

000 001 002 003 004 005 SUSI: SEMI-STRUCTURED PRUNING FOR LLMS VIA 006 DIFFERENTIABLE SUBSET SAMPLING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 The rapid growth of large language models (LLMs) has driven the need for effi-
029 cient post-training optimization techniques for reducing computational and mem-
030 ory demands while preserving performance. Semi-structured pruning, which en-
031 forces hardware-compatible sparsity patterns like N:M sparsity, offers a balanced
032 approach for accelerating inference. In this study, we introduce SUSI¹ (Semi-
033 structured prUning via Subset samplIng), a novel semi-structured pruning method
034 that leverages the weighted reservoir and differentiable subset sampling to learn
035 high-quality N:M sparsity masks with minimal computational cost. Compared to
036 other learnable mask methods (i.e., MaskLLM), which increase parameter com-
037 plexity, SUSI reduces trainable parameters by up to 1.5x for the 2:4 sparsity, en-
038 abling efficient deployment on hardware optimized for sparse computation. We
039 evaluate SUSI on three OPT model variants (125M, 350M, and 1.3B parameters)
040 using benchmarks including WikiText-2 for perplexity and zero-shot NLP tasks
041 (e.g., ARC, HellaSwag, PIQA, RACE, SciQ). SUSI outperforms baselines such
042 as SparseGPT, Wanda, and MaskLLM in perplexity while maintaining competi-
043 tive zero-shot accuracy across various benchmarks. These results establish SUSI
044 as a robust and practical solution for compressing LLMs, facilitating efficient de-
045 ployment in resource-constrained environments.
046

1 INTRODUCTION

047 With the rapid development of large language models (LLMs), post-training techniques have
048 emerged as critical methodologies for optimizing model efficiency while preserving performance
049 (Wan et al., 2024). Among these techniques, two primary approaches to network compression have
050 gained prominence: model quantization (Egashira et al., 2024; Liu et al., 2025b) and network pruning
051 (Cheng et al., 2024; Muñoz et al., 2025). While model quantization focuses on representing
052 weights with reduced precision (e.g., 8-bit, 4-bit, or lower), pruning techniques aim to eliminate re-
053 dundant parameters to accelerate inference while preserving task performance (Williams & Aletras,
054 2024). This study focuses on pruning techniques to develop sparse LLMs, thereby reducing memory
055 footprint and enhancing inference speed.

056 Current post-training pruning methods can be categorized into three distinct approaches: (i) unstruc-
057 tured pruning, which removes individual weight parameters without regard to network architecture
058 (Sun et al., 2024); (ii) structured pruning, which eliminates entire network components such as neu-
059 rons, attention heads, or layers (Xia et al., 2024; Le et al., 2025); and (iii) Semi-structured pruning,
060 which combines the flexibility of unstructured methods with the regularity of structured patterns
061 (Fang et al., 2024; Huang et al., 2025). This research focuses on semi-structured pruning, as it
062 efficiently removes redundant weights while enforcing regular sparsity patterns that are hardware-
063 compatible and effective for acceleration. Specifically, semi-structured pruning strikes an optimal
064 balance by keeping regular sparsity patterns (e.g., N:M sparsity (Hubara et al., 2021)), which is
065 optimized for hardware. Modern approaches in this field are generally categorized into two types:
066 i) *importance-based*: with several typical methods such as SparseGPT (Frantar & Alistarh, 2023)
067 and Wanda (Sun et al., 2024) using a small dataset, typically a subset of the pretraining data, to ap-
068 proximate the knowledge encoded in the language model. They define an importance score for each
069 weight (or group of weights) based on this dataset, which guides the pruning process. Importance

070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333

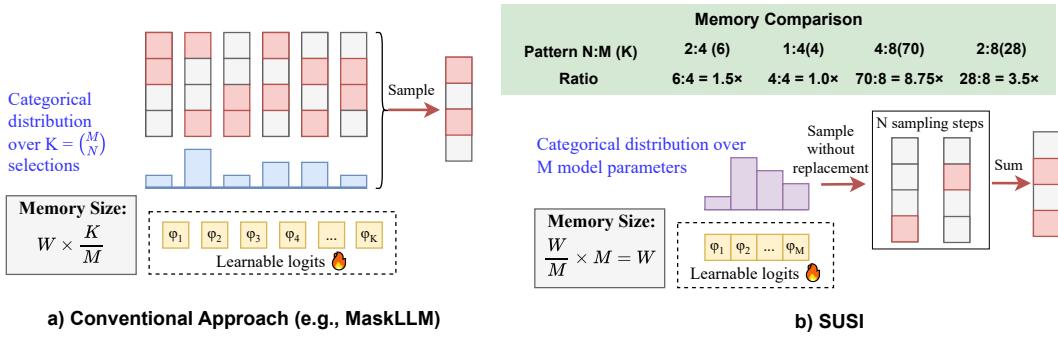


Figure 1: Learnable semi-structured N:M sparsity methods: a) modeling the mask selection process using a categorical distribution over feasible masks, and b) our proposed method by learning to sample subsets without replacement of model parameters. The proposed method is more memory efficient than previous works for most practical N:M sparsity patterns. The memory advantage becomes more pronounced as M increases or when N is around $M/2$.

scores may be based on weight magnitude, gradients, or the Hessian matrix. However, these criteria are often chosen heuristically, leading to potentially sub-optimal results. Additionally, the limited dataset may not adequately capture the model’s rich knowledge; ii) *learnable masks*: focusing on the direct optimization of pruning masks through a retraining process. Recently, MaskLLM (Fang et al., 2024) proposed a novel method that models N:M sparsity patterns as learnable categorical distributions, employing Gumbel-Softmax sampling (Jang et al., 2017). This approach demonstrates robust pruning performance and strong generalization across diverse tasks. However, it introduces significant computational overhead due to an increased number of trainable parameters (Huang et al., 2025). Specifically, for a model with W parameters under N:M sparsity, MaskLLM requires learning $(\frac{M}{N}) \times \frac{W}{M}$ parameters, which consistently equals or surpasses the original model parameter count, as illustrated in Figure 1(a). For instance, with the commonly utilized 2:4 semi-structured sparsity pattern, the number of parameters to be learned is $1.5 \times W$. This substantial parameter overhead poses considerable challenges during the training of large-scale language models.

To address this limitation, we propose an effective semi-structured pruning method, termed SUSI (Semi-structured prUning via Subset samplIng). SUSI systematically selects N weights from each group of M consecutive parameters, enabling the enforcement of N:M sparsity with minimal degradation in model accuracy. The main idea is to utilize Weighted Reservoir Sampling (WRS) (Efraimidis & Spirakis, 2006) as an efficient alternative for learning high-quality sparsity masks. WRS enables selective sampling of mask configurations based on importance weights, reducing computational overhead while maintaining the ability to identify effective N:M sparsity patterns. The proposed lightweight pruning mask learning technique significantly reduces the number of trainable parameters, thereby facilitating efficient deployment on hardware optimized for N:M sparsity, as depicted in Figure 1(b).

2 PRELIMINARIES

2.1 WEIGHTED RESERVOIR SAMPLING

Weighted Reservoir Sampling (WRS) (Efraimidis & Spirakis, 2006) is an extension of the Reservoir Sampling class of algorithms (Vitter, 1985), which aims to sample K items from a set of N . In WRS, each item is assigned a non-negative weight, and items with larger weights compared to others are more likely to appear in the sampled subset. Given a population set $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ with corresponding weights $\mathbf{w} = [w_1, w_2, \dots, w_N]$, WRS produces an ordered subset $\mathcal{Y} = \{y_1, y_2, \dots, y_K\}$, which is drawn from following distribution:

$$P_{\text{WRS}}(\mathcal{Y}|\mathbf{w}) = \frac{w_{y_1}}{W} \times \frac{w_{y_2}}{W - w_{y_1}} \times \dots \times \frac{w_{y_K}}{W - \sum_{j=1}^{K-1} w_{y_j}} \quad (1)$$

108 where $W = \sum_{i=1}^N w_i$ is the total weight and w_{y_i} is the weight of the corresponding item y_i . Sampling
 109 from the above distribution resembles the sampling without replacement process, where the
 110 probability of selecting a subset is proportional to the item weights.
 111

