RECAST YOUR INPUT VIA A MAPPING FUNCTION FOR ALIGNMENT

Anonymous authors

000

001

003 004

010 011

012

013

014

016

018

021

023

025

026 027

028

029

031

033

034

037

040

041

042

043

044

046

047

048

050 051

052

Paper under double-blind review

ABSTRACT

Alignment is promoting its critical role among the large language model (LLM) scenarios, which ensures safety, controllability, and trustworthiness of the generation. The popular alignment methods, that is, reinforcement learning from human feedback (RLHF), direct preference optimization (DPO) and such series, usually change weights of the model by elaborate algorithm. Nevertheless, they suffer from the compute drain for training, especially when the parameters' size getting huge. Worse still, people typically do not have access to the weights of the SOTA models, such as GPT-4, which consequently renders the aforementioned algorithms unimplementable. In this paper, we propose to employ a separate LM as the **Refiner**, an input mapping function essentially, to transform the original query into a novel formulation that impels the final generation to align with the expectations. During optimization, an evolution strategy, namely **CMA-ES**, is leveraged to fine-tune the LM with linkage to the generation model. We conduct extensive experiments on various refiner and generation types, and achieving surpassing results.

1 Introduction

Aligning LLM with human preference has consistently proven to be essential for majority of applications, which guarantees it generation authenticity and morality, and circumvents pitfalls of overconfidence Tian et al. (2024); Ethayarajh et al. (2024). Distinguished from the supervised fine-tuning (SFT) process, researchers usually refer to preference data for alignment, with rendering the disparity inside the answer list conspicuous. Typical aligning methods, namely RLHF Christiano et al. (2017) and DPO Rafailov et al. (2023), derive from maximizing the generation return and minimizing the Kullback-Leibler (KL) divergence from original distribution, and vary in implementation types, i.e., reinforcement learning (RL) and contrastive learning (CL). Severing as a critical part for post-training, they shed light on the performance improvement among popular LLMs, like GPT-4 OpenAI et al. (2024) and DeepSeek-R1 DeepSeek-AI et al. (2025). Unfortunately, the

Figure 1: The probability graph of refined generation, i.e., **X->Z->X'->Y**, for alignment where **X->Y** denotes the original generation, **Z** and **X'** represent the latent variable and refined input separately.

aforementioned techniques suffer from huge computational burden when confronting LLMs characterized by a vast parametric ensemble. With exacerbating the predicament, the acquisition of model's weights is usually unattainable for some SOTA LLMs, such as GPT-4 and Claude-3.5 Claude.ai (2024), which results in the infeasibility of these training methodologies.

Black-box prompt optimization (BPO) Cheng et al. (2024) is proposed to steer the input to accommodate the generation LLM, hence evades the training issues discussed above. However, BPO learns its prompt preference optimizer, a relatively small language model (SLM), in isolation from the final generation process, which covers no guarantee that the training datasets they construct

are universally applicable across models. Additionally, in the course of data collection endeavors, BPO commences with the preference data pairs to derive the preference reason and "un-prefer \mapsto prefer" shift fashion, capitalizing on the critical faculties of the LLMs. Notwithstanding it, given hallucination Bouyamourn (2023); Xu et al. (2024) residing within the LLMs, the preference reason cannot entirely supplant the preference pair for training of the preference optimizer.

In light of the preceding deliberations, we propose the input **Refiner** (being analogous to the prompt preference optimizer of BPO), and learn it by interacting with the generation model via *Covariance Matrix Adaptation Evolution Strategy* (CMA-ES) Hansen et al. (2003); Sun et al. (2022); Wang et al. (2024). As is displayed in Figure 1, $\mathbf{X} \to \mathbf{Y}$ represents original generation process, from query to the answer. **Note that since we are optimizing a black-box model, gradient descent cannot be directly applied to train** p(y|x). Therefore, we decompose it into a joint stages pair, of which the refinement ($\mathbf{X} \to \mathbf{Z} \to \mathbf{X}'$) models with a latent variable, covering information from the preference pair, and the generation ($\mathbf{X}' \to \mathbf{Y}$) servers as a black-box model that criticizes the refinement. Our contributions are summarized as follows:

- We devise the input refinement module by introducing a latent variable to absorb information from preference pair and reason, which may demonstrates diversity among scenarios.
- We consider the generation part as a black-box model, and utilize CMA-ES method to revise the refinement result for a better adaption to the generation dynamics.
- To enhance the stability within the learning and optimization processes, we introduce a series of adaptive measures, encompassing *posterior regularization* (to leverage preference pair into the refiner part) and *gradient projection* (to ensure quality of the refiner output).

