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ABSTRACT

We present GenN2N, a unified NeRF-to-NeRF translation framework for various
NeRF translation tasks such as text-driven NeRF editing, super-resolution, object
removal, etc. Unlike previous methods designed for individual translation tasks
with task-specific schemes, GenN2N achieves all these NeRF editing tasks by
employing a universal image-to-image translator to perform editing in the 2D do-
main and lifting 2D edits into the 3D NeRF space. Since the 3D consistency of
2D edits may not be assured, we propose to model the distribution of the underly-
ing 3D edits through a generative model that can cover all possible edited NeRFs.
To model the distribution of 3D edited NeRFs from 2D edited images, we care-
fully design a VAE-GAN that encodes images while decoding NeRFs. The latent
space is trained to align with a Gaussian distribution and the NeRFs are super-
vised through an adversarial loss on its renderings. To ensure the latent code does
not depend on 2D viewpoints but truly reflects the 3D edits, we also regularize
the latent code through a contrastive learning scheme. Extensive experiments on
various editing tasks show GenN2N, as a universal framework, performs as well
or better than task-specific specialists while possessing flexible generative power.

1 INTRODUCTION

Over the past few years, Neural radiance fields (NeRFs) (Mildenhall et al., 2021) have brought a
promising paradigm in the realm of 3D reconstruction, 3D generation, and novel view synthesis due
to their unparalleled compactness, high quality, and versatility. Extensive research efforts have been
devoted to creating NeRF scenes from 2D images (Melas-Kyriazi et al., 2023; Yu et al., 2021; Cai
et al., 2022; Wang et al., 2022c; Liu et al., 2023) or just text (Poole et al., 2022; Jain et al., 2022)
input. However, once the NeRF scenes have been created, these methods often lack further control
over the generated geometry and appearance. NeRF editing has therefore become a notable research
focus recently.

Existing NeRF editing schemes are usually task-specific. For example, researchers have developed
NeRF-SR (Wang et al., 2022b), OR-NeRF (Yin et al., 2023), NeRF-In (Liu et al., 2022), PaletteN-
eRF (Kuang et al., 2023) for NeRF super-resolution, object removal, inpainting, and color-editing
respectively. These designs require a significant amount of domain knowledge for each specific
task. On the other hand, in the field of 2D image editing, a growing trend is to develop universal
image-to-image translation methods to support versatile image editing (Parmar et al., 2023; Zhang
& Agrawala, 2023; Saharia et al., 2022). By leveraging foundational 2D generative models, e.g.,
stable diffusion (Rombach et al., 2022), these methods achieve impressive editing results without
task-specific customization or tuning. We then ask the question: can we conduct universal NeRF
editing leveraging foundational 2D generative models as well?

The first challenge is the representation gap between NeRFs and 2D images. It is not intuitive how to
leverage image editing tools to edit NeRFs. A recent text-driven NeRF editing method (Haque et al.,
2023) has shed some light on this. The method adopts a “render-edit-aggregate” pipeline. Specif-
ically, it gradually updates a NeRF scene by iteratively rendering multi-view images, conducting
text-driven visual editing on these images, and finally aggregating the edits in the NeRF scene. It
seems that replacing the image editing tool with a universal image-to-image translator could lead
to a universal NeRF editing method. However, the second challenge would then come. Universal
image-to-image translators usually generate diverse and inconsistent edits for different views, e.g.
turning a man into an elf might or might not put a hat on his head, making edits aggregation intricate.
Regarding this challenge, Instruct-NeRF2NeRF (Haque et al., 2023) presents a complex optimiza-
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Figure 1: We introduce GenN2N, a unified framework for NeRF-to-NeRF translation, enabling a
range of 3D NeRF editing tasks, including text-driven editing, repairing, inpainting, zooming out,
colorization, object removal, super-resolution, etc. We show two rendering views of two edited
NeRF scenes at inference time (output 1 and output 2). Given a 3D NeRF scene, GenN2N can
produce high-quality editing results with suitable multi-view consistency.

tion technique to pursue unblurred NeRF with inconsistent multi-view edits. Due to its complexity,
the optimization cannot ensure the quality of the outcomes. Additionally, the unique optimization
outcome fails to reflect the stochastic nature of NeRF editing. Users typically anticipate a variety of
edited NeRFs just like the diverse edited images.

