necessitates using a better pre-trained model (ViT-B/16 pre-trained on CLIP) and
fixing the encoder to reduce computation requirements. Additionally, the number of sub-prototypes
in one memory item might need to be adjusted for the diversity of the category.

C COMPARSION BETWEEN RELATED PROTOTYPE CONCEPTS

The related concept of the prototype is mentioned in some previous works Kundu et al. (2022); Liu
et al. (2022), there are clear differences between theirs and our MemSPM.

First, the meaning of prototype is different between Kundu et al. (2022) and ours. In the Kundu
et al. (2022), the subsidiary prototype is extracted from randomly cropped images, which means the
subsidiary prototypes only represent the low-level, morphological, and partial features of the image.
These subsidiary prototypes don’t have complete semantic knowledge, and the method can’t learn
the concept shift in the same category. Moreover, they still used the labeled category directly for
alignment and adaptation. These prototypes can’t represent some part of the samples in one category.

In contrast, the MemSPM allows memory items to extract complete semantic knowledge and maintain
domain-invariant knowledge. To accomplish this, we use input-oriented embedding, which involves
comparing the entire image feature with memory items. The memory can then sample a task-oriented
embedding that represents the semantic knowledge of the input-oriented embedding. Our approach is
designed to obtain a domain-invariant and semantic feature for categories with significant domain
shifts. As a result, each sub-prototype can represent a sub-class in one category.

Second, the purpose of Liu et al. (2022) is very different from our MemSPM. They aim to learn
differences among unknown classes, which is like the DCC. It still extracts features and aligns
the class across different domains directly based on one-hot labels, and is not concerned with the
concept shift and difference in one category. However, our method can mine the sub-classes in one
category when there exist significant concept shifts, reflecting the inherent differences among samples
annotated as the same category. This helps universal adaptation with a more fine-grained alignment
or to make significant decisions without human supervision.

D IMPLEMENTATION DETAILS

DCC. We use ViT-B/16 (Dosovitskiy et al., 2020) as the backbone. The classifier is made up of two
FC layers. We use Nesterov momentum SGD to optimize the model, which has a momentum of 0.9
and a weight decay of 5e-4. The learning rate decreases by a factor of (1 + α i

N )−β , where i and
N represent current and global iteration, respectively, and we set α = 10 and β = 0.75. We use a
batch size of 36 and the initial learning rate is set as 1e-4 for Office-31, and 1e-3 for Office-Home
and DomainNet. We use the settings detailed in Li et al. (2021). PyTorch Paszke et al. (2019) is used
for implementation.

GLC. We use ViT-B/16 (Dosovitskiy et al., 2020) as the backbone. The SGD optimizer with a
momentum of 0.9 is used during the target model adaptation phase of GLC (Qu et al., 2023). The
initial learning rate is set to 1e-3 for Office-Home and 1e-4 for both VisDA and DomainNet. The
hyperparameter ρ is fixed at 0.75 and |L| at 4 across all datasets, while η is set to 0.3 for VisDA and
1.5 for Office-Home and DomainNet, which corresponds to the settings detailed in (Qu et al., 2023).
PyTorch (Paszke et al., 2019) is used for implementation.

Existing code used.

• DCC (Li et al., 2021):
https://github.com/Solacex/Domain-Consensus-Clustering

• GLC (Qu et al., 2023):
https://github.com/ispc-lab/GLC
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• PyTorch (Paszke et al., 2019):
https://pytorch.org/

Existing datasets used.

• Office-31 (Saenko et al., 2010):
https://www.cc.gatech.edu/ấLijjudy/domainadapt

• Office-Home (Venkateswara et al., 2017):
https://www.hemanthdv.org/officeHomeDataset.html

• DomainNet (Peng et al., 2019):
http://ai.bu.edu/M3SDA

• VisDA (Peng et al., 2017):
http://ai.bu.edu/visda-2017/

Compute Requirements. For our experiments, we used a local desktop machine with an Intel Core
i5-12490f, a single Nvidia RTX-3090 GPU, and 32GB of RAM. When we adapt the batch-size used
in DCC (Li et al., 2021), our MemSPM only occupies 4GB of GPU memory during training as the
result of fixing the encoder.

E DETAILS OF DOMAIN CONSENSUS CLUSTERING

Domain Consensus Clustering (DCC). They leverage Contrastive Domain Discrepancy (CDD) to
facilitate the alignment over identified common samples in a class-aware style. They impose LCDD to
minimize the intra-class discrepancies and enlarge the inter-class gap. Consequently, the enhanced
discriminability, in turn, enables DCC to perform more accurate clustering. Details of CDD are pro-
vided in: https://openaccess.thecvf.com/content/CVPR2021/supplemental/
Li_Domain_Consensus_Clustering_CVPR_2021_supplemental.pdf.

F DISCUSSION OF MOTIVATION

Illustrated in Figure 1, our motivation arises from the recognition that samples annotated within the
same category often exhibit significant intra-class differences and concept shifts. In Figure 1 (a),
we visually depict this phenomenon, showcasing samples labeled as the class "alarm clock" further
divided into three distinct sub-classes: desktop alarm clock, digital alarm clock, and wall alarm clock.
Similarly, the class "airplane" encompasses multiple sub-classes, such as propeller planes and jet
aircraft. This demonstrates that the semantic ambiguity and annotation cost lead to the inefficiency
of class alignment. Previous methods often force samples with significant concept shifts to align
together during adaptation, increasing the likelihood of misclassifying unknown classes into known
classes. In contrast, our proposed method addresses this challenge by introducing sub-prototypes,
refining the features of known classes by separating them into sub-classes, and reducing the risk of
negative transfer.

G VISUALIZATION

We provide more results of visualization in Figure 4 and Figure 5 to reveal sub-prototypes stored in
the memory unit, which demonstrates that our MemSPM approach can learn the intra-class concept
shift.

H POTENTIAL SOCIETAL IMPACT

Our finding of the intra-class concept shift may influence future work on domain adaption or other
tasks. They can optimize the construction and refinement of the feature space by considering the
intra-class distinction. The MemSPM also provides a method that can be used to demonstrate the
interpretability of the model for further deployment. However, the utilization of the MemSPM method
for illegal purposes may be facilitated by its increased availability to organizations or individuals.
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Figure 4: The reconstruction visualization shows what has been learned in the memory, which
demonstrates the intra-class diversity has been learned by MemSPM.

Figure 5: The tSNE visualization shows the distribution of the retrieved sub-prototypes and
demonstrates that the sub-classes have been learned by MemSPM.

The MemSPM method may be susceptible to adversarial attacks as all contemporary deep learning
systems. Although we demonstrate increased performance and interpretability compared to the
state-of-the-art methods, negative transfer is still possible in extreme cases of domain shift or category
shift. Therefore, our technique should not be employed in critical applications or to make significant
decisions without human supervision.
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