2 RELATED WORK

To align LLMs with human intents and preferences, various tuning and infering strategies have been proposed. Prevalent alignment approaches can be summarized into three categories.

RLHF and DPO. Existing typical methods of steering LMs to match human preferences include RLHF Christiano et al. (2017), DPO Rafailov et al. (2023), and their variants Meng et al. (2024); Pal et al. (2024). RLHF methods learn a reward model from a curated dataset of human preferences and then use it to optimize a language model policy by RL algorithm, to generate responses assigned high reward, and using KL-penalty to keep the policy from deviating too far from the original model. RLHF has been applied to many prominent language models, and has been shown to improve performance across a wide number of capabilities, including instruction following Ivison et al. (2023) and reasoning Trung et al. (2024). Despite the widespread use and potential of this learning paradigm, aligning LLMs through RLHF remains challenging due to training instability. DPO bypasses the need for explicit reward model and implicitly optimizes the same objective as existing RLHF algorithms (reward maximization with a KL-divergence constraint), which is simple to implement and straightforward to train. However, these post-training methods suffer from huge computational burden and cannot be proceeded further on a closed source LLMs.

Prompt Optimization. A different perspective of alignment is to optimize user prompts to suit LLMs' input understanding better, so as to best realize users' intents without updating LLMs' parameters. BPO Cheng et al. (2024) fit a prompt optimizer to a dataset of human preference comparisons and then utilize it to steer human prompts to accommodate LLMs' understanding. In a broad sense, automatic prompt engineering Pryzant et al. (2023); Yang et al. (2024) can also be considered as an input side alignment approach. These methods perform alignment in language space, however, language space may not always be optimal for LLMs' understanding. For example, most word tokens are primarily for textual coherence and not essential for specific even implicit preferences.

Inference-time Alignment. Inference-time alignment refers to those procedures that change the decoding strategy to perform alignment directly. One of them is the Best-of-N method. Best-of-N Stiennon et al. (2020); Sessa et al. (2024)) generates N responses for a single prompt, and the best response is selected based on the evaluation of a reward model that measures the suitability of the responses. It is as effective as the state-of-the-art post-training procedures, however, Best-of-N requires vastly more resources at inference time than standard decoding strategies, which makes it computationally not viable. To address this, a computationally-viable inference-time alignment

Figure 2: Referring to **Input Refiner** modeled with the latent variable, the initial query is reconfigured into a formulation more aligned with the answer generation process ("bottom-left \rightarrow bottom-right"). We utilize **CMA-ES** to optimize refinement results, severing as pseudo labels for refiner, to accommodate the generation dynamics ("bottom-right \rightarrow bottom-left \rightarrow top-left"). During learning process of input refiner ("top-right"), the posterior regularization is deployed to incorporate information from preference pairs thus enhance the refinement efficacy.

algorithm, Speculative Rejection Sun et al. (2024), is proposed and demonstrated generating high-scoring responses comparable to Best-of-N, while being between 16 to 32 times more computationally efficient.

3 Proposed method

Referring to the generation process, i.e., p(y|x), we conduct dissociation from a specific language model of "query \mapsto answer" generation and further supply the input refinement with explicitness. Specifically, we decompose original generation via the Bayesian method as the combination of *input refinement* and *answer generation*:

$$p(y|x) = \sum_{(z,x')} p(y|x,z,x')p(z,x'|x) = \sum_{(z,x')} \underbrace{p(y|x')}_{\text{Gen}} \underbrace{p(z|x)p(x'|z)}_{\text{Input Refiner}}, \tag{1}$$

where the input refiner adapts the original input x into x', which will better stimulate the LLM's capacity for for an optimal alignment. p(y|x') servers as the final generation process which generates preferred output after the refined input. The latent variable, i.e., z in the equation, stands for an unobservable effect, namely user preference with diversity Kobalczyk et al. (2024); Qu et al. (2024) and reasoning paths among scenarios, which entrains generation varying potentially.

