
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUSI: SEMI-STRUCTURED PRUNING FOR LLMS VIA
DIFFERENTIABLE SUBSET SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth of large language models (LLMs) has driven the need for effi-
cient post-training optimization techniques for reducing computational and mem-
ory demands while preserving performance. Semi-structured pruning, which en-
forces hardware-compatible sparsity patterns like N:M sparsity, offers a balanced
approach for accelerating inference. In this study, we introduce SUSI1 (Semi-
structured prUning via Subset samplIng), a novel semi-structured pruning method
that leverages the weighted reservoir and differentiable subset sampling to learn
high-quality N:M sparsity masks with minimal computational cost. Compared to
other learnable mask methods (i.e., MaskLLM), which increase parameter com-
plexity, SUSI reduces trainable parameters by up to 1.5× for the 2:4 sparsity, en-
abling efficient deployment on hardware optimized for sparse computation. We
evaluate SUSI on three OPT model variants (125M, 350M, and 1.3B parameters)
using benchmarks including Wikitext-2 for perplexity and zero-shot NLP tasks
(e.g., ARC, HellaSwag, PIQA, RACE, SciQ). SUSI outperforms baselines such
as SparseGPT, Wanda, and MaskLLM in perplexity while maintaining competi-
tive zero-shot accuracy across various benchmarks. These results establish SUSI
as a robust and practical solution for compressing LLMs, facilitating efficient de-
ployment in resource-constrained environments.

1 INTRODUCTION

With the rapid development of large language models (LLMs), post-training techniques have
emerged as critical methodologies for optimizing model efficiency while preserving performance
(Wan et al., 2024). Among these techniques, two primary approaches to network compression have
gained prominence: model quantization (Egashira et al., 2024; Liu et al., 2025b) and network prun-
ing (Cheng et al., 2024; Muñoz et al., 2025). While model quantization focuses on representing
weights with reduced precision (e.g., 8-bit, 4-bit, or lower), pruning techniques aim to eliminate re-
dundant parameters to accelerate inference while preserving task performance (Williams & Aletras,
2024). This study focuses on pruning techniques to develop sparse LLMs, thereby reducing memory
footprint and enhancing inference speed.

Current post-training pruning methods can be categorized into three distinct approaches: (i) unstruc-
tured pruning, which removes individual weight parameters without regard to network architecture
(Sun et al., 2024); (ii) structured pruning, which eliminates entire network components such as neu-
rons, attention heads, or layers (Xia et al., 2024; Le et al., 2025); and (iii) Semi-structured pruning,
which combines the flexibility of unstructured methods with the regularity of structured patterns
(Fang et al., 2024; Huang et al., 2025). This research focuses on semi-structured pruning, as it
efficiently removes redundant weights while enforcing regular sparsity patterns that are hardware-
compatible and effective for acceleration. Specifically, semi-structured pruning strikes an optimal
balance by keeping regular sparsity patterns (e.g., N:M sparsity (Hubara et al., 2021)), which is
optimized for hardware. Modern approaches in this field are generally categorized into two types:
i) importance-based: with several typical methods such as SparseGPT (Frantar & Alistarh, 2023)
and Wanda (Sun et al., 2024) using a small dataset, typically a subset of the pretraining data, to ap-
proximate the knowledge encoded in the language model. They define an importance score for each
weight (or group of weights) based on this dataset, which guides the pruning process. Importance

1https://anonymous.4open.science/r/susi-2E2C
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Figure 1: Learnable semi-structured N:M sparsity methods: a) modeling the mask selection process
using a categorical distribution over feasible masks, and b) our proposed method by learning to
sample subsets without replacement of model parameters. The proposed method is more memory
efficient than previous works for most practical N:M sparsity patterns. The memory advantage
becomes more pronounced as M increases or when N is around M/2.

scores may be based on weight magnitude, gradients, or the Hessian matrix. However, these criteria
are often chosen heuristically, leading to potentially sub-optimal results. Additionally, the limited
dataset may not adequately capture the model’s rich knowledge; ii) learnable masks: focusing on
the direct optimization of pruning masks through a retraining process. Recently, MaskLLM (Fang
et al., 2024) proposed a novel method that models N:M sparsity patterns as learnable categorical dis-
tributions, employing Gumbel-Softmax sampling (Jang et al., 2017). This approach demonstrates
robust pruning performance and strong generalization across diverse tasks. However, it introduces
significant computational overhead due to an increased number of trainable parameters (Huang et al.,
2025). Specifically, for a model with W parameters under N:M sparsity, MaskLLM requires learn-
ing
(
M
N

)
×W

M parameters, which consistently equals or surpasses the original model parameter count,
as illustrated in Figure 1(a). For instance, with the commonly utilized 2:4 semi-structured sparsity
pattern, the number of parameters to be learned is 1.5 ×W . This substantial parameter overhead
poses considerable challenges during the training of large-scale language models.

To address this limitation, we propose an effective semi-structured pruning method, termed SUSI
(Semi-structured prUning via Subset samplIng). SUSI systematically selects N weights from
each group of M consecutive parameters, enabling the enforcement of N:M sparsity with minimal
degradation in model accuracy. The main idea is to utilize Weighted Reservoir Sampling (WRS)
(Efraimidis & Spirakis, 2006) as an efficient alternative for learning high-quality sparsity masks.
WRS enables selective sampling of mask configurations based on importance weights, reducing
computational overhead while maintaining the ability to identify effective N:M sparsity patterns.
The proposed lightweight pruning mask learning technique significantly reduces the number of train-
able parameters, thereby facilitating efficient deployment on hardware optimized for N:M sparsity,
as depicted in Figure 1(b).

