Individual Fairness In Strategic Classification

Zhiqun Zuo zuo.167@osu.edu Mohammad Mahdi Khalili

khalili.17@osu.edu

Department of Computer Science and Engineering The Ohio State University Columbus, OH 43210

Abstract

Strategic classification, where individuals modify their features to influence machine learning (ML) decisions, presents critical fairness challenges. While group fairness in this setting has been widely studied, individual fairness remains underexplored. We analyze threshold-based classifiers and prove that deterministic thresholds violate individual fairness. Then, we investigate the possibility of using a randomized classifier to achieve individual fairness. We introduce conditions under which a randomized classifier ensures individual fairness and leverage these conditions to find an optimal and individually fair randomized classifier through a linear programming problem. Additionally, we demonstrate that our approach can be extended to group fairness notions. Experiments on real-world datasets confirm that our method effectively mitigates unfairness and improves the fairness-accuracy trade-off.

1 Introduction

As machine learning (ML) becomes increasingly popular in decision-making systems, the interaction between individuals and AI agents emerges as a critical issue. AI-aided applications, such as automated lending [1], resume screening [2], and college admissions [3], significantly influence people's opportunities and outcomes. A fundamental issue in these applications is fairness—ensuring that ML-based decisions do not systematically disadvantage certain individuals or groups. Various fairness notions, including tier balancing [4], lookahead counterfactual fairness [5], and long-term fairness [6], have been proposed to address fairness issues arising from interactions between human and AI.

A major challenge in ML-based decision-making process is strategic behavior—where individuals adjust their features to obtain more favorable outcomes [7, 8, 9]. Because ML models operate based on predefined decision criteria, they are inherently vulnerable to such gaming. For example, students may participate in specific extracurricular activities if they believe doing so will improve their college admissions prospects. The field of strategic classification seeks to address these challenges by designing classifiers that account for individuals' ability to adjust their features [7]. Prior work has examined diverse aspects of strategic classification, including heterogeneous strategic behavior [10], incentive-aware risk minimization [11], and performative prediction, where data distributions evolve in response to decision rules [12].

Fairness in ML has been widely studied, leading to the development of multiple fairness criteria such as statistical parity [13, 14], equal opportunity [15], counterfactual fairness [16, 17], and individual fairness [18]. However, fairness in strategic settings introduces new complexities. While some research has explored how strategic behavior may mitigate or exacerbate unfairness [19], much of the focus has been on group fairness [20, 21]. Less attention has been given to individual fairness even as strategic behavior amplifies disparities near decision thresholds.

Beyond fairness in prediction outcomes, strategic classification raises concerns about fairness in social burden (i.e., the cost individuals must pay to meet decision criteria) [22]. Since different individuals face varying levels of difficulty in modifying their features, strategic decision-making can lead to unfair cost disparities. Prior work has examined the trade-off between social cost and institutional utility [22] and proposed group-specific thresholds to mitigate cost disparities [23]. However, ensuring individual fairness with respect to individual cost remains an open problem. For instance, two individuals with similar underlying qualifications may be forced to pay different costs to receive the same decision simply because one lies just below the decision threshold.

In this work, we analyze binary strategic classification and demonstrate that deterministic threshold-based classifiers inherently violate individual fairness. To address this, we propose a randomized thresholding approach, proving that individual fairness can be achieved if the threshold distribution satisfies certain conditions. Furthermore, we show that the optimal threshold distribution can be efficiently computed via linear programming. Finally, we investigate the challenge of simultaneously achieving individual and group fairness, proving that this can be accomplished by adding a constraint to the threshold distribution—while still preserving the linear programming formulation.

Our results provide a principled framework for fair decision-making in strategic classification, ensuring equitable treatment both in terms of predictions and the costs individuals must bear to adapt. By addressing fairness from both an individual and group perspective, our approach offers a practical and computationally efficient solution to mitigate unfairness in real-world strategic decision-making systems.

2 Notations and Preliminaries

2.1 Strategic Classification

In this paper, we consider a binary classification problem in a strategic environment. The goal is to find a classifier $f:\mathcal{X}\mapsto\mathcal{Y}$ to predict binary label Y from the observed features X with $X\in\mathcal{X}$ and $Y\in\mathcal{Y}=\{0,1\}$. In a strategic setting, f is being used by a decision maker/institution to identify qualified individuals for a job or position, and individuals can improve their features x to get a better result. When an individual adjust feature x to x', a cost will be incurred which is represented by cost function $c:\mathcal{X}\times\mathcal{X}\mapsto\mathbb{R}^+\cup\{0\}$ with $c(x,x)=0, \forall x\in\mathcal{X}$. The institution and individuals aim at maximizing their utility functions. The utility function of the institution is the accuracy on the improved/adjusted features, i.e., $\mathscr{U}_{inst}(f)=\Pr\{f(X')=Y\}$.

The individuals need to consider both the gain from the classification and the cost they need to pay for the feature improvement. So, their utility is defined as follows, $\mathscr{U}_{indiv}(f) = [f(x') - f(x)] - \lambda c(x,x')$, where λ is a positive constant measuring the relative importance of the cost to people. The best response of a person is x' such that $\mathscr{U}_{indiv}(f)$ is maximized. We denote the best response to classifier f as $\Delta x(f) = \arg\max_{x'} \mathscr{U}_{indiv}(f)$.

In this paper, we will analyze the strategic classification problem where x is a general d-dimensional feature vectors. The following definition and assumption will be used throughout this paper.

Definition 2.1 (*d*-dimensional binary classification problem). A *d*-dimensional binary classification problem is a problem of finding a classifier $f: \mathcal{X} \to \mathcal{Y}$ with $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = \{0, 1\}$.

Assumption 2.1. In a d-dimensional binary classification problem, we assume there is a function $l(x) : \mathbb{R}^d \to \mathbb{R}$, such that

$$l(x_1) \ge l(x_2)$$
 iff $\Pr\{Y = 1 | X = x_1\} \ge \Pr\{Y = 1 | X = x_2\},$ (1)

and

$$l(x_1) \le l(x_2)$$
 iff $\Pr\{Y = 1 | X = x_1\} \le \Pr\{Y = 1 | X = x_2\}.$ (2)

We further assume that l(x) is a continuous and differentiable function and $l(X) \in [C, D]$.

Note that we adopt Assumption 2.1, as it is commonly used in the literature [22]. The existence of l(x) ensures that the problem can be addressed using threshold-based classifiers on l(x). In many real-world scenarios (for example, when a bank decides whether to issue a loan based on an applicant's credit score) l(x) could simply be x, since a higher credit score typically indicates

¹Capital letters are being used for random variables, and small letters are being used for realizations.

a lower risk of default. When x lies in a high-dimensional space, a reasonable choice for l(x) is $l(x) = \Pr\{Y = 1 \mid X = x\}$.

In this paper, we focus on **threshold classifiers**. A deterministic threshold classifier in a d-dimensional binary classification problem is given by,

$$f(x;t) = \mathbf{1} \left[l(\Delta x(f)) \ge t \right],\tag{3}$$

where t is a fixed threshold associated with classifier f(x;t), and $\mathbf{1}(\cdot)$ is an indicator function [24]. Note that Δx is used in (3) because the classifier is applied to adjusted features rather than original features.

