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ABSTRACT

In-context reinforcement learning (ICRL) is a frontier paradigm for solving rein-
forcement learning problems in the foundation model era. While ICRL capabilities
have been demonstrated in transformers through task-specific training, the potential
of Large Language Models (LLMs) out-of-the-box remains largely unexplored.
Recent findings highlight that LLMs often face challenges when dealing with
numerical contexts, and limited attention has been paid to evaluating their perfor-
mance through preference feedback generated by the environment. This paper is the
first to investigate the performance of LLMs as in-context decision-makers in the
problem of Dueling Bandits (DB), a stateless preference-based reinforcement learn-
ing setting that extends the classic Multi-Armed Bandit (MAB) model by querying
for preference feedback. We compare GPT-3.5 TURBO, GPT-4, GPT-4 TURBO,
LLAMA 3.1, and O1-PREVIEW against nine well-established DB algorithms. Our
results reveal that our top-performing LLM, GPT-4 TURBO, possesses an under-
standing of relative decision-making sufficient to achieve low weak regret in DB by
quickly selecting the best arm in duels. However, we observed that an optimality
gap exists between LLMs and classic DB algorithms in terms of strong regret.
LLMs struggle to converge and consistently exploit even when explicitly prompted
to do so, and are sensitive to prompt variations. To overcome these issues, we
introduce an agentic flow framework: LLM with Enhanced Algorithmic Dueling
(LEAD), which integrates off-the-shelf DB algorithms with LLM agents through
fine-grained adaptive interplay. We show that LEAD has theoretical guarantees
inherited from classic DB algorithms on both weak and strong regret. We validate
its efficacy and robustness even with noisy and adversarial prompts. The design of
such an agentic framework sheds light on how to enhance the trustworthiness of
general-purpose LLMs used for in-context decision-making tasks.

1 INTRODUCTION

Large sequence models pretrained on offline reinforcement learning datasets have led to the emergence
of in-context reinforcement learning (ICRL) (Laskin et al., 2022; Lee et al., 2024), where models can
infer tasks from interaction histories as context and make effective decisions in unseen environments
without parameter updates. Through trial and error, these models can self-improve their policies
purely in-context. While ICRL capabilities have been demonstrated in transformers with task-
specific training from scratch, the potential of general-purpose Large Language Models (LLMs) to
perform ICRL remains largely unexplored. Recent investigations into LLMs’ out-of-the-box ICRL
capabilities in environments with numeric rewards have reported notable failure cases, e.g., LLM
agents being vulnerable to adversarial loss functions and suffering from high regret compared to
classic algorithms such as Follow-The-Regularized-Leader (FTRL) (Park et al., 2024), and exhibiting
failures in exploration within Multi-Armed Bandit (MAB) problems (Lattimore & Szepesvári, 2020)
via standard training (Krishnamurthy et al., 2024). Even with inference-time algorithmic guidance,
an optimality gap persists between LLMs and classic (contextual) MAB algorithms (Nie et al., 2024).
These results suggest that carefully designed prompts and non-trivial algorithmic interventions are
needed to elicit desirable in-context reinforcement learning behavior of LLM agents.

The failure cases encountered by LLMs may be attributed to intrinsic difficulties in processing
numeric rewards, especially in tasks where patterns are difficult to express in natural language.
Recent findings have pointed out that LLMs often struggle with simple numerical comparisons (e.g.,
incorrectly judging 13.11 to be larger than 13.8), and there has been a notable lack of emphasis
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Figure 1: In-context reinforcement learning of an LLM agent with numeric rewards (in a multi-armed
bandit environment) and preference feedback (in a dueling bandit environment).

on evaluating the relative comparisons among the decisions they generate. Figure 1 shows a toy
example illustrating the in-context interaction between an LLM agent and different environment
settings. To disentangle the complexities introduced by numerical rewards, this paper focuses on the
problem of Dueling Bandits (DB) (Yue et al., 2012; Zoghi et al., 2014b), a stateless preference-based
reinforcement learning setting (Wirth et al., 2017; Pacchiano et al., 2021) that extends the classic
MAB model by querying for preference feedback between selected pairs of arms to identify the best
one. In DB, the agent learns through binary outcome (win or lose) of a noisy comparison between the
two selected arms. This setup is particularly useful when eliciting explicit feedback is challenging or
when the feedback is inherently comparative, like taste of food and product attractiveness (Yue et al.,
2012). DB has attracted significant attention due to its applicability in information retrieval (Yue &
Joachims, 2009), recommendation systems (Sui et al., 2017), and online ranker evaluation (Zoghi
et al., 2014b). We frame our investigation with the following question:

Are LLMs effective in-context agents for solving the problem of dueling bandits?

The DB problem poses distinctive challenges as a relative decision-making instance, particularly due
to the sparse nature of the relative rewards. This sparsity complicates the in-context decision-making
process, as it restricts the feedback obtained from interactions, introducing a level of difficulty not
typically seen in conventional bandit problems. Even though reduction from DB to standard MAB
exists (Ailon et al., 2014; Saha & Gaillard, 2022), it remains unclear how LLMs would perform in
DB with preference feedback rather than numeric rewards. There are conceptual differences between
them, similar to those between Reinforcement Learning from Human Feedback (RLHF) (Stiennon
et al., 2020) and standard RL, where impossibility results can be found in (Wang et al., 2024b).

While task-specific training of large sequence models can yield promising ICRL results, it is often
impractical due to the substantial computational resources required. Similar to the settings in (Mir-
chandani et al., 2023; Krishnamurthy et al., 2024; Nie et al., 2024; Chen et al., 2024), we evaluate the
emergent zero-shot abilities (Wei et al., 2022) of ICRL in general-purpose LLMs under the dueling
bandit problem, without re-training or fine-tuning. We summarize our main results below.

Evaluation of LLMs’ Emergent Zero-Shot Abilities of In-Context Dueling Bandits. We go
beyond numeric rewards to evaluate the performance of LLM agents in terms of both strong and
weak regret for making decisions in DB by comparing against various baseline DB algorithms via
a case study. We found that the top-performing general-purpose LLMs possess an understanding
of relative decision-making sufficient to achieve low weak regret in DB, which significantly differs
from that in classic MAB settings (Krishnamurthy et al., 2024). Notably, GPT-4 TURBO can serve
as an effective decision-maker for dueling bandits in the short term, quickly selecting the best arm
in duels with low variance across a range of instances. However, consistent with (Nie et al., 2024),
we found that an optimality gap exists between LLMs and classic DB algorithms in terms of strong
regret. The long-term performance is hindered by over-estimation bias in the exploration stage and
lack of convergence criterion in the exploitation stage. This highlights the need for more effective
and robust strategies to bridge this gap for in-context dueling bandits.

Effective and Robust Agentic Flow Framework for In-Context Dueling Bandits. To address the
identified optimality gap and enhance the trustworthiness of in-context LLM agents in DB tasks,
in Section 4.1, we propose an agentic flow framework, LLM with Enhanced Algorithmic Dueling
(LEAD) that integrates off-the-shelf Explore-then-Exploit DB algorithms with LLM agents. This
framework enables the fine-grained adaptive interplay between rule-based expert systems and in-
context LLM agents, enhancing their ability to handle DB problems via algorithmic interventions as
suggested in (Krishnamurthy et al., 2024; Nie et al., 2024). As an illustrative example, we demonstrate
how Interleaved Filter2 (IF2) algorithm can be incorporated with LLM agents in this framework. We
show that the proposed framework has theoretical guarantees, with experiments demonstrating its
efficacy and robustness across various prompting scenarios.
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2 PRELIMINARIES

In this section, we briefly introduce the problem of dueling bandits (DB) and establish the necessary
notation for this paper. Additional useful definitions can be found in Appendix B.3.1.

Dueling Bandits. In a fundamental K-armed dueling bandit problem setting (Yue et al., 2012), a
learner interacts with the environment by selecting two arms Arm1(t) and Arm2(t) from a set of
K arms {b1, . . . , bK} for a noisy comparison (a duel), at each round t ∈ {1, . . . , T} as Figure 1
illustrates. The outcome of a duel between two arms (i, j) is probabilistic. More precisely, the event
that an arm bi wins against bj is a Bernoulli random variable with a parameter denoted by Pr(bi ≻ bj).
For notational convenience, we normalize Pr(bi ≻ bj) such that Pr(bi ≻ bj) = ϵ(bi, bj) + 1/2,
where ϵij := ϵ(bi, bj) ∈ (−1/2, 1/2) is a measure of the distinguishability between arms bi and bj ,
which is stationary over time and is symmetric such that ϵij = −ϵji for all i, j ∈ [K] := {1, . . . ,K}.
Finally, for notational convenience, we define a preference matrix P = [ϵij ]i,j∈[K].

In-Context LLM Agents for Dueling Bandits. We consider an LLM agent with policy πLLM

interacting with a K-armed dueling bandit environment in-context. At each round t ∈ {1, . . . , T},
the LLM agent selects a pair of arms (Arm1(t),Arm2(t)) from the set {b1, . . . , bK} based on a
natural language instruction Prompt(C,Ht, R) (see Figure 7), consisting of three parts:

• Problem Description P : a natural language description of the DB problem, including the number
of arms K, the time horizon T , and the task objective.

• History Ht: an externally summarized interaction history (Krishnamurthy et al., 2024) up to round
t, which includes a sequence of pairwise dueling results and the empirical probabilities.

• Reasoning R: the zero-shot chain-of-thought (CoT) reasoning (Kojima et al., 2022) that encourages
the LLM agent to reason about the problem in a structured manner.