2 PRELIMINARIES

2.1 WEIGHTED RESERVOIR SAMPLING

Weighted Reservoir Sampling (WRS) (Efraimidis & Spirakis, 2006) is an extension of the Reser-
voir Sampling class of algorithms (Vitter, 1985), which aims to sample K items from a set
of N . In WRS, each item is assigned a non-negative weight, and items with larger weights
compared to others are more likely to appear in the sampled subset. Given a population set
X = {x1, x2, . . . , xN} with corresponding weights w = [w1, w2, . . . , wN ], WRS produces an
ordered subset Y = {y1, y2, . . . , yK}, which is drawn from following distribution:

PWRS(Y|w) =
wy1

W
× wy2

W − wy1

× . . .× wyK

W −
∑K−1

j=1 wyj

(1)
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where W =
∑N

i=1 wi is the total weight and wyi
is the weight of the corresponding item yi. Sam-

pling from the above distribution resembles the sampling without replacement process, where the
probability of selecting a subset is proportional to the item weights.

2.2 GUMBEL-TOP-K TRICK

Gumbel-Max (Gumbel, 1954) is a monotonic transformation of the WRS technique, a reparam-
eterization trick to sample from a categorical distribution by perturbing the distribution’s log-
probabilities with Gumbel noise. Given a categorical distribution over N items {x1, . . . , xN} pa-
rameterized by N logit parameters ϕ = [ϕ1, . . . , ϕN ], the probability of an arbitrary item’s selection
is πi = exp(ϕi)/

∑N
j=1 exp(ϕj). The Gumbel-Max trick performs sampling from such a distribu-

tion by first generating random keys corresponding to each item via Gumbel perturbations:

κi = ϕi + gi, gi
i.i.d∼ Gumbel(0, 1) (2)

where gis are noise independently drawn from the Gumbel(0, 1) distribution. Finally, the output of
this sampling process is achieved by taking the item xj having the largest key κj . The index j is the
output of taking argmax over key values (j = argmaxi κi).

Gumbel-Top-K is a generalization of the Gumbel-Max trick, where instead of selecting the item
with the largest random key, the top-K items with the highest keys are selected (Xie & Ermon,
2019). This corresponds to sampling K items without replacement from a categorical distribution
over N items. By relaxing the argtopK operator using successive softmaxes (Plötz & Roth, 2018),
this sampling process becomes differentiable, thereby allowing for learning with backpropagation.

To sample a subset of K items with the Gumbel-Top-K trick, logits are first independently perturbed
with Gumbel noise to create random keys κi, similar to the Gumbel-Max trick. Sequentially, a
chain of softmax is applied to produce approximated one-hot representations of selected items. Let
α(k) = [α1, . . . , αN ] denote adjusted keys at the sampling step k. These adjusted keys are defined
recursively as follows:

α(1) := [κ1, . . . , κN ]; α(k) := α(k−1) + log(1− µ(k−1)) (3)

where µ(k−1) = [µ
(k−1)
1 , . . . , µ

(k−1)
N ] is the one-hot approximation indicating the item selected at

the previous sampling step. This representation is achieved by applying softmax over adjusted keys
at the sampling step k − 1 with a pre-defined temperature τ :

µ
(k−1)
i =

exp(α
(k−1)
i /τ)∑N

j=1 exp(α
(k−1)
j /τ)

(4)

After applying softmaxes K times, we attain an ordered subset of K approximated one-hot rep-
resenting selected items S = {µ(1), . . . ,µ(K)}. The sum of elements in this subset yields a soft
K-hot vector, and the mapping from the logits ϕi to this vector is differentiable, enabling usage of
gradient-based optimization methods.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

The problem of finding the optimal N:M sparsity can be formulated as selecting, for each group of M
consecutive parameters, a binary mask of length M with exactly N non-zero entries that minimizes
the loss on a calibration set. Let G denote the number of weight groups, W = {w1, . . . ,wG}
the corresponding weight groups, and M = {m1, . . . ,mG} the associated binary masks. The
optimization problem is then defined as follows:

M∗ = argmin
M

LCE(D;W ⊙M) (5)

where LCE is the cross-entropy loss for language modeling, D denotes the calibration set, and ⊙
represents the element-wise product between each weight group and its corresponding binary mask.

3
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Figure 2: Overview of the SUSI Framework for Semi-Structured Pruning via Differentiable Subset
Sampling, illustrating the training and inference phases.

However, such an optimization problem is NP-hard due to the vast search space, where there ex-
ists

(
M
N

)G
feasible solutions. In the context of Large Language Models, the number of weight

groups G is gargantuan, making this combinatorial optimization problem impractical to brute-force.
Therefore, in the following section, we reformulate the above problem as a stochastic variational
optimization variant to gain tractability and improve efficiency.

3.2 SUSI: SEMI-STRUCTURED PRUNING VIA DIFFERENTIABLE SUBSET SAMPLING

The overview of SUSI is illustrated in Figure 2. Accordingly, stochastic variational optimization
(Bird et al., 2018) is based on an observation that given an arbitrary distribution q(x) the expectation
of a function f(x) provides an upper bound on its minimum:

min
x

f(x) ≤ Eq(x)[f(x)] (6)

By treating pruning masks as random variables, the optimization problem in the Equation 5 can be
reframed as minimizing the variational upper bound of the objective with respect to the variational
distribution parameters. Formally, we seek to find:

Φ∗ = argmin
Φ

EP (M|Φ)[LCE(D;W ⊙M)] (7)

where Φ = {ϕ1, . . . ,ϕG} is a set of parameters, corresponding to variational distributions
P (m1|ϕ1), . . . , P (mG|ϕG), with joint distribution P (M|Φ) =

∏G
i=1 P (mi|ϕi). Through this

formulation as a stochastic variational optimization problem, the sampling of masks can be re-
parameterized and relaxed to be a differentiable function with respect to variational distributions’
parameters, making it possible to learn via gradient-based optimization.