To tackle the challenges above, we propose GenN2N, a unified NeRF-to-NeRF translation frame-
work for various NeRF editing tasks such as text-driven editing, repairing, inpainting, zoom out,
colorization, object removal, super-resolution (see Fig. 1). In contrast to Instruct-NeRF2NeRF,
GenN2N adopts a “render-edit-generate” pipeline. We first render a NeRF scene into multi-view
images, then exploit a universal image-to-image translator to edit different views, and finally learn a
generative model to depict the distribution of NeRF edits. Instead of aggregating all the image edits
to form a single NeRF edit, our key idea is to embrace the stochastic nature of content editing by
modeling the distribution of the edits in the 3D NeRF space.

Specifically given a NeRF model or its multi-view images, along with the editing goal, we first gen-
erate edited multi-view images using a universal image-to-image translator. Each view corresponds
to a unique 3D edit with some geometry or appearance variations. Conditioned on the input NeRF,
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GenN2N trains a conditional 3D generative model to reflect such content variations. At the core of
GenN2N, we design a 3D VAE-GAN that incorporates a differentiable volume renderer to connect
3D content creation with 2D GAN losses, ensuring that the inconsistent multi-view renderings can
still help each other regarding 3D generation. Moreover, we introduce a contrastive learning loss
to ensure that the 3D content variation can be successfully understood just from edited 2D images
without being influenced by the camera viewpoints. During inference, users can simply sample from
the conditional generative model to obtain various 3D editing results aligned with the editing goal.

We have conducted experiments on human, items, and 360-degree environment scenes for vari-
ous editing tasks such as text-driven editing, repairing, inpainting, zoom out, colorization, object
removal, and super-resolution, demonstrating the effectiveness of GenN2N in supporting diverse
NeRF editing tasks while keeping the multi-view consistency of the edited NeRF.

We summarize the contribution of this paper as follows,

• A generative NeRF-to-NeRF translation formulation for the universal NeRF editing task
together with a generic solution;

• a 3D VAE-GAN framework that can learn the distribution of all possible 3D NeRF edits
corresponding to the a set of input edited 2D images;

• a contrastive learning framework that can disentangle the 3D edits and 2D camera views
from edited images;

• extensive experiments demonstrating the superior efficiency, quality, and diversity of the
NeRF-to-NeRF translation results.

2 RELATED WORK

NeRF Editing. Previous works such as EditNeRF (Liu et al., 2021) propose a conditional neural
field that enables shape and appearance editing in the latent space. PaletteNeRF (Kuang et al., 2022;
Wu et al., 2022) focuses on controlling color palette weights to manipulate appearance. Other ap-
proaches utilize bounding boxes (Zhang et al., 2021), meshes (Yuan et al., 2022), point clouds (Chen
et al., 2023), key points (Zheng et al., 2022), or feature volumes (Lazova et al., 2023) to directly ma-
nipulate the spatial representation of NeRF. However, these methods either heavily rely on user
interactions or have limitations in terms of spatial deformation and color transfer capabilities.

NeRF Stylization. Images-referenced stylization (Huang et al., 2022; Chiang et al., 2022; Zhang
et al., 2022) often prioritize capturing texture style rather than detailed content, resulting in imprecise
editing appearance of NeRF only. Text-guided works (Wang et al., 2023; 2022a), on the other hand,
apply contrastive losses based on CLIP (Radford et al., 2021) to achieve the desired edits. While
text references usually describe the global characteristics of the edited results, instructions offer a
more convenient and precise expression.

Instruct-driven NeRF editing. Among numerous image-to-image translation works, Instruct-
Pix2Pix (Brooks et al., 2022) stands out by efficiently editing images following instructions. It
leverages large pre-trained models in the language and image domains (Brown et al., 2020; Rom-
bach et al., 2022) to generate paired data (before and after editing) for training. While editing NeRF
solely based on edited images is problematic due to multi-view inconsistency. To address this, an
intuitive yet heavy approach (Haque et al., 2023) is to iteratively edit the image and optimize NeRF.
Inspired by Generative Radiance Fields (Schwarz et al., 2020; Chan et al., 2022), We capture various
possible NeRF editing in the generative space to solve it.