The LLM agent’s policy can be represented as:

(Arm1(t),Arm2(t)) = πLLM (Prompt(P,Ht, R)) . (1)

The goal is to maximize the cumulative reward over some time horizon T , where the reward is the
sum of the unknown probabilities of the two chosen arms beating the best arm (Condorcet winner).
We can quantify performance as minimizing the cumulative regret, either in the strong or weak sense
(see Eq.(4) and Eq.(5)).

Strong and Weak Regret. Throughout this paper, we assume the standard setting that a Condorcet
winner (CW) exists (Sui et al., 2017; Wu & Liu, 2016; Zoghi et al., 2014b; Yue et al., 2012). The
CW denoted as b∗ is an arm that is preferred over all the other arms, i.e., b∗ = bi if ϵij > 1/2 for all
j ∈ [K]\{i}. We consider two performance metrics: (i) strong regret (SR), which evaluates the total
preference gap between b∗ and both selected arms; (ii) weak regret (WR), which compares b∗ only
with the better of the two arms. Detailed definitions and settings are provided in Appendix B.3.1.

Related Works. Our work contributes to the growing community of intersection between LLMs and
decision-making. We summarize the detailed related works about dueling bandits, LLM agents for
bandits, and LLMs for in-context decision-making in the Appendix A.

3 LLMS AS STANDALONE IN-CONTEXT DECISION-MAKERS

To evaluate the LLMs’ efficacy for solving DB problems in-context, in this section, we use LLMs as
standalone decision-making agents and compare them with classic DB algorithms. Our evaluation is
two-fold: First, in Figures 2 and 9, we compare the performance of LLMs and classic algorithms in
terms of the strong and weak regret (see Eq.(4) and Eq.(5), with standard deviation). Second, we
delve into the experimental results and analyze the success and failure modes of LLM agents.

3.1 IMPLEMENTATION DETAILS OF EXPERIMENTS

Prompts and Configurations of LLMs. We employ an interactive zero-shot chain-of-thought (CoT)
prompt Prompt(P,Ht, R), as defined in Section 2, which describes the problem setting P along
with an externally summarized interaction history Ht and reasoning instructions R. We adopt the
prompting template and LLM configurations that lead to the best performance among all prompt
variations explored in a recent study (Krishnamurthy et al., 2024) for the classic MAB problem. The
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Figure 2: Comparisons between LLM agents and DB algorithms. Left and Right: strong and weak
regret for the Transitive-Easy instance. Results for Transitive-Hard are in Figure 9.

LLM agents interact with dueling bandit environments in a round-based manner, with the prompt
guiding their decision-making process. We conduct experiments with five LLMs: GPT-3.5 TURBO,
GPT-4, GPT-4 TURBO, LLAMA 3.1, and O1-PREVIEW. Note that we skip the GPT-4O version
which is primarily developed for multimodal tasks and has the same intelligence as GPT-4 TURBO.
The detailed prompt is provided in Appendix C.1.2.

Baselines. We compare LLMs against nine well-established baseline algorithms to evaluate their effi-
cacy. The baselines include Interleaved Filter (IF2) (Yue et al., 2012), Beat the Mean (BTM) (Yue &
Joachims, 2011), Sensitivity Analysis of VAriables for Generic Exploration (SAVAGE) (Urvoy et al.,
2013), Relative Upper Confidence Bound (RUCB) (Zoghi et al., 2014a), Relative Confidence Sam-
pling (RCS) (Zoghi et al., 2014b), Relative Minimum Empirical Divergence (RMED) (Komiyama
et al., 2015), Versatile Dueling Bandits (VDB) (Saha & Gaillard, 2022), Self-Sparring (Sui et al.,
2017), and Double Thompson Sampling (DTS) (Wu & Liu, 2016). Each of these algorithms employs
distinct strategies for selecting arms and estimating preferences, with the ultimate goal of efficiently
identifying the Condorcet winner. We assess the performance of LLMs and baseline algorithms using
strong regret and weak regret metrics defined in Section 2.

Environments. We evaluate the regret performance of LLMs and baselines across two types
of stochastic environments under the standard DB setting with a Condorcet winner (CW). The
environments differ in their stochastic transitivity properties and are divided into two cases, each
with two levels of difficulty instances (Easy and Hard) depending on the distinguishability of the
CW in beating other arms: (i) Transitive case (SST ∩ STI): This case uses a Bradley-Terry-Luce
(BTL) model (Bradley & Terry, 1952; Yue et al., 2012). The preference matrices generated in this
way satisfy the Strong Stochastic Transitivity (SST) and Stochastic Triangle Inequality (STI), which
implies the existence of a CW; (ii) Intransitive case (CW \ (SST ∪ STI)): the preference matrices
introduce cyclic preferences among non-winning arms while ensuring the existence of a CW. The
intransitive case is modeled using a custom preference construction designed to violate SST and STI.
The detailed constructions can be found in Appendix C.1.1.

Random Tests. The scale of our experiments is chosen to balance computational feasibility while
preserving the ability of obtaining meaningful conclusions. We set the time horizon to T = 2000
rounds, providing the LLMs and baseline algorithms with sufficient opportunity to learn and adapt
to the DB environments. Each experiment is replicated N = 5 times for the LLMs and N = 20
times for the baseline algorithms, enabling an understanding of their average behaviors and reliable
performance estimates.

3.2 EXPERIMENTAL RESULTS

For brevity, we present our initial analysis focused on the Transitive-Easy instance (Figure 2).
The analysis is qualitatively similar for the Transitive-Hard instance (Figure 9 in Appendix
C.2). We use γ = 0.5 for BTM, f(K) = 0.3K1.01 for RMED, η = 1 for Self-Sparring, and
α = 0.51 for RUCB, RCS and DTS. We analyze the results in terms of the strong and weak regret
defined in Section 2. In the following sections, we will mainly focus on GPT-4 TURBO, which is our
top-performing LLM, highlighting its success and failure modes.
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Emergence of in-context dueling bandits abilities. While GPT-3.5 TURBO and GPT-4 fail to
solve the DB problem, GPT-4 TURBO consistently outperforms state-of-the-art (SOTA) DB baselines
in weak regret (see Figures 2 and 9). This reveals that the in-context dueling bandits abilities emerge
as the general capabilities grow via standard training methods in general-purpose LLMs. Figure 13
(left?) illustrates the fraction of duels including the best arm across different time intervals. GPT-4
TURBO outperforms other LLMs and the DB baselines throughout the entire timeline. These findings
suggest that GPT-4 TURBO can effectively process the preference feedback obtained from duels and
make informed decisions to quickly identify and include the best arm in its duels.

Stable performance across different instances. GPT-4 TURBO demonstrates low variance com-
pared to other LLMs and baselines across varying levels of difficulty. As shown in Figure 14, GPT-4
TURBO exhibits the lowest average generalized variance of strong and weak regret in both instances.
This highlights its ability to maintain a stable decision-making process in DB.

Best Arm Identification: LLMs’ in-context dueling bandits abilities emerge as the general
capabilities grow. The Condorcet Winner is consistently selected in duel via GPT-4 TURBO,
leading to exceptional weak regret performance with minimal variance.

Exploration Vulnerability. In the exploration stage, we observe that GPT-4 TURBO tends to
quickly narrow down to a small subset of arms (although usually containing the Condorcet winner)
and repeatedly compare these arms. In contrast, the baselines exhibit more diverse and extended
exploration patterns. This behavior suggests that GPT-4 TURBO may overestimate the quality of
arms that win their initial comparisons based on limited historical data. Unlike the baselines, which
have explicit exploration mechanisms, LLMs rely on their inherent randomness (via sampling from
their output distribution) to explore. Based on these observations, we hypothesize that if GPT-4
TURBO happens to sample a sequence of comparisons that favors suboptimal arms early on, it can
get stuck comparing these arms indefinitely. To test this hypothesis, we conducted experiments using
noisy prompts with biased history. Our results in Figure 16 confirm that GPT-4 TURBO’s exploration
strategy is indeed vulnerable to biased history initialization and can converge to local optima.

Exploitation Inability. Despite GPT-4 TURBO’s outstanding weak regret performance, it fails
to consistently converge to a single best arm to duel against itself, even when the prompt setting
explicitly calls for it. This behavior highlights a fundamental limitation of LLMs: they are primarily
designed and trained for word token prediction rather than decision-making. Unlike baselines with
explicit stopping conditions, GPT-4 TURBO relies on its inherent language modeling capabilities to
determine when to stop exploring. Consequently, in the later exploitation stage, GPT-4 TURBO keeps
comparing the same top arms without committing to a single winner (see Figure 3). This suggests
that the language modeling objective alone may not be sufficient for LLMs to achieve optimal control
in complex decision-making tasks like DB.

Lack of Robust Strategy: LLMs’ performance can be hindered by overestimation bias in the
exploration stage and the lack of convergence criteria in the exploitation stage.

Biased understanding of DB problem during pretraining. Our two best-performing LLMs, GPT-4
TURBO and O1-PREVIEW, exhibit systematic biases regarding the DB problem, likely due to a lack
of exposure to similar tasks during pretraining. Specifically, they incorrectly assume that an arm
cannot duel with itself (the convergence case), even when explicitly prompted to do so (see examples
in Appendix C.1.3). This misunderstanding makes the DB problem as an out-of-distribution (OOD)
task for LLMs, and in-context instructions fail to fully override this internal bias. Consequently,
LLM agents cannot completely align with problem descriptions due to the inherent limitations of
in-context learning, which cannot really generalize to OOD tasks (Wang et al., 2024a). Figure 13
supports these observations: O1-PREVIEW demonstrates better reasoning capabilities by transitioning
from exploration to exploitation effectively and achieving lower strong regret than GPT-4 TURBO.
However, its CoT mechanism reinforces its internal biased understanding of DB, resulting in poorer
weak regret performance due to the selection of two suboptimal arms in duels.