3.2.1 VARIATIONAL DISTRIBUTION SELECTION

Since pruning masks are N -hot vectors of length M , each mask can take one of
(
M
N

)
possible

values. Modeling such a distribution over possible values requires
(
M
N

)
− 1 free parameters, which

grows combinatorially as M increases. To efficiently learn masks with a reasonable number of
parameters, we propose using the WRS distribution (Equation 1) over ordered subsets to model
mask distributions P (mi|ϕi). Let Si = {µ(1)

i , . . . ,µ
(N)
i } be a set of N one-hot vectors representing

selected weights within the i-th group, sampled from the WRS distribution using the Gumbel-Top-K
trick, the probability of a mask mi is then:

P (mi|ϕi) =
∑
Smi

PWRS(Smi | exp(ϕi)) (8)

where Smi denotes the set of elements whose sum equals m, where the N -hot mask mi can be
obtained by summing up µ

(j)
i s. Exactly computing this probability is expensive and unnecessary

since constructing mi ignores the order of items in the sampled subset, and the expected loss can

4
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be computed via Monte Carlo sampling. The original problem then turns into learning to select
important weights, with importance score exp(ϕij), in order to minimize the objective. Denoting
the WRS distribution of an arbitrary subset Si as PWRS(Si|ϕi) for brevity, the optimization problem
(Equation 7) is then reformulated as follows:

Φ∗ = argmin
Φ

EPWRS(S|Φ)[LCE(D;W ⊙M)] (9)

where S = {S1, . . . ,SG} is a collection of G subsets, generated from the joint distribution
PWRS(S|Φ) =

∏G
i=1 PWRS(Si|ϕi). Each N -hot pruning mask mi in the collection M is constructed

as mi =
∑

µ
(j)
i ∈Si

µ
(j)
i . Parameterizing masks as sums of subsets sampled from WRS-restricted

distributions yields the same expected loss as sampling masks from the exact distributions, as proved
in Theorem 1. Our approach reduces the parameter complexity by reformulating the N -hot mask
sampling process as a sequential sampling without replacement paradigm. Instead of maintaining a
full categorical distribution over

(
M
N

)
configurations, we model only a single categorical distribution

over every M model parameters, requiring exactly M parameters regardless of N . The proposed
method achieves a reduction in parameter complexity from O

((
M
N

))
to O(M), representing an

exponential improvement in memory efficiency.

3.2.2 MASK SELECTION RELAXATION

To make the objective differentiable with respect to variational distributions’ parameters, we relax
the sampling process using the Gumbel-Top-K trick. Given logits ϕi = [ϕi1, . . . , ϕiM ] forming
a categorical distribution over M consecutive model weights within the i-th group, the probability
of selecting the j-th weight is achieved via softmax: πij = exp(ϕij)/

∑M
k=1 exp(ϕik). To sample

a subset Si without replacement from this distribution, we first perturb logits with Gumbel noise
independently to attain random keys:

κij = ϕij + gij , gij
i.i.d∼ Gumbel(0, 1) (10)

We define the adjusted keys of the i-th group at sampling step k as α
(k)
i = [α

(k)
i1 , . . . , α

(k)
iM ], The

update rule follows the Gumbel-Top-K procedure, except that we incorporate a power term p > 1 to
amplify the impact of removing the selected item in the previous sampling step. This modification
improves stability during training. Formally:

α
(1)
i := [κi1, . . . , κiM ], α

(k)
i := α

(k−1)
i − | log(1− µ

(k−1)
i )|p (11)

Finally, an approximated relaxed one-hot vector µ(k)
i = [µ

(k)
i1 , . . . , µ

(k)
iM ] representing the selected

item at the k-th sampling step is achieved by taking softmax over adjusted keys with temperature τ :

µ
(k)
ij =

exp(α
(k)
ij /τ)∑M

k=1 exp(α
(k)
ik /τ)

(12)

After N sampling steps, a set of soft one-hot vectors representing selected weights is attained. By
summing up these vectors, a relaxation of the N -hot pruning mask can be constructed, enabling
gradient-based training.

3.2.3 TEMPERATURE ANNEALING

The temperature τ is mentioned as a hyperparameter controlling the hardness of one-hot approxima-
tions. Additionally, we define a hyperparameter λ, which regulates the degree of randomness in the
sampling process. Subsequently, the Gumbel-Top-K trick is applied to the scaled logits, denoted as
ϕi = ϕi/λ. In our experiments, we implement an annealing schedule for τ and λ to guide the mask
learning process, beginning with high randomness to promote solution exploration and converging
to a small set of optimal solutions by training’s end. We adopt a linear annealing schedule, where at
the t-th training step, the temperatures are defined as follows:

τt = τinit × (1− t

T
) + τend ×

t

T
; λt = λinit × (1− t

T
) + λend ×

t

T
(13)

5
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Table 1: Comparative evaluation of zero-shot accuracy across multiple benchmark datasets for vari-
ous pruning methods applied to OPT models of different sizes with 2:4 sparsity pattern. Bold values
denote the highest performance in each metric. The column ’W/U’ indicates whether weight updates
are applied during pruning.