112 2.2 GUMBEL-TOP- K TRICK 113

114 Gumbel-Max (Gumbel, 1954) is a monotonic transformation of the WRS technique, a repara-
 115 meterization trick to sample from a categorical distribution by perturbing the distribution’s log-
 116 probabilities with Gumbel noise. Given a categorical distribution over N items $\{x_1, \dots, x_N\}$ pa-
 117 rameterized by N logit parameters $\phi = [\phi_1, \dots, \phi_N]$, the probability of an arbitrary item’s selection
 118 is $\pi_i = \exp(\phi_i) / \sum_{j=1}^N \exp(\phi_j)$. The Gumbel-Max trick performs sampling from such a distribu-
 119 tion by first generating random keys corresponding to each item via Gumbel perturbations:
 120

$$\kappa_i = \phi_i + g_i, \quad g_i \stackrel{\text{i.i.d.}}{\sim} \text{Gumbel}(0, 1) \quad (2)$$

122 where g_i s are noise independently drawn from the Gumbel(0, 1) distribution. Finally, the output of
 123 this sampling process is achieved by taking the item x_j having the largest key κ_j . The index j is the
 124 output of taking argmax over key values ($j = \text{argmax}_i \kappa_i$).
 125

126 Gumbel-Top- K is a generalization of the Gumbel-Max trick, where instead of selecting the item
 127 with the largest random key, the top- K items with the highest keys are selected (Xie & Ermon,
 128 2019). This corresponds to sampling K items without replacement from a categorical distribution
 129 over N items. By relaxing the argtop $_K$ operator using successive softmaxes (Plötz & Roth, 2018),
 130 this sampling process becomes differentiable, thereby allowing for learning with backpropagation.
 131

132 To sample a subset of K items with the Gumbel-Top- K trick, logits are first independently perturbed
 133 with Gumbel noise to create random keys κ_i , similar to the Gumbel-Max trick. Sequentially, a
 134 chain of softmax is applied to produce approximated one-hot representations of selected items. Let
 135 $\alpha^{(k)} = [\alpha_1, \dots, \alpha_N]$ denote adjusted keys at the sampling step k . These adjusted keys are defined
 136 recursively as follows:
 137

$$\alpha^{(1)} := [\kappa_1, \dots, \kappa_N]; \quad \alpha^{(k)} := \alpha^{(k-1)} + \log(1 - \mu^{(k-1)}) \quad (3)$$

138 where $\mu^{(k-1)} = [\mu_1^{(k-1)}, \dots, \mu_N^{(k-1)}]$ is the one-hot approximation indicating the item selected at
 139 the previous sampling step. This representation is achieved by applying softmax over adjusted keys
 140 at the sampling step $k-1$ with a pre-defined temperature τ :
 141

$$\mu_i^{(k-1)} = \frac{\exp(\alpha_i^{(k-1)} / \tau)}{\sum_{j=1}^N \exp(\alpha_j^{(k-1)} / \tau)} \quad (4)$$

144 After applying softmaxes K times, we attain an ordered subset of K approximated one-hot rep-
 145 resenting selected items $\mathcal{S} = \{\mu^{(1)}, \dots, \mu^{(K)}\}$. The sum of elements in this subset yields a soft
 146 K -hot vector, and the mapping from the logits ϕ_i to this vector is differentiable, enabling usage of
 147 gradient-based optimization methods.
 148

149 3 METHODOLOGY 150

151 3.1 PROBLEM STATEMENT

153 The problem of finding the optimal N:M sparsity can be formulated as selecting, for each group of M
 154 consecutive parameters, a binary mask of length M with exactly N non-zero entries that minimizes
 155 the loss on a calibration set. Let G denote the number of weight groups, $\mathbf{W} = \{\mathbf{w}_1, \dots, \mathbf{w}_G\}$
 156 the corresponding weight groups, and $\mathbf{M} = \{\mathbf{m}_1, \dots, \mathbf{m}_G\}$ the associated binary masks. The
 157 optimization problem is then defined as follows:
 158

$$\mathbf{M}^* = \underset{\mathbf{M}}{\operatorname{argmin}} \mathcal{L}_{\text{CE}}(\mathcal{D}; \mathbf{W} \odot \mathbf{M}) \quad (5)$$

161 where \mathcal{L}_{CE} is the cross-entropy loss for language modeling, \mathcal{D} denotes the calibration set, and \odot
 162 represents the element-wise product between each weight group and its corresponding binary mask.
 163

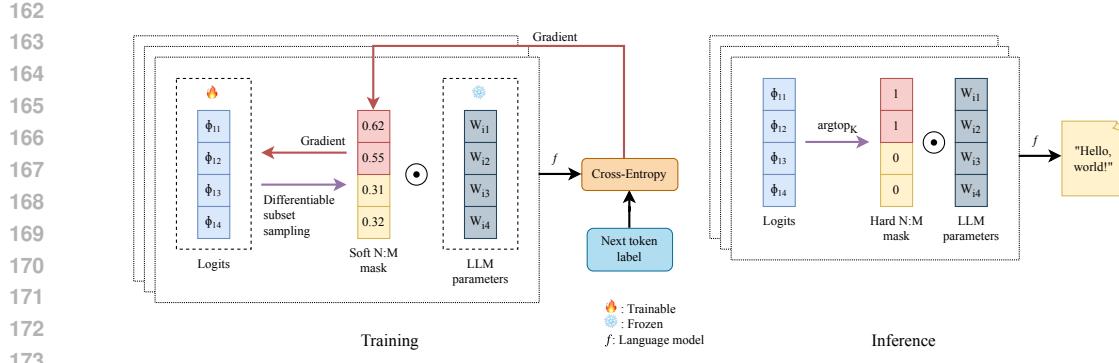


Figure 2: Overview of the SUSI Framework for Semi-Structured Pruning via Differentiable Subset Sampling, illustrating the training and inference phases.

However, such an optimization problem is NP-hard due to the vast search space, where there exists $\binom{M}{N}^G$ feasible solutions. In the context of Large Language Models, the number of weight groups G is gargantuan, making this combinatorial optimization problem impractical to brute-force. Therefore, in the following section, we reformulate the above problem as a stochastic variational optimization variant to gain tractability and improve efficiency.

3.2 SUSI: SEMI-STRUCTURED PRUNING VIA DIFFERENTIABLE SUBSET SAMPLING

The overview of SUSI is illustrated in Figure 2. Accordingly, stochastic variational optimization (Bird et al., 2018) is based on an observation that given an arbitrary distribution $q(x)$ the expectation of a function $f(x)$ provides an upper bound on its minimum:

$$\min_x f(x) \leq \mathbb{E}_{q(x)}[f(x)] \quad (6)$$

By treating pruning masks as random variables, the optimization problem in the Equation 5 can be reframed as minimizing the variational upper bound of the objective with respect to the variational distribution parameters. Formally, we seek to find:

$$\Phi^* = \operatorname{argmin}_{\Phi} \mathbb{E}_{P(\mathbf{M}|\Phi)}[\mathcal{L}_{\text{CE}}(\mathcal{D}; \mathbf{W} \odot \mathbf{M})] \quad (7)$$

where $\Phi = \{\phi_1, \dots, \phi_G\}$ is a set of parameters, corresponding to variational distributions $P(\mathbf{m}_1|\phi_1), \dots, P(\mathbf{m}_G|\phi_G)$, with joint distribution $P(\mathbf{M}|\Phi) = \prod_{i=1}^G P(\mathbf{m}_i|\phi_i)$. Through this formulation as a stochastic variational optimization problem, the sampling of masks can be re-parameterized and relaxed to be a differentiable function with respect to variational distributions' parameters, making it possible to learn via gradient-based optimization.

3.2.1 VARIATIONAL DISTRIBUTION SELECTION

Since pruning masks are N -hot vectors of length M , each mask can take one of $\binom{M}{N}$ possible values. Modeling such a distribution over possible values requires $\binom{M}{N} - 1$ free parameters, which grows combinatorially as M increases. To efficiently learn masks with a reasonable number of parameters, we propose using the WRS distribution (Equation 1) over ordered subsets to model mask distributions $P(\mathbf{m}_i|\phi_i)$. Let $\mathcal{S}_i = \{\mu_i^{(1)}, \dots, \mu_i^{(N)}\}$ be a set of N one-hot vectors representing selected weights within the i -th group, sampled from the WRS distribution using the Gumbel-Top- K trick, the probability of a mask \mathbf{m}_i is then:

$$P(\mathbf{m}_i|\phi_i) = \sum_{\mathcal{S}_{\mathbf{m}_i}} P_{\text{WRS}}(\mathcal{S}_{\mathbf{m}_i} | \exp(\phi_i)) \quad (8)$$

where $\mathcal{S}_{\mathbf{m}_i}$ denotes the set of elements whose sum equals \mathbf{m}_i , where the N -hot mask \mathbf{m}_i can be obtained by summing up $\mu_i^{(j)}$'s. Exactly computing this probability is expensive and unnecessary since constructing \mathbf{m}_i ignores the order of items in the sampled subset, and the expected loss can