Systematic Biases: LLMs out-of-the-box lack a fundamental understanding of the DB problem
and instead intuitively choose the next pair of arms to compare based on dueling history.
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Figure 3: Comparison of duel selection trajectories among GPT-4 TURBO, SELF-SPARRING, and
DTS on the Transitive-Easy (Top Row) and Transitive-Hard (Bottom Row) instances.
The decision trajectories of GPT-4 TURBO exhibit a clear pattern of continuous exploration without
converging to the best arm. In contrast, SELF-SPARRING and DTS demonstrate more structured
exploration patterns and convergence properties on both instances.

Scalability Limitation. To evaluate whether LLMs can generalize their exceptional weak regret
performance, we conducted experiments from two perspectives: (i) Removing transitivity in prefer-
ence structures: we change from transitive cases to intransitive cases that violate SST and STI (see
Figures 10 and 11). The analysis of Transitive-Easy and Transitive-Hard is qualitatively
similar: LLMs fail to replicate their weak regret performance in transitive cases when faced with
intransitive instances. This finding suggests that while LLMs exhibit emergent abilities for relative
decision-making rooted in linguistic knowledge, their effectiveness is constrained to specific transitive
scenarios. In DB settings with intransitive preference structures, their weak regret performance is no
longer exceptional; (ii) Increasing the number of arms: as illustrated in Figure 12, from K = 5 to
K = 10, GPT-4 TURBO’s performance exhibits a noticeable decline with the increase in K. The
finding suggests that when faced with a larger number of arms, LLMs struggle to effectively infer
the relative strengths among them. To quantify this scalability limitation and formally characterize
the dueling bandit instances LLMs can handle, we introduce the concept of the Relative Decision
Boundary (RDB). The RDB for a given LLM m is defined as the set of problem difficulties D for
which the model achieves an acceptable level of weak regret, satisfying the condition:

RDB(m) =
{
(K, T ,∆)

∣∣∣WR(m,D(K, T ,∆)) ≤ Rth

}
. (2)

Here, WR(m,D) represents the cumulative weak regret incurred by the model m on a problem of
difficulty D, while Rth is a predefined threshold that quantifies acceptable weak regret performance.
Overall, RDB is influenced by the inherent ability of m, the number of arms K, the transitivity T ,
the distinguishability between arms ∆.

Fail to generalize: LLMs’ performance degrades when introducing intransitive preference
structures or large number of arms. We introduce Relative Decision Boundary (RDB) to
describe the dueling bandit instances that LLMs can effectively handle.

After characterizing in-context LLM agents in DB, to further investigate the algorithmic behavior
of LLMs and develop more robust and effective in-context decision-making strategies, we seek to
answer the following questions:

[Q1] Can we develop an Algorithm-Enhanced in-context DB agent with a theoretical guarantee?

[Q2] How does it perform compared to standalone LLM agents and classic DB algorithms?

4 ALGORITHM-ENHANCED LLMS FOR DUELING BANDITS

Classic DB algorithms based on the Explore-then-Exploit framework, such as Interleaved Filter 2
(IF2) (Yue et al., 2012), are known to be near-optimal, with matching regret upper and lower bounds
up to multiplicative constants. To address the challenges identified in Section 3.2 of using standalone
LLM agents for DB, we propose an algorithm-enhanced approach: LLM with Enhanced Algorithmic
Dueling (LEAD) to demonstrate the possibility of integrating off-the-shelf DB algorithms with
LLM agents through fine-grained adaptive interplay. Our framework, LEAD, enjoys both a regret
guarantee and strong empirical performance.
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Candidate Arms  B = {b1, …, bk}

LLM Agent

Figure 4: Main components of the proposed LEAD agent in Algorithm 1 are illustrated: (i) The
blue-colored part represents the LLM phase. (ii) The grey-colored part indicates the DB phase.
(iii) The Algorithmic Procedures are detailed in Appendix B.2. (iv) The black arrows denote shared
interactions between components. (v) The dotted arrows represent the input and output.

4.1 ALGORITHMIC DESIGN OF LEAD

In this section, we present the design intuitions of LEAD. We begin by discussing the limitations of
a naive intervention approach and the desirable properties for an effective Algorithm-Enhanced LLM
framework. Based on these considerations, we propose an agentic framework design LEAD, where
we can incorporate any Explore-then-Exploit DB algorithms (Zoghi et al., 2014b). As an illustrative
example, we use IF2 (Yue et al., 2012) to demonstrate how off-the-shelf algorithms can be integrated
within LEAD and provide a detailed description.

Limitations of Naive Intervention. A straightforward approach to addressing the convergence
instability limitation of LLMs is to use a simple if-else condition that forces the LLMs to converge
when they first exploit two identical arms, which we call the Convergence-Triggered (CT) intervention
strategy. However, CT fails to guarantee the selection of the true Condorcet winner and can reinforce
local optima (see Figure 17 in Appendix C.2 for a failure example). This suggests that relying on
the LLMs’ internal convergence behavior to trigger the transition from exploration to exploitation
is unreliable, as the LLMs are largely driven by its inherent sampling noise rather than a structured
exploration policy. Thus, handling this limitation with theoretical guarantees remains challenging.

Desirable Properties for LLM Augmentation. To address [Q1], we seek an algorithmic framework
with the following properties: (i) A clear, symbolic logical structure that allows for easy integration
with LLM & Algorithm suggestions; (ii) A well-defined exploration-exploitation trade-off that
leverages the LLMs’ exploration behavior while ensuring convergence; (iii) Strong theoretical
guarantees to maintain robustness with various prompting scenarios.

As a result, we find that the Explore-Then-Exploit structure is particularly well-suited for LLMs (see
Appendix B.1 for a detailed illustration). By selecting an Explore-Then-Exploit DB algorithm as the
foundation inside LEAD, we address [Q1]. As an example, we use IF2 as the base to illustrate the
theoretical guarantee and empirical performance. This approach can be applied similarly to other
algorithms with regret bounds in the Explore-Then-Exploit family.

Algorithmic Framework. The procedures of the LEAD are illustrated in Figure 4 and presented in
Algorithm 1 (see more details in Appendix B.2). LEAD (IF2 base) maintains a confidence parameter
δ and a threshold parameter ϵ that control the algorithm’s confidence of matches between arms. The
key components of LEAD (IF2 base) are as follows:

• Phase 1 (LLM Phase): Utilization of LLM recommended arms: The agentic framework maintains a
set of candidate arms B. Given two arms suggested by an LLM agent, the framework begins with
finding a winner between them, denoted by bLLM. The winning arm bLLM is then matched with
each remaining arm b ∈ B. This phase continues until bLLM is defeated or all arms in B have been
matched. The variable TrustLLM is used to control the execution of the LLM phase, and it is set to

7
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Algorithm 1 Algorithm-Enhanced LLM Agent: LEAD (IF2 base)
Initialize :Time horizon length T , arms B = {b1, . . . , bK}, incumbent arm bIF2

1 while |B| ≥ 1 do
2 TrustLLM← True /* LLM Phase in Figure 4 (Lines 2-10) */
3 while TrustLLM do
4 Prompt LLM to select (bLLM1 , bLLM2) from B
5 bLLM ← MATCH ARMS(bLLM1 , bLLM2) (Procedure 1) /* Compare LLM arms */
6 for b ∈ B do
7 b′ ← MATCH ARMS(bLLM, b) (Procedure 1) /* Compare bLLM with others */
8 if b′ ̸= bLLM then TrustLLM← False, continue
9 end

10 end
11 StillTrust, B ← VALIDATE(b′, B,TrustLLM) (Procedure 2)
12 bIF2, B ←IF2(bIF2, B) (Procedure 3) /* IF2 Phase in Figure 4 (Lines 11-12) */
13 end
14 if StillTrust then return bLLM

15 else return bIF2

False when bLLM is defeated by another arm, indicating that the LLM’s suggestions are no longer
trusted.

• Phase 2 (IF2 Phase): Roll back to IF2: If bLLM is defeated, the framework switches to implementing
one round of IF2 with an incumbent arm bIF2 selected based on an estimated preference matrix P̂ .

After Phase 2, the algorithm-enhanced agent repeats Phase 1 until B only contains the best arm.
Algorithm 1 and Figure 4 summarize the phases above, with details delegated to Appendix B.2.

4.2 THEORETICAL GUARANTEES FOR LEAD

In this section, we begin by characterizing the vulnerability of using standalone LLM agents for
dueling bandits in Theorem 4.1. Then, we provide the theoretical guarantees of LEAD in Theorem 4.2
and 4.3, demonstrating its efficacy and convergence.

Theorem 4.1 (Vulnerability). For the dueling bandits problem with K arms and time horizon T , there
exists a preference structure and an attacker strategy with budget Φ(T ), such that any standalone
LLM agent, whose policy is represented by Eq.(1) and whose worst-case behavior under the original
prompt satisfying Assumption 4, will suffer an expected regret of Ω (min {Φ(T ), T/K}).

The proof of Theorem 4.1 is provided in Appendix B.3.2. The theorem underscores the suboptimality
of standalone LLM agents in DB problems, particularly when input prompts are subjected to adver-
sarial attacks. This vulnerability highlights the need for a more robust approach to use in-context
LLM agents while offering theoretical guarantees under diverse prompting scenarios.