Method W/U ARC-C ARC-E HellaS. PIQA RACE SciQ Average
Base Model: OPT-125M - 19.03 43.52 29.19 62.95 30.05 75.20 43.32
Magnitude ✗ 17.66 32.28 27.14 57.67 22.78 44.00 33.59
Wanda (Sun et al., 2024) ✗ 18.69 36.03 27.55 59.09 23.54 64.70 38.27
SparseGPT (Frantar & Alistarh, 2023) ✓ 19.71 38.09 27.60 59.74 25.55 69.00 39.95
MaskLLM (Fang et al., 2024) ✗ 18.34 39.73 27.50 61.26 26.79 70.30 40.65
SUSI (Ours) ✗ 19.02 40.19 27.33 61.97 28.04 69.80 41.06
Base Model: OPT-350M - 20.82 44.02 32.02 64.58 29.95 74.90 44.38
Magnitude ✗ 16.72 31.52 27.09 57.40 22.87 51.30 34.48
Wanda (Sun et al., 2024) ✗ 19.71 34.64 28.76 60.34 26.79 64.70 39.16
SparseGPT (Frantar & Alistarh, 2023) ✓ 18.52 34.89 28.43 59.58 26.89 66.60 39.15
MaskLLM (Fang et al., 2024) ✗ 18.26 37.71 27.52 61.48 26.99 66.60 39.76
SUSI (Ours) ✗ 18.17 38.42 27.85 61.15 27.85 66.20 39.94
Base Model: OPT-1.3B - 23.29 57.03 41.54 71.76 34.16 84.30 52.01
Magnitude ✗ 17.83 39.31 31.15 61.81 26.22 65.40 40.29
Wanda (Sun et al., 2024) ✗ 20.82 47.60 33.85 65.72 30.53 79.40 46.32
SparseGPT (Frantar & Alistarh, 2023) ✓ 21.93 45.62 34.19 63.98 32.06 78.90 46.11
MaskLLM (Fang et al., 2024) ✗ 19.53 47.39 33.29 66.76 31.87 76.40 45.87
SUSI (Ours) ✗ 21.67 47.68 33.50 66.70 32.15 77.20 46.48

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

The proposed method is evaluated on three OPT models (Zhang et al., 2022) of increasing sizes
(e.g., 125M, 350M, and 1.3B parameters) to assess its stability and scalability under semi-structured
pruning. All main experiments adopt a 2:4 sparsity pattern, compatible with NVIDIA Ampere
hardware. The detailed hyperparameters are listed in the Appendix A.3. Training runs for 2,000
steps with a batch size of 256 and a sequence length of 2048, processing 1B tokens in total. To
ensure robust generalization, training data is collected on 1B tokens sampled from the C4 corpus
(Raffel et al., 2020), a cleaned English dataset aligned with OPT’s pretraining data.

To assess the effectiveness of the proposed approach, four representative semi-structured pruning
methods are selected, covering a range of popular strategies from classical to recent advancements:
i) Magnitude is a simple, data-free method that removes parameters with the smallest absolute val-
ues. While this method is easy to implement, it often yields subpar results due to the limitations of
parameter sensitivity and model dynamics; ii) Wanda (Sun et al., 2024) combines parameter mag-
nitudes with activation statistics at each layer, achieving better performance than pure magnitude
pruning, especially at higher sparsity, while maintaining computational efficiency; iii) SparseGPT
(Frantar & Alistarh, 2023) incorporates activation outputs and Hessian information to estimate pa-
rameter importance, followed by parameter updates to reduce output error further. This method
yields high accuracy but is more computationally demanding; and iv) MaskLLM (Fang et al., 2024)
is quite similar to the proposed method in this study, by learning pruning masks with minimizing
calibration loss under an N:M sparsity constraint, modeled via a multinomial distribution. It delivers
strong performance across benchmarks but suffers from high computational cost.

4.2 MAIN RESULTS

Table 1 presents zero-shot accuracy results across various benchmark datasets. SUSI consistently
achieves the highest or near-highest average accuracy across all evaluated OPT models (41.06%
for OPT-125M, 39.94% for OPT-350M, and 46.48% for OPT-1.3B), outperforming baselines such
as Magnitude, Wanda, SparseGPT, and MaskLLM. Notably, SUSI exhibits a minimal performance
drop compared to unpruned models (e.g., 19.02% vs. 19.03% on ARC-C for OPT-125M), highlight-
ing its ability to preserve model quality through differentiable subset sampling. This advantage over
heuristic-based methods like Magnitude becomes more pronounced as model size increases (e.g.,

6
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46.48% for SUSI vs. 45.87% for MaskLLM on OPT-1.3B), highlighting its scalability. Additionally,
SUSI shows strong performance across diverse tasks (e.g., 27.85% on RACE for OPT-350M), effec-
tively balancing sparsity and accuracy while maintaining lower computational overhead compared
to MaskLLM. Table 2 reports the PPL performance on WikiText-2, highlighting the advantages of
the proposed method as follows:

(i) Effectiveness of Differentiable Subset Sampling: SUSI consistently outperforms other base-
lines across all model scales, suggesting that the proposed differentiable subset sampling mecha-
nism effectively learns performant sparsity patterns, better preserving model quality post-pruning.

Table 2: Perplexity scores on WikiText-2.

Method OPT-125M OPT-350M OPT-1.3B
w/o Pruning 31.95 25.42 16.41
Magnitude 407.66 655.87 245.75
Wanda 92.50 134.26 34.09
SparseGPT 72.80 61.23 29.27
MaskLLM 50.91 55.86 28.56
SUSI (Ours) 50.24 54.14 28.05

Furthermore, the small gap between
the perplexity of the pruned SUSI
models and the unpruned baseline in-
dicates that SUSI maintains compet-
itive performance even under aggres-
sive pruning settings.

(ii) Scalability across Model Sizes:
SUSI demonstrates consistent im-
provements across increasing model
scales, showing especially strong re-
sults for medium (OPT-350M) and
large (OPT-1.3B) models. This indi-
cates that the method generalizes well
and maintains scalability, which is often a limitation of recent pruning methods.

(iii) Robustness of Learnable Mask Approaches: While Traditional magnitude pruning performs
poorly (e.g., 655.87 PPL on OPT-350M), reaffirming that naive pruning strategies significantly de-
grade language modeling performance. The promising performance of SUSI and MaskLLM em-
phasizes the importance of structured and learnable pruning mechanisms.