3 METHOD

Given a NeRF scene, we present a unified framework GenN2N to achieve various editing on the 3D
scene like in the 2D image editing domain, such as text-driven editing, zoom out, inpainting, col-
orization, super-resolution, object removal, etc. Here, we formulate those 2D image editing methods
as a universal image-to-image translator and those NeRF editing tasks as the NeRF-to-NeRF trans-
lation task, in which the given NeRF is translated into NeRF scenes with high rendering quality and
3D geometry consistency according to the user-selected editing target. The overview of GenN2N
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Figure 2: Overview of GenN2N. We first edit the source image set {Ii}N−1
i=0 using 2D image-to-

image translation methods, e.g., text-driven editing, colorization, zoom out, etc. For each view
i ∈ [0, N − 1], we generate M edited images, resulting in a group of translated image set
{{Sj

i }
M−1
j=0 }N−1

i=0 . Then we use the Latent Distill Module to learn M ×N edit code vectors from the
translated image set, which serve as the input of the translated NeRF. To optimize our GenN2N, we
design four loss functions: a KL loss to constrain the latent vectors to a Gaussian distribution; and
Lrecon, Ladv and Lcontr to optimize the appearance and geometry of the translated NeRF. In the infer-
ence stage, we can sample a latent vector z from Gaussian distribution and render a corresponding
multi-view consistent 3D scene with high quality.

is illustrated in Fig. 2, we first perform image-to-image translation in the 2D domain leveraging
foundational 2D generative models (Rombach et al., 2022), and then lift 2D edits to 3D and achieve
NeRF-to-NeRF translation. Given N multi-view images {Ii}N−1

i=0 , we first use Nerfstudio (Tan-
cik et al., 2023) to train the original NeRF. Then we use a universal image-to-image translator to
edit these source images. However, the content generated by the 2D translator may be inconsistent
among multi-view images. For example, using different initial noise, the 2D translator (Avrahami
et al., 2023) may generate different content for image inpainting, which makes it difficult to ensure
the 3D consistency between different view directions in the 3D scene. To ensure the 3D consistency
and rendering quality, we propose to model the distribution of the underlying 3D edits through a
generative model that can cover all possible edited NeRFs, by learning an edit code for each edited
image so that the generated content can be controlled by this edit code during the NeRF-to-NeRF
translation process.

For each view ∈ [0, N−1], we generate M edited images, resulting in a group of the translated image
set {{Sj

i }
M−1
j=0 }N−1

i=0 . Then we design a Latent Distill Module in Sec. 3.1 to map each translated
image Sj

i into an edit code vector zji and design a KL loss LKL to constrain those edit code vectors
to a Gaussian distribution. Conditioned on the edit code zji , we perform NeRF-to-NeRF translation
in Sec. 3.2 by rendering multi-view images {Ci}N−1

i=0 and optimize the translated NeRF by three
loss functions: the reconstruction loss Lrecon, the adversarial loss LAD, and the contrastive loss
Lcontr. After the optimization of the translated NeRF, as described in Sec. 3.3, we can sample an edit
code z from Gaussian distribution and render the corresponding edited 3D scene with high quality
and multi-view consistency in the inference stage.

3.1 LATENT DISTILL MODULE

Image Translation. As illustrated in Fig. 2, GenN2N is a unified framework for NeRF-to-NeRF
translation, in which the core is to perform a universal 2D image-to-image translation and lift 2D
edits into 3D NeRF-to-NeRF translation. Given the source multi-view image set {Ii}N−1

i=0 of a NeRF
scene, we first perform image editing MN times for each view using a universal 2D image-to-image
translator, producing a group of translated image set {{Sj

i }
M−1
j=0 }N−1

i=0 . Here, we denote the universal
2D image-to-image translator as a generative model that can solve arbitrary 2D image editing tasks.
In this paper, we use several 2D translation tasks to show the adaptability of our GenN2N: text-
driven editing, zoom out, inpainting, colorization, super-resolution, and object removal. For more
details about those 2D image editing methods, please refer to the supplementary materials.