be computed via Monte Carlo sampling. The original problem then turns into learning to select important weights, with importance score $\exp(\phi_{ij})$, in order to minimize the objective. Denoting the WRS distribution of an arbitrary subset \mathcal{S}_i as $P_{\text{WRS}}(\mathcal{S}_i|\phi_i)$ for brevity, the optimization problem (Equation 7) is then reformulated as follows:

$$\Phi^* = \operatorname{argmin}_{\Phi} \mathbb{E}_{P_{\text{WRS}}(\mathcal{S}|\Phi)} [\mathcal{L}_{\text{CE}}(\mathcal{D}; \mathbf{W} \odot \mathbf{M})] \quad (9)$$

where $\mathcal{S} = \{\mathcal{S}_1, \dots, \mathcal{S}_G\}$ is a collection of G subsets, generated from the joint distribution $P_{\text{WRS}}(\mathcal{S}|\Phi) = \prod_{i=1}^G P_{\text{WRS}}(\mathcal{S}_i|\phi_i)$. Each N -hot pruning mask \mathbf{m}_i in the collection \mathbf{M} is constructed as $\mathbf{m}_i = \sum_{\mu_i^{(j)} \in \mathcal{S}_i} \mu_i^{(j)}$. Parameterizing masks as sums of subsets sampled from WRS-restricted distributions yields the same expected loss as sampling masks from the exact distributions, as proved in Theorem 1. Our approach reduces the parameter complexity by reformulating the N -hot mask sampling process as a sequential sampling without replacement paradigm. Instead of maintaining a full categorical distribution over $\binom{M}{N}$ configurations, we model only a single categorical distribution over every M model parameters, requiring exactly M parameters regardless of N . The proposed method achieves a reduction in parameter complexity from $\mathcal{O}\left(\binom{M}{N}\right)$ to $\mathcal{O}(M)$, representing an exponential improvement in memory efficiency.

3.2.2 MASK SELECTION RELAXATION

To make the objective differentiable with respect to variational distributions' parameters, we relax the sampling process using the Gumbel-Top- K trick. Given logits $\phi_i = [\phi_{i1}, \dots, \phi_{iM}]$ forming a categorical distribution over M consecutive model weights within the i -th group, the probability of selecting the j -th weight is achieved via softmax: $\pi_{ij} = \exp(\phi_{ij}) / \sum_{k=1}^M \exp(\phi_{ik})$. To sample a subset \mathcal{S}_i without replacement from this distribution, we first perturb logits with Gumbel noise independently to attain random keys:

$$\kappa_{ij} = \phi_{ij} + g_{ij}, \quad g_{ij} \stackrel{\text{i.i.d.}}{\sim} \text{Gumbel}(0, 1) \quad (10)$$

We define the adjusted keys of the i -th group at sampling step k as $\alpha_i^{(k)} = [\alpha_{i1}^{(k)}, \dots, \alpha_{iM}^{(k)}]$. The update rule follows the Gumbel-Top- K procedure, except that we incorporate a power term $p > 1$ to amplify the impact of removing the selected item in the previous sampling step. This modification improves stability during training. Formally:

$$\alpha_i^{(1)} := [\kappa_{i1}, \dots, \kappa_{iM}], \quad \alpha_i^{(k)} := \alpha_i^{(k-1)} - |\log(1 - \mu_i^{(k-1)})|^p \quad (11)$$

Finally, an approximated relaxed one-hot vector $\mu_i^{(k)} = [\mu_{i1}^{(k)}, \dots, \mu_{iM}^{(k)}]$ representing the selected item at the k -th sampling step is achieved by taking softmax over adjusted keys with temperature τ :

$$\mu_{ij}^{(k)} = \frac{\exp(\alpha_{ij}^{(k)} / \tau)}{\sum_{k=1}^M \exp(\alpha_{ik}^{(k)} / \tau)} \quad (12)$$

After N sampling steps, a set of soft one-hot vectors representing selected weights is attained. By summing up these vectors, a relaxation of the N -hot pruning mask can be constructed, enabling gradient-based training.

3.2.3 TEMPERATURE ANNEALING

The temperature τ is mentioned as a hyperparameter controlling the hardness of one-hot approximations. Additionally, we define a hyperparameter λ , which regulates the degree of randomness in the sampling process. Subsequently, the Gumbel-Top- K trick is applied to the scaled logits, denoted as $\bar{\phi}_i = \phi_i / \lambda$. In our experiments, we implement an annealing schedule for τ and λ to guide the mask learning process, beginning with high randomness to promote solution exploration and converging to a small set of optimal solutions by training's end. We adopt a linear annealing schedule, where at the t -th training step, the temperatures are defined as follows:

$$\tau_t = \tau_{\text{init}} \times (1 - \frac{t}{T}) + \tau_{\text{end}} \times \frac{t}{T}; \quad \lambda_t = \lambda_{\text{init}} \times (1 - \frac{t}{T}) + \lambda_{\text{end}} \times \frac{t}{T} \quad (13)$$

270
 271 Table 1: Comparative evaluation of zero-shot accuracy across multiple benchmark datasets for vari-
 272 ous pruning methods applied to OPT models of different sizes with 2:4 sparsity pattern. Bold values
 273 denote the highest performance in each metric. The column 'W/U' indicates whether weight up-
 274 dates are applied during pruning.

Method	W/U	ARC-C	ARC-E	HellaS.	PIQA	RACE	SciQ	Average
Base Model: OPT-125M	-	19.03	43.52	29.19	62.95	30.05	75.20	43.32
Magnitude	✗	17.66	32.28	27.14	57.67	22.78	44.00	33.59
Wanda (Sun et al., 2024)	✗	18.69	36.03	27.55	59.09	23.54	64.70	38.27
SparseGPT (Frantar & Alistarh, 2023)	✓	19.71	38.09	27.60	59.74	25.55	69.00	39.95
MaskLLM (Fang et al., 2024)	✗	18.34	39.73	27.50	61.26	26.79	70.30	40.65
SUSI (Ours)	✗	19.02	40.19	27.33	61.97	28.04	69.80	41.06
Base Model: OPT-350M	-	20.82	44.02	32.02	64.58	29.95	74.90	44.38
Magnitude	✗	16.72	31.52	27.09	57.40	22.87	51.30	34.48
Wanda (Sun et al., 2024)	✗	19.71	34.64	28.76	60.34	26.79	64.70	39.16
SparseGPT (Frantar & Alistarh, 2023)	✓	18.52	34.89	28.43	59.58	26.89	66.60	39.15
MaskLLM (Fang et al., 2024)	✗	18.26	37.71	27.52	61.48	26.99	66.60	39.76
SUSI (Ours)	✗	18.17	38.42	27.85	61.15	27.85	66.20	39.94
Base Model: OPT-1.3B	-	23.29	57.03	41.54	71.76	34.16	84.30	52.01
Magnitude	✗	17.83	39.31	31.15	61.81	26.22	65.40	40.29
Wanda (Sun et al., 2024)	✗	20.82	47.60	33.85	65.72	30.53	79.40	46.32
SparseGPT (Frantar & Alistarh, 2023)	✓	21.93	45.62	34.19	63.98	32.06	78.90	46.11
MaskLLM (Fang et al., 2024)	✗	19.53	47.39	33.29	66.76	31.87	76.40	45.87
SUSI (Ours)	✗	21.67	47.68	33.50	66.70	32.15	77.20	46.48

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

296 The proposed method is evaluated on three OPT models (Zhang et al., 2022) of increasing sizes
 297 (e.g., 125M, 350M, and 1.3B parameters) to assess its stability and scalability under semi-structured
 298 pruning. All main experiments adopt a 2:4 sparsity pattern, compatible with NVIDIA Ampere
 299 hardware. The detailed hyperparameters are listed in the Appendix A.3. Training runs for 2,000
 300 steps with a batch size of 256 and a sequence length of 2048, processing 1B tokens in total. To
 301 ensure robust generalization, training data is collected on 1B tokens sampled from the C4 corpus
 302 (Raffel et al., 2020), a cleaned English dataset aligned with OPT’s pretraining data.