4.3 DETAILED ANALYSIS

4.3.1 EFFICIENT TRAINING

Figure 3 presents a comparative analysis of the parameter efficiency and data efficiency achieved
by the proposed SUSI method under both 2:4 and 2:8 sparsity settings. Figure 3(a) reports the
number of trainable parameters across multiple OPT model sizes. Under the 2:4 pattern, SUSI con-
sistently requires about 1.5× fewer parameters than MaskLLM, effectively lowering optimization
costs. More importantly, the advantage of SUSI becomes even more evident in the 2:8 setting: while
MaskLLM requires up to 4.2B parameters for OPT-1.3B, SUSI reduces this to 1.2B, achieving a
3.5× reduction. Such parameter efficiency directly translates into substantial computational and
memory savings, which is critical for deployment in resource-constrained environments. Sequen-
tially, Figure 3(b) reports the perplexity on WikiText-2 as a function of the number of training tokens
for the OPT-350M model. Under the 2:4 pattern, SUSI consistently achieves lower perplexity than
MaskLLM across all token budgets, demonstrating superior data efficiency. In the 2:8 pattern, al-
though the number of trainable parameters is drastically reduced compared to 2:4 (Figure 3a), SUSI
maintains competitive perplexity with MaskLLM, reaching 144.9 at 1B tokens. These results high-
light the robustness of SUSI: it not only improves parameter efficiency but also sustains competitive
modeling performance under more aggressive sparsity constraints. The detailed performance of 2:8
sparsity patterns is shown in the Appendix A.7.

4.3.2 ABLATION STUDY

Figure 4 summarizes the ablation study on the proposed SUSI model, focusing on the contributions
of two critical design choices: (i) the power term p, which amplifies the effect of removing a selected
weight (Equation 11); and (ii) the temperature annealing schedule that gradually sharpens the sam-
pling distribution (Equation 13). Figure 4(a) illustrates the training loss trajectories under different
configurations. Without the power term (p = 1.0), convergence is noticeably slower and less stable,
with higher final loss compared to p = 3.0. Increasing p strengthens the penalization on selected
weights, which accelerates convergence and consistently lowers the final loss, suggesting that this

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Comparison of sparsity and perplexity performance: (a) Learnable parameter counts under
the 2:4 and 2:8 sparsity settings across multiple OPT model sizes; and (b) Perplexity versus number
of training tokens on Wikitext-2 for the OPT-350M model.
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Figure 4: Comparison of training dynamics and ablation results: (a) shows the training loss con-
vergence across different configurations (with/without p and annealing). (b) ablation study on OPT-
350M showing PPL (log-scale) and average accuracy.

mechanism facilitates escaping suboptimal mask distributions. On the other hand, removing the
annealing mechanism leads to rapid divergence, underscoring the necessity of temperature schedul-
ing for maintaining a stable optimization process. Figure 4(b) reports the downstream performance
on OPT-350M in terms of perplexity (log scale) and average zero-shot accuracy. As p increases
from 1.0 to 3.0, perplexity drops dramatically (from 998.33 to 28.05) and accuracy improves sig-
nificantly (from 33.82% to 39.94%), validating the importance of the power term for effective mask
learning. In contrast, disabling annealing results in infinite perplexity and a severe accuracy drop
(27.07%), highlighting that annealing is indispensable for stable training and generalization. The
results demonstrate that both components are synergistic: the power term enhances selection sharp-
ness, while annealing ensures convergence stability, which improves the performance.

4.3.3 ROBUSTNESS ANALYSIS

To further evaluate the stability and robustness of SUSI, we trained the variational mask parameters
using three distinct random seeds (42, 123, 1812) and measured the overlap of learned pruning masks
across key layers. Figure 5 reports the probability of mask overlap between runs for representative
modules such as self attn.q proj, self attn.k proj, and mlp.up proj. Accordingly, the learned pruning
masks show high overlap across seeds (e.g., 0.88 for q proj, 0.83 for k proj, 0.94 for mlp.up proj),
and downstream performance varies by less than 0.5%. These results confirm that SUSI consistently
converges to similar sparsity patterns with minimal variation across initializations, demonstrating
strong robustness and reproducibility.
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self_attn.q_proj
P(overlap)=0.88

seed=42 seed=123 seed=1812

self_attn.k_proj
P(overlap)=0.83

mlp.up_proj
P(overlap)=0.94

Figure 5: The learned masks from the query projection, key projection, and MLP up-projection in
the first transformer block exhibit high similarity across different random seeds.

4.4 RELATED WORKS

Pruning LLMs is a critical optimization technique that removes less significant or redundant param-
eters, such as weights or neurons, from the neural network architecture. This process reduces model
size, computational complexity, and memory requirements, thereby improving inference speed and
enabling deployment on resource-constrained devices. Pruning methods for LLMs are broadly cat-
egorized into structured, unstructured, and semi-structured approaches, each with distinct character-
istics and trade-offs (Cheng et al., 2024).

Structured pruning involves the elimination of entire architectural components, such as layers
or attention heads, to improve computational efficiency (Ashkboos et al., 2024; Xia et al., 2024;
An et al., 2024; Liu et al., 2025a; Le et al., 2025). This approach simplifies the model structure,
making it more amenable to hardware optimization. However, it frequently results in substantial
performance degradation, necessitating extensive retraining to restore model functionality.

Unstructured pruning targets individual weights based on their significance, enabling high per-
formance even at elevated sparsity levels (Dong et al., 2024; Sun et al., 2024). Despite its efficacy
in preserving model accuracy, the irregular sparsity patterns produced are often incompatible with
hardware acceleration, limiting its practical applicability in deployment scenarios.

Semi-structured pruning has emerged as a promising approach, striking a balance between the
benefits of structured and unstructured methods. By enforcing regular sparsity patterns, such as
N :M sparsity, this technique optimizes models for hardware acceleration while maintaining perfor-
mance (Hubara et al., 2021). Methods like SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2024) employ training-free pruning, achieving efficiency without retraining. More recent
methods, such as MaskLLM (Fang et al., 2024) and AST (Huang et al., 2025), focus on retraining
sparse LLMs, which achieve promising performances while maintaining hardware compatibility.
Nonetheless, the significant computational overhead associated with the number of trainable param-
eters remains a critical challenge, warranting further investigation. Building on this foundation, our
proposed method leverages weighted reservoir sampling to enhance semi-structured pruning with
N :M sparsity, aiming to enable the retraining of semi-structured sparse LLM with minimal training
costs.