Proof: As is demonstrated in Figure. 1, the joint distribution for variables (x, z, x', y) is expressed as:

$$p(x, z, x', y) = p(x)p(z|x)p(x'|x, z)p(y|x, z, x').$$
(2)

In accordance with their "head-to-tail" connection attribute, the distribution will be simplified as:

$$p(x, z, x', y) = p(x)p(z|x)p(x'|z)p(y|x').$$
(3)

Hence, we derive that p(y|x, z, x') = p(y|x').

```
162
           Similarly, it satisfies that:
163
                                                    p(x, z, x') = p(x)p(z|x)p(x'|z).
                                                                                                                                     (4)
164
          Therefore, the posterior for variables (z, x') is decomposed as: p(z, x'|x) = p(z|x)p(x'|z).
166
          Algorithm 1: Iterative Optimization
167
          Input : \mathcal{D}, \mathcal{D}_{es}, S, LM_{ir}, LM_{qen}, \mathcal{P}_x, \mathcal{P}_{xy}, \xi, \lambda, i_{es}, A_0, A_1
168
          Output: LM_{ir}
        1 DEF Init():
170
               Input refiner process, with only original input: p_{im}(.) = LM_{ir}(p = \mathcal{P}_x(x))
171
               Posterior regularization, with the added output: q_{im}(.) = LM_{ir}(p = \mathcal{P}_{xy}(x,y))
172
               The response generation process: f(.) = LM_{gen}()
173
               Initialization of CMA-ES process: es=CMA(\xi, popsize=\lambda, iter=i_{es})
174
        6 DEF Emb (\xi):
175
               Embedding derivation of the input refiner model: e(.) = LM_{ir}-Emb()
176
               Update for embeddings of the special tokens [Z_s] and [Z_e]:
177
                    \begin{bmatrix} e_0 \\ e_1 \end{bmatrix} = \begin{bmatrix} e([Z_s]) \\ e([Z_e]) \end{bmatrix} + \mathcal{B}(\begin{bmatrix} A_0 & \mathbf{0} \\ \mathbf{0} & A_1 \end{bmatrix} \xi)
178
179
               return e_0, e_1
       10 DEF CMA-ES():
181
               while not es.stop() do
                    Draw samples of \xi from a normal distribution N(m, \sigma^2 C): \xi \sim m + \sigma N(0, C)
       12
183
                    e_0, e_1 = \text{Emb}(\xi); \quad r = 0
       13
                    for (x,y) \in D_{es} do
       14
                         Derive feedback signals from the generation:
185
       15
                           r \leftarrow r + \mathbf{CE}(f(p_{im}(x, E([Z_s]) = e_0, E([Z_e]) = e_1)), y)
186
                    end for
       16
187
                    r \leftarrow r/|D_{es}|
       17
188
                    Update CMA-ES parameters: \xi, m, C \leftarrow es(\xi, m, C, r)
       18
189
               end while
       19
190
               return \xi
       20
191
          while s_i \leq S do
       21
192
               Initialize input refiner, posterior regularization, generation and the CMA-ES: Init ()
       22
193
               \xi^* = \text{CMA-ES}(); e_0^*, e_1^* = \text{Emb}(\xi^*)
       23
194
               ### Get pseudo refiner output and train the refiner model:
       24
               for (x,y) \in D do
       25
                    x^* = p_{im}(x, E([Z_s])) = e_0^*, E([Z_e]) = e_1^*)
196
       26
                    l_{rm} = \mathbf{CE}(p_{im}(x), x^*) + \omega \cdot \mathbf{KL}(p_{im}(x), q_{im}(x, y))
       27
                    LM_{ir} \leftarrow LM_{ir} - \alpha \nabla l_{rm}
       28
               end for
       29
199
          end while
200
```

3.1 INPUT MAPPING FUNCTION

201202

203204

205

206

207

208

210 211

212

213

214

215

The *input refiner* part in Equation 1 constitutes " p_{im} " for abbreviation in this paper. Inspired by Hao et al., we devise p_{im} as a revised autoregressive model, with the latent variable z emerging following the input x as a "soft prompt" Lester et al. (2021). Additionally, a special token pair, i.e., $[Z_s]$ and $[Z_e]$, is introduced to enclose the latent variable for its position marking. As a consequence, we specify the encoder-decoder item, that is, p_{im} , in a joint manner.

$$p_{im} \triangleq p(z, x'|x) = p(z|x)p(x'|z),$$
s.t. $z = H(E(\mathcal{P}_x(x)) \oplus E([Z_s])), \quad x' \triangleq \{t_{oi}|i \in [1, L]\} = D(H(z \oplus E([Z_e]))),$ (5)

where operators of E(.) and H(.) are for input text encoding and hidden state calculation in the autoregressive LM, correspondingly. D(.) represents the decoding process. t_{oi} is the token at i position for the refined input x' and L represents the generation length. $\mathcal{P}_x(.)$ is the prompt design

for original input x. The latent variable z is represented as the hidden state of the original input x under the autoregressive LM, which is then fed back into the LM in the form of a continuous prompt to generate the refined input x'. Notably, we lack any ground-truth labels for x', making direct optimization of p_{im} infeasible. To mitigate this unlabeled-data challenge, we adopt a dual strategy: (1) employing posterior regularization to constrain the optimization space (Equation 6); (2) leveraging the CMA-ES algorithm to extract approximate x' values from feedback signals of generation process, i.e., **Gen** in Equation 1, which are then utilized as pseudo-labels x^* (Equation 11).