2.2 Randomized Classifier

We denote a randomized classifier \mathscr{F} as a random mapping from \mathscr{X} to \mathscr{Y} . Each randomized classifier is associated with a function family \mathscr{F} and a probability distribution P over \mathscr{F} . Given x, the output distribution is.

$$\Pr\{\mathscr{F}(x) = y\} = \sum_{f \in \{h|h(x)=y, h \in \mathcal{F}\}} P(f). \tag{4}$$

A randomized threshold classifier is associated with a distribution over $\mathcal{F} = \{f(x;t)|t \in \mathcal{T}\}$, where \mathcal{T} is the set of possible thresholds. Let p(t) be a probability density function over \mathcal{T} . Then, for \mathscr{F} associated with p(t), we have,

$$\Pr\{\mathscr{F}(x) = y\} = \int_{t \in [\mathcal{T} \cap \{\tau \mid f(x;\tau) = y\}]} p(t) dt.$$
 (5)

Note that deterministic classifier $f(x;t_0)$ can be regarded as a special randomized classifier with $p(t) = \delta(t - t_0)$, where $\delta(\cdot)$ is the unit impulse function (also referred to as Dirac delta function [25]). For the rest of the paper, we are focusing on randomized and deterministic threshold classifiers.

2.3 Best Response Cost

Since in this paper we consider a strategic setting, the individuals always choose the best response to the classifier announced by the institution/decision maker. We define the Best Response Cost (BRC) associated with an individual with feature x as follows, $c_f(x) = c(x, \Delta x(f))$.

For a randomized classifier \mathcal{F} , BRC is

$$c_{\mathscr{F}}(x) = \sum_{f \in \mathcal{F}} c(x, \Delta x(f)) P(f) = \mathbb{E}\{c(x, \Delta x(\mathscr{F}))\}. \tag{6}$$

We assume that cost function c(x, x') depends on the distance between l(x) and l(x'). More precisely, we consider the following cost function,

$$c(x, x') = \begin{cases} g(l(x') - l(x)) & l(x') \ge l(x), \\ \infty & l(x') < l(x). \end{cases}$$
 (7)

where $g: \mathbb{R} \mapsto \mathbb{R}$ is differentiable and is a strictly increasing function satisfying g(0) = 0. When l(x) < l(x'), the cost is infinite because we are considering a threshold-based classifier, and decreasing l(x) will decrease the probability of being positively classified. Therefore, we have the following best response function,

$$l(\Delta(f(x;t))) = \begin{cases} l(x) & l(x) < \left[t - g^{-1}\left(\frac{1}{\lambda}\right)\right] \text{ or } l(x) \ge t, \\ t & \left[t - g^{-1}\left(\frac{1}{\lambda}\right)\right] \le l(x) < t. \end{cases}$$
(8)

For notational convenience, we denote the constant $g^{-1}(\frac{1}{\lambda})$ as \mathcal{C} . When $l(x) < t - \mathcal{C}$, the individual cannot benefit from increasing l(x) due to the high cost. When $l(x) \geq t$, the individual does not need to change the feature to change the outcome. Only when $t - \mathcal{C} \leq l(x) < t$, increasing l(x) to t will result in positive utility $\mathscr{U}_{indiv}(f)$.

2.4 Individual Fairness

Dwork *et al.* [26] proposes the notion of individual fairness that requires people with similar features to be treated similarly. We can adopt a similar definition for a strategic setting. Mathematically, individual fairness with respect to (w.r.t.) the expectation of outcome/decision \mathscr{F} in a strategic setting is defined as follows,

$$\left| \mathbb{E}\{\mathscr{F}(x_1)\} - \mathbb{E}\{\mathscr{F}(x_2)\} \right| \le M_p \left\| x_1 - x_2 \right\|_2, \tag{9}$$

where M_p is a predefined constant, $||x_1 - x_2||$ is the Euclidean distance between x_1 and x_2 . We can also adopt individual fairness with respect to BRC. In particular, we say the individual fairness with respect to BRC is satisfied if the following holds,

$$|c_{\mathscr{F}}(x_1) - c_{\mathscr{F}}(x_2)| \le M_c \|x_1 - x_2\|_2$$
 (10)

3 Individual Fairness with Repspect to BRC

In this section, we show for certain l(x), a classifier with a deterministic threshold can never satisfy individual fairness with respect to BRC. Then, we identify conditions under which a randomized classifier satisfies individual fairness. We also discuss how to find a fair optimal randomized classifier.

Consider a deterministic classifier $f(x;t_0)$. Note that if $t_0 \le C + C$, then all the individuals after choosing the best response will be assigned label 1, and $f(x;t_0)$ cannot distinguish between qualified and unqualified individuals. Therefore, in the following theorem, we focus in case where $t_0 \in (C + C, D)$.

Theorem 3.1. Consider a d-dimensional binary classification problem with deterministic classifier $f(x;t_0)$ with $t_0 \in (C + C, D)$. If l(x) is reverse Lipschitz continuous, i.e.

$$|l(x_1) - l(x_2)| \ge L_l \|x_1 - x_2\|_2, L_l < \infty, \forall x_1, x_2,$$
(11)

then for any constant M_c , there exist $x_1, x_2 \in \mathcal{X}$ such that $|c_f(x_1) - c_f(x_2)| > M_c ||x_1 - x_2||_2$.

Condition (11) ensures that the change in x can effectively change l(x) to affect the classification result. From the proof of Theorem 3.1 in Appendix A.1, BRC is not continuous at x_0 where $l(x_0) = t_0 - \mathcal{C}$, and individual fairness does not hold. Therefore, we relax a deterministic threshold and consider a randomized threshold. The following theorem implies that we can achieve individual fairness with respect to BRC by adding constraints on distribution p(t).

Theorem 3.2. Consider a d-dimensional binary classification problem, and let $C_l = \max_{x \in \mathcal{X}} \|\nabla_x l(x)\|_2$, $C_g = \max_{l \in [0,C]} g'(l)$, and $\mathcal{F} = \{f(x;t)|t \in (C+\mathcal{C},D)\}$ for randomized classifier \mathscr{F} . If $p(t) \leq L_c$ with $L_c = \min\{\frac{\lambda M_c}{C_l}, \frac{M_c}{C_l C_g \mathcal{C}}\}$, then for constant M_c , $\forall x_1, x_2 \in \mathcal{X}$, we have,

$$|c_{\mathscr{F}}(x_1) - c_{\mathscr{F}}(x_2)| \le M_c ||x_1 - x_2||_2$$
.

Theorem 3.2 shows that by relaxing the hard threshold, the individuals with feature vector x_0 such that $l(x_0) = t_0 - C - \epsilon$ (ϵ is a positive constant) now also have the opportunity to change the classification result by paying a certain cost.