303 To assess the effectiveness of the proposed approach, four representative semi-structured pruning
 304 methods are selected, covering a range of popular strategies from classical to recent advancements:
 305 i) **Magnitude** is a simple, data-free method that removes parameters with the smallest absolute
 306 values. While this method is easy to implement, it often yields subpar results due to the limitations of
 307 parameter sensitivity and model dynamics; ii) **Wanda** (Sun et al., 2024) combines parameter mag-
 308 nitudes with activation statistics at each layer, achieving better performance than pure magnitude
 309 pruning, especially at higher sparsity, while maintaining computational efficiency; iii) **SparseGPT**
 310 (Frantar & Alistarh, 2023) incorporates activation outputs and Hessian information to estimate
 311 parameter importance, followed by parameter updates to reduce output error further. This method
 312 yields high accuracy but is more computationally demanding; and iv) **MaskLLM** (Fang et al., 2024)
 313 is quite similar to the proposed method in this study, by learning pruning masks with minimizing
 314 calibration loss under an N:M sparsity constraint, modeled via a multinomial distribution. It delivers
 315 strong performance across benchmarks but suffers from high computational cost.

4.2 MAIN RESULTS

316 Table 1 presents zero-shot accuracy results across various benchmark datasets. SUSI consistently
 317 achieves the highest or near-highest average accuracy across all evaluated OPT models (41.06%
 318 for OPT-125M, 39.94% for OPT-350M, and 46.48% for OPT-1.3B), outperforming baselines such
 319 as Magnitude, Wanda, SparseGPT, and MaskLLM. Notably, SUSI exhibits a minimal performance
 320 drop compared to unpruned models (e.g., 19.02% vs. 19.03% on ARC-C for OPT-125M), highlight-
 321 ing its ability to preserve model quality through differentiable subset sampling. This advantage over
 322 heuristic-based methods like Magnitude becomes more pronounced as model size increases (e.g.,
 323

324 46.48% for SUSI vs. 45.87% for MaskLLM on OPT-1.3B), highlighting its scalability. Additionally,
 325 SUSI shows strong performance across diverse tasks (e.g., 27.85% on RACE for OPT-350M), effec-
 326 tively balancing sparsity and accuracy while maintaining lower computational overhead compared
 327 to MaskLLM. Table 2 reports the PPL performance on WikiText-2, highlighting the advantages of
 328 the proposed method as follows:

329 **(i) Effectiveness of Differentiable Subset Sampling:** SUSI consistently outperforms other base-
 330 lines across all model scales, suggesting that the proposed differentiable subset sampling mecha-
 331 nism effectively learns performant sparsity patterns, better preserving model quality post-pruning.
 332 Furthermore, the small gap between
 333 the perplexity of the pruned SUSI
 334 models and the unpruned baseline in-
 335 dicates that SUSI maintains compet-
 336 itive performance even under aggres-
 337 sive pruning settings.

338 **(ii) Scalability across Model Sizes:**
 339 SUSI demonstrates consistent im-
 340 provements across increasing model
 341 scales, showing especially strong re-
 342 sults for medium (OPT-350M) and
 343 large (OPT-1.3B) models. This indi-
 344 cates that the method generalizes well
 345 and maintains scalability, which is often a limitation of recent pruning methods.

346 **(iii) Robustness of Learnable Mask Approaches:** While Traditional magnitude pruning performs
 347 poorly (e.g., 655.87 PPL on OPT-350M), reaffirming that naive pruning strategies significantly de-
 348 grade language modeling performance. The promising performance of SUSI and MaskLLM em-
 349 phasizes the importance of structured and learnable pruning mechanisms.

Table 2: Perplexity scores on WikiText-2.

Method	OPT-125M	OPT-350M	OPT-1.3B
w/o Pruning	31.95	25.42	16.41
Magnitude	407.66	655.87	245.75
Wanda	92.50	134.26	34.09
SparseGPT	72.80	61.23	29.27
MaskLLM	50.91	55.86	28.56
SUSI (Ours)	50.24	54.14	28.05

351 4.3 DETAILED ANALYSIS

352 4.3.1 EFFICIENT TRAINING

353 Figure 3 presents a comparative analysis of the parameter efficiency and data efficiency achieved
 354 by the proposed SUSI method under both 2:4 and 2:8 sparsity settings. Figure 3(a) reports the
 355 number of trainable parameters across multiple OPT model sizes. Under the 2:4 pattern, SUSI con-
 356 stantly requires about 1.5 \times fewer parameters than MaskLLM, effectively lowering optimization
 357 costs. More importantly, the advantage of SUSI becomes even more evident in the 2:8 setting: while
 358 MaskLLM requires up to 4.2B parameters for OPT-1.3B, SUSI reduces this to 1.2B, achieving a
 359 3.5 \times reduction. Such parameter efficiency directly translates into substantial computational and
 360 memory savings, which is critical for deployment in resource-constrained environments. Se-
 361 quentially, Figure 3(b) reports the perplexity on WikiText-2 as a function of the number of training tokens
 362 for the OPT-350M model. Under the 2:4 pattern, SUSI consistently achieves lower perplexity than
 363 MaskLLM across all token budgets, demonstrating superior data efficiency. In the 2:8 pattern, al-
 364 though the number of trainable parameters is drastically reduced compared to 2:4 (Figure 3a), SUSI
 365 maintains competitive perplexity with MaskLLM, reaching 144.9 at 1B tokens. These results high-
 366 light the robustness of SUSI: it not only improves parameter efficiency but also sustains competitive
 367 modeling performance under more aggressive sparsity constraints. The detailed performance of 2:8
 368 sparsity patterns is shown in the Appendix A.7.

370 4.3.2 ABLATION STUDY

371 Figure 4 summarizes the ablation study on the proposed SUSI model, focusing on the contributions
 372 of two critical design choices: (i) the power term p , which amplifies the effect of removing a selected
 373 weight (Equation 11); and (ii) the temperature annealing schedule that gradually sharpens the sam-
 374 pling distribution (Equation 13). Figure 4(a) illustrates the training loss trajectories under different
 375 configurations. Without the power term ($p = 1.0$), convergence is noticeably slower and less stable,
 376 with higher final loss compared to $p = 3.0$. Increasing p strengthens the penalization on selected
 377 weights, which accelerates convergence and consistently lowers the final loss, suggesting that this

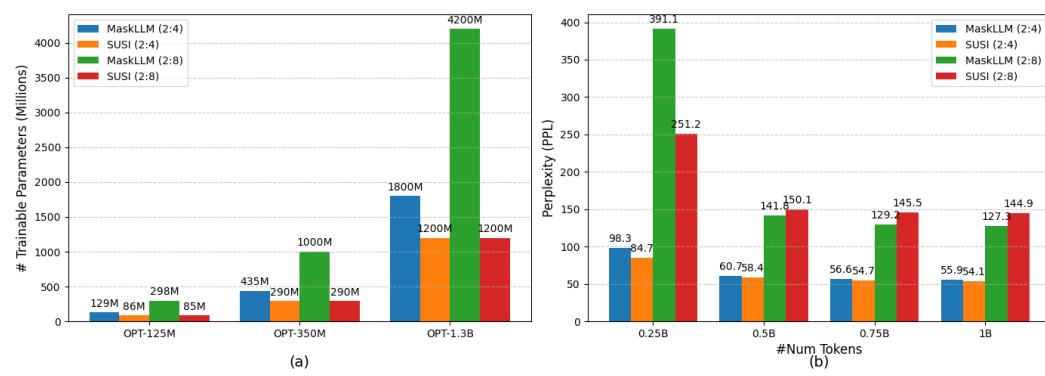


Figure 3: Comparison of sparsity and perplexity performance: (a) Learnable parameter counts under the 2:4 and 2:8 sparsity settings across multiple OPT model sizes; and (b) Perplexity versus number of training tokens on Wikitext-2 for the OPT-350M model.

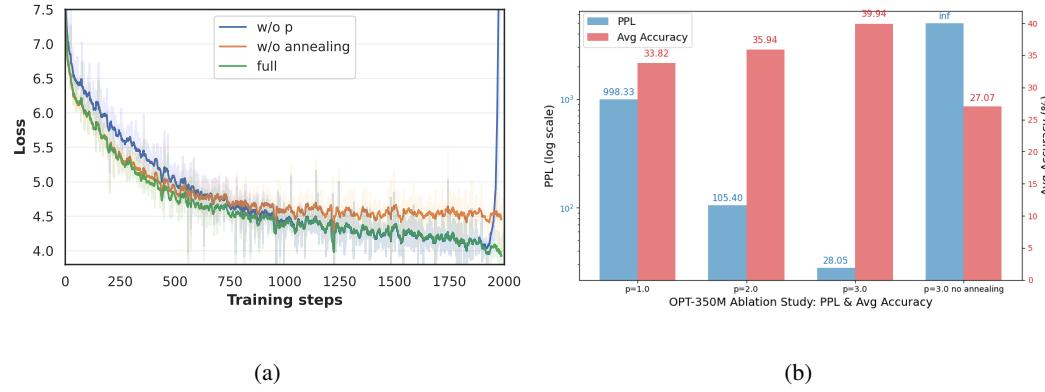


Figure 4: Comparison of training dynamics and ablation results: (a) shows the training loss convergence across different configurations (with/without p and annealing). (b) ablation study on OPT-350M showing PPL (log scale) and average accuracy.

mechanism facilitates escaping suboptimal mask distributions. On the other hand, removing the annealing mechanism leads to rapid divergence, underscoring the necessity of temperature scheduling for maintaining a stable optimization process. Figure 4(b) reports the downstream performance on OPT-350M in terms of perplexity (log scale) and average zero-shot accuracy. As p increases from 1.0 to 3.0, perplexity drops dramatically (from 998.33 to 28.05) and accuracy improves significantly (from 33.82% to 39.94%), validating the importance of the power term for effective mask learning. In contrast, disabling annealing results in infinite perplexity and a severe accuracy drop (27.07%), highlighting that annealing is indispensable for stable training and generalization. The results demonstrate that both components are synergistic: the power term enhances selection sharpness, while annealing ensures convergence stability, which improves the performance.