3.2 Posterior regularization

 Conspicuously, introduction of z in Equation 5 injects supervised signal with scarcity which will conduce to an unstable training of p_{im} , especially when x' being not labeled.

With adding more information to estimate p_{im} that satisfies the posterior regularization, we introduce q_{im} to approximate the input refinement process and derive:

$$q_{im} \triangleq p(z, x'|x, y) = p(z|x, y)p(x'|z),\tag{6}$$

where y transfers the output information ahead as an auxiliary for the unobservable effect summarization. For the sake of its modeling, we employ a target network with the fixed parameters from p_{im} , and distinguish the output distribution via the input prompt modification. Consequently, within the framework of q_{im} , the latent variable z admits the representation of:

$$z = H(E(\mathcal{P}_{xy}(x,y)) \oplus E([Z_s])), \tag{7}$$

where $\mathcal{P}_{xy}(.)$ is a well-designed prompt for incorporation of original input x and the output y, which supplies sufficient signals on the reason why original output is optimal. For the preference data, it highlights the rank between preference pair (details are shown in Table 1). During deployment, the training performance of p_{im} is enhanced through minimization of distributional discrepancies (e.g., KL divergence) between p_{im} and q_{im} .

3.3 OPTIMIZATION OBJECTIVE

With freezing parameters of the **Gen** in Equation 1, we regard it as a black-box model, denoted by f(.), for the whole framework construction, and formulate the optimization as:

$$min \ \mathcal{L}(f(p_{im}(x)), y).$$
 (8)

Given the inaccessibility of ∇f from the black-box model, we utilize an evolution strategy, namely CMA-ES, for optimization. Generally, via CMA-ES, a variable updates its value by sampling from a *Gaussian Distribution*, that is $N(m, \sigma^2 C)$. With further considering the truth that CMA-ES usually deals with the variable of limited dimension, we introduce the *Matrix Factorization* on the embedding bias of the latent marking tokens, i.e., $[Z_s]$ and $[Z_e]$ (referring to Equation 5), for updating from the feedback of f(.) and propose an iterative optimization strategy. Specifically, we decompose the embedding e as:

$$\begin{bmatrix} -e_0 \\ -e_1 \end{bmatrix} = \begin{bmatrix} -e_0^b \\ -e_1^b \end{bmatrix} + \mathcal{B}(\begin{bmatrix} A_0 & \mathbf{0} \\ \mathbf{0} & A_1 \end{bmatrix} \begin{bmatrix} \xi_0 \\ \xi_1 \end{bmatrix}),$$

$$\mathbf{s.t.} \ e_0^b = E_b([Z_s]), \ e_1^b = E_b([Z_e]) \tag{9}$$

where $E_b(.) \in \mathbb{R}^d$ (d is the embedding dimension) is the **initial embedding function** for the refinement model. e_i functions with adding the *embedding bias* for a stable optimization. $A_i \in \mathbb{R}^{d \times d_z}$ represents the projection matrix and $\xi = [\xi_0, \xi_1]^T$ ($\xi_i \in \mathbb{R}^{d_z}, i \in \{0, 1\}$) is the variable updated by CMA-ES. $d_z \ll d$ means the evolution dimension. $\mathcal{B}(.)$ is a constraint function that restricts the embedding bias value to a manageable scope (details are displayed in Equation 13).

For optimizing ξ_i , we conduct sampling at the **evolution step** t as:

$$(\xi_i)_j^{(t)} \sim m_i^{(t-1)} + \sigma_i^{(t-1)} N(0, C_i^{(t-1)}),$$
 (10)

where $j \in [1, \lambda]$ (λ means the population size for the evolution strategy) denotes the population index. $m_i^{(t-1)}$ and $\sigma_i^{(t-1)}$ are the expected value and standard deviation over the population at step t-1, correspondingly. $C_i^{(t-1)}$ represents the covariance matrix.

At each iteration, we decompose the optimization process into dual stages of which one for the *Pseudo Label Derivation* and the other for the *Refinement Model Fine-tuning* (details are displayed in Algorithm 1).