5 CONCLUSION

This study introduced SUSI, a novel semi-structured pruning technique for LLMs, utilizing differ-
entiable subset sampling to efficiently derive N:M sparsity masks. Compared to existing methods,
SUSI reduces the number of trainable parameters and associated memory overhead while maintain-
ing strong performance. Experiments on OPT models (125M, 350M, 1.3B parameters) show that
SUSI outperforms existing methods in perplexity on the Wikitext-2 dataset and maintains compet-
itive zero-shot accuracy across a range of benchmarks. Additionally, SUSI exhibits enhanced data
efficiency and scalability as calibration data increases. These results establish SUSI as a promising
solution for compressing LLMs, effectively balancing performance retention with the demands of
resource-constrained deployment environments.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work:

Datasets. All training and calibration data used in our experiments are publicly available. We
follow prior work by sampling 1B tokens from the cleaned English portion of the C4 corpus for
calibration and training, ensuring alignment with OPT’s pretraining distribution. For evaluation, we
employ well-known open-source benchmarks, including WikiText-2 for perplexity evaluation and
ARC (Easy/Challenge), HellaSwag, PIQA, SciQ, and RACE for zero-shot task accuracy. Dataset
statistics and details are provided in Appendix A.1 to facilitate replication.

Code and Implementation. We provide an anonymous, fully reproducible implementation of SUSI,
including (i) training scripts for variational mask optimization, (ii) hyperparameter configurations
(see Appendix A.2), and (iii) evaluation scripts leveraging the LM-Evaluation-Harness toolkit. All
results reported in this paper can be reproduced using the provided codebase.

Availability. To encourage transparency and facilitate verification of our findings, we submit
the source code and experiment configuration files as supplementary material. An anonymous
and reproducible version of the repository can be accessed at the following link: https://
anonymous.4open.science/r/susi-2E2C.

This repository contains all necessary scripts, instructions, and environment configuration files (in-
cluding requirements.txt) for reproducing our results end-to-end on standard hardware.
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A APPENDIX

A.1 WRS YIELDS EQUIVALENT VARIATIONAL OBJECTIVE

Theorem 1. Let P (mi|ϕi) be the exact distribution of each mask mi defined as in Equation 8. The
expected loss when sampling each mask from its exact distribution is equivalent to the expected loss
obtained when each mask is parameterized as a sum of elements in an ordered subset Si sampled
from the corresponding restricted distribution PWRS(Si|ϕi).

Proof. Without loss of generality, we prove the following terms are equivalent:

EP (m|ϕ)[f(m)] = EPWRS(S|ϕ)

f
∑

µ∈S
µ

 (14)

where f(m) is an objective function depending on m, P (m|ϕ) =
∑

Sm
PWRS(Sm|ϕ) is the exact

distribution with Sms are sets that the sum of elements in Sm equals m.
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GivenM, the set of binary masks satisfying the N:M sparsity, the expected loss when sampling m
from the exact distribution is then:

EP (m|ϕ)[f(m)] =
∑

m∈M
P (m|ϕ)f(m) =

∑
m∈M

(∑
Sm

PWRS(Sm|ϕ)

)
f

 ∑
µ∈Sm

µ


=
∑

m∈M

∑
Sm

PWRS(Sm|ϕ)f

 ∑
µ∈Sm

µ

 =
∑

m∈M
PWRS(S|ϕ)f

∑
µ∈S

µ


= EPWRS(S|ϕ)

f
∑

µ∈S
µ


(15)

The final expression is precisely the expectation of f under the distribution PWRS(S|ϕ), proving
the claim.

A.2 EVALUATION METRICS AND BENCHMARK DATASETS

Following previous works in this research field, three automated metrics are considered for the eval-
uation, including both quantitative and qualitative metrics to capture the full impact of pruning: i)
Task Accuracy (ACC): on common NLP tasks such as question answering in reading comprehension,
mathematics, and science. These tasks are typically assessed in zero-shot or few-shot settings using
benchmark datasets; Perplexity (PPL): is a standard metric for assessing language model quality. It

Table 3: Statistics of datasets used for zero-shot evaluation.

Dataset Questions Task Type
ARC-Easy 2,376 Multiple-choice science
ARC-Challenge 1,172 Multiple-choice science
HellaSwag 10,042 Sentence completion
PIQA 1,838 Physical interaction QA
RACE 1,045 Multiple-choice comprehension
SciQ 1,000 Multiple-choice science

measures how well the model predicts the next word in a sequence, with lower values indicating
better predictive performance. The benchmark datasets used to assess the effectiveness of prun-
ing methods include WikiText-2 (Merity et al., 2017) for perplexity evaluation and a range of NLP
benchmark datasets for zero-shot evaluation, which cover diverse task types and reasoning require-
ments, including ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020), SciQ (Welbl et al., 2017), and RACE (Lai et al., 2017). These evaluations are conducted
using the LM-Evaluation-Harness toolkit (Gao et al., 2024).

Table 3 provides a comprehensive summary of the datasets used for zero-shot evaluation across
multiple tasks. These datasets span a range of domains, including commonsense reasoning, science
question answering, and reading comprehension, thereby ensuring a rigorous and diverse assessment
of pruning performance.

A.3 HYPERPARAMETER SETTING

The hyperparameters used for training SUSI are listed in Table 4. These settings were carefully
chosen to balance convergence stability and computational efficiency across all evaluated models.
Specifically, model weights remain frozen during training. The variational distribution is initialized
from a standard normal (µ = 0.0, σ = 0.01), and a simulated annealing process gradually reduces
randomness. Temperatures τ and λ linearly decay from 1.0 to 0.05 and from 1.0 to 0.002, respec-
tively. Optimization uses AdamW-8bit with a learning rate decaying from 1 × 10−3 to 1 × 10−4,

14
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Table 4: Hyperparameter configuration used in training.