Regret Bounds. Following the algorithmic design of LEAD in Section 4.1, LEAD (IF2 base)
inherits the theoretical guarantees of IF2 (see Appendix B.3.1), while nontrivially leveraging the
benefits of LLMs’ exceptional weak regret performance for exploration across a range of instances
within RDB. Specifically, LEAD (IF2 base) has the following theoretical guarantee:

Theorem 4.2 (Expected Regret). Suppose for t ≥ TLLM, the arms recommended by an LLM agent
contain the best arm b∗. Under Assumptions 1-3, the expected strong regret of LEAD (IF2 base)
satisfies E [SR(LEAD)] ≤ Õ ((K log T )/ϵ1,2) , and the expected weak regret can be bounded by

E [WR(LEAD)] ≤ min

{
Õ

(
TLLM +

K logK

ϵ1,2

)
, Õ

(
K log T

ϵ1,2

)}
, (3)

where Õ(·) hides poly-logarithmic factors of T .

Note that Theorem 4.2 is general such that we do not assume any specific adversarial behaviors of
the LLM agent, including Assumption 4. The proof of Theorem 4.2 is provided in Appendix B.3.2.
The required assumptions are precisely stated in Appendix B.3.1. Theorem 4.2 establishes a best-of-
both-worlds result in terms of the efficacy and robustness of LEAD.
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Figure 5: Comparisons between LEAD, GPT-4 TURBO, and baseline algorithms (IF2, SELF-
SPARRING and DTS). Left and Middle: strong and weak regret on the Transitive-Easy
instance. Right: robustness evaluation under prompt perturbations (prompts are in Appendix C.1.2).

Efficacy. As illustrated in Figures 2, 3, and 9, LEAD has the potential to identify the best arm after a
short exploration stage. This results in strong and weak regret bounds of Õ(TLLM + (K/ϵ1,2) logK)
and O(TLLM), respectively, that are independent of the horizon length T , provided the LLM agent
suggests a pair of arms that includes the best arm b∗. Furthermore, when the prompt contains extra
textual context that can infer the relative preferences between arms, TLLM will become smaller,
further enhancing the best-case performance. We consider it an important direction for future work
within the Contextual Dueling Bandit framework Dudík et al. (2015).

Guaranteed Convergence. Additionally, both the strong and weak regret for LEAD are guaranteed
to satisfy a worst-case upper bound of Õ ((K/ϵ1,2) log T ), which is only worse than the information-
theoretic lower bound of Ω ((K/ϵ1,2) log T ) in (Yue et al., 2012) by a poly-logarithmic factor of T .
The worst-case upper bounds on the strong and weak regret hold regardless of the specific prompting
scenario, ensuring that LEAD maintains its theoretical guarantees even in the presence of noisy or
adversarial prompts, as considered in Theorem 4.1. This safety guarantee is particularly important in
practical applications, where the prompts provided to the LLM agent may not always be optimal.

The following theorem indicates that the additional term (K logK)/ϵ1,2 in equation 3 is almost tight.
Its proof is provided in Appendix B.3.2.

Theorem 4.3 (Converse). Given any algorithm ALG for dueling bandits provided with an in-context
LLM agent recommending arms, if it satisfies E [WR(ALG)] ≤ TLLM for all TLLM, then it must hold
E [SR(ALG)] ≥ E [WR(ALG)] ≥ Ω (T ) for some instance of the LLM agent.

4.3 EMPIRICAL EVALUATION OF LEAD

Regarding [Q2], we design a two-fold evaluation to assess efficacy and robustness. The evaluation is
conducted on the Transitive-Easy instance, which provides higher distinguishability, allowing
us to observe convergence and regret differences within a practical number of steps. First, we
compare the strong and weak regret of LEAD against state-of-the-art baseline algorithms to validate
its efficacy. Second, we investigate the robustness of LEAD with noisy and adversarial prompts.

4.3.1 EFFICACY EVALUATION: STRONG REGRET AND WEAK REGRET

Hyper-parameters. In our implementation of LEAD (see Algorithm 1), there are two hyper-
parameters: the threshold parameter t, which controls the maximum number of comparisons between
arms, and the confidence parameter δ, which determines the confidence level for pruning suboptimal
arms. For the threshold parameter t, we considered values from the set {50, 100, 200}, and for the
confidence parameter δ, we explored values from {0.1, 0.2, 0.4}. After fine-tuning, we found that
setting t = 50 and δ = 0.4 provided the best performance in terms of cumulative regret.

We evaluate the cumulative strong and weak regret performance of the proposed LEAD with different
confidence parameter settings (δ = 0.1, 0.2, 0.4) and t = 50: Figure 5 (Left and Middle) demonstrates
that LEAD exhibits competitive performance across different δ values. For strong regret, δ = 0.1
results in more conservative exploration, leading to slightly higher regret compared to baselines. As δ
increases (δ = 0.2 or 0.4), LEAD achieves lower cumulative strong regret, outperforming all the
baselines at δ = 0.4 due to more aggressive exploration to identify the optimal arm sooner. Similarly,
for weak regret, LEAD consistently achieves superior performance. When δ = 0.2 and δ = 0.4,
LEAD effectively identifies and includes the optimal arm in comparisons. These hyper-parameter
values strike a balance between the number of comparisons required to identify the best arm and the
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confidence level for pruning suboptimal arms, enabling LEAD to efficiently explore and exploit the
available arms in-context for the dueling bandits setting.

4.3.2 ROBUSTNESS EVALUATION: NOISY AND ADVERSARIAL PROMPTS

Recent studies (Loya et al., 2023; Krishnamurthy et al., 2024) have emphasized the importance of
varying prompts to elicit the desired behavior from LLMs in decision-making tasks, highlighting the
potential limitations of prompt quality. Results obtained from a single prompt template may lead
to unreliable conclusions that cannot generalize to real-world situations where optimal prompts are
often unavailable. Thus, we evaluate the robustness of LEAD by employing two types of prompt
perturbations (see Figure 8) along with the original prompt (see Figure 7). Across all scenarios,
LEAD demonstrates superior performance and robustness compared to standalone GPT-4 TURBO.

IF-Enhanced LLMGPT-4-Turbo 
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LEAD (IF2 base)

Figure 6: Duel selection trajectory of GPT-4
TURBO and LEAD under different prompt set-
tings (Figures 7 and 8). Top: original prompt.
Middle: noisy prompt (biased history). Bottom:
adversarial prompt (reversed goal).

Original Prompt. Under the initial prompt,
LEAD leverages the LLM’s ability to quickly
identify the best arm through exploration (under
the DB instance within RDB Eq.(2)). As shown
in Figure 6 (Top Row), we observe that LEAD
benefits from the LLM’s exploration ability by
initializing with the best arm as the incumbent
when entering the IF2 phase. Compared to GPT-4
TURBO, convergence to the Condorcet winner is
guaranteed for LEAD with high probability.

Biased History. We inject an incorrect history into
the prompt, where each non-optimal arm initially
wins against the best arm 10 times, while keep-
ing the underlying preference matrix unchanged.
LLM agents are observed to get trapped in lo-
cal optima for extended periods, where LEAD
overcomes this limitation by employing uniform
comparisons in the IF2 phase to escape such sub-
optimal exploration modes.

Reversed Goal. When the prompt is adversarially modified from maximizing reward to minimizing,
the LLM consistently recommends non-optimal arms after its exploration stage. Even with adversarial
prompts, LEAD still achieves near-optimal cumulative strong regret. Since the LLM’s exploration
capability is only utilized within the bounded length of the MATCH ARMS procedure, the impact of
the reversed goal on the exploitation phase is mitigated.

Figure 5 (right) presents the cumulative strong regret results comparing LEAD against standalone
LLM agents and the IF2 algorithm across three prompt designs. Notably, LEAD with δ = 1/(TK2)
(consistent with IF2 to showcase the robust behavior) achieves near-optimal cumulative regret with
low variance even with noisy and adversarial prompts, validating the regret bounds stated in Theorem
4.2. LEAD and IF2 converge to the best arm within 2000 steps, while GPT-4 TURBO’s cumulative
expected regret continues to increase, indicating the instability of standalone in-context LLM agents.

5 CONCLUSION

This paper evaluates LLMs as in-context decision-makers for standard context-free dueling bandits
(DB) with a Condorcet Winner, offering the first systematic insights into their strengths and lim-
itations. While GPT-4 TURBO achieves exceptional weak regret performance across a range of
instances, it fundamentally lacks an understanding of the DB problem. Our findings reveal that LLMs’
decision-making in DB, driven by linguistic priors, lacks the necessary criteria for convergence and
generalization to complex scenarios, leading to an optimality gap between LLMs and classic DB al-
gorithms in terms of strong regret. To bridge this gap, we propose LEAD, an agentic flow framework
that integrates off-the-shelf DB algorithms with LLM agents through fine-grained adaptive interplay.
This framework provides theoretical guarantees and demonstrates robust performance even under
noisy and adversarial prompts. Our work contributes to the problem of In-Context Reinforcement
Learning (ICRL). The framework we proposed sheds light on how language-based reasoning can
inspire robust frameworks that translate words into actions, paving the way for more trustworthy AI
systems through the interplay between rule-based experts and in-context LLM agents.
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APPENDIX

This appendix provides supplementary information and additional experimental results to support the
main text. The content is organized into three main parts:

A. Related Works
B. Theoretical Part: Algorithm Design and Analysis of LEAD

• Appendix B.1 presents the algorithm design logic using Explore-then-Exploit methods.
• Appendix B.2 describes the LEAD algorithm stated in Section 4.1, detailing its key features

and implementation remarks.
• Appendix B.3.1 presents the necessary definitions, assumptions and lemmas for the theoretical

analysis of LEAD in Section 4.2.
• Appendix B.3.2 proves Theorem 4.1, 4.2, and 4.3, establishing LEAD’s regret bounds.