3.1 Fair Optimal Randomized Classifier

Theorem 3.2 demonstrates the existence of randomized classifiers that can achieve individual fairness. However, not all threshold distributions yield high accuracy, so it is necessary to identify one that achieves the highest possible accuracy. In this section, our goal is to find a randomized classifier that minimizes the error rate while satisfying individual fairness. Let e(t) denote the error rate of $f(\cdot;t)$. Then, we have,

$$e(t) = \int_{C}^{t-C} \Pr\{Y = 1 | l(X) = l\} p_L(l) dl + \int_{t-C}^{D} \Pr\{Y = 0 | l(X) = l\} p_L(l) dl,$$
 (12)

where $p_L(l)$ is the probability density function of L = l(X). Note that $\Pr\{l_1 \leq l(X) \leq l_2\} = \int_{l_1}^{l_2} p_L(l) dl$. For notational convenience, we denote $\rho_0(l) = \Pr\{Y = 0 | l(X) = l\} p_L(l)$ and

 $\rho_1(l) = \Pr\{Y = 1 | l(X) = l\} p_L(l)$. Hence, to find the optimal classifier \mathscr{F} , we need to solve the following optimization problem.

$$p_c(t) = \arg\min_{p(t)} \mathbb{E}_{t \sim p(t)}[e(t)] = \arg\min_{p(t)} \int_{C+C}^{D} e(t)p(t)dt$$

$$s.t. \int_{C+C}^{D} p(t)dt = 1, \ 0 \le p(t) \le L_c.$$
(13)

In the above optimization problem, L_c is a constant that controls the fairness level. Smaller L_c leads to a better fairness level. Solving problem 13 is difficult because p(t) is a general function, and convex or linear optimization techniques cannot be directly used. To tackle the challenge, we consider an approximated solution where $p_c(t)$ is a piecewise constant function. Given a hyper-parameter K, we assume that (C + C, D) can be divided into K bins with the k-th bin corresponding to $(C + C + \frac{(k-1)(D-C-C)}{K}, C + C + \frac{k(D-C-C)}{K}]$ and $p_c(t)$ has a constant value in each bin. We denote these constant values as $\{p_{c1}, p_{c2}, ..., p_{cK}\}$, and for simplicity, we denote the start point of the k-th bin as s_k , i.e. $s_k = C + C + \frac{(k-1)(D-C-C)}{K}^2$. Then, the average error rate for a randomized classifier is given by,

$$\int_{C+C}^{D} e(t)p(t)dt = \sum_{k=1}^{K} p_{ck} \int_{s_k}^{s_{k+1}} \left(\int_{C}^{t-C} \rho_1(l)dl + \int_{t-C}^{D} \rho_0(l)dl \right) dt.$$
 (14)

Define A_{ck} as

$$A_{ck} = \int_{s_k}^{s_{k+1}} \left(\int_C^{t-C} \rho_1(l) dl + \int_{t-C}^D \rho_0(l) dl \right) dt.$$
 (15)

Because A_{ck} is a constant and determined solely by the distribution of l(X), the optimization problem 13 can be translated as the following linear optimization problem,

$$\min \sum_{k=1}^{K} A_{ck} p_{ck}, \quad s.t. \quad \sum_{k=1}^{K} \frac{p_{ck} (D - C - C)}{K} = 1, \quad 0 \le p_{ck} \le L_c.$$
 (16)

The above problem can be efficiently solved using linear programming techniques (e.g., simplex method [27]). Algorithm 1 and 2 shows how to find the optimal randomized classifier and use it to make a prediction.

Algorithm 1 Finding optimal randomized classifier satisfying individual fairness w.r.t. BRC

Input: Training data $\mathcal{D} = \{x_i, y_i\}_{i=1}^N, \lambda, M_c$, function g, l

- 1: $C \leftarrow g^{-1}(\frac{1}{\lambda}), L_c \leftarrow \min\{\frac{\lambda M_c}{C_l}, \frac{M_c}{C_l C_g C}\}$ 2: Estimate A_{ck} from data with Eq. 15
- 3: Solve the following optimization problem,

$$p_{ck} = \arg\min \sum_{k=1}^{K} A_{ck} p_{ck}, \quad s.t. \quad \sum_{k=1}^{K} \frac{p_{ck}(D - C - C)}{K} = 1, \quad 0 \le p_{ck} \le L_c$$

Output: p_{ck}

Individual Fairness with Respect to Outcome

In this section, we show that our proposed randomized classifier can also be used to improve individual fairness with respect to decision/outcome. Given a randomized classifier F, we define the average prediction outcome as follows, $\hat{Y}_{\mathscr{F}}(x) = \sum_{f \in \mathcal{F}} f(x) P(f) = \mathbb{E}\{\mathscr{F}(x)\}.$

Individual fairness with respect to outcome with constant M_p requires $|\hat{Y}_{\mathscr{F}}(x_1) - \hat{Y}_{\mathscr{F}}(x_2)| \leq$ $M_p||x_1-x_2||_2, \forall x_1,x_2 \in \mathcal{X}$. For certain l(x), we can prove any deterministic classifier cannot satisfy this constraint.

²We use s_{K+1} to denote the end point of the last bin even though there is no actual (K+1)-th bin.

Algorithm 2 Inference with a randomized classifier

Input: Data point x, threshold distribution p_{ck} , intervals $(s_k, s_{k+1}), k \in \{1, ..., K\}$, function

- Sample k from distribution Pr{K = k} = ^{p_{ck}}/<sub>∑^k_{k=1} p_{ck}
 t ← s_k + η, η is a random noise sampling from a uniform distribution on [0, s_{k+1} − s_k]
 </sub>
- 3: $\hat{y} \leftarrow \mathbf{1}[l(x) \geq t]$

Output: \hat{y}

Theorem 4.1. Consider a d-dimensional classification problem and a randomized classifier \mathscr{F} with $p(t) = \delta(t_0)$ and $t_0 \in (C + C, D)$. If l(x) is reverse Lipschitz continuous, i.e.,

$$|l(x_1) - l(x_2)| \ge L_l \|x_1 - x_2\|_2, L_l < \infty, \forall x_1, x_2, \tag{17}$$

then for any constant M_p , there exists $x_1, x_2 \in \mathcal{X}$, such that $\left|\hat{Y}_{\mathscr{F}}(x_1) - \hat{Y}_{\mathscr{F}^{(1)}}(x_2)\right| >$ $M_p \|x_1 - x_2\|_2$.

Similar to Theorem 3.1, Theorem 4.1 shows that the expected outcome is not continuous at x_0 satisfying $l(x_0) = t_0 - \mathcal{C}$. When we use a randomized classifier, of which the distribution of thresholds has no impulse component, the individual fairness with respect to outcome can be satisfied. The following theorem illustrates this point.

Theorem 4.2. Consider a d-dimensional binary classification problem, and let C_l $\max_x \|\nabla_x l(x)\|_2$, and $\mathcal{F} = \{f(x;t)|t\in (C+\mathcal{C},D)\}$. If $p(t)\leq L_p$ with $L_p=\frac{M_p}{C_l}$, then for constant M_p , we have, $|\hat{Y}_{\mathscr{F}}(x_1) - \hat{Y}_{\mathscr{F}}(x_2)| \leq M_p ||x_1 - x_2||_2, \forall x_1, x_2.$

Now we can see that the requirement for individual fairness w.r.t. outcome is very similar to individual fairness w.r.t. BRC. To find the optimal distribution of p(t) for individual fairness w.r.t. outcome, we can solve a similar optimization problem to (13) by replacing $p(t) \le L_c$ constraint with $p(t) \le L_p$. Our theorem also provides the possibility of achieving individual fairness w.r.t. BRC and outcome at the same time by using constraint $0 \le p(t) \le \min(L_c, L_p)$.

5 **Extension to Group Fairness**

The analysis of our paper demonstrates the potential usage of randomized classifiers when pursuing individual fairness. In real-world applications, people are often concerned not only with individual fairness, but also with fairness across different groups [28]. There are several methods used to achieve group fairness in the literature [20, 29, 30]. However, individual fairness and group fairness can conflict in some situations [31]. This proposes the question that whether an individually fair randomized classifier can achieve group fairness. To answer this question, we extend the binary classification problem in Section 2 to multi-group case. The following definition and assumptions will be used in this section.