Edit Code. Since 2D image-to-image translation may generate different content for different edits,
causing the inconsistency problem in the 3D scene. We propose to map each edited image Sj

i into a
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latent feature vector named edit code to characterize these diverse editings. We employ the off-the-
shelf VAE encoder from stable diffusion (Rombach et al., 2022) to extract the feature from Sj

i and
then apply a tiny MLP network to produce this edit code zji ∈ R64. During the training process, we
keep the pre-trained encoder fixed and only optimize the parameters of the tiny MLP network. This
mapping process can be formulated as follows:

zji = D(Sj
i ) = M(E(Sj

i )) (1)

where D represent this mapping process, E is the fixed encoder, and M is the learnable tiny MLP.

KL loss. In order to facilitate effective sampling of the edit code so as to control the editing diversity
of our NeRF-to-NeRF translation, we need to constrain the edit code to a well-defined distribution.
Thus we design a KL loss to encourage zji to approximate a Gaussian distribution:

LKL = ES∈{{Sj
i }

M−1
j=0 }N−1

i=0
[P (znormal)log(

P (znormal)

P (D(S))
)] (2)

where P(znormal) denotes probability distribution of the standard Gaussian distribution in R64 and
P(D(S )) means probability distribution of the extracted edit codes.

Contrastive loss. It is not assured that edit codes z obtained from the Latent Distillation Module
contain only the editing information while excluding viewpoint-related effects. However, since the
translated NeRF utilizes z to edit scenes, it yields instability if z violently changes given images
that are similar in appearance but different in viewpoints. To ensure the latent code does not depend
on 2D viewpoints but truly reflects the 3D edits, we regularize the latent code through a contrastive
learning scheme. Specifically, we reduce the distance between edit codes of different-view rendered
images from a translated NeRF that share the same edit code, while increasing the distance between
same-view images that are multi-time edited by the 2D image-to-image translator. Given an edit
code zji extracted from the i-th input view at the j-th edited image Sj

i , we render multi-view images
{Cj

i }
N−1
i=0 using the translated NeRF conditioned on zji . Then we employ contrastive learning to

encourage the edit code zji to be close to {źjl }
N−1
l=0 extracted from {Cj

l }
N−1
l=0 , where l ̸= i , while

being distinct from the edit codes {zki }
M−1
k=0 extracted from {Sk

i }
M−1
k=0 , where k ̸= j.

Specifically, our contrastive loss is designed as follows:

Lcontr = Latt
contr + Lrep

contr

=

N−1∑
l=0

||zji − źjl ||
2
2 +

M−1∑
k=0

max(0, α− ||zji − zki ||22), l ̸= i and k ̸= j
(3)

where α represents the margin that encourages the difference in features.

3.2 NERF-TO-NERF TRANSLATION

Translated NeRF. After 2D image-to-image translation, we need to lift these 2D edits to the 3D
NeRF. For this purpose, we propose to modify the original NeRF as a translated NeRF that takes
the edit code z as input and generates the translated 3D scene according to the edit code. We refer
readers to the supplementary for more details about the network architecture.

Reconstruction loss. Given an edit code zji extracted from the edited image Sj
i , we can generate a

translated NeRF to render Cj
i from the same viewpoint. Then we define the reconstruction loss as

the L1 normalization and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018)
between the rendered image Cj

i and the edited image Sj
i as follows:

Lrecon = LL1 + LLPIPS =
∥∥∥Cj

i − Sj
i

∥∥∥
1
+ LPIPS[P(Cj

i )− P(Sj
i )] (4)

where P means a patch sampled from the image. Note that due to the lack of 3D consistency of the
edited multi-view image, the supervision of the edited image from other viewpoints {Sj

l }l ̸=i will
lead to conflicts in pixel-space optimization. Therefore, we only optimize the translated NeRF using
the same view image Sj

i .
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Adversarial loss. Since the 3D consistency of edited multi-view images is not assured, relying
solely on the reconstruction loss on the same view often leads to blurry results. Previous research
demonstrates the effectiveness of adversarial training in preventing the production of blurry rendered
images resulting from conflicts that arise from noise in the camera extrinsic when performing image
supervision from different viewpoints (Huang et al., 2020).