C. Experimental Part: Prompt Design and Supplementary Results
• Appendix C.1.1 illustrates the transitive and intransitive environments construction.
• Appendix C.1.2 illustrates the prompt design and prompt perturbations logic.
• Appendix C.1.3 provides exemplars of GPT-4 TURBO to showcase their behavior.
• Appendix C.2 presents supplementary experimental results, providing further insights into the

performance and behavior of the algorithms in Sections 3 and 4.

A RELATED WORKS

We provide the detailed related works as follows.

Dueling Bandits. The problem of dueling bandits was initially introduced in (Yue et al., 2012).
Various methods have been proposed to tackle the task since then. These methods can be broadly
classified into two categories as Explore-Then-Exploit methods and Ongoing Regret Minimization
methods according to (Zoghi et al., 2014b). Explore-Then-Exploit methods focus on identifying the
best arm with high confidence before exploiting it, such as Interleaved Filter (IF) (Yue et al., 2012)
and Beat the Mean (BTM) (Yue & Joachims, 2011), etc. In contrast, Ongoing Regret Minimization
methods explicitly target the objective of minimizing cumulative regret, including Relative Upper
Confidence Bound (RUCB) (Zoghi et al., 2014a) and Self-Sparring (Sui et al., 2017), etc. Dueling
bandit problem and preference feedback in general has a wide variety of applications, including
recommendation systems (Yue et al., 2012), robotics (Tucker et al., 2020), and most recently, the
training algorithm of large language models, such as Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022).

LLM Agents for Multi-Armed Bandits. Several recent works have explored evaluating the capa-
bilities of LLMs in bandit problems. For example, (Baheri & Alm, 2023) proposed an approach
to enhance contextual bandits by integrating LLMs as encoders. The LLMs’ ability to capture rich
semantic and syntactic information from textual contexts is leveraged to provide the algorithm with a
more informative representation of the context. The LLM-augmented algorithm transforms the raw
context into a latent space vector using the LLM’s encoding capabilities. This encoded context is then
used to guide the decision-making process. (Krishnamurthy et al., 2024) investigates whether LLMs
can engage in exploration in simple MAB environments without additional training. They compared
various prompt designs and found that GPT-4 with zero-shot chain-of-thought (CoT) reasoning and
an externally summarized interaction history performed the best, while other configurations failed in
exploration, either by never selecting the best arm after initial rounds or by selecting all arms nearly
equally often. Different from the previous results, in this work we go beyond the settings of numeric
rewards and investigate the capabilities of LLMs under preference feedback.

In-Context LLMs for Decision-Making. Beyond bandit problems, LLM agents have demonstrated
strong capabilities in complex reasoning across a wide range of in-context reinforcement learning
and decision-making tasks (Laskin et al., 2022; Lee et al., 2024; Zhou et al., 2022; Yao et al., 2024).
Various existing works aim to understand LLM agents’ capabilities for in-context decision-making,
with notable examples including planning (Huang et al., 2022; Hao et al., 2023). Additionally, LLM
agents have been shown to enhance embodied agents in robotic applications by providing advanced
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task planning abilities (Brohan et al., 2023) and reward designing (Ma et al., 2023), further enabling
the development of lifelong learning agents (Wang et al., 2023). Besides these empirical successes,
the authors of (Park et al., 2024) analyzed LLMs’ interactions in online learning and game theory
settings through the lens of the regret metrics. They identified simple cases where LLMs fail to be
no-regret. Another line of research incorporates LLMs into classic decision-making frameworks to
create LLM-augmented online decision-makers. For instance, Liu et al. (Liu et al., 2024) utilized
LLMs to enhance the components of warm starting, sampling candidates, and surrogate modeling in
Bayesian optimization. Our work contributes to this broad area by integrating LLM agents with the
classic Explore-then-Exploit DB algorithms to enhance the utilization of preference feedback.

B ALGORITHM DESIGN AND ANALYSIS OF LEAD

In this section, we detail the design principles and implementation of the LEAD algorithm. First,
we present the algorithm design logic. Then, we provide a rigorous proof of Theorem 4.1, 4.2,
and 4.3, establishing the theoretical guarantees of LEAD (IF2 base) under the assumptions outlined
in Appendix B.3.1.

B.1 ALGORITHM DESIGN LOGIC

Explore-then-Exploit algorithms as Ideal Candidates. Classic DB algorithms can be classified into
two categories: Explore-Then-Exploit methods and Ongoing Regret Minimization methods (Zoghi
et al., 2014b). Among these, Explore-Then-Exploit structure stands out as particularly well-suited for
LLM augmentation:

• The Explore-Then-Exploit structure naturally aligns with the LLMs’ tendency to keep exploring
without converging (see Figure 3), allowing for leveraging the LLMs’ exploration behavior while
mitigating their exploration vulnerability and convergence instability (see Table ??).

• Its symbolic representation of the algorithm’s logic enables clear integration of LLM suggestions
at specific points without disrupting the overall structure and theoretical guarantees. In contrast,
algorithms like Self-Sparring in (Sui et al., 2017) are less symbolic, making them less suitable for
direct LLM augmentation.

• Its strong theoretical guarantees, e.g., IF2 with an expected regret bound of O((K/ϵbad) log T )
matching the DB problem’s lower bound of Ω((K/ϵbad) log T ) up to constants (see Ap-
pendix B.3.1), and its empirical performance (see Figures 2 and 9) provide a robust foundation,
ensuring convergence and bounded regret.

B.2 DETAILED PROCEDURE DESCRIPTION

In Procedure 1 below, we describe the MATCH ARMS procedure used in LEAD (see Algorithm 1
and Figure 4).

Procedure 1 MATCH ARMS (with a bounded number of comparisons)
Input: Two arms a, a′, confidence parameter δ ← 1/(K2 log T ), and threshold ϵ← ϵ1,2
if a ̸= a′ and t ≤ (16/ϵ2) log(K log T ) then

while ∄ (b, b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do
Compare a with a′ and update P̂a,a′ and Ĉa,a′ , t← t+ 1

end
return b

else return a

We reprise the IF2 procedure in (Yue et al., 2012) below to complement the presentation of LEAD.

It is worth noting the following features of Algorithm 1 in its practical implementation.

Remark 1. The LLM Phase allows for flexible exploration design within the bounded length of the
MATCH ARMS procedure, not limiting the number of prompts and comparisons performed by the
LLM to identify an empirically best arm.
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Procedure 2 VALIDATE

Input: Incumbent arm a, candidate arms B, TrustLLM, confidence parameter δ ← 1/(TK2), and
threshold ϵ← ϵ1,2
if TrustLLM is True then

for b ∈ B do
if t ≤ (16/ϵ2) log(K log T ) then

while ∄ (b, b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do
Compare a with b and update P̂a,b and Ĉa,b, t← t+ 1

end
if b ̸= a then return StillTrust← False, B ← B\{a}

end
return StillTrust← True, B ← ∅

if TrustLLM is False then return StillTrust← False, B ← B

Procedure 3 IF2 PROCEDURE

Input: Incumbent arm a, candidate arms B, confidence parameter δ ← 1/(TK2), t← 0
if t ≤ (16K/ϵ21,2) log(K log T ) then

for b ∈ B do
Compare a with b and update P̂a,b and Ĉa,b, t← t+ 1

end
a,B ← ANNEAL(a,B)

return a,B

Procedure 4 ANNEAL

Input: Incumbent arm a, candidate arms B, confidence parameter δ ← 1/(TK2), matrices P̂ and Ĉ

while ∃ (b, b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do
B ← B\{b′}

end
if ∃ b′ ∈ B such that P̂a,b′ < 1/2 and 1/2 /∈ Ĉa,b′ then

while ∃b ∈ B such that P̂a,b > 1/2 do
B ← B\{b} /* IF2 pruning */

end
a← b′, B ← B\{b′}

return a,B

Remark 2. The bound length in the MATCH ARMS procedure can be adjusted based on empirical
requirements. Modifying the confidence parameter δ and the threshold ϵ will affect the regret bound
and the algorithm’s performance. These parameters can be tuned to balance exploration and
exploitation, depending on the specific application and desired level of confidence.

B.3 THEORETICAL ANALYSIS

B.3.1 USEFUL ASSUMPTIONS AND LEMMAS FOR DUELING BANDITS

We introduce the useful definitions, assumptions and lemmas for Dueling Bandits that are necessary
for the theoretical analysis of our proposed algorithm.

Throughout this paper, we consider two important performance metrics. The first is the strong regret
of a given algorithm ALG, defined as

SR(ALG) :=

T∑
t=1

(
ϵ (b∗,Arm1(t)) + ϵ (b∗,Arm2(t))

)
. (4)

where T is the time horizon. The second is the weak regret of ALG, defined as

WR(ALG) :=

T∑
t=1

min
(
ϵ (b∗,Arm1(t)) , ϵ (b

∗,Arm2(t))
)
. (5)
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which only compares b∗ against the better of the two selected arms Arm1(t) and Arm2(t). It is worth
highlighting that LLM agents exhibit significantly different behaviors with respect to the two defined
notions of regret, as detailed in Section 3.2.

Assumption 1 (Total Ordering). The preference matrix P = (ϵij) satisfies the Total Ordering (TO)
property such that for all i, j ∈ [K], i ≻ j implies ϵij > 1/2.

With the TO property satisfied, we assume the preference matrix P further satisfies the following two
standard properties (Yue & Joachims, 2009; 2011; Yue et al., 2012).

Assumption 2 (Strong Stochastic Transitivity). The preference matrix P = (ϵij) satisfies the Strong
Stochastic Transitivity (SST) such that for any arms i, j, k ∈ [K] such that i ≻ j ≻ k under the total
order ≻, we have ϵik > max{ϵij , ϵjk}.
Assumption 3 (Stochastic Triangle Inequality). The preference matrix P = (ϵij) satisfies the
Stochastic Triangle Inequality (STI) such that for any arms i ≻ j ≻ k, we have ϵik ≤ ϵij + ϵjk.