Pseudo Label Derivation: Due to the absence of annotated x' (Equation 5), we employ CMA-ES to approximate x' through feedback of the generation process. At the beginning of each iteration, we forward the input refiner model, that is p_{im} (seeing at Equation 5), to derive the initial generation tokens, with ξ being the dependent variable for optimization. Furthermore, CMA-ES method is implemented to obtain the optimal refined input, i.e., x^* , referring to the black-box generation model f(.), which is regarded as the *Pseudo Label* for p_{im} during the implementation. The fitness expression for CMA-ES at the current generation

Type	Prompt
s	You are an expert prompt engineer. Help me improve this query to get a more helpful and harmless response.
$\overline{\mathcal{P}_x}$	s + Please output the modified query only! Query:{}
$\overline{\mathcal{P}_{xy}}$	s + Form the judgment upon the following truth. Query:{} Truth:{}

expression for CMA-ES at the current generation Table 1: Prompt design for both p_{im} and q_{im} . step, i.e., $\mathcal{L}(.)$ in Equation 8, is to calculate the cross-entropy value between $f(p_{im}(.))$ and the ground-truth output y. Additionally, the optimization is conducted on a subset of the training data $(\mathcal{D}_{es} \subset \mathcal{D})$.

$$x^* = p_{im}(x, E([Z_s]) = e_0^*, E([Z_e]) = e_1^*),$$
s.t.
$$\begin{bmatrix} e_0^* \\ e_1^* \end{bmatrix} = \begin{bmatrix} e_0^b \\ e_1^b \end{bmatrix} + \mathcal{B}(\begin{bmatrix} A_0 & \mathbf{0} \\ \mathbf{0} & A_1 \end{bmatrix} \xi^*), \quad \xi^* = argmin_{\xi} \sum_{(x,y) \in \mathcal{D}_{es}} (\mathbf{CE}(f(p_{im}(x,\xi)), y)),$$
(11)

where $e_i^*(i \in \{0,1\})$ and ξ^* are for the optimal values, respectively. $argmin_{\xi}$ is optimized by the CMA-ES algorithm.

Refinement Model Fine-tuning: We fine-tune the refinement model from two aspects: minimizing the cross-entropy between the pseudo label x^* and its corresponding prediction, and invoking the KL-divergence between distributions of p_{im} and q_{im} to regularize them (seeing at Equation 6).

$$l_{rm} = \mathbf{CE}(p_{im}(x), x^*) + \omega \cdot \mathbf{KL}(p_{im}|q_{im}), \tag{12}$$

where ω is the trade-off factor.

4 EXPERIMENTS

In this paper, we conduct discussions on several alignment scenarios with preference datasets, building upon some popular LMs of open access for final generation. In case of the intricate functioning of the black-box model, the vLLM Kwon et al. (2023) architecture is utilized to wrap the generation model for prohibition of parameter accessibility. Additionally, we utilize prompt engineering which converts original input into a refined one (prompt details are displayed in Table 1, where prompt for q_{im} fuses that of p_{im} and information from the preference pair).

Training details: Referring to BPO method, we construct the training datasets from four resources, namely: the **OASST1** dataset Köpf et al. (2023) which possesses response ranks from human-annotated; the **HH-RLHF** dataset Bai et al. (2022) which covers helpfulness and harmfulness responses for human preference; the **Chatbot Arena Conversations** dataset Zheng et al. (2023) collected from the online Chatbot platform; the subset of **Alpaca-GPT4** dataset Peng et al. (2023) with GPT-4 generated preference.

During the experiment, we randomly sample 256 instances from the dataset, which is treated as the optimization set, i.e, D_{es} in Algorithm 1, for CMA-ES method. As for the constraint function, i.e., \mathcal{B}