Definition 5.1 (Multi-group d-dimensional binary classification problem). A d-dimensional binary classification problem is a problem of finding a classifier $f: \mathcal{X} \times \mathcal{A} \to \mathcal{Y}$ with $\mathcal{X} \subseteq \mathbb{R}^d$, where \mathcal{A} is the domain of sensitive attribute which is often a discrete set. We denote the features from group $a \in \mathcal{A} \text{ as } X_a$.

Assumption 5.1. In a multi-group d-dimensional binary classification problem, we assume there are functions $l_a(x)$ for each group such that

$$l_a(x_1) \ge l_a(x_2)$$
 iff $\Pr\{Y = 1 | X = x_1, A = a\} \ge \Pr\{Y = 1 | X = x_2, A = a\}$

and

$$l_a(x_1) < l_a(x_2)$$
 iff $\Pr\{Y = 1 | X = x_1, A = a\} < \Pr\{Y = 1 | X = x_2, A = a\}$

We further assume that $l_a(x)$ are continuous differentiable functions and $l(X_a) \in [C_a, D_a]$.

For multi-group cases, we assume the cost function $g(\cdot)$ is different for each groups, which are denoted as $g_a(\cdot)$. For simplicity, we denote the constants $(g_a)^{-1}(\frac{1}{\lambda})$ as \mathcal{C}_a . An important group fairness metric is statistical parity, which requires that the classifier has the same positive outcome rate over all groups, i.e.,

$$\Pr{\mathscr{F}(X) = 1 | A = a} = \Pr{\mathscr{F}(X) = 1 | A = a'}, \quad \forall a, a' \in \mathcal{A}.$$

In this part, our goal is to find one classifier for each group to ensure statistical parity. We use $p_a(t)$ to denote the distribution of threshold for group A=a. Denote the probability density function of $l_a(x)$ as $p_L^a(l)$. Given $p_a(t)$, the overall distribution of $\Pr\{\mathscr{F}(X)=1|A=a\}$ is given by,

$$\Pr\{\mathscr{F}(X) = 1|A = a\} = \int_{C_a + C_a}^{D_a} \left(\int_{t-\mathcal{C}}^{D_a} p_L^a(l) dl \right) p_a(t) dt. \tag{18}$$

Denote the group-specific error rate as $e_a(t)$ which is calculated as follows,

$$e_a(t) = \int_{C_a}^{t-C_a} \Pr\{Y = 1 | l_a(X) = l\} p_L^a(l) dl + \int_{t-C_a}^{D_a} \Pr\{Y = 0 | l_a(X) = l\} p_L^a(l) dl, \quad (19)$$

we can find optimal $p_a(t)$ by solving the optimization problem

$$p_{a}(t) = \arg\min_{p_{a}(t)} \sum_{a \in \mathcal{A}} \left[\int_{C_{a} + \mathcal{C}_{a}}^{D_{a}} e_{a}(t) p_{a}(t) dt \right] \cdot \Pr\{A = a\},$$

$$s.t. \int_{C + \mathcal{C}_{a}}^{D_{a}} p_{a}(t) = 1, \quad 0 \le p_{a}(t) \le L, \quad \forall a \in \mathcal{A},$$

$$\int_{C_{a} + \mathcal{C}_{a}}^{D_{a}} \left(\int_{t - \mathcal{C}_{a}}^{D_{a}} p_{L}^{a}(l) dl \right) p_{a}(t) dt = \int_{C_{a'} + \mathcal{C}_{a'}}^{D_{a'}} \left(\int_{t - \mathcal{C}_{a'}}^{D_{a'}} p_{L}^{a'}(l) dl \right) p_{a'}(t) dt, \quad \forall a, a' \in \mathcal{A}.$$

where L could be L_c or L_p from Theorem 3.2 or Theorem 4.2. The objective function is the weighted average of error rate across different groups. To solve this problem, we consider an approximated solution where all $p_a(t)$ are piecewise constant functions. Given a hyper-parameter K, we assume that $(C_a + C_a, D_a)$ can be divided into K bins with the k-th bin corresponding to $(C_a + C_a + \frac{(k-1)(D_a - C_a - C_a)}{K}, C_a + C_a + \frac{k(D_a - C_a - C_a)}{K}]$ and $p_a(t)$ has a constant value in each bin. We denote these constant values as $\{p_{a1}, p_{a2}, ..., p_{aK}\}$, and for simplicity, we denote the start point of the k-th bin as s_{ak} , i.e. $s_{ak} = C_a + C_a + \frac{(k-1)(D_a - C_a - C_a)}{K}$. The last constraint in (20) can be re-written as follows.

$$\sum_{k=1}^{K} p_{ak} \int_{s_{ak}}^{s_{a(k+1)}} \left(\int_{t-\mathcal{C}_a}^{D_a} p_a(l) dl \right) dt = \sum_{k=1}^{K} p_{a'k} \int_{s_{a'k}}^{s_{a'(k+1)}} \left(\int_{t-\mathcal{C}_{a'}}^{D_{a'}} p_{a'}(l) dl \right) dt, \quad \forall a, a' \in \mathcal{A}. \quad (21)$$

Define $B_{ak}=\int_{s_{ak}}^{s_{a(k+1)}}\left(\int_{t-\mathcal{C}_a}^{D_a}p_L^a(l)\mathrm{d}l\right),$ and similarly define $A_{ak}=\int_{s_{ak}}^{s_{a(k+1)}}\left(\int_{C_a}^{t-\mathcal{C}_a}\rho_1^a(l)\mathrm{d}l+\int_{t-\mathcal{C}_a}^{D_a}\rho_0^a(l)\mathrm{d}l\right)\mathrm{d}t,$ where $\rho_1^a(l)=\Pr\{Y=0|l_a(X)=l\}p_L^a(l),$ $\rho_0^a(l)=\Pr\{Y=0|l_a(X)=l\}p_L^a(l).$ Then problem (20) can be re-written as,

$$\min_{a \in \mathcal{A}, \ 0 \le k \le K} \sum_{a \in \mathcal{A}} \sum_{k=1}^{K} A_{ak} p_{ak} \Pr\{A = a\}, \ s.t. \sum_{k=1}^{K} \frac{(D_a - C_a - C_a) p_{ak}}{K} = 1, \ 0 \le p_{ak} \le L, \forall a \in \mathcal{A},$$

$$\sum_{k=1}^{K} B_{ak} p_{ak} = \sum_{k=1}^{K} B_{a'k} p_{a'k}, \ \forall a, a' \in \mathcal{A}$$
 (22)

In practice, the statistical parity constraint can be too strong such that the optimization problem has no solution. Therefore, it can be relaxed as $\left|\sum_{k=1}^K B_{ak} p_{ak} - \sum_{k=1}^K B_{a'k} p_{a'k}\right| \leq \Omega, \forall a, a' \in \mathcal{A}$. The value of Ω can be used to control the extent of statistical parity.

Apart from statistical parity, equal opportunity and equalized odds are also commonly used group fairness metrics. For prediction, equal opportunity [15] requires that

$$\Pr{\{\mathscr{F}(X) = 1 | Y = 1, A = a\}} = \Pr{\{\mathscr{F}(X) = 1 | Y = 1, A = a\}} \quad \forall a, a' \in \mathcal{A}.$$
 (23)

Equalized Odds [32] implies that

$$\Pr{\mathscr{F}(X) = 1 | Y = y, A = a} = \Pr{\mathscr{F}(X) = 1 | Y = y, A = a'} \quad \forall a, a' \in \mathcal{A}, y \in \mathcal{Y}.$$
 (24)
The optimization problem (22) can be slightly modified to satisfy equal opportunity or equalized

The optimization problem (22) can be slightly modified to satisfy equal opportunity or equalized odds.