Note that the Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952) used in our experiments 3.1
satisfies Assumption 2 and 3. We restate the following theoretical guarantees for IF2 that is useful in
the proof of Theorem 4.2. Let ϵbad := minb ̸=b∗ ϵ(b, b

∗).

Lemma 1 (Theorem 2 in (Yue et al., 2012)). Assuming the preference matrix P satisfies the SST and
STI, then IF2 has its expected regret (both weak and strong) bounded from above by

E[SR(IF2)] ≤ O

(
K

ϵbad
log T

)
. (6)

The following expected regret bound achieved by IF2 is tight up to multiplicative constants, as
indicated by the lower bound (Theorem 4) in (Yue et al., 2012) such that any algorithm ALG for DB
satisfies E[SR(ALG)] = Ω ((K/ϵbad) log T ).

B.3.2 THEORETICAL GUARANTEES OF LEAD

Part I: Vulnerability of Standalone LLM Agents
Assumption 4 (Worst-Case Behavior). Under the original prompt (see Figure 7), the worst-case
behavior of an LLM agent in the dueling bandit setting is equivalent to a randomizer that selects
action pairs uniformly at random.

Vulnerability of Standalone LLM Agents. Inspired by the adversarial corruptions framework
introduced in (Hajiesmaili et al., 2020) for the classic MAB problem, we investigate the vulnerability
of standalone LLM agents in the DB setting under adversarial prompts. We consider an attacker with
a budget Φ(T ) who employs the following strategy: whenever the LLM agent selects the optimal arm
b∗ for comparison, the attacker manipulates the input prompt to the LLM to eliminate b∗ from the duel
with probability p (where 0 < p ≤ 1 is a constant), subject to the constraint of performing at most
Φ(T ) attacks over T rounds. This adversarial strategy compels the LLM agent to select suboptimal
arms, resulting in poor performance, as formalized in the following theorem with Assumption 4.

Proof of Theorem 4.1. Consider the following DB instance with K ≥ 3 arms {b1, . . . , bK} and
preference matrix P :

Pi,j =


0.5 + ϵ, if bi = b∗ and bj ̸= b∗,

0.5− ϵ, if bi ̸= b∗ and bj = b∗,

0.5, otherwise.

where 0 < ϵ < 0.5 is a small constant. In this instance, arm b∗ is the unique Condorcet winner, and
all other arms are suboptimal with a gap of ϵ to b∗.

Now, consider an attacker strategy with budget Φ(T ): Whenever the LLM agent selects a duel
containing the optimal arm b∗, the attacker manipulates the input prompt to the LLM agent (as
described in Eq. (1)) to eliminate b∗ from the comparison with probability p (where 0 < p ≤ 1 is
a constant), subject to the constraint that the attacker can perform at most Φ(T ) attacks over the T
rounds.
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Let N(T ) be the number of rounds in which the LLM agent selects a duel containing the optimal
arm b∗ up to round T . Due to the attacker’s manipulation of the input prompt, in each of these N(T )
rounds, b∗ is eliminated from the comparison with probability p. However, because of the attacker’s
budget constraint, the actual number of attacked rounds is at most min{N(T ),Φ(T )}.
In the rounds where b∗ is eliminated from the comparison, the LLM agent can only select from the
suboptimal arms {bi | bi ̸= b∗, i ∈ [K]}. Let ∆i = Pb∗,bi − 0.5 denote the suboptimality gap of arm
bi with respect to b∗. Then, the expected regret incurred in each round where b∗ is eliminated from
the comparison is at least minbi ̸=b∗ ∆i = ϵ.

Thus, the expected cumulative regret of the LLM agent after T rounds is at least:

E[Regret(T )] ≥ p · E[min{N(T ),Φ(T )}] · ϵ ≥ p ·min{E[N(T )],Φ(T )} · ϵ,

where the first inequality follows from the regret incurred in rounds where b∗ is eliminated from the
duel, and the second inequality holds due to Jensen’s inequality and the linearity of expectation.

According to the Assumption 4, in the worst case, the LLM agent’s behavior is equivalent to randomly
selecting a duel in each round. For K arms, there are K(K − 1)/2 possible duel combinations.
Therefore, the probability of selecting a duel containing b∗ in each round is (K − 1)/

(
K
2

)
= 2

K ,
which yields E[N(T )] = T · 2

K . The regret bound becomes:

E[Regret(T )] ≥ p ·min

{
2T

K
,Φ(T )

}
· ϵ = Ω

(
min

{
T

K
,Φ(T )

})
.

Therefore, any standalone LLM agent whose policy is represented by Eq. (1) under the worst-case
assumption will suffer an expected regret of Ω

(
min

{
Φ(T ), T

K

})
. This lower bound demonstrates

the vulnerability of solely relying on LLM agents for DB in adversarial environments when the
attacker can manipulate the input prompts.

Part II: Expected Regret Bounds of LEAD (IF2 base)

Suppose at each step t ≤ T , aligning with the design of IF2 in (Yue et al., 2012), P̂t is estimated such
that each P̂i,j is the fraction of number of comparisons when bi was the winner out of all previous
t comparisons. Define a confidence interval Ĉt := (P̂t − ct, P̂t + ct) where ct :=

√
log(1/δ)/t.

Before proceeding to prove Theorem 4.2, we first state a useful lemma from (Yue et al., 2012) as a
result of the Hoeffding’s inequality (Hoeffding, 1994).
Lemma 2 (Generalized Lemma 1 in (Yue et al., 2012)). Let δ = 1/(K log T )2 be a confidence
parameter with δ ∈ (0, 1/2], a winner between two arms bi and bj is identified with probability at
least 1− δ, using at most

(
16/ϵ2i,j

)
log(K log T ) number of comparisons.

Note that Lemma 2 can be directly implied by Lemma 1 in (Yue et al., 2012). Now, under As-
sumption 2 and 3 such that the preference matrix P satisfies the SST and STI properties, we prove
Theorem 4.2.

Proof of Theorem 4.2. Suppose the arms suggested by LLM agent includes the best arm b∗ after
exploring TLLM steps. We prove the two bounds shown in Theorem 4.2 one-by-one.

Weak Regret Bound. The first TLLM steps induce accumulated weak regret of at most O(TLLM).
According to (Yue et al., 2012), IF2 plays O(K) matches (comparisons) in expectation. Thus,
the expected number of rounds of calling IF2 PROCEDURE is O(log T/ log(K log T )). Applying
Lemma 2, with O

(
(1/ϵ21,2) log(K log T )

)
(by setting a hyper-parameter ϵ = ϵ1,2) comparisons

between two arms, since the best arm b∗ is always included in each comparison, the best arm b∗ is
correctly identified with probability at least 1−1/(K log T )2. This procedure leads to no weak regret
since b∗ suggested by the LLM agent is always included as the incumbent arm in future comparisons.

Moreover, the implementation of Procedure 3 induces at most O((K/ϵ21,2) log(K log T )) compar-
isons. The validation procedure (Procedure 2) leads to no weak regret if bLLM is indeed the best arm
and the identification of bLLM = b∗ succeeds with a probability 1− 1/T . Denote by E1 and E2 two
error events when b∗ loses some of the matches in the LLM Phase. there exist comparisons (matches)
fail in the validation procedure (Procedure 2) or the IF2 Phase (Procedure 3). The union bound
implies with probability 1−1/(K log T ), b∗ will win all the matches such that P (E1) ≤ 1/(K log T ).
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Similarly, P (E2) ≤ 1/T . Combining these events, regarding the total expected weak regret, the
expected weak regret induced by the steps after time TLLM can be bounded by

E[SR(LEAD after TLLM)]

≤
(
1− 1

K log T
− 1

T

)
O

(
K log(K log T )

ϵ1,2

)
︸ ︷︷ ︸

LLM Phase

+
1

K log T
O

(
K

ϵ1,2
log T

)
︸ ︷︷ ︸

IF2 Phase

+
1

T
O(T )︸ ︷︷ ︸

Failure Cases

= Õ

(
K logK

ϵ1,2

)
since there are at most K + 1 matches.

Convergence Guarantee. Furthermore, consider the adversarial selection of arms from the LLM
agent. According to Lemma 2, the IF2 procedure with an expected regret O ((K/ϵ1,2) log(T )) is
implemented at most O(1) times with probability 1− 1/(TK), provided with |B| = K. Therefore,
the expected regret (either strong or weak) induced by each implementation of Procedure 3 is at most
O ((K/ϵ1,2) log(T )) since there are at most O

(
(K/ϵ21,2) log(K log T )

)
additional comparisons of

pairs in the LLM phase. Finally, applying the expected regret bound in Lemma 1 completes the proof.

Part III: Converse

In the following, we argue that for any algorithm ALG, achieving an upper bound E [WR(ALG)] ≤
TLLM for all TLLM is impossible.

Proof of Theorem 4.3. Suppose ALG is an algorithm that leads to a weak regret bound
E [WR(ALG)] ≤ TLLM for all TLLM, then it has to trust and include the recommended arm in
all the comparisons immediately after it is proposed by the LLM agent to ensure that future weak
regret becomes zero. To see this, note that one can always construct an adversarial TLLM that leads to
a nonzero future weak regret. However, the LLM agent can choose to provide an arm that is always
not the best arm for all t ∈ {1, . . . , T}. This leads to E [SR(ALG)] ≥ E [WR(ALG)] ≥ Ω (T ).

C PROMPT DESIGN AND SUPPLEMENTARY RESULTS

C.1 LLM EXPERIMENTAL RESULTS

In this section, we provide the detailed design of the prompts used in our experiments and provide
additional results to support our findings. We begin by presenting the original prompt used in the
LLM-Env interaction and introduce the perturbed prompts, which include both noisy and adversarial
variations to test the robustness of our approach. Finally, we provide four exemplars using the original
prompt to to showcase the behavior of both GPT-4 TURBO and O1-PREVIEW.