Gen Model	Pair		BPO-test				Dolly			Vicuna			Self-instruct		
Gen Model			win	loss	tie	win	loss	tie	win	loss	tie	win	loss	tie	
	ours	ORG	57.0	41.0	2.0	54.0	43.5	2.5	56.3	42.5	1.2	51.6	45.6	2.8	
	ours†	ORG	51.8	46.0	2.2	51.4	46.4	2.2	51.3	48.1	0.6	53.3	44.7	2.0	
	ours	BoN	52.0	46.0	2.0	52.0	46.0	2.0	57.5	42.5	0.0	48.9	50.3	0.8	
	ours†	BoN	46.5	51.0	2.5	49.5	48.5	2.0	55.0	45.0	0.0	50.8	47.2	2.0	
Llama-8B	ours	SR	70.5	27.5	2.0	64.0	34.0	2.0	67.5	31.2	1.3	72.6	25.8	1.6	
	ours†	SR	73.5	24.5	2.0	63.0	36.0	0.1	68.7	31.3	0.0	67.9	31.3	0.8	
	ours	DPO	49.5	47.5	3.0	50.0	47.5	2.5	55.0	45.0	0.0	51.9	47.6	0.5	
	ours†	DPO	51.5	46.0	2.5	49.0	49.0	2.0	51.3	48.7	0.0	52.4	47.2	0.4	
	ours	BPO	50.5	44.5	5.0	56.5	41.0	2.5	62.5	37.5	0.0	50.4	47.2	2.4	
	ours†	BPO [†]	60.0	36.8	3.2	55.9	40.5	3.6	58.8	38.8	2.4	59.9	38.3	1.8	
	ours	ORG	56.5	41.0	2.5	57.5	42.0	0.5	63.8	36.2	0.0	56.0	43.2	0.8	
	ours†	ORG	59.5	37.5	3.0	60.0	39.5	0.5	60.0	38.1	1.9	51.8	47.4	0.8	
	ours	BoN	54.0	43.0	3.0	49.5	50.0	0.5	51.3	48.7	0.0	46.8	51.9	1.3	
	ours†	BoN	54.5	43.5	2.0	54.5	44.0	1.5	43.7	53.7	2.6	47.2	51.2	1.6	
Mistral-7B	ours	SR	71.5	27.5	1.0	67.5	31.0	1.5	70.0	27.5	2.5	67.8	31.3	0.9	
	ours†	SR	74.0	24.0	2.0	67.5	32.0	0.5	66.3	31.3	2.4	64.3	34.9	0.8	
	ours	BPO	58.0	39.5	2.5	60.0	39.0	1.0	57.5	42.5	0.0	52.4	45.6	2.0	
	ours†	BPO [†]	61.5	38.0	0.5	58.0	39.5	2.5	62.5	35.0	2.5	59.1	38.9	2.0	
	ours	ORG	57.0	39.5	3.5	56.0	43.0	1.0	65.0	33.8	1.2	53.7	43.0	3.3	
Qwen-14B	ours†	ORG	61.7	34.6	3.7	59.0	40.1	0.9	65.6	32.5	1.9	54.8	42.2	3.0	
	ours	BoN	49.5	47.5	3.0	68.0	31.0	1.0	52.5	45.0	2.5	51.5	47.6	0.9	
	ours†	BoN	54.0	43.5	2.5	47.5	52.0	0.5	55.0	43.8	1.2	45.2	53.2	1.6	
	ours	DPO	68.0	28.0	4.0	67.0	30.5	2.5	77.5	22.5	0.0	64.7	31.7	3.6	
	ours†	DPO	67.0	29.5	3.5	65.0	34.5	0.5	80.0	17.5	2.5	68.6	31.0	0.4	
	ours	BPO	59.5	34.0	6.5	59.0	37.5	3.5	57.5	41.3	1.2	56.0	41.7	2.3	
	ours†	BPO [†]	60.0	37.0	3.0	62.0	37.5	0.5	75.0	23.8	1.2	63.1	35.3	1.6	

Table 2: The comparison score(%) for alignment evaluation. Llama-3.2-3b-instruct is employed as the input refiner model (except for †). † means Llama-3.2-1b-instruct is utilized for refinement.

in Equation 9, we devise it in combination with the *gradient descent mechanism*, which ensures a reasonable searching space without bringing about a chaotic generation result:

$$\mathcal{B}(e_{bi}) = -\alpha * \sigma(\frac{e_{bi} \cdot \nabla e_i^b}{\nabla e_i^b \cdot \nabla e_i^b}) \nabla e_i^b, \tag{13}$$

where $e_{bi} = A_i \xi_i$ is the embedding bias for e_i^b (A_i is the projection matrix in Equation 9), $\sigma(.)$ represents the sigmoid function. The item within $\sigma(.)$ is to project the bias value into the gradient direction which maintains a controllable generation initialization for CMA-ES optimization (the schematic representation is shown in the top-left part of Figure 2). α is a coefficient acting in a manner comparable to the learning rate. We calculate ∇e_i^b by feeding back the loss value, i.e., $\mathbf{CE}(p_{im}, y)$, with freezing other layers of the model. Moreover, by employing the $Total\ Differential\ Formula$, it is derived that:

$$\delta(\sigma(g)) = \frac{e^{-g}}{(1 + e^{-g})^2} * \frac{\delta(\xi_i) \cdot (\nabla e_i^b \times A_i)}{\nabla e_i^b \cdot \nabla e_i^b},$$

$$\mathbf{s.t.} \ g = \frac{e_{bi} \cdot \nabla e_i^b}{\nabla e_i^b \cdot \nabla e_i^b},$$
(14)

where the operator \times means the common *matmul product*. Therefore, we initialize the step value, i.e, $\delta_0 = \delta(\xi_i)$, with $\delta(\sigma(g))$ as 0.001. Referring to the population size, i.e., λ in Algorithm 1, we set its value in accordance with Hansen & Kern, i.e., $\lambda = 4 + \ln Z_d$, where $Z_d = 2 * d_z$ is the dimension for optimization variable.