Parameter Values
Initialization distribution N (0, 0.01)
Gumbel-Softmax temperature τ = 1.0→ 0.05
Sampling temperature λ = 1.0→ 0.002
Weight decay 0.05
Learning rate 10−3 → 10−4

Strengthening power term p = 3.0
AdamW parameters β1 = 0.9, β2 = 0.95
Batch size 256
Sequence length 2048
Training steps 2000

weight decay of 0.05, and β1 = 0.9, β2 = 0.95, matching the OPT pretraining setup. The power
term p (Equation 11) is selected from {1, 2, 3}, where p = 1 corresponds to no power-term scaling,
and larger values of p (e.g., p = 2 or 3) progressively emphasize the impact of removing higher-
importance elements.

A.4 GUMBEL-TOP-K ALGORITHM

The algorithm for Gumbel-Top-K is illustrated in the Algorithm 1. Specifically, we provide a clear
description of the Gumbel-Top-K sampling procedure employed to enable differentiable mask learn-
ing. This formulation allows for efficient sampling of K items without replacement while preserving
differentiability for gradient-based optimization.

Algorithm 1 Gumbel-Top-K Sampling Algorithm (Differentiable)
Input: Set of candidates X = {x1, . . . , xN} with corresponding logits ϕ = [ϕ1, . . . , ϕN ], number
of samples K, temperature τ > 0
Output: Soft K-hot selection vector S ∈ RN

1: for i← 1 to N do
2: ui ∼ Uniform(0, 1)
3: gi ← − log(− log(ui)) // Sample Gumbel noise
4: κi ← ϕi + gi // Compute perturbed key
5: end for
6: α(1) ← [κ1, . . . , κN ]
7: for k ← 1 to K do
8: µ(k) ← softmax

(
α(k)/τ

)
9: α(k+1) ← α(k) + log

(
1− µ(k)

)
10: end for
11: S←

∑K
k=1 µ

(k) // Soft K-hot vector
12: return S =0

A.5 COMPARISON TO STRAIGHT-THROUGH GUMBEL-TOP-K

We further examined whether adopting a straight-through (ST) Gumbel-Top-K estimator benefits
pruning performance. In this variant, the forward pass generates discrete masks by directly applying
an argtopK over Gumbel-perturbed logits, while the backward pass propagates gradients through
the continuous Gumbel-softmax relaxation. This strategy enforces discretization earlier in training,
which is able to improve mask interpretability. However, our empirical results in Table 5 show that
ST Gumbel-Top-K leads to slightly inferior performance compared to the pure soft relaxation. For
instance, on OPT-125M, ST achieves 51.20 perplexity and 40.04% average accuracy, while the soft
approach reaches 50.24 perplexity and 41.06% accuracy. Similarly, on OPT-350M, the gap widens
(60.49 vs. 54.14 perplexity). These observations suggest that the bias introduced by the ST estimator
hampers generalization, outweighing the potential benefits of earlier discretization. Overall, the soft
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Table 5: Comparison of pruning results with 2:4 sparsity, both with and without ST Gumbel-Top-K
estimator (denoted as ”w STE” and ”w/o STE”).

OPT-125M OPT-350M
Metric w STE w/o STE (ours) w STE w/o STE (ours)

PPL (↓) 51.20 50.24 60.49 54.14
Avg. Acc (↑) 40.04 41.06 39.11 39.94

Gumbel-Top-K relaxation used in SUSI provides a more effective balance between trainability and
performance.

A.6 MASK DIFFERENCE ANALYSIS

To investigate how different pruning strategies select weights, we measure the overlap between
masks produced by various methods on the same model. Figure 6 shows that SUSI’s learned masks
achieve much higher cross-seed similarity (82%) compared to one-shot pruning methods such as
Magnitude (63%), Wanda (66%), and SparseGPT (75%), which produce substantially different spar-
sity patterns.
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Figure 6: Mask difference analysis between SUSI and previous works. Besides the name of each
baseline, place an overlapping percentage indicating the similarity of the produced masks between
that baseline and SUSI.

Interestingly, the mask similarity of SUSI closely matches that of other mask-learning approaches
like MaskLLM, suggesting that iterative mask optimization converges toward a stable and consistent
subset of important weights. Combined with the main results, higher mask similarity is correlated
with better perplexity and zero-shot accuracy, underscoring that stable mask learning plays a key
role in achieving superior downstream performance.

A.7 EXTEND TO OTHER SPARSITY PATTERN

To further examine the generality of SUSI, we extend our evaluation beyond the commonly studied
2:4 configuration. These alternative settings introduce more aggressive pruning constraints and
exacerbate the challenges faced by learnable mask methods such as MaskLLM, whose parameter
overhead grows quadratically. In contrast, SUSI preserves linear complexity in M , enabling efficient
scalability to larger group sizes.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Performance on 2:8 sparsity pattern.