4.3.3 ROBUSTNESS ANALYSIS

To further evaluate the stability and robustness of SUSI, we trained the variational mask parameters using three distinct random seeds (42, 123, 1812) and measured the overlap of learned pruning masks across key layers. Figure 5 reports the probability of mask overlap between runs for representative modules such as `self_attn.q_proj`, `self_attn.k_proj`, and `mlp.up_proj`. Accordingly, the learned pruning masks show high overlap across seeds (e.g., 0.88 for `q_proj`, 0.83 for `k_proj`, 0.94 for `mlp.up_proj`), and downstream performance varies by less than 0.5%. These results confirm that SUSI consistently converges to similar sparsity patterns with minimal variation across initializations, demonstrating strong robustness and reproducibility.

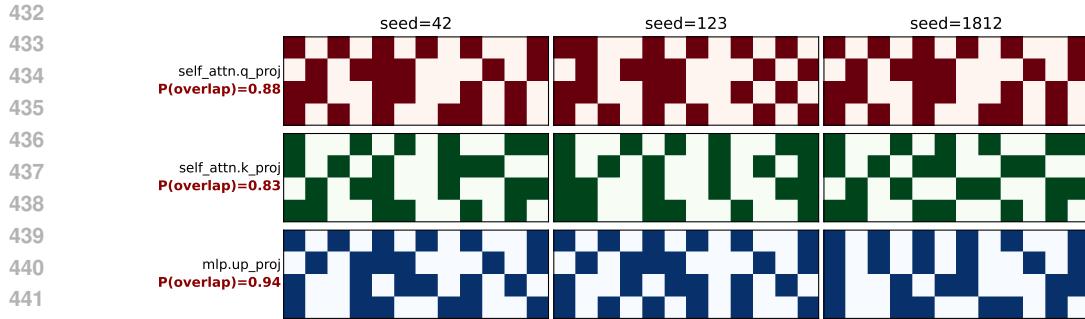


Figure 5: The learned masks from the query projection, key projection, and MLP up-projection in the first transformer block exhibit high similarity across different random seeds.

4.4 RELATED WORKS

Pruning LLMs is a critical optimization technique that removes less significant or redundant parameters, such as weights or neurons, from the neural network architecture. This process reduces model size, computational complexity, and memory requirements, thereby improving inference speed and enabling deployment on resource-constrained devices. Pruning methods for LLMs are broadly categorized into structured, unstructured, and semi-structured approaches, each with distinct characteristics and trade-offs (Cheng et al., 2024).

Structured pruning involves the elimination of entire architectural components, such as layers or attention heads, to improve computational efficiency (Ashkboos et al., 2024; Xia et al., 2024; An et al., 2024; Liu et al., 2025a; Le et al., 2025). This approach simplifies the model structure, making it more amenable to hardware optimization. However, it frequently results in substantial performance degradation, necessitating extensive retraining to restore model functionality.

Unstructured pruning targets individual weights based on their significance, enabling high performance even at elevated sparsity levels (Dong et al., 2024; Sun et al., 2024). Despite its efficacy in preserving model accuracy, the irregular sparsity patterns produced are often incompatible with hardware acceleration, limiting its practical applicability in deployment scenarios.

Semi-structured pruning has emerged as a promising approach, striking a balance between the benefits of structured and unstructured methods. By enforcing regular sparsity patterns, such as $N:M$ sparsity, this technique optimizes models for hardware acceleration while maintaining performance (Hubara et al., 2021). Methods like SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2024) employ training-free pruning, achieving efficiency without retraining. More recent methods, such as MaskLLM (Fang et al., 2024) and AST (Huang et al., 2025), focus on retraining sparse LLMs, which achieve promising performances while maintaining hardware compatibility. Nonetheless, the significant computational overhead associated with the number of trainable parameters remains a critical challenge, warranting further investigation. Building on this foundation, our proposed method leverages weighted reservoir sampling to enhance semi-structured pruning with $N:M$ sparsity, aiming to enable the retraining of semi-structured sparse LLM with minimal training costs.

5 CONCLUSION

This study introduced SUSI, a novel semi-structured pruning technique for LLMs, utilizing differentiable subset sampling to efficiently derive $N:M$ sparsity masks. Compared to existing methods, SUSI reduces the number of trainable parameters and associated memory overhead while maintaining strong performance. Experiments on OPT models (125M, 350M, 1.3B parameters) show that SUSI outperforms existing methods in perplexity on the WikiText-2 dataset and maintains competitive zero-shot accuracy across a range of benchmarks. Additionally, SUSI exhibits enhanced data efficiency and scalability as calibration data increases. These results establish SUSI as a promising solution for compressing LLMs, effectively balancing performance retention with the demands of resource-constrained deployment environments.

486 REPRODUCIBILITY STATEMENT
487488 We have taken several steps to ensure the reproducibility of our work:
489490 **Datasets.** All training and calibration data used in our experiments are publicly available. We
491 follow prior work by sampling 1B tokens from the cleaned English portion of the C4 corpus for
492 calibration and training, ensuring alignment with OPT’s pretraining distribution. For evaluation, we
493 employ well-known open-source benchmarks, including WikiText-2 for perplexity evaluation and
494 ARC (Easy/Challenge), HellaSwag, PIQA, SciQ, and RACE for zero-shot task accuracy. Dataset
495 statistics and details are provided in Appendix A.1 to facilitate replication.
496497 **Code and Implementation.** We provide an anonymous, fully reproducible implementation of SUSI,
498 including (i) training scripts for variational mask optimization, (ii) hyperparameter configurations
499 (see Appendix A.2), and (iii) evaluation scripts leveraging the LM-Evaluation-Harness toolkit. All
500 results reported in this paper can be reproduced using the provided codebase.
501502 **Availability.** To encourage transparency and facilitate verification of our findings, we submit
503 the source code and experiment configuration files as supplementary material. An anonymous
504 and reproducible version of the repository can be accessed at the following link: <https://anonymous.4open.science/r/susi-2E2C>.
505506 This repository contains all necessary scripts, instructions, and environment configuration files (in-
507 cluding requirements.txt) for reproducing our results end-to-end on standard hardware.
508509 REFERENCES
510511 Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
512 pruning for large language models. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan
513 (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Con-
514 ference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium
515 on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024, Vancou-
516 ver, Canada*, pp. 10865–10873. AAAI Press, 2024. doi: 10.1609/AAAI.V38I10.28960. URL
517 <https://doi.org/10.1609/aaai.v38i10.28960>.
518519 Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefer, and
520 James Hensman. Sliceprt: Compress large language models by deleting rows and columns. In
521 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
522 May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=vXxardq6db>.
523524 Thomas Bird, Julius Kunze, and David Barber. Stochastic variational optimization. *CoRR*,
525 abs/1809.04855, 2018. URL <http://arxiv.org/abs/1809.04855>.
526527 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
528 about physical commonsense in natural language. In *The Thirty-Fourth AAAI Conference on
529 Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
530 ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artifi-
531 cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pp. 7432–7439. AAAI
532 Press, 2020. doi: 10.1609/AAAI.V34I05.6239. URL <https://doi.org/10.1609/aaai.v34i05.6239>.
533534 Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
535 Taxonomy, comparison, analysis, and recommendations. *IEEE Trans. Pattern Anal. Mach. Intell.*,
536 46(12):10558–10578, 2024. doi: 10.1109/TPAMI.2024.3447085. URL <https://doi.org/10.1109/TPAMI.2024.3447085>.
537538 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
539 Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
540 *CoRR*, abs/1803.05457, 2018. URL <http://arxiv.org/abs/1803.05457>.
541542 Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen
543 Chu. Pruner-zero: Evolving symbolic pruning metric from scratch for large language
544 models. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,*
545

540 July 21-27, 2024. OpenReview.net, 2024. URL <https://openreview.net/forum?id=1tRLxQzdep>.

541

542 Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reservoir. *Inf. Process. Lett.*, 97(5):181–185, 2006. doi: 10.1016/J.IPL.2005.11.003. URL <https://doi.org/10.1016/j.ipl.2005.11.003>.