To encourage high-quality output and address artifacts caused by inconsistent cross-view translated
images, we incorporate adversarial loss on rendered images from the translated NeRF. Instead of
directly differentiating real and fake samples, we learn the relation of the pair of samples by using
another edited images with the same viewpoints as conditions for the discriminator and take the
difference between the target image and generated images as input. This design is conducive for the
discriminator to distinguish similarities between condition images and target images, thus promoting
the content of the translated NeRF to be consistent with the purpose of 2D image editing.

Specifically, the discriminator D takes into real pairs and fake pairs. Each real pair R consists
of Sj and Sj − Sk where Sj ∈ {Sj

i }
N−1
i=0 and Sk ∈ {Sk

i }
N−1
i=0 are from two sets of edited images

from a universal image translator. Similarly, each fake pair F consists of Cj and Cj − Sk in which
Cj ∈ {Cj

i }
N−1
i=0 is generated by translated NeRF. Note that the images in the same pair come from

the same viewpoint. The pairs are concatenated in RGB channels and fed into the discriminator. We
optimize the discriminator D and translated NeRF with the objective functions below:

LAD-D = ER[−log(D(R))] + EF [−log(1−D(F ))]

LAD-G = EF [−log(D(F ))]
(5)

Optimization. During the training process, we jointly optimize the loss functions mentioned above:
LKL and Lcontr for the edit code, Lrecon and LAD-G for the translated NeRF, and LAD-D for the dis-
criminator. The total loss formula is expressed as follows:

L = LKL + Lrecon + LAD-G + LAD-D + Lcontr (6)

where we assign each regularization term the weight of 1.0, 1.0, 0.1, 0.1, 0.1 in all of our experi-
ments. The weights can be adjusted to prioritize different aspects of the training objective, such as
reconstruction accuracy, adversarial training, and perceptual quality.

3.3 INFERENCE

After the optimization of our GenN2N, the translated NeRF is optimized to be able to render the
target scene conditioned on the edit code. As shown in Fig. 1, users can simply sample an edit code
from the Gaussian distribution and use the translated NeRF to render the 3D scene with high-quality
and multi-view 3D consistency.

4 EXPERIMENTS

Our proposed GenN2N is a unified NeRF-to-NeRF translation framework which can support vari-
ous NeRF editing tasks. In this paper, we demonstrate the effectiveness of GenN2N by a suite of
challenging NeRF-to-NeRF translation tasks:
(1) Text-driven Editing edits the given NeRF scene to a diversity of NeRF scenes according to

the input text instruction.
(2) Super-resolution enhances the resolution of NeRF and enables multiple plausible outcomes.
(3) Object Removal removes the target object in the NeRF scene while keeping other contents,

especially the background content, unchanged and plausible.
(4) Zoom Out extends an input NeRF along the input region to enlarge NeRF scenes.
(5) Inpainting fills in user-specified masked regions in the NeRF scene with realistic content.
(6) Colorization transforms a gray-scale NeRF scene to a set of plausible color NeRF scenes.

We achieve those tasks by simply changing the 2D image-to-image translator in our framework,
without any additional task-specific design. Previous studies have extensively explored some of
these issues like text-driven editing, super-resolution, and object Removal. However, there is rarely
a unified framework that can achieve all these problems with strong performance, high quality, and
plausible multi-view consistent 3D structure. Furthermore, GenN2N can also perform zooming
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out, inpainting, and colorization in NeRF-to-NeRF translation, which were not explored in prior
research. We refer readers to the supplementary materials for detailed experiment settings, dataset
settings and implementation details.