For the sake of the truth completion $(q_{im} \text{ in Table 1})$, we implement a simple measure which demonstrates the ranks between the preference pair explicitly. The template we employ is:

The response of "s1" is better than that of "s2" to resolve the query. $[Z_s]z[Z_e]$.

where the suffix pattern, referring to Equation 5, is to summarize the truth expression in a latent manner.

Evaluation datasets: The **BPO-test** dataset is sub-sampled from the construced data of BPO baseline. **Dolly Eval** is a subset of the Dolly dataset Conover et al. (2023). **Vicuna Eval** is collected by the Vicuna Team Chiang et al. (2023) amongst eight categories for LLM quality evaluation. **Self-instruct** is introduced by Wang et al., under several manually-written novel tasks for instruction-following finetuning.

Baselines for comparison: BoN (Best-of-N sampling Stiennon et al. (2020); Sessa et al. (2024)) which selects the highest-score generation amongst N = 120 for the experiment) candidates according to the reward model; **SR** (Speculative Rejection Sun et al. (2024)) that dynamically decreases the candidates number for sampling efficiency. **DPO** Rafailov et al. (2023) transfers the RL process into a contrastive learning manner. **BPO** Cheng et al. (2024) modifies the input by employing a Seq2Seq model for better alignment. **ORG** demonstrates the comparison results with a direct generation by the original language model.

4.1 MAIN RESULTS

We conduct the **win-rate** assessment on three generation models, that is, **Llama-8B** (Meta-Llama-3-8B-Instruct Grattafiori et al. (2024)), **Mistral-7B** (Mistral-7B-Instruct-v0.3 Nadhavajhala & Tong (2024)) and **Qwen-14B** (Qwen2.5-14B-Instruct Yang & et al. (2025)), with the generation quality being evaluated by **Qwen-72B**. Specifically, we supply the evaluator with three distinct options for comparative assessment: A) the former is superior to the latter, B) the latter surpasses the former, and C) both are on par, rendering them indistinguishable. These options are designed to facilitate a nuanced and precise evaluation of a pair of generated outcomes, ensuring a rigorous and objective comparison. As for the refiner, we engineer it with a couple of models of relatively small size, i.e., Llama-3.2-1b-instruct and Llama-3.2-3b-instruct.

As is displayed in Table 2, with devised refiner framework, the final generation demonstrates superiority over that of the correspondingly original model, which varies among model architecture and size. Concretely speaking, the transition from original model to the proposed method, refiner size being 3b, yields an average improvement of 11.58% in win-rate (win - loss) across four distinct datasets, with Llama-8B serving as the generation cornerstone. The observed performance enhancements for Mistral-7B and Qwen-14B are at 17.85% and 18.18%, respectively. Our method still dominates for the 1b refiner that the concomitantly results are 5.65%/ 17.2%/ 22.93%.

Gen Model	BPO-test			Dolly			Vicuna			Self-instruct			7
Gen Model	win	loss	tie	win	loss	tie	win	loss	tie	win	loss	tie	
Llama-8B	53.5	45.0	1.5	48.0	49.6	2.4	51.5	45.5	3.0	51.2	48.8	0.0	3.83
Mistral-7B	53.0	44.5	2.5	48.6	49.6	1.8	49.0	49.0	2.0	51.9	48.1	0.0	2.83
Qwen-14B	51.5	47.5	1.0	52.7	45.7	1.6	55.0	42.5	2.5	53.0	45.0	2.0	7.87

Table 3: The comparison score(%) for "W/.(CMA-ES) - W/O.(CMA-ES)" pair. Llama-3.2-3b-instruct is the input refiner.

Figure 3: Evaluation on the "W/. (q_{im}) - W/O. (q_{im}) " pair, where the refiner is constructed by Llama-3.2-3b-instruct.