543

544 Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, and Martin T. Vechev. Exploiting LLM quantization. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/496720b3c860111b95ac8634349dcc88-Abstract-Conference.html.

545

546 Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language models. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/0e9a05f5ce62284c91e4a33498899124-Abstract-Conference.html.

547

548 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 10323–10337. PMLR, 2023. URL <https://proceedings.mlr.press/v202/frantar23a.html>.

549

550 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muenighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

551

552 Emil Julius Gumbel. *Statistical theory of extreme values and some practical applications: a series of lectures*, volume 33. US Government Printing Office, 1954.

553

554 Weiyu Huang, Yuezhou Hu, Guohao Jian, Jun Zhu, and Jianfei Chen. Pruning large language models with semi-structural adaptive sparse training. In Toby Walsh, Julie Shah, and Zico Kolter (eds.), *AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA*, pp. 24167–24175. AAAI Press, 2025. doi: 10.1609/AAAI.V39I23.34592. URL <https://doi.org/10.1609/aaai.v39i23.34592>.

555

556 Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated sparse neural training: A provable and efficient method to find N: M transposable masks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 21099–21111, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fcfa6a82-Abstract.html>.

557

558 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In *5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=rkE3y85ee>.

559

560 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard H. Hovy. RACE: large-scale reading comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), *Proceedings of the 2017 Conference on Empirical Methods in Natural*

594 *Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017*, pp. 785-
 595 794. Association for Computational Linguistics, 2017. doi: 10.18653/V1/D17-1082. URL
 596 <https://doi.org/10.18653/v1/d17-1082>.

597

598 Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, and Ali Anwar. Probe pruning:
 599 Accelerating llms through dynamic pruning via model-probing. In *The Thirteenth International*
 600 *Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenRe-
 601 view.net, 2025. URL <https://openreview.net/forum?id=WOt1owGfuN>.

602

603 Yijiang Liu, Huanrui Yang, Youxin Chen, Rongyu Zhang, Miao Wang, Yuan Du, and Li Du. PAT:
 604 pruning-aware tuning for large language models. In Toby Walsh, Julie Shah, and Zico Kolter
 605 (eds.), *AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence,*
 606 *February 25 - March 4, 2025, Philadelphia, PA, USA*, pp. 24686-24695. AAAI Press, 2025a.
 607 doi: 10.1609/AAAI.V39I23.34649. URL <https://doi.org/10.1609/aaai.v39i23.34649>.

608

609 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Kr-
 610 ishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LLM
 611 quantization with learned rotations. In *The Thirteenth International Conference on Learning*
 612 *Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025b. URL
 613 <https://openreview.net/forum?id=og06DGE6FZ>.

614

615 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 616 models. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,*
 617 *France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=Byj72udxe>.

618

619 Juan Pablo Muñoz, Jinjie Yuan, and Nilesh Jain. Mamba-shedder: Post-transformer compression
 620 for efficient selective structured state space models. In Luis Chiruzzo, Alan Ritter, and Lu Wang
 621 (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Associa-
 622 tion for Computational Linguistics: Human Language Technologies, NAACL 2025 - Volume 1:
 623 Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 3851-3863. Associa-
 624 tion for Computational Linguistics, 2025. doi: 10.18653/V1/2025.NAACL-LONG.195. URL
 625 <https://doi.org/10.18653/v1/2025.naacl-long.195>.

626

627 Tobias Plötz and Stefan Roth. Neural nearest neighbors networks. In Samy Bengio, Hanna M.
 628 Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
 629 *Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
 630 mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.
 631 1095-1106, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/f0e52b27a7a5d6a1a87373dfffa53dbe5-Abstract.html>.

632

633 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 634 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 635 text transformer. *J. Mach. Learn. Res.*, 21:140:1-140:67, 2020. URL <https://jmlr.org/papers/v21/20-074.html>.

636

637 Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning ap-
 638 proach for large language models. In *The Twelfth International Conference on Learning Rep-
 639 resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 640 <https://openreview.net/forum?id=PxoFut3dWW>.

641

642 Jeffrey Scott Vitter. Random sampling with a reservoir. *ACM Trans. Math. Softw.*, 11(1):37-57,
 643 1985. doi: 10.1145/3147.3165. URL <https://doi.org/10.1145/3147.3165>.

644

645 Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
 646 Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language models: A
 647 survey. *Trans. Mach. Learn. Res.*, 2024, 2024. URL <https://openreview.net/forum?id=bsCCJHb08A>.

648

649 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science ques-
 650 tions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), *Proceedings of*

648 *the 3rd Workshop on Noisy User-generated Text, NUT@EMNLP 2017, Copenhagen, Den-*
 649 *mark, September 7, 2017, pp. 94–106. Association for Computational Linguistics, 2017. doi:*
 650 *10.18653/V1/W17-4413. URL <https://doi.org/10.18653/v1/w17-4413>.*

651
 652 Miles Williams and Nikolaos Aletras. On the impact of calibration data in post-training quantization
 653 and pruning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*
 654 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL*
 655 *2024, Bangkok, Thailand, August 11-16, 2024*, pp. 10100–10118. Association for Computational
 656 Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.544. URL <https://doi.org/10.18653/v1/2024.acl-long.544>.

657
 658
 659 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
 660 model pre-training via structured pruning. In *The Twelfth International Conference on Learning*
 661 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 662 <https://openreview.net/forum?id=09i0dae0zp>.

663
 664 Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous re-
 665 laxations. In Sarit Kraus (ed.), *Proceedings of the Twenty-Eighth International Joint Confer-*
 666 *ence on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019*, pp. 3919–3925.
 667 [ijcai.org](https://ijcai.org/2019/544), 2019. doi: 10.24963/IJCAI.2019/544. URL <https://doi.org/10.24963/ijcai.2019/544>.

668
 669 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 670 chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Márquez
 671 (eds.), *Proceedings of the 57th Conference of the Association for Computational Linguistics,*
 672 *ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 4791–
 673 4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
 674 <https://doi.org/10.18653/v1/p19-1472>.

675
 676 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 677 pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
 678 Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
 679 moyer. OPT: open pre-trained transformer language models. *CoRR*, abs/2205.01068, 2022.
 680 doi: 10.48550/ARXIV.2205.01068. URL <https://doi.org/10.48550/arXiv.2205.01068>.

681 A APPENDIX

682 A.1 WRS YIELDS EQUIVALENT VARIATIONAL OBJECTIVE

683
 684
 685 **Theorem 1.** *Let $P(\mathbf{m}_i|\phi_i)$ be the exact distribution of each mask \mathbf{m}_i defined as in Equation 8. The*
 686 *expected loss when sampling each mask from its exact distribution is equivalent to the expected loss*
 687 *obtained when each mask is parameterized as a sum of elements in an ordered subset \mathcal{S}_i sampled*
 688 *from the corresponding restricted distribution $P_{\text{WRS}}(\mathcal{S}_i|\phi_i)$.*

689
 690
 691 *Proof.* Without loss of generality, we prove the following terms are equivalent:

$$692 \mathbb{E}_{P(\mathbf{m}|\phi)}[f(\mathbf{m})] = \mathbb{E}_{P_{\text{WRS}}(\mathcal{S}|\phi)} \left[f \left(\sum_{\mu \in \mathcal{S}} \mu \right) \right] \quad (14)$$

693
 694 where $f(\mathbf{m})$ is an objective function depending on \mathbf{m} , $P(\mathbf{m}|\phi) = \sum_{\mathcal{S}_m} P_{\text{WRS}}(\mathcal{S}_m|\phi)$ is the exact
 695 distribution with \mathcal{S}_m s are sets that the sum of elements in \mathcal{S}_m equals \mathbf{m} .