6 Experiment

Dataset and Implementation. In this section, we conduct experiments on two real-world datasets to evaluate the effectiveness of our proposed methods. The first dataset is the FICO dataset, preprocessed by [15]. This dataset provides the cumulative distribution of credit scores across different racial groups. In our experiments, we generate 5,000 data points according to the distributions for the racial groups Black and Non-Hispanic White. Each feature vector is defined as $x:=[\kappa,a]$, where κ denotes the credit score and a represents individual's race. We assume $l(x)=\kappa$, and define the individual utility function as $\mathscr{U}_{indiv}(f)=[f(x')-f(x)]-100(l(x')-l(x))^2$, with the associated cost function given by $c(x,x')=100(l(x')-l(x))^2$.

The second dataset is the Law School Dataset [33], which contains 18,692 student records. We use the same pre-processed version employed in the experiments of [16]. The prediction task is to determine whether a student will pass the bar exam. In our experiment, we include all features excluding zgpa and the target variable bar_pass in the feature vector x. The zgpa variable, representing a student's final law school GPA, is used as l(x).³ To estimate l(x) in practice, we train a linear regression model using the remaining features x to predict zgpa. When evaluating group fairness, we consider race as the sensitive attribute. We define the individual utility function as $\mathcal{U}_{indiv}(f) = [f(x') - f(x)] - (l(x') - l(x))^2$, with the corresponding cost function $c(x, x') = (l(x') - l(x))^2$.

We split the dataset into train/validation/test datasets randomly with a ratio of 60%/20/%20. The baseline model for individual fairness experiment (Tables 1 and 2) is the best deterministic classifier. For the group fairness experiments (Tables 3 and 4), the baseline model consists of two deterministic thresholds (one for each group). We find the deterministic thresholds using grid search on all possible combinations which will maximize the macro average F1 score while satisfying group fairness constraints. For the Law School dataset, we set the number of bins K to 80 and set it to 200 for FICO dataset. Apart from using F1 score to evaluate the accuracy, we use IF ratio for evaluating individual fairness, Statistical Disparity (S-DP), Equal Opportunity Disparity (EO-DP) and Equalized Odds Disparity (ED-DP) for evaluating group fairness. Assume the dataset is $\{x_i, y_i\}_{i=1}^N$ (sensitive attribute a_i is included in x_i), IF ratio is defined as $\max_{i \neq j,i,j \in \{1,\dots,N\}} \frac{|\gamma_i - \gamma_j|}{\|x_i - x_j\|_2}$. For the deterministic classifier, γ_i is the predicted outcome or the BRC for data x_i . For the randomized classifier, γ_i is the expected outcome or expected BRC. S-DP is $|\Pr\{\hat{y}_i = 1 | a_i = 1\} - \Pr\{\hat{y}_i = 1 | a_i = 0\}|$. EO-DP is defined as $|\Pr\{\hat{y}_i = 1 | a_i = 1, y_i = 1\} - \Pr\{\hat{y}_i = 1 | a_i = 0, y_i = 1\}|$, where the probability is estimated as the ratio in the dataset, and ED-DP is the maximum conditional disparity across both positive and negative classes $\max\{|\Pr\{\hat{y}_i = 1 | a_i = 1, y_i = 1\} - \Pr\{\hat{y}_i = 1 | a_i = 0, y_i = 1\}|$, $|\Pr\{\hat{y}_i = 1 | a_i = 1, y_i = 0\} - \Pr\{\hat{y}_i = 1 | a_i = 0, y_i = 0\}|$.

Results. Table 1 and Table 2 show the results when using randomized classifiers for the two datasets with different upper bounds on the distributions. IF ratio is measured w.r.t. the prediction ⁴. For the

M.41 1	D	Randomized Classifier				
Method	Deterministic Classifier	$L_p = 1$	$L_p = 0.5$	$L_p = 0.25$	$L_p = 0.1$	
F1 score	0.986 ± 0.001	0.986 ± 0.001	0.986 ± 0.001	0.984 ± 0.002	0.975 ± 0.003	
IF ratio	4.421 ± 0.691	1.000 ± 0.000	0.500 ± 0.000	0.250 ± 0.000	0.100 ± 0.000	
S-DP	0.355 ± 0.020	0.356 ± 0.019	0.356 ± 0.018	0.352 ± 0.017	0.355 ± 0.015	
EO-DP	0.016 ± 0.011	0.016 ± 0.010	0.019 ± 0.010	0.016 ± 0.006	0.026 ± 0.011	
ED-DP	0.016 ± 0.011	0.016 ± 0.010	0.019 ± 0.010	0.016 ± 0.006	0.026 ± 0.011	

Table 1: Results on FICO dataset applying our randomized classifier

FICO dataset, we can improve individual fairness for a large extent (4.421 to 0.100) with only a small accuracy drop. The IF ratio is equals to the upper bounds L_p , which is consistent to Theorem 4.2. For the Law School dataset, we observe that with larger L_p , we have a smaller IF ratio with smaller F1 score. IF ratio is not equal to L_p because of the gradient introduced by the linear regression model as discussed in Theorem 4.2. We also measure the group fairness metrics, which shows that there is no direct relationship between individual fairness and group fairness. Therefore, it is possible that we improve individual fairness with a randomized classifier while not exacerbating group unfairness.

³Figure 1 in Appendix B.1 shows that the estimated $Pr\{bar_pass = 1 | zgpa\}$ satisfies Assumption 2.1. A brief description of each attribute is provided in Appendix B.1.

⁴In Appendix C, we displays the results for BRC.

Table 2: Results on Law School dataset applying our randomized classifier

Method	Deterministic Classifier	Randomized Classifier			
Method	Deterministic Classifier	$L_p = 1$	$L_p = 0.8$	$L_p = 0.4$	$L_p = 0.3$
F1 score	0.680 ± 0.013	0.587 ± 0.010	0.585 ± 0.012	0.545 ± 0.011	0.545 ± 0.011
IF ratio	3.164 ± 1.671	0.561 ± 0.008	0.449 ± 0.007	0.224 ± 0.003	0.175 ± 0.005
S-DP	0.443 ± 0.012	0.476 ± 0.019	0.470 ± 0.015	0.399 ± 0.019	0.350 ± 0.014
EO-DP	0.350 ± 0.028	0.433 ± 0.041	0.431 ± 0.034	0.357 ± 0.040	0.309 ± 0.041
ED-DP disparity	0.362 ± 0.021	0.433 ± 0.041	0.431 ± 0.034	0.357 ± 0.040	0.309 ± 0.041

While fixing $L_p=1$, we validate the effectiveness of our statistical parity constraint in Section 5 by setting Ω as different values. From Table 3 and 4, the randomized classifiers can have better statistical parity as we decrease Ω . At the same time, we get a lower IF ratio compared to the baseline, which means we improve the group fairness and individual fairness simultaneously. Again, the results show no clear correlation between individual fairness and statistical parity.

Table 3: Results on FICO dataset applying our randomized classifier with statistical parity constraint.