C.1.1 ENVIRONMENTS

In transitive instances, the preference matrices are constructed using the Bradley-Terry-Luce (BTL)
model (Bradley & Terry, 1952; Yue et al., 2012), with a generalized form known as the Plackett-Luce
model (Plackett, 1975). In this model, each arm is associated with a utility parameter θ(i) > 0,
where i represents the rank of the arm (i.e., θ(1) corresponds to the best arm, θ(2) corresponds to the
second best arm, and so on). For any pair of arms bi and bj , the probability of bi being preferred
over bj is determined by P (i ≻ j) = θ(i)/(θ(i) + θ(j)). Setting the number of arms K = 5, we
randomize the order of the arms to prevent selection bias, resulting in the following arm ordering:
b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4. We use two instances: Transitive-Easy and Transitive-Hard,
with their respective θ parameters given by:

• Transitive-Easy instance: θ(1) = 1, θ(i) = 0.5− (i− 1)/2K, ∀i ∈ [2,K].
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• Transitive-Hard instance: θ(i) = 1− (i− 1)/K, ∀i ∈ [K].

Note that the datasets generated in this way satisfy the Strong Stochastic Transitivity (SST) and
Stochastic Triangle Inequality (STI) properties (Yue et al., 2012) (see Appendix B.3.1 for more
details). The settings of the used BTL model also imply the existence of a Condorcet winner.

Intransitive Case: CW \ (SST ∪ STI)

In intransitive instances, the preference matrices are constructed to violate both the Strong Stochastic
Transitivity (SST) and Stochastic Triangle Inequality (STI) properties. This design creates cyclic
preferences among the non-winning arms while preserving the existence of a Condorcet winner.
Setting K = 5, we still use the same shuffled arm ordering: b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4 for intransitive
instances.

• Intransitive-Easy instance: The Condorcet winner b5 has a strong preference over any
other arm:

P (5 ≻ j) = 0.8, P (j ≻ 5) = 0.2, ∀j ∈ {1, . . . , 4}.
Among the non-winning arms b1, . . . , b4, cyclic preferences are introduced via:

P (i ≻ j) = 0.8− 0.2 · ((j − i− 1) mod (K − 1)) , ∀i, j ∈ {1, . . . , 4}, i ̸= j.

This configuration ensures a clear dominance by b5.

• Intransitive-Hard instance: The Condorcet winner’s preference is weaker, with:

P (5 ≻ j) = 0.6, P (j ≻ 5) = 0.4, ∀j ∈ {1, . . . , 4}.

This setting makes it more challenging to identify b5 as the Condorcet winner.

Finally, in both instances, the symmetry condition is imposed for consistency:

P (j ≻ i) = 1− P (i ≻ j), ∀i, j ∈ {1, . . . ,K}, i ̸= j.

Accordingly, as shown below, we create a cyclic pattern of preferences among the non-winning arms
while maintaining the Condorcet winner’s superiority.

Intransitive-Easy Instance (pw = 0.8)

P =


0.0 0.8 0.6 0.4 0.2
0.2 0.0 0.8 0.6 0.2
0.4 0.2 0.0 0.8 0.2
0.6 0.4 0.2 0.0 0.2
0.8 0.8 0.8 0.8 0.0


Intransitive-Hard Instance (pw = 0.6)

P =


0.0 0.8 0.6 0.4 0.4
0.2 0.0 0.8 0.6 0.4
0.4 0.2 0.0 0.8 0.4
0.6 0.4 0.2 0.0 0.4
0.6 0.6 0.6 0.6 0.0


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C.1.2 DESIGN OF PROMPTS

Original Prompt

Problem Description: 
You are a Dueling Bandit algorithm with 5 arms. Each pair of arms (i, j) has an 
unknown probability P(i > j) of arm i winning against arm j in a pairwise duel. There 
exists a best arm (Condorcet Winner) among the 5 arms, which has a greater than 
50% probability of winning against any other arm in a pairwise duel.  
 
At each time step, I will provide you with a summary that shows the past dueling 
results and empirical probabilities. Then you must choose 2 arms to duel against each 
other. The reward you receive is the sum of the unknown probabilities of the two 
chosen arms beating the best arm. The maximum reward in each time step is 
achieved if the best arm duels against itself. Your goal is to maximize the cumulative 
sum of rewards of the chosen two arms over a given time horizon T=1000. 

System Prompt

Summarized History: 
So far, you have conducted {t} duels with the following results: 
Arm 1 vs Arm 2: Arm 1 won 0 times, Arm 2 won 0 times, P(1 > 2) = 0.5, P(2 > 1) = 0.5 
Arm 1 vs Arm 3: Arm 1 won 0 times, Arm 3 won 0 times, P(1 > 3) = 0.5, P(3 > 1) = 0.5 
Arm 1 vs Arm 4: Arm 1 won 0 times, Arm 4 won 0 times, P(1 > 4) = 0.5, P(4 > 1) = 0.5 
…… 
Arm 4 vs Arm 5: Arm 4 won 0 times, Arm 5 won 0 times, P(4 > 5) = 0.5, P(5 > 4) = 0.5 

Chain-of-Thought  
Let's think step by step to choose the next pair of arms. 
Answer Format: 
1. Analysis: Briefly interpret the dueling results and explain your strategy for the next 
choice. 
2. Next Pair: (armA, armB).  

User Prompt

Figure 7: Original prompt for LLM-Env interaction in dueling bandit setting with temperature = 0
(except O1-PREVIEW, which is in beta phase, its system prompt and user prompt are concatenated
together with a fixed temperature = 1), including context P , summarized history Ht, and zero-shot
chain-of-thought (CoT) reasoning instructions R (see Section 2).
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Summarized History: 
So far, you have conducted duels with 
the following results: 
Arm 1 vs Arm 5: Arm 1 won +10 times, 
Arm 2 vs Arm 5: Arm 2 won +10 times,  
Arm 3 vs Arm 5: Arm 3 won +10 times, 
Arm 4 vs Arm 5: Arm 4 won +10 times, 
……  
(All other text remains unchanged) 

Noisy User Prompt

Biased History

Problem Description: 
…… 
Your goal is to minimize the cumulative 
sum of rewards of the chosen two arms 
over a given time horizon T=2000. 
……  
(All other text remains unchanged)

Adversarial System Prompt

Reversed Goal

Figure 8: Perturbed prompts used to evaluate the robustness of LEAD. The Biased History prompt
(Left) injects an incorrect dueling history favoring non-optimal arms, while the Reversed Goal prompt
(Right) adversarially modifies the objective from maximizing to minimizing reward. Both prompts
maintain the zero-shot chain-of-thought (CoT) reasoning and temperature setting as before.
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C.1.3 EXEMPLARS OF GPT-4 TURBO AND O1-PREVIEW

We present exemplars using the original prompt (see Figure 7) to illustrate the decision-making
process of both GPT-4 TURBO and O1-PREVIEW in the dueling bandits setting. These examples
highlight how each model interprets the available data, reasons about the relative strengths of the
arms, and selects the next pair of arms to duel. The exemplars show both successful convergence
cases and the failures of each model.

SYSTEMATIC BIASES

Biased Understanding of GPT-4 TURBO and O1-PREVIEW

System Prompt:
You are a Dueling Bandit algorithm with 5 arms. Each pair of arms (i, j) has an unknown
probability P (i > j) of arm i winning against arm j in a pairwise duel. There exists a best
arm (Condorcet Winner) among the 5 arms, which has a greater than 50% probability of
winning against any other arm in a pairwise duel. At each time step, I will provide you with
a summary that shows the past dueling results and empirical probabilities. Then you must
choose 2 arms to duel against each other. The reward you receive is the sum of the unknown
probabilities of the two chosen arms beating the best arm. The maximum reward in each time
step is achieved if the best arm duels against itself. Your goal is to maximize the cumulative
sum of rewards of the chosen two arms over a given time horizon T = 1000.
Question: Can an arm duel against itself?
Answer Exemplars:
Example 1: In a traditional dueling bandit problem, an arm dueling with itself doesn’t make
practical sense because the outcome is trivially known—it would always win. The typical
setup for dueling bandits is to choose two distinct arms to engage in a duel, which provides
meaningful information about their relative strengths.
Example 2: In the context of a dueling bandit problem, an arm dueling with itself typically
doesn’t make sense because the purpose of a duel is to compare two different arms. Dueling
an arm with itself wouldn’t provide any new information about the relative strengths of the
arms, as the outcome is trivially known: the arm would win against itself 100% of the time.
Example 3: In the context of a dueling bandit problem, an arm cannot duel with itself because
the concept of a duel inherently involves comparing two different entities. The purpose of a
duel is to establish which of the two arms is superior, or to collect comparative information.
An arm dueling itself would not generate any valuable information or result, as it would
trivially win against itself. Therefore, you need to choose two distinct arms for each duel in a
dueling bandit problem.
Example 4: In the context of a dueling bandit problem, an arm cannot duel with itself
because the concept of a duel inherently involves comparing two different entities. The
purpose of a duel is to establish which of the two arms is superior, or to collect comparative
information. An arm dueling itself would not generate any valuable information or result, as
it would trivially win against itself. Therefore, you need to choose two distinct arms for each
duel in a dueling bandit problem.