Given \mathcal{M} , the set of binary masks satisfying the N:M sparsity, the expected loss when sampling \mathbf{m} from the exact distribution is then:

$$\begin{aligned}
 \mathbb{E}_{P(\mathbf{m}|\phi)}[f(\mathbf{m})] &= \sum_{\mathbf{m} \in \mathcal{M}} P(\mathbf{m}|\phi) f(\mathbf{m}) = \sum_{\mathbf{m} \in \mathcal{M}} \left(\sum_{\mathcal{S}_m} P_{\text{WRS}}(\mathcal{S}_m|\phi) \right) f \left(\sum_{\mu \in \mathcal{S}_m} \mu \right) \\
 &= \sum_{\mathbf{m} \in \mathcal{M}} \sum_{\mathcal{S}_m} P_{\text{WRS}}(\mathcal{S}_m|\phi) f \left(\sum_{\mu \in \mathcal{S}_m} \mu \right) = \sum_{\mathbf{m} \in \mathcal{M}} P_{\text{WRS}}(\mathcal{S}|\phi) f \left(\sum_{\mu \in \mathcal{S}} \mu \right) \quad (15) \\
 &= \mathbb{E}_{P_{\text{WRS}}(\mathcal{S}|\phi)} \left[f \left(\sum_{\mu \in \mathcal{S}} \mu \right) \right]
 \end{aligned}$$

□

The final expression is precisely the expectation of f under the distribution $P_{\text{WRS}}(\mathcal{S}|\phi)$, proving the claim.

A.2 EVALUATION METRICS AND BENCHMARK DATASETS

Following previous works in this research field, three automated metrics are considered for the evaluation, including both quantitative and qualitative metrics to capture the full impact of pruning: i) *Task Accuracy (ACC)*: on common NLP tasks such as question answering in reading comprehension, mathematics, and science. These tasks are typically assessed in zero-shot or few-shot settings using benchmark datasets; *Perplexity (PPL)*: is a standard metric for assessing language model quality. It

Table 3: Statistics of datasets used for zero-shot evaluation.

Dataset	Questions	Task Type
ARC-Easy	2,376	Multiple-choice science
ARC-Challenge	1,172	Multiple-choice science
HellaSwag	10,042	Sentence completion
PIQA	1,838	Physical interaction QA
RACE	1,045	Multiple-choice comprehension
SciQ	1,000	Multiple-choice science

measures how well the model predicts the next word in a sequence, with lower values indicating better predictive performance. The benchmark datasets used to assess the effectiveness of pruning methods include WikiText-2 (Merity et al., 2017) for perplexity evaluation and a range of NLP benchmark datasets for zero-shot evaluation, which cover diverse task types and reasoning requirements, including ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), and RACE (Lai et al., 2017). These evaluations are conducted using the LM-Evaluation-Harness toolkit (Gao et al., 2024).

Table 3 provides a comprehensive summary of the datasets used for zero-shot evaluation across multiple tasks. These datasets span a range of domains, including commonsense reasoning, science question answering, and reading comprehension, thereby ensuring a rigorous and diverse assessment of pruning performance.

A.3 HYPERPARAMETER SETTING

The hyperparameters used for training SUSI are listed in Table 4. These settings were carefully chosen to balance convergence stability and computational efficiency across all evaluated models. Specifically, model weights remain frozen during training. The variational distribution is initialized from a standard normal ($\mu = 0.0$, $\sigma = 0.01$), and a simulated annealing process gradually reduces randomness. Temperatures τ and λ linearly decay from 1.0 to 0.05 and from 1.0 to 0.002, respectively. Optimization uses AdamW-8bit with a learning rate decaying from 1×10^{-3} to 1×10^{-4} ,

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Table 4: Hyperparameter configuration used in training.

Parameter	Values
Initialization distribution	$\mathcal{N}(0, 0.01)$
Gumbel-Softmax temperature	$\tau = 1.0 \rightarrow 0.05$
Sampling temperature	$\lambda = 1.0 \rightarrow 0.002$
Weight decay	0.05
Learning rate	$10^{-3} \rightarrow 10^{-4}$
Strengthening power term	$p = 3.0$
AdamW parameters	$\beta_1 = 0.9, \beta_2 = 0.95$
Batch size	256
Sequence length	2048
Training steps	2000

weight decay of 0.05, and $\beta_1 = 0.9, \beta_2 = 0.95$, matching the OPT pretraining setup. The power term p (Equation 11) is selected from $\{1, 2, 3\}$, where $p = 1$ corresponds to no power-term scaling, and larger values of p (e.g., $p = 2$ or 3) progressively emphasize the impact of removing higher-importance elements.

A.4 GUMBEL-TOP-K ALGORITHM

The algorithm for Gumbel-Top-K is illustrated in the Algorithm 1. Specifically, we provide a clear description of the Gumbel-Top-K sampling procedure employed to enable differentiable mask learning. This formulation allows for efficient sampling of K items without replacement while preserving differentiability for gradient-based optimization.

Algorithm 1 Gumbel-Top- K Sampling Algorithm (Differentiable)

Input: Set of candidates $\mathcal{X} = \{x_1, \dots, x_N\}$ with corresponding logits $\phi = [\phi_1, \dots, \phi_N]$, number of samples K , temperature $\tau > 0$

Output: Soft K -hot selection vector $\mathbf{S} \in \mathbb{R}^N$

```

1: for  $i \leftarrow 1$  to  $N$  do
2:    $u_i \sim \text{Uniform}(0, 1)$ 
3:    $g_i \leftarrow -\log(-\log(u_i))$                                 // Sample Gumbel noise
4:    $\kappa_i \leftarrow \phi_i + g_i$                                 // Compute perturbed key
5: end for
6:  $\alpha^{(1)} \leftarrow [\kappa_1, \dots, \kappa_N]$ 
7: for  $k \leftarrow 1$  to  $K$  do
8:    $\mu^{(k)} \leftarrow \text{softmax}(\alpha^{(k)} / \tau)$ 
9:    $\alpha^{(k+1)} \leftarrow \alpha^{(k)} + \log(1 - \mu^{(k)})$ 
10: end for
11:  $\mathbf{S} \leftarrow \sum_{k=1}^K \mu^{(k)}$                                 // Soft K-hot vector
12: return  $\mathbf{S} = 0$ 

```

A.5 COMPARISON TO STRAIGHT-THROUGH GUMBEL-TOP- K

We further examined whether adopting a straight-through (ST) Gumbel-Top-K estimator benefits pruning performance. In this variant, the forward pass generates discrete masks by directly applying an argtopK over Gumbel-perturbed logits, while the backward pass propagates gradients through the continuous Gumbel-softmax relaxation. This strategy enforces discretization earlier in training, which is able to improve mask interpretability. However, our empirical results in Table 5 show that ST Gumbel-Top-K leads to slightly inferior performance compared to the pure soft relaxation. For instance, on OPT-125M, ST achieves 51.20 perplexity and 40.04% average accuracy, while the soft approach reaches 50.24 perplexity and 41.06% accuracy. Similarly, on OPT-350M, the gap widens (60.49 vs. 54.14 perplexity). These observations suggest that the bias introduced by the ST estimator hampers generalization, outweighing the potential benefits of earlier discretization. Overall, the soft

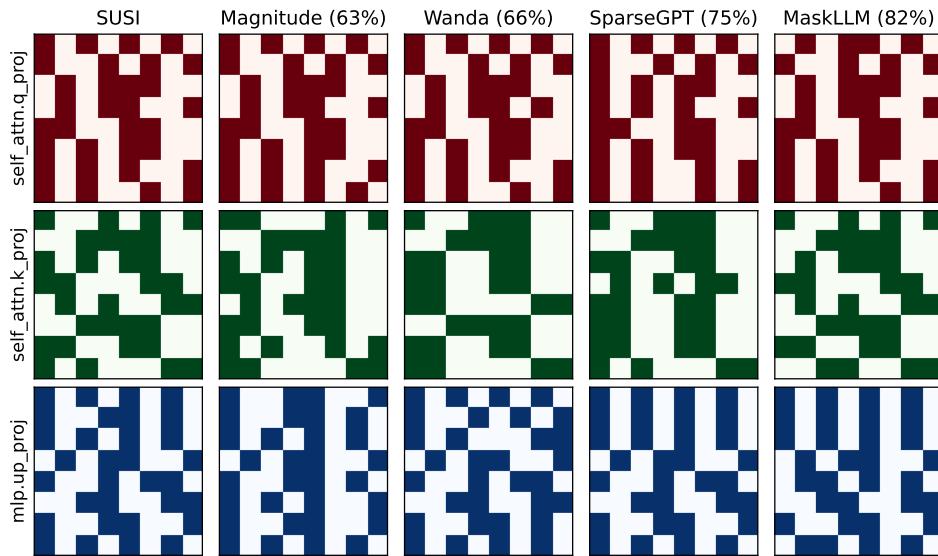
810
811 Table 5: Comparison of pruning results with 2:4 sparsity, both with and without ST Gumbel-Top- K
812 estimator (denoted as "w STE" and "w/o STE").