Method	Deterministic Classifier	$\Omega = 0.1$	Randomized $\Omega = 0.08$	d Classifier $\Omega = 0.06$	$\Omega = 0.04$
F1 score IF ratio S-DP	0.857 ± 0.006 21.58 ± 25.87 0.115 ± 0.022	0.818 ± 0.006 1.000 ± 0.000 0.114 ± 0.018	0.800 ± 0.008 1.000 ± 0.000 0.094 ± 0.022	0.779 ± 0.008 1.000 ± 0.000 0.072 ± 0.019	$0.756 \pm 0.009 \\ 1.000 \pm 0.000 \\ 0.050 \pm 0.015$

Table 4: Results on Law School dataset applying our randomized classifier with statistical parity constraint.

Madhad	Deterministic Classifica	Randomized Classifier			
Method	Deterministic Classifier	$\Omega = 0.1$	$\Omega = 0.08$	$\Omega = 0.06$	$\Omega = 0.04$
F1 score	0.642 ± 0.016	0.554 ± 0.016	0.562 ± 0.020	0.567 ± 0.017	0.575 ± 0.013
IF ratio	12.15 ± 18.11	0.655 ± 0.065	0.673 ± 0.056	0.681 ± 0.055	0.689 ± 0.062
S-DP	0.047 ± 0.038	0.039 ± 0.018	0.036 ± 0.017	0.031 ± 0.016	0.026 ± 0.014

7 Conclusion

In this paper, we prove the existence of unfairness in strategic classification when using deterministic threshold-based classifiers. To address this issue, we propose a novel approach that employs randomized thresholds, ensuring fairness through an optimizable threshold distribution. We show that this distribution can be efficiently determined using linear programming. Furthermore, by appropriately constraining the threshold distribution, we can achieve both individual and group fairness simultaneously maintaining computational efficiency through linear programming.

8 Limitations

While our randomized classifiers offer significant advantages, it is important to note that the proposed method is applicable only when the classification problem can be effectively addressed using a threshold-based classifier. A key assumption is the existence of a function l(x) such that the cost depends solely on the distance between $l(x_1)$ and $l(x_2)$. If this assumption is violated, the method may no longer be valid. Additionally, when the dataset is too small, estimation errors can negatively affect performance. The time complexity of solving a linear optimization problem with K variables using the simplex algorithm can be exponential, i.e. $\mathcal{O}(2^K)$ [34], which may limit the number of bins that can be used in practice.

9 Acknowledgment

This work is supported by the U.S. National Science Foundation under award IIS-2301599, CMMI-2301601, and DMS-2529302 and by grants from the Ohio State University's Translational Data Analytics Institute and College of Engineering Strategic Research Initiative.

References

- [1] Anna M Costello, Andrea K Down, and Mihir N Mehta. Machine+ man: A field experiment on the role of discretion in augmenting ai-based lending models. *Journal of Accounting and Economics*, 70(2-3):101360, 2020.
- [2] Yi-Chi Chou and Han-Yen Yu. Based on the application of ai technology in resume analysis and job recommendation. In 2020 IEEE International Conference on Computational Electromagnetics (ICCEM), pages 291–296. IEEE, 2020.
- [3] AJ Alvero, Noah Arthurs, Anthony Lising Antonio, Benjamin W Domingue, Ben Gebre-Medhin, Sonia Giebel, and Mitchell L Stevens. Ai and holistic review: informing human reading in college admissions. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, pages 200–206, 2020.
- [4] Zeyu Tang, Yatong Chen, Yang Liu, and Kun Zhang. Tier balancing: Towards dynamic fairness over underlying causal factors. *arXiv preprint arXiv:2301.08987*, 2023.
- [5] Zhiqun Zuo, Tian Xie, Xuwei Tan, Xueru Zhang, and Mohammad Mahdi Khalili. Lookahead counterfactual fairness. *arXiv preprint arXiv:2412.01065*, 2024.
- [6] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao, Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, et al. Towards long-term fairness in recommendation. In *Proceedings of the 14th ACM international conference on web search and data mining*, pages 445–453, 2021.
- [7] Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification. In *Proceedings of the 2016 ACM conference on innovations in theoretical computer science*, pages 111–122, 2016.
- [8] Tian Xie and Xueru Zhang. Non-linear welfare-aware strategic learning. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, volume 7, pages 1660–1671, 2024.
- [9] Tian Xie and Xueru Zhang. Automating data annotation under strategic human agents: Risks and potential solutions. Advances in Neural Information Processing Systems, 37:127436–127482, 2024.
- [10] Ravi Sundaram, Anil Vullikanti, Haifeng Xu, and Fan Yao. Pac-learning for strategic classification. *Journal of Machine Learning Research*, 24(192):1–38, 2023.
- [11] Hanrui Zhang and Vincent Conitzer. Incentive-aware pac learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 5797–5804, 2021.
- [12] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction. In *International Conference on Machine Learning*, pages 7599–7609. PMLR, 2020.
- [13] Philippe Besse, Eustasio del Barrio, Paula Gordaliza, Jean-Michel Loubes, and Laurent Risser. A survey of bias in machine learning through the prism of statistical parity. *The American Statistician*, 76(2):188–198, 2022.
- [14] Zhiqun Zuo, Ding Zhu, and Mohammad Mahdi Khalili. Post-processing for fair regression via explainable svd, 2025.
- [15] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. *Advances in neural information processing systems*, 29, 2016.
- [16] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. *Advances in neural information processing systems*, 30, 2017.

- [17] Zhiqun Zuo, Mahdi Khalili, and Xueru Zhang. Counterfactually fair representation. *Advances in neural information processing systems*, 36:12124–12140, 2023.
- [18] Felix Petersen, Debarghya Mukherjee, Yuekai Sun, and Mikhail Yurochkin. Post-processing for individual fairness. Advances in Neural Information Processing Systems, 34:25944–25955, 2021.
- [19] Xueru Zhang, Mohammad Mahdi Khalili, Kun Jin, Parinaz Naghizadeh, and Mingyan Liu. Fairness interventions as (dis) incentives for strategic manipulation. In *International Conference on Machine Learning*, pages 26239–26264. PMLR, 2022.
- [20] Emily Diana, Saeed Sharifi-Malvajerdi, and Ali Vakilian. Minimax group fairness in strategic classification. *arXiv preprint arXiv:2410.02513*, 2024.
- [21] Andrew Estornell, Sanmay Das, Yang Liu, and Yevgeniy Vorobeychik. Group-fair classification with strategic agents. In *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*, pages 389–399, 2023.
- [22] Smitha Milli, John Miller, Anca D Dragan, and Moritz Hardt. The social cost of strategic classification. In *Proceedings of the Conference on Fairness, Accountability, and Transparency*, pages 230–239, 2019.
- [23] Vijay Keswani and L Elisa Celis. Addressing strategic manipulation disparities in fair classification. In *Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization*, pages 1–11, 2023.
- [24] Stephen Cole Kleene. Introduction to metamathematics, sixth reprint, 1971.
- [25] GB Arfken and HJ Weber. Mathematical methods for physicists (chapter 1, section 1.15), 2000.
- [26] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through awareness. In *Proceedings of the 3rd innovations in theoretical computer science conference*, pages 214–226, 2012.
- [27] David Gale. Linear programming and the simplex method. Notices of the AMS, 54(3):364–369, 2007.
- [28] Simon Caton and Christian Haas. Fairness in machine learning: A survey. *ACM Computing Surveys*, 56(7):1–38, 2024.
- [29] Eunice Chan, Zhining Liu, Ruizhong Qiu, Yuheng Zhang, Ross Maciejewski, and Hanghang Tong. Group fairness via group consensus. In *The 2024 ACM Conference on Fairness, Accountability, and Transparency*, pages 1788–1808, 2024.
- [30] Negin Golrezaei, Rad Niazadeh, Kumar Kshitij Patel, and Fransisca Susan. Online combinatorial optimization with group fairness constraints. *Available at SSRN 4824251*, 2024.
- [31] Reuben Binns. On the apparent conflict between individual and group fairness. In *Proceedings* of the 2020 conference on fairness, accountability, and transparency, pages 514–524, 2020.
- [32] Yaniv Romano, Stephen Bates, and Emmanuel Candes. Achieving equalized odds by resampling sensitive attributes. *Advances in neural information processing systems*, 33:361–371, 2020.
- [33] Linda F Wightman. Lsac national longitudinal bar passage study. lsac research report series. 1998.
- [34] John Fearnley and Rahul Savani. The complexity of the simplex method. In *Proceedings of the forty-seventh annual ACM symposium on Theory of computing*, pages 201–208, 2015.
- [35] eds8531. Lsac dataset eda and predictions. https://www.kaggle.com/code/eds8531/ lsac-dataset-eda-and-predictions, 2022. Accessed: 2025-04-30.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We have two main claims in the abstract and introduction: using randomized classifier to satisfy individual fairness and extending it to group fairness notions. The former claim is addressed in Section 3 and Section 4 and the latter one is discussed in Section 5.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our method in Section 8.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: General assumptions needed for the theorems are explicitly stated in Assumption 2.1 and 5.1. The additional assumptions used by each theorem are included in the theorem itself. The proofs for the theorems are provided in Appendix A.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We presents the details of experiment implementation in Section 6 and Appendix B for reproducing our results. We would also release the code and data used in the experiments to enhance reproducibility.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We submit the code and dataset we used to produce the experiment results with our paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.

- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We present all the important setting in Section 6 and Appendix B. In the supplemental material, we include the code.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all the numbers in the results, we report the variance when changing different random seeds for data split and sampling.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We present the information about this in Appendix B.2.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper does not involve human participants. The datasets we used are all publicly available and do not include privacy information.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed in Section 8 that when our method is applied when the assumptions not hold, it could have negative effect on fairness.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not release any new model or dataset.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The two dataset used in our experiments are well cited in Section 6.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved in the research.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is only used for grammar and spelling checking while writing the paper. Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Proofs

A.1 Proof for Theorem 3.1

Proof. When $t_0 \in (C + \mathcal{C}, D)$, we can find x_1 such that $l(x_1) = t_0 - \mathcal{C}$ in \mathcal{X} . From the definition of BRC, we have $c_f(x_1) = \frac{1}{\lambda}$. For any positive constant ϵ , we know that for x_2 satisfying $l(x_2) = t_0 - \mathcal{C} - \epsilon$, $c_f(x_2) = 0$. Because l(x) satisfies

$$|l(x_1) - l(x_2)| \ge L_l \|x_1 - x_2\|_2, \tag{25}$$

we have

$$|c_f(x_1) - c_f(x_2)| = \frac{1}{\lambda},$$
 (26)

$$||x_1 - x_2||_2 \le \frac{\epsilon}{L_l}. (27)$$

When
$$\epsilon < \frac{L_l}{M_c \lambda}$$
, we have $|c_f(x_1) - c_f(x_2)| > M_c \|x_1 - x_2\|_2$.

A.2 Proof for Theorem 3.2

Proof. For any input x, the individual cost is

$$c_{\mathscr{F}}(x) = \int_{l(x)}^{l(x)+\mathcal{C}} g(t-l(x))p(t)dt. \tag{28}$$

The gradient of $c_{\mathscr{F}}(x)$ is

$$\nabla_x c_{\mathscr{F}}(x) = \nabla_x l(x) \left[g(\mathcal{C}) p(l(x) + \mathcal{C}) - g(0) p(l(x)) - \int_{l(x)}^{l(x) + \mathcal{C}} g'(t - l(x)) p(t) dt \right]. \tag{29}$$

From the assumptions that g(0) = 0 and $g(\mathcal{C}) = \frac{1}{\lambda}$, we have

$$\|\nabla_x c_{\mathscr{F}}(x)\|_2 = \|\nabla_x l(x)\|_2 \left| \frac{1}{\lambda} p(l(x) + \mathcal{C}) - \int_{l(x)}^{l(x) + \mathcal{C}} g'(t - l(x)) p(t) dt \right|. \tag{30}$$

Since $g(\cdot)$ is strictly increasing, we have $g'(\cdot) > 0$. Therefore,

$$\left| \frac{1}{\lambda} p(l(x) + \mathcal{C}) - \int_{l(x)}^{l(x) + \mathcal{C}} g'(t - l(x)) p(t) dt \right|
= \begin{cases} \frac{1}{\lambda} p(l(x) + \mathcal{C}) - \int_{l(x)}^{l(x) + \mathcal{C}} g'(t - l(x)) p(t) dt & \text{if } \frac{1}{\lambda} p(l(x) + \mathcal{C}) \ge \int_{l(x)}^{l(x) + \mathcal{C}} g'(t - l(x)) p(t) dt, \\ \int_{l(x)}^{l(x) + \mathcal{C}} g'(t - l(x)) p(t) dt - \frac{1}{\lambda} p(l(x) + \mathcal{C}) & \text{otherwise.} \end{cases}$$
(31)

• If
$$\frac{1}{\lambda}p(l(x)+\mathcal{C}) \geq \int_{l(x)}^{l(x)+\mathcal{C}} g'(t-l(x))p(t)\mathrm{d}t$$
, then

$$\|\nabla_x c_{\mathscr{F}}(x)\|_2 \le \|\nabla_x l(x)\|_2 \cdot \frac{1}{\lambda} p(l(x) + \mathcal{C}) \le \frac{C_l L_c}{\lambda}.$$
 (32)

If $L_c = \frac{\lambda M_c}{C_l}$, then $\|\nabla_x c_{\mathscr{F}}(x)\|_2 \leq M_c$.

• If $\frac{1}{\lambda}p(l(x)+\mathcal{C})<\int_{l(x)}^{l(x)+\mathcal{C}}g'(t-l(x))p(t)\mathrm{d}t$, then

$$\|\nabla_x c_{\mathscr{F}}(x)\|_2 \le \|\nabla_x l(x)\|_2 \int_{l(x)}^{l(x)+\mathcal{C}} g'(t-l(x))p(t)dt \le C_l C_g L_c \mathcal{C}.$$
(33)

If $L_c = \frac{M_c}{C_l C_g C}$, then $\|\nabla_x c_{\mathscr{F}}(x)\|_2 \leq M_c$.

Therefore,
$$L_c = \min\left\{\frac{\lambda M_c}{C_l}, \frac{M_c}{C_l C_g \mathcal{C}}\right\}$$
.