Method W/U ARC-C ARC-E HellaS. PIQA RACE SciQ Average ↑ PPL ↓
Base Model: OPT-125M - 19.03 43.52 29.19 62.95 30.05 75.20 43.32 32
Magnitude ✗ 21.25 27.26 25.90 53.65 21.82 21.80 28.61 13431
Wanda ✗ 18.86 29.12 26.19 54.35 21.44 28.80 29.79 5195
SparseGPT ✓ 19.88 28.28 26.43 55.01 23.73 32.40 30.96 986
MaskLLM ✗ 18.77 35.19 26.86 58.16 23.44 61.20 37.27 107
SUSI (Ours) ✗ 18.17 33.80 26.91 58.27 23.44 62.70 37.22 110

Base Model: OPT-350M - 20.82 44.02 32.02 64.58 29.95 74.90 44.38 25.42
Magnitude ✗ 19.97 28.07 26.31 53.54 22.20 30.00 30.02 9805
Wanda ✗ 18.52 27.61 26.51 53.48 22.11 29.00 29.54 2956
SparseGPT ✓ 17.49 28.83 26.50 54.30 23.44 37.00 31.26 1358
MaskLLM ✗ 16.55 31.61 26.38 57.51 24.78 58.60 35.91 127
SUSI (Ours) ✗ 16.30 29.50 26.61 57.02 24.69 57.20 35.22 145

Table 7: Performance on the 4:8 sparsity pattern. Note that experimenting on MaskLLM could not
be executed on our infrastructure in this setting due to the excessive number of trainable parameters.

Method W/U ARC-C ARC-E HellaS. PIQA RACE SciQ Average ↑ PPL ↓
Base Model: OPT-125M - 19.03 43.52 29.19 62.95 30.05 75.20 43.32 32
Magnitude ✗ 18.09 34.72 27.55 58.32 23.25 57.4 36.56 205
Wanda ✗ 19.11 37.42 27.74 59.85 26.22 67.10 39.57 61
SparseGPT ✓ 18.77 39.06 27.94 61.15 27.75 71.10 40.96 54
MaskLLM ✗ - - - - - - - -
SUSI (Ours) ✗ 19.11 40.36 27.67 62.25 29.37 72.30 41.84 41
Base Model: OPT-350M - 20.82 44.02 32.02 64.58 29.95 74.90 44.38 25
Magnitude ✗ 16.81 33.12 27.74 58.32 22.78 56.90 35.95 221
Wanda ✗ 17.83 35.86 28.81 60.83 25.17 66.30 39.13 71
SparseGPT ✓ 18.52 36.57 29.56 61.32 27.85 69.10 40.49 46
MaskLLM ✗ - - - - - - - -
SUSI (Ours) ✗ 18.16 38.85 28.79 62.51 29.33 68.51 41.03 42

As shown in Figure 3 and Table 6, under the 2:8 sparsity pattern, SUSI achieves a 3.5× reduc-
tion in trainable parameters relative to MaskLLM, while maintaining competitive perplexity. This
demonstrates that even with substantially fewer learnable parameters than in the 2:4 case, SUSI con-
tinues to deliver robust language modeling performance. These results underscore the efficiency of
differentiable subset sampling in handling larger sparsity patterns.

The 4:8 sparsity pattern (Table 7) presents an even more demanding setting. Here, MaskLLM fails to
execute due to the prohibitive number of trainable parameters. By contrast, SUSI remains tractable,
successfully completing training and yielding stable evaluation results. This highlights a distinct
advantage of SUSI: its parameter efficiency not only improves training feasibility but also makes
previously impractical sparsity patterns accessible to large-scale language models.

A.8 EXTEND SUSI TO RECENT LLMS

We further extend SUSI to recent LLM architectures, including Qwen2.5-0.5B and Llama3.2-1B,
to examine its generality beyond the OPT family. As shown in Table 8, SUSI remains feasible
and efficient under these modern settings. While the performance gap relative to dense models is
more pronounced than in the OPT series (e.g., Qwen2.5-0.5B drops from 55.33% accuracy at 22
PPL to 43.75% at 46 PPL after pruning), SUSI still achieves competitive results. Compared to
the OPT family, where SUSI nearly matches the dense baseline, these results highlight that SUSI
scales consistently to diverse architectures, maintaining tractable training and offering substantial
efficiency gains even when accuracy trade-offs are larger in more recent models.

A.9 LIMITATIONS

Despite the promising performance and efficiency demonstrated by SUSI, several limitations re-
main:
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Table 8: Performance of SUSI on recent LLMs (Qwen2.5-0.5B and Llama3.2-1B). SUSI remains
tractable, demonstrating scalability across architectures. Although the performance gap to dense
models is larger than in the OPT family, SUSI preserves competitive accuracy with favorable
perplexity-efficiency trade-offs.

Method ARC-C ARC-E HellaS. PIQA RACE SciQ Average ↑ PPL ↓
Base Model:Qwen2.5-0.5B 29.18 64.48 40.53 70.35 34.64 92.80 55.33 22
SUSI (Ours) 18.34 45.54 30.56 64.15 28.52 75.40 43.75 46

Base Model:Llama3.2-1B 31.31 65.49 47.72 74.48 37.89 91.40 58.05 13
SUSI (Ours) 20.39 45.20 32.33 65.89 29.28 77.60 45.12 32

Base Model: OPT-1.3B 23.29 57.03 41.54 71.76 34.16 84.30 52.01 16
SUSI (Ours) 21.67 47.68 33.50 66.70 32.15 77.20 46.48 28

First, the deployment of semi-structured sparsity is inherently hardware-dependent. At present,
substantial throughput gains are realized only on select platforms (e.g., AMD ROCm and certain
NVIDIA Ampere and Hopper GPUs) where 2:4 structured sparsity is natively supported and accel-
erated at the kernel level. Although SUSI can, in principle, be extended to arbitrary N :M sparsity
patterns, its practical utility is constrained by the absence of hardware kernels and vendor-optimized
libraries for ratios other than 2:4. On accelerators or CPUs lacking such specialized support, prun-
ing yields only marginal reductions in memory footprint and fails to deliver meaningful inference
speedup. This hardware dependency poses a significant challenge for widespread adoption in het-
erogeneous production environments, where deployment targets may vary.

Second, the current evaluation focuses exclusively on English-centric OPT models and a limited set
of standard NLP benchmarks. Future research should investigate the applicability of SUSI to mul-
tilingual LLMs, larger-scale models, and domain-specific tasks (e.g., code generation, reasoning-
intensive applications) to assess its generalization and scalability comprehensively.
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