813 814 Metric	815 816 OPT-125M		817 818 OPT-350M	
	819 820 w STE	821 822 w/o STE (ours)	823 824 w STE	825 826 w/o STE (ours)
PPL (↓)	51.20	50.24	60.49	54.14
Avg. Acc (↑)	40.04	41.06	39.11	39.94

819
820 Gumbel-Top- K relaxation used in SUSI provides a more effective balance between trainability and
821 performance.

822 A.6 MASK DIFFERENCE ANALYSIS

824 To investigate how different pruning strategies select weights, we measure the overlap between
825 masks produced by various methods on the same model. Figure 6 shows that SUSI’s learned masks
826 achieve much higher cross-seed similarity (82%) compared to one-shot pruning methods such as
827 Magnitude (63%), Wanda (66%), and SparseGPT (75%), which produce substantially different spar-
828 sity patterns.



829
830
831 Figure 6: Mask difference analysis between SUSI and previous works. Besides the name of each
832 baseline, place an overlapping percentage indicating the similarity of the produced masks between
833 that baseline and SUSI.

834
835 Interestingly, the mask similarity of SUSI closely matches that of other mask-learning approaches
836 like MaskLLM, suggesting that iterative mask optimization converges toward a stable and consistent
837 subset of important weights. Combined with the main results, higher mask similarity is correlated
838 with better perplexity and zero-shot accuracy, underscoring that stable mask learning plays a key
839 role in achieving superior downstream performance.

840 A.7 EXTEND TO OTHER SPARSITY PATTERN

841 To further examine the generality of SUSI, we extend our evaluation beyond the commonly studied
842 2:4 configuration. These alternative settings introduce more aggressive pruning constraints and
843 exacerbate the challenges faced by learnable mask methods such as MaskLLM, whose parameter
844 overhead grows quadratically. In contrast, SUSI preserves linear complexity in M , enabling efficient
845 scalability to larger group sizes.

Table 6: Performance on 2:8 sparsity pattern.

Method	W/U	ARC-C	ARC-E	HellaS.	PIQA	RACE	SciQ	Average ↑	PPL ↓
Base Model: OPT-125M	-	19.03	43.52	29.19	62.95	30.05	75.20	43.32	32
Magnitude	✗	21.25	27.26	25.90	53.65	21.82	21.80	28.61	13431
Wanda	✗	18.86	29.12	26.19	54.35	21.44	28.80	29.79	5195
SparseGPT	✓	19.88	28.28	26.43	55.01	23.73	32.40	30.96	986
MaskLLM	✗	18.77	35.19	26.86	58.16	23.44	61.20	37.27	107
SUSI (Ours)	✗	18.17	33.80	26.91	58.27	23.44	62.70	37.22	110
Base Model: OPT-350M	-	20.82	44.02	32.02	64.58	29.95	74.90	44.38	25.42
Magnitude	✗	19.97	28.07	26.31	53.54	22.20	30.00	30.02	9805
Wanda	✗	18.52	27.61	26.51	53.48	22.11	29.00	29.54	2956
SparseGPT	✓	17.49	28.83	26.50	54.30	23.44	37.00	31.26	1358
MaskLLM	✗	16.55	31.61	26.38	57.51	24.78	58.60	35.91	127
SUSI (Ours)	✗	16.30	29.50	26.61	57.02	24.69	57.20	35.22	145

Table 7: Performance on the 4:8 sparsity pattern. Note that experimenting on MaskLLM could not be executed on our infrastructure in this setting due to the excessive number of trainable parameters.

Method	W/U	ARC-C	ARC-E	HellaS.	PIQA	RACE	SciQ	Average ↑	PPL ↓
Base Model: OPT-125M	-	19.03	43.52	29.19	62.95	30.05	75.20	43.32	32
Magnitude	✗	18.09	34.72	27.55	58.32	23.25	57.4	36.56	205
Wanda	✗	19.11	37.42	27.74	59.85	26.22	67.10	39.57	61
SparseGPT	✓	18.77	39.06	27.94	61.15	27.75	71.10	40.96	54
MaskLLM	✗	-	-	-	-	-	-	-	-
SUSI (Ours)	✗	19.11	40.36	27.67	62.25	29.37	72.30	41.84	41
Base Model: OPT-350M	-	20.82	44.02	32.02	64.58	29.95	74.90	44.38	25
Magnitude	✗	16.81	33.12	27.74	58.32	22.78	56.90	35.95	221
Wanda	✗	17.83	35.86	28.81	60.83	25.17	66.30	39.13	71
SparseGPT	✓	18.52	36.57	29.56	61.32	27.85	69.10	40.49	46
MaskLLM	✗	-	-	-	-	-	-	-	-
SUSI (Ours)	✗	18.16	38.85	28.79	62.51	29.33	68.51	41.03	42

As shown in Figure 3 and Table 6, under the 2:8 sparsity pattern, SUSI achieves a $3.5\times$ reduction in trainable parameters relative to MaskLLM, while maintaining competitive perplexity. This demonstrates that even with substantially fewer learnable parameters than in the 2:4 case, SUSI continues to deliver robust language modeling performance. These results underscore the efficiency of differentiable subset sampling in handling larger sparsity patterns.

The 4:8 sparsity pattern (Table 7) presents an even more demanding setting. Here, MaskLLM fails to execute due to the prohibitive number of trainable parameters. By contrast, SUSI remains tractable, successfully completing training and yielding stable evaluation results. This highlights a distinct advantage of SUSI: its parameter efficiency not only improves training feasibility but also makes previously impractical sparsity patterns accessible to large-scale language models.

A.8 EXTEND SUSI TO RECENT LLMs

We further extend SUSI to recent LLM architectures, including Qwen2.5-0.5B and Llama3.2-1B, to examine its generality beyond the OPT family. As shown in Table 8, SUSI remains feasible and efficient under these modern settings. While the performance gap relative to dense models is more pronounced than in the OPT series (e.g., Qwen2.5-0.5B drops from 55.33% accuracy at 22 PPL to 43.75% at 46 PPL after pruning), SUSI still achieves competitive results. Compared to the OPT family, where SUSI nearly matches the dense baseline, these results highlight that SUSI scales consistently to diverse architectures, maintaining tractable training and offering substantial efficiency gains even when accuracy trade-offs are larger in more recent models.

A.9 LIMITATIONS

Despite the promising performance and efficiency demonstrated by SUSI, several limitations remain:

918
 919 Table 8: Performance of SUSI on recent LLMs (Qwen2.5-0.5B and Llama3.2-1B). SUSI remains
 920 tractable, demonstrating scalability across architectures. Although the performance gap to dense
 921 models is larger than in the OPT family, SUSI preserves competitive accuracy with favorable
 922 perplexity-efficiency trade-offs.

Method	ARC-C	ARC-E	HellaS.	PIQA	RACE	SciQ	Average ↑	PPL ↓
Base Model:Qwen2.5-0.5B	29.18	64.48	40.53	70.35	34.64	92.80	55.33	22
SUSI (Ours)	18.34	45.54	30.56	64.15	28.52	75.40	43.75	46
Base Model:Llama3.2-1B	31.31	65.49	47.72	74.48	37.89	91.40	58.05	13
SUSI (Ours)	20.39	45.20	32.33	65.89	29.28	77.60	45.12	32
Base Model: OPT-1.3B	23.29	57.03	41.54	71.76	34.16	84.30	52.01	16
SUSI (Ours)	21.67	47.68	33.50	66.70	32.15	77.20	46.48	28

930
 931 First, the deployment of semi-structured sparsity is inherently hardware-dependent. At present,
 932 substantial throughput gains are realized only on select platforms (e.g., AMD ROCm and certain
 933 NVIDIA Ampere and Hopper GPUs) where 2:4 structured sparsity is natively supported and accel-
 934 erated at the kernel level. Although SUSI can, in principle, be extended to arbitrary $N : M$ sparsity
 935 patterns, its practical utility is constrained by the absence of hardware kernels and vendor-optimized
 936 libraries for ratios other than 2:4. On accelerators or CPUs lacking such specialized support, prun-
 937 ing yields only marginal reductions in memory footprint and fails to deliver meaningful inference
 938 speedup. This hardware dependency poses a significant challenge for widespread adoption in het-
 939 erogeneous production environments, where deployment targets may vary.

940 Second, the current evaluation focuses exclusively on English-centric OPT models and a limited set
 941 of standard NLP benchmarks. Future research should investigate the applicability of SUSI to mul-
 942 tilingual LLMs, larger-scale models, and domain-specific tasks (e.g., code generation, reasoning-
 943 intensive applications) to assess its generalization and scalability comprehensively.

944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971