A.3 Proof for Theorem 4.1

Proof. When $t_0 \in (C + C, D)$, we can find $x_1 \in \mathcal{X}$ such that $l(x_1) = t_0 - C$. From the definition of $\hat{Y}_{\mathscr{F}}(\cdot)$, we know that

$$\hat{Y}_{\mathscr{F}}(x_1) = f(x_1; t_0) = 1. \tag{34}$$

For any positive constant ϵ , we can find $x_2 \in \mathcal{X}$ satisfying $l(x_2) = t_0 - \mathcal{C} - \epsilon$, and we have

$$\hat{Y}_{\mathscr{F}}(x_2) = f(x_2; t_0) = 0. \tag{35}$$

Since l(x) satisfies

$$|l(x_1) - l(x_2)| \ge L_l \|x_1 - x_2\|_2, \tag{36}$$

we obtain

$$||x_1 - x_2||_2 \le \frac{\epsilon}{L_l}.\tag{37}$$

When $\epsilon < \frac{L_l}{M_n}$, we have

$$\left|\hat{Y}_{\mathscr{F}}(x_1) - \hat{Y}_{\mathscr{F}}(x_2)\right| > M_p \|x_1 - x_2\|_2.$$
 (38)

A.4 Proof for Theorem 4.2

Proof. Consider an arbitrary $x_1 \in \mathcal{X}$, we know that $f(x_1;t) = 1$ if and only if there exists x_1' , such that

$$l(x_1^{'}) \ge t \text{ and } l(x_1^{'}) - l(x_1) \le C.$$
 (39)

Therefore,

$$\hat{Y}_{\mathscr{F}}(x_1) = \int_{C+\mathcal{C}}^{l(x_1)+\mathcal{C}} p(t) dt. \tag{40}$$

Again, we have

$$\left| \hat{Y}_{\mathscr{F}}(x_1) - \hat{Y}_{\mathscr{F}}(x_2) \right| = \left| \int_{l(x_1) + \mathcal{C}}^{l(x_2) + \mathcal{C}} p(t) dt \right|$$

$$\leq L_p \left| l(x_1) - l(x_2) \right|. \tag{41}$$

Because $\|\nabla_x l(x)\|_2$ is upper bounded by C_l , and $L_p = \frac{M_p}{C_l}$, we have

$$\left| \hat{Y}_{\mathscr{F}}(x_1) - \hat{Y}_{\mathscr{F}}(x_2) \right| \le M_p \|x_1 - x_2\|_2.$$
 (42)

B Implementation Details

B.1 Dataset

The Law School dataset contains 12 attributes. The information about them are displayed in Table 5. Figure 1 shows the estimation of $\Pr\{\text{bar_pass} = 1 | \text{zgpa}\}$ from the whole dataset. Since the conditional probability is an increasing function w.r.t zgpa, Assumption 2.1 is satisfied. We can regard zgap as l(x).

B.2 Computational Resources

All experiments are conducted on a server equipped with 64 AMD EPYC 7313 16-Core CPUs. The server also includes 8 NVIDIA RTX A5000 GPUs (24GB each), although GPU resources are not utilized for our experiments.

Each experiment runs efficiently, completing 5 random seeds in under an hour. The optimization of the randomized classifier is computationally inexpensive. However, evaluating the Individual Fairness (IF) ratio is more time-consuming, as it requires comparing all pairs (x_i, x_j) in the dataset $\{(x_i, y_i)\}_{i=1}^N$, resulting in a computational complexity of $\mathcal{O}(N^2)$.

Table 5: The meaning of attributes in the Law School dataset [35].

Attribute	Description	Data Information
decile1b	First-year law school GPA decile	integer, ranging from 1 to 10
decile3	Third-year law school GPA decile	integer, ranging from 1 to 10
lsat	LSAT score	integer, ranging from 0 to 60
ugpa	Undergraduate GPA on a 4.0 scale	real values in [0, 4.0]
zfygpa	Standardized first-year GPA (z-score)	real values in [-4.0, 4.0]
zgap	Standardized final GPA (z-score)	real values in [-4.0, 4.0]
fulltime	Enrollment status	1: full-times, 0: part-time
fam_inc	Family income bracket	integer, ranging from 1.0 to 5.0
male	Gender indicator	1: male, 0: female
racetxt	Race category	binary, not clear the meaning of 0 and 1
tier	Law school tier	integer, ranging from 1 to 6
pass_bar	Bar exam pass indicator	1: pass, 0: not-pass



Figure 1: Estimated $Pr\{bar_pass = 1|zgpa\}$

C Additional Results

In this section, we displays the additional experiment results about measuring individual fairness metric (IF ratio) w.r.t. BRC.

Table 6: Results on FICO dataset applying our randomized classifier with IF ratio measured w.r.t. cost.

Method	Deterministic Classifier	Randomized Classifier				
Wicthod	Deterministic Classifici	$L_c = 1$	$L_c = 0.5$	$L_c = 0.25$	$L_c = 0.1$	
F1 score	0.986 ± 0.001	0.986 ± 0.001	0.986 ± 0.001	0.984 ± 0.002	0.975 ± 0.003	
IF ratio	3.412 ± 1.156	0.866 ± 0.041	0.450 ± 0.034	0.227 ± 0.018	0.090 ± 0.006	
S-DP	0.355 ± 0.020	0.356 ± 0.019	0.356 ± 0.018	0.352 ± 0.017	0.355 ± 0.015	
EO-DP	0.016 ± 0.011	0.016 ± 0.010	0.019 ± 0.010	0.016 ± 0.006	0.026 ± 0.011	
ED-DP	0.016 ± 0.011	0.016 ± 0.010	0.019 ± 0.010	0.016 ± 0.006	0.026 ± 0.011	

Table 7: Results on Law School dataset applying our randomized classifier with IF ratio measured w.r.t. BRC.

Method	Deterministic Classifier	Randomized Classifier			
Method	Deterministic Classifier	$L_c = 1$	$L_c = 0.8$	$L_c = 0.4$	$L_c = 0.3$
F1 score	0.680 ± 0.013	0.587 ± 0.010	0.585 ± 0.012	0.545 ± 0.011	0.545 ± 0.011
IF ratio	3.776 ± 3.039	0.270 ± 0.107	0.150 ± 0.085	0.057 ± 0.018	0.036 ± 0.018
S-DP	0.443 ± 0.012	0.476 ± 0.019	0.470 ± 0.015	0.399 ± 0.019	0.350 ± 0.014
EO-DP	0.350 ± 0.028	0.433 ± 0.041	0.431 ± 0.034	0.357 ± 0.040	0.309 ± 0.041
ED-DP disparity	0.362 ± 0.021	0.433 ± 0.041	0.431 ± 0.034	0.357 ± 0.040	0.309 ± 0.041

Table 8: Results on FICO dataset applying our randomized classifier with statistical parity constraint and IF ratio measured w.r.t. BRC.

Method	Deterministic Classifier	Randomized Classifier				
Method	Deterministic Classifici	$\Omega = 0.1$	$\Omega = 0.08$	$\Omega = 0.06$	$\Omega = 0.04$	
F1 score	0.857 ± 0.006	0.818 ± 0.006	0.800 ± 0.008	0.779 ± 0.008	0.756 ± 0.009	
IF ratio	7.105 ± 5.233	0.868 ± 0.047	0.853 ± 0.037	0.829 ± 0.025	0.796 ± 0.079	
S-DP	0.115 ± 0.022	0.114 ± 0.018	0.094 ± 0.022	0.072 ± 0.019	0.050 ± 0.015	

Table 9: Results on Law School dataset applying our randomized classifier with statistical parity constraint and IF ratio measured w.r.t. BRC.

Method	Deterministic Classifier	$\Omega = 0.1$	Randomized $\Omega = 0.08$	Classifier $\Omega = 0.06$	$\Omega = 0.04$
F1 score	0.642 ± 0.016 12.15 ± 18.11 0.047 ± 0.038	0.554 ± 0.016	0.562 ± 0.020	0.567 ± 0.017	0.575 ± 0.013
IF ratio		0.166 ± 0.055	0.181 ± 0.087	0.153 ± 0.080	0.147 ± 0.025
S-DP		0.039 ± 0.018	0.036 ± 0.017	0.031 ± 0.016	0.026 ± 0.014