4.1 COMPARISONS

Text-drive Editing. We achieve text-driven editing of the given NeRF by using Instruct-
Pix2Pix (Brooks et al., 2022) as the 2D image-to-image translator in our framework. Instruct-
Pix2Pix can efficiently edit images following user instructions, which causes the the 3D inconsis-
tency problem between different edits. While Instruct-NeRF2NeRF (Haque et al., 2023) proposed
an iterative updating mechanism to address this issue, it falls short in modeling the diversity of
different edits, making it challenging to ensure the quality of the outcomes. We conduct experi-
ments on Face (Haque et al., 2023) and Fangzhou self-portrait (Wang et al., 2023) dataset to com-
pare GenN2N with Instruct-NeRF2NeRF. Quantitative results are shown in Table 1, where we use
CLIP Text-Image Direction Similarity, CLIP Direction Consistency and Fréchet Inception Distance
(FID) (Heusel et al., 2017) as the evaluation metric. The results highlight the superior performance
of GenN2N over Instruct-NeRF2NeRF, demonstrating its effectiveness. Additionally, qualitative
comparison results in Fig. 3 provide further insights. Since the multi-view inconsistency caused
by the 2D image-to-image translator, Instruct-NeRF2NeRF has conflicting optimization goals for
different viewpoints when editing NeRF. Therefore, in many cases, it can not achieve the desired
editing effect as GenN2N, like it fails to remove the vase on the desk in Fig. 3 the bottom two rows.

Super-resolution. When only low-resolution images are available, our methods can boost NeRF
in reconstructing scenes at higher resolution, while keeping view consistency and avoiding blurry
outputs. We achieve this by employing ResShift (Yue et al., 2023) as the 2D image-to-image trans-
lator in GenN2N. Following NeRF-SR (Wang et al., 2022b), we conduct experiments on LLFF
dataset (Mildenhall et al., 2021), using PSNR and SSIM as evaluation metrics. As shown in Table 2,
GenN2N obtains NeRF-to-NeRF translation with higher performance than NeRF-SR. Moreover, we
also provide qualitative comparison results in Fig. 3, where GenN2N produces clearer and more
realistic rendering results than NeRF-SR.

Object Removal. The goal of NeRF object removal is to remove objects from the NeRF scene,
guided by user-provided points or text prompts. OR-NeRF (Yin et al., 2023) achieves this through a
multi-step process: it employs SAM (Kirillov et al., 2023) for object segmentation, utilizes Blended
Latent Diffusion (Avrahami et al., 2023) to fill in the background content in multi-view images, and
subsequently trains the NeRF model with color, depth, and perceptual cues. In our experiments, we
use SAM and LaMa as the 2D image-to-image translator in our GenN2N, which is the same setting
as OR-NeRF. Quantitative comparisons on SPIn-NeRF (Mirzaei et al., 2023) dataset are shown in
Table 3, where GenN2Nachieves superior PSNR and SSIM scores than OR-NeRF, highlighting the
effectiveness of our GenN2N framework. In addition, qualitative results are showcased in Fig. 3
revealing that while SPIn-NeRF fails to generate reasonable content behind the removed object,
while our GenN2N produces realistic content in the same region with fine multi-view consistency.

4.2 APPLICATIONS

Zoom Out. Given a NeRF scene optimized from multi-view images with a limited field-of-view,
GenN2N can enlarge the NeRF scene by leveraging Blended Latent Diffusion (Avrahami et al.,
2023) as the 2D image-to-image translator. Notably, this translation task has not been explored by
previous methods, thus we only provide qualitative results in Fig. 1 and appendix. For each scene,
we show two source images captured from different viewpoints, along with their corresponding
translated rendering results using different edit codes. As can be seen, our method can produce
reasonable content in the expanded regions.

Inpainting. NeRF inpainting is to fill in the 3D content of regions specified by users. We achieve
3D NeRF inpainting by using Blended Latent Diffusion (Avrahami et al., 2023) as the 2D translator
to inpaint those masked regions in the 2D domain. Qualitative results are shown in Fig. 1, where we
show the translated results from multiple viewpoints to demonstrate that reasonable and high-quality
content can be generated with harmonious multi-view consistency.
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SPin-NeRF OursInput

OursInput NeRF-SR

OursInput Instruct-NeRF2NeRF 

Figure 3: Comparisons with baselines. We compare with SPIn-NeRF (Mirzaei et al., 2023)in
object removal on the data provided by SPIn-NeRF. Our method preserves details of the scene while
successfully eliminating the object, while SPInNeRF (Mirzaei et al., 2023) causes the surrounding
scene to blur and deform. We compare with NeRF-SR (Wang et al., 2022b) in the super-resolution
shown in middle two rows. And compare with Instruct-NeRF2NeRF (Haque et al., 2023) in the
editing by using the text prompt ”remove the vase” in the bottom two rows.