Comment: LLMs lack a fundamental understanding of the DB problem
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SUCCESS CASES

Successful Convergence Case of GPT-4 TURBO

1. Analysis:
- Arm 5 appears to be the strongest contender, showing a high probability of winning against
all other arms except Arm 2, where it still maintains a majority win rate.
- Arm 3 has a strong win rate against Arm 4 and a reasonable rate against Arm 2, but
significantly loses to Arm 5.
- Arm 2 has a mixed performance, winning against Arm 1 and Arm 4 but losing to Arm 5 and
Arm 3.
- Arm 1 and Arm 4 are the weakest, with Arm 1 losing to almost all arms and Arm 4 only
winning against Arm 1.
- Given the goal to maximize the cumulative sum of rewards, focusing on duels involving
Arm 5 seems most beneficial, as it has the highest probability of winning against other arms,
suggesting it might be the Condorcet Winner.

2. Next Pair: (Arm 5, Arm 5).
- Dueling Arm 5 against itself maximizes the reward for this step, as it likely has the highest
unknown probability of beating the best arm (itself in this case). This strategy ensures the
highest possible reward in a single duel under the given conditions.

Comment: Successfully understand the problem and suggest a converged arm pair

Successful Convergence Case of O1-PREVIEW

1. Analysis:
Given the dueling results so far, we are tasked with maximizing the cumulative reward over
the remaining time horizon T = 2000 steps. The reward at each time step is the sum of the
unknown probabilities of the two chosen arms beating the best arm (the Condorcet winner).
To maximize our reward, we need to identify the arm that is most likely the best based on the
empirical data and choose it to duel against itself. This is because the maximum reward at
each time step is achieved when the best arm duels against itself.
Analyzing the empirical probabilities:
- Arm 5 has beaten all other arms with a probability greater than 50%:
- P (5 > 1) = 0.75
- P (5 > 2) = 0.75
- P (5 > 3) = 0.64
- P (5 > 4) = 1.00
This suggests that Arm 5 is the most likely Condorcet winner based on the data.
Therefore, to maximize the cumulative reward, we should choose Arm 5 to duel against itself,
as this maximizes the sum of probabilities 2× P (5 > BestArm).

2. Next Pair:
(Arm 5, Arm 5)

Comment: Successfully understand the problem and suggest a converged arm pair
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FAILURE CASES

Convergence Instability Case of GPT-4 TURBO:

1. Analysis:
- Arm 5 appears to be a strong contender as it has a high winning probability against most
other arms, particularly against Arm 1, Arm 2, Arm 3, and Arm 4. Notably, it has a significant
number of duels against Arm 3, which provides a robust estimate of its strength relative to
Arm 3.
- Arm 3 also shows strength, especially against Arm 4 and Arm 2, but it has a lower winning
probability against Arm 5.
- Arm 1 and Arm 4 seem to be weaker overall, with Arm 1 losing all duels against Arm 5 and
Arm 4 having a low win rate against Arm 5.
- Arm 2 is somewhat in the middle, with a mixed record against the other arms.
Given the results, Arm 5 is likely the Condorcet Winner as it has a greater than 50% win rate
against all other arms. To maximize the reward, it would be beneficial to continue testing
Arm 5 against other strong contenders to confirm its dominance and further understand the
dynamics between the other arms.

2. Next Pair:
- This pairing is chosen because while Arm 5 has shown strong performance against Arm 3,
the large number of duels suggests that further testing could provide additional insights and
confirm stability in the empirical probabilities. Additionally, dueling these two strong arms
could potentially yield a high reward if Arm 5 continues to dominate.
Choose: (Arm 5, Arm 3)

Comment: Keeps comparing the same top arms without committing to a single winner
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Biased Understanding Case of O1-PREVIEW:

1. Analysis:
From the given data, we can infer that Arm 5 is likely the best arm (Condorcet Winner)
because it has beaten all other arms with probabilities greater than 50
- P(5 > 1) = 0.75
- P(5 > 2) = 0.75
- P(5 > 3) = 0.66
- P(5 > 4) = 1.00

Our goal is to choose two arms (armA and armB) such that the sum P(armA > best arm) +
P(armB > best arm) is maximized.
From the empirical probabilities:
- P(3 > 5) = 0.34
- P(2 > 5) = 0.25
- P(1 > 5) = 0.25
- P(4 > 5) = 0.00
Arm 3 has the highest probability of beating Arm 5, followed by Arms 2 and 1. Arm 4 has a
zero probability and should not be selected.
Between Arms 1 and 2, Arm 2 has participated in more duels against Arm 5, providing a more
reliable estimate of its probability to beat the best arm. Additionally, Arm 2’s performance
against other arms suggests it may be slightly better than Arm 1.
Therefore, the best choice to maximize our expected reward is to select Arm 3 and Arm 2.

2. Next Pair:
(Arm 3, Arm 2)

Comment: Exhibits a biased understanding of the problem description: while successfully
identifying the Condorcet Winner, it still selects suboptimal arms in duel.

C.2 SUPPLEMENTARY EXPERIMENTS

C.2.1 COMPARISONS WITH DIFFERENT METRICS

We present supplementary results to complement our case studies. (i) Figure 9 shows the strong
and weak regret comparisons for the Hard instance. (ii) Figure 12 presents comparisons under
different numbers of arms K, illustrating the impact of the Relative Decision Window. (iii) Figure 13
introduces the Best Arm Inclusion Ratio and the Converged Best Arm Ratio. (iv) Figure 14 examines
the generalized variance of the strong and weak regret for both instances.

C.2.2 DUEL SELECTION TRAJECTORY

We visualize the duel selection trajectory in representative experiments to better understand the
behavior of LLM agents and baseline algorithms.

Duel Selection Trajectory Explanation: The reshuffled arm order is b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4, with
arm indices from bottom to top: 5, 4, 3, 2, 1. Each filled black cell represents a selected arm at that
time step. For instance, black lines in arms 5 and 3 indicate the selection of the duel between (arm 5,
arm 3) at that particular time step.
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Figure 9: Comparisons between LLM agents and various classic DB algorithms. Left and Right:
strong and weak regret for the Transitive-Hard instance. Results for the Transitive-Easy
instance is presented in Figure 2. We evaluate only three LLMs on the Transitive-Hard
instance due to our research goals and high API costs: (i) The results for the Transitive-Hard
instance are qualitatively similar to those for the Transitive-Easy instance; (ii) Obviously, the
Transitive-Easy instance offers higher distinguishability, allowing us to observe convergence
and regret differences within a feasible number of steps.
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Figure 10: Comparisons between GPT-4 TURBO and various classic DB algorithms. Left
and Right: strong and weak regret for the Intransitive-Easy instance. Results for the
Intransitive-Hard instance is presented in Figure 11. We evaluate only our top-performing
LLM on the Intransitive-Easy and Intransitive-Hard instance to examine the scala-
bility limitation.
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Figure 11: Comparisons between gptc and various classic DB algorithms. Left and Right: strong
and weak regret for the Intransitive-Hard instance.
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Figure 12: Cumulative strong and weak regret comparisons between LLM agents and classic dueling
bandit algorithms on Transitive-Easy instance under different numbers of arms K. Top Left
and Top Right: K=5, where GPT-4-Turbo significantly outperforms other methods on weak regret.
Bottom Left and Bottom Right: K=10, where the performance of GPT-4-Turbo degrades as the
number of arms increases.
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Figure 13: Four LLMs (GPT-3.5 TURBO, GPT-4, GPT-4 TURBO, O1-PREVIEW) and two
state-of-the-art baselines (SELF-SPARRING and DTS) are compared against each other on the
Transitive-Easy instance over different time intervals. Left: the Best Arm Inclusion Ratio
represents the fraction of duels that include the best arm (Condorcet winner). Middle: the Converged
Best Arm Ratio represents the proportion of duels where the best arm duels against itself for exploita-
tion. Right: the Suboptimal Duel Ratio represents the proportion of duels where both arms selected
in duel are suboptimal arms. We observed that while O1-PREVIEW can transit from exploration to
exploitation (high Converged Best Arm Ratio), it selects more optimal arms (high Suboptimal Duel
Ratio) due to the reinforced biased understanding as discussed in Section 3.2.
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Figure 14: Comparison of the generalized variance of strong and weak regret between three LLMs and
baseline algorithms on the Transitive-Easy (Left) and Transitive-Hard (Right) instances.
In the Easy instance, GPT-4 TURBO exhibits the lowest average generalized variance. For the
Transitive-Hard instance, GPT-4 TURBO maintains a variance level comparable to state-of-
the-art baseline algorithms (except BTM and SAVAGE, which are in an early exploration stage).
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Figure 15: Comparison of duel selection trajectories between GPT-4 TURBO (Left) and O1-PREVIEW
(Right) on the Transitive-Easy instance. GPT-4 TURBO achieves low weak regret by con-
sistently selecting the best arm, though it struggles to converge to a single best arm. In contrast,
O1-PREVIEW shows better convergence behavior, but its weak regret performance is worse than GPT-
4 TURBO due to incomplete or biased understanding, as illustrated by the O1-PREVIEW exemplar in
Appendix C.1.3.
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Figure 16: Local optima trajectories of GPT-3.5 TURBO (Left), GPT-4 (Middle), and GPT-4
TURBO (Right, with noisy prompt) on the Transitive-Hard instance. Less capable LLMs, such
as GPT-3.5 TURBO and GPT-4, could get stuck comparing suboptimal arms on hard preference
structure. Even for GPT-4 TURBO, noisy prompts with biased history (see Figure 8) can lead it to be
trapped in bad tournaments.
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Figure 17: Comparison of success (Left) and failure (Right) cases for the Convergence-Triggered
GPT-4 TURBO intervention strategy discussed in Section 4.1. While it works for most cases due to
GPT-4 TURBO’s strong capability (Left), sometimes this naive intervention can reinforce suboptimal
choices (Right) on the Transitive-Hard instance.
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