Table 1: Text-driving editing results.

Method CLIP Text-Image CLIP Direction FID ↓Direction Similarity ↑ Consistency ↑
Instruct-N2N 0.0728 0.9196 781.31

Ours 0.0794 0.9379 424.44

Table 2: Super-resolution results.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF-SR 27.957 0.897 0.0937

Ours 28.501 0.913 0.0748

Colorization. For colorization, we use DDColor (Kang et al., 2022) as the 2D image-to-image
translator in our GenN2N to translate a gray-scale NeRF scene into a colored 3D scene. We show
initial gray-scale images and our translated results in Fig. 1 and appendix. We can find that with
different edit codes, the scene is rendered in different color styles. It is noticeable that with the
same edit code, the color rendered from different views is consistent. This strongly demonstrates
the effectiveness of our method in translating NeRF while keeping the 3D consistency of the scene.

4.3 ABLATION STUDIES

We conduct comprehensive ablation experiments to validate the designs of each component in our
method. Due to space limitations, we only highlight the essential aspects of GenN2N below.
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Ours w/o adversarial loss

Figure 4: Ablations. The removal of our adversarial loss results in blurry novel view images with
artifacts, especially in the zoom in regions.

Table 3: Object removal results.

Method PSNR ↑ SSIM ↑ LPIPS ↓
SPin-NeRF 22.529 0.621 0.317

Ours 24.235 0.654 0.326

Table 4: Ablation study.

Method CLIP Text-Image CLIP Direction
Direction Similarity ↑ Consistency ↑

w/o Contrastive loss 0.0460 0.9650
w/o Adversarial loss 0.0646 0.9642

Ours 0.0794 0.9379

The Contrastive Loss. We demonstrate the advantages of incorporating our proposed contrastive
loss in Table 4. The motivation is to disentangle the pose and edit information present in the latent
space. We achieve this by reducing the distance between edit codes of different-view rendered
images from a translated NeRF that shares the same edit code, while increasing the distance between
same-view images that are edited by the 2D image-to-image translator with different edit codes. As
demonstrated in Table 4, the absence of contrastive loss leads to the generation of blurry areas in
the rendered images, resulting in a decrease in the metric scores. This blurriness can be attributed to
the inclusion of pose information within the edit code z. By incorporating the contrastive loss, our
method successfully achieves a uniform appearance with different observing views under the same
style latent z.

Discriminator for Novel Views. We demonstrate the effectiveness of employing a conditional dis-
criminator to address artifacts caused by inconsistent cross-view edited images and to enhance the
quality of novel view rendering images, as depicted in Fig. 4. The removal of this conditional dis-
criminator results in blurry novel view images with artifacts in the background region. We attribute
these undesirable effects to the inability of current image-to-image translation methods, such as In-
structPix2Pix, to produce image editing consistently across multi-view images. To mitigate these
issues, we introduce a conditional discriminator between rendered images from the translated NeRF
and edited images from the 2D image-to-image translator. This inclusion successfully eliminates
artifacts and enhances the image quality of rendered images from the translated NeRF.

5 CONCLUSIONS

We have presented GenN2N, a unified NeRF-to-NeRF translation framework designed to address
various NeRF editing tasks. Unlike previous methods that often relied on task-specific approaches,
our framework leverages a universal image-to-image translator to perform editing in the 2D domain
and integrates 2D edits into 3D NeRF space. As 2D editing often exhibits variations in the generated
content, making it difficult to ensure the 3D consistency of the translated NeRF, we propose to
model the distribution of 3D edited NeRFs from 2D edited images. Also, we designed several
techniques including the latent distill module, the KL loss, the reconstruction loss, the adversarial
loss, and the contrastive loss. After the optimization of GenN2N, users can simply sample from the
conditional generative model to obtain diverse 3D editing results with multi-view consistency and
high rendering quality. We have conducted comprehensive experiments to show that GenN2Ncan
produce superior efficiency, quality, and diversity compared with existing task-specific methods
on various editing tasks including text-driven editing, super-resolution, object removal, zoom out,
inpainting, and colorization.
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