In comparison with BPO, our model also show-cases superior performance and enhanced capabilities. Delving into the specifics, it attains 12.43% augmentation in the win-rate metric, leveraging 3b size for refiner and Llama-8B for generation. Referring to refiner of 1b, our model spearheads an advancement to score of 20.05%, elucidating that its preeminence over BPO is markedly amplified when deployed with a small size refiner. An exact phenomenon is observed across the other two models as well $(15.33\% \rightarrow 22.43\%$ for Mistral with refiner from 1b to 3b, $19.38\% \rightarrow 31.63\%$ for Qwen). This substantiates the premise that a further optimization of the refiner via interaction with

Figure 4: Evaluation on the "Ours-BPO" pair with GPT-4.

the generation process can indeed enhance its adaptability to the generation dynamics. It is manifest for refiner of deficient capability. We also employ *gpt-4-turbo-128k* as the evaluator, to judge the results between the propose method and BPO, with Qwen-14B as the answer generator. Referring to Figure 4, our method surpasses BPO by average of 7.2% under the GPT-4 evaluation, with Qwen-14B severing for generation, which also substantiates the preeminence of our model.

When contrasted with SR ad DPO, our method consistently evinces a pronounced superiority, where the improved values are 38.47% and 22.79% averagely among generation architecture and refiner size. It demonstrates comparable efficacy to BoN, e.g., +2.53% for Llama-8B with 1b refiner, and +1.88% for Mistral-7B, nevertheless, BoN necessitates multiple generations at the inference time, each of which is subsequently evaluated and scored to ascertain the optimal output by a reward model. Consequently, this process incurs a substantial expenditure of computational resources, rendering the inference markedly resource-intensive.

4.2 ABLATION STUDY

We conduct ablation studies to validate the indispensability of each component. The evaluations are displayed in Table 3 and Figure 3, correspondingly.

Evaluation on CMA-ES optimization: We fine-tune the basic model with the latent variable and posterior regularization, and eliminate the CMA-ES module for comparison. Table 3 elucidate impact of this part that being comparison with the complete model, the evaluator prefer to rank worse for this setting. Specifically, the win-rate descents by average 3.83% without the module, with Llama-8B in the generation process. The corresponding results are 2.83% and 7.87% for Mistral-7B and Qwen-14B, separately.

Evaluation on Posterior Regularization: For this setting, we ignore the information from the preference pair, i.e., q_{im} , and assign 0 to ω in Equation 12. As is demonstrated in Figure 3, the complete model exhibits a superior win-rate, surpassing that of q_{im} free model by 7.9% for Llama-8B generator. The metrics are 5.8% and 5.1% for other two models. This empirical evidence unequivocally validates the instrumental role of q_{im} in augmenting the performance of the refinement.

5 CONCLUSIONS

In the realm of LLM alignment, with cognizant of the computational burden entailed by parameter optimization of the original model, we innovatively harness Bayesian method to introduce the **input refiner** which functions for query refinement and adaptation to the answer generator. Diverging from BPO, our refiner model is architected upon a latent variable, meticulously encapsulating the heterogeneity inherent of "input - refinement" pairs and assimilating insights from preference pairs. Moreover, we integrate the **CMA-ES** method to establish a connection between refiner and the generation process, ensuring that the refinement exhibit a heightened congruence with expectations. We conduct experiments on generation models of distinct architecture and size, evincing efficacy of the proposed method.

REFERENCES

- Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022. URL https://arxiv.org/abs/2204.05862.
- Adam Bouyamourn. Why LLMs hallucinate, and how to get (evidential) closure: Perceptual, intensional, and extensional learning for faithful natural language generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 3181–3193, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.192. URL https://aclanthology.org/2023.emnlp-main.192/.
- Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, and Minlie Huang. Black-box prompt optimization: Aligning large language models without model training. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3201–3219, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.176. URL https://aclanthology.org/2024.acl-long.176/.
- Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.
- Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS'17, pp. 4302–4310, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.
- Claude.ai. The technical marvel behind claude 3.5 sonnet, 2024. URL https://claude3.pro/the-technical-marvel-behind-claude-3-5-sonnet/.
- Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world's first truly open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm.
- DeepSeek-AI, Daya Guo, Dejian Yang, and Haowei Zhang et al. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.
- Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model alignment as prospect theoretic optimization. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=iUwHnoENnl.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.
- Nikolaus Hansen and Stefan Kern. Evaluating the cma evolution strategy on multimodal test functions. In Xin Yao, Edmund K. Burke, José A. Lozano, Jim Smith, Juan Julián Merelo-Guervós, John A. Bullinaria, Jonathan E. Rowe, Peter Tiňo, Ata Kabán, and Hans-Paul Schwefel (eds.), *Parallel Problem Solving from Nature PPSN VIII*, pp. 282–291, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-30217-9.
- Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). *Evolutionary Computation*, 11(1):1–18, 2003. doi: 10.1162/106365603321828970.

- Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space, 2024. URL https://arxiv.org/abs/2412.06769.
 - Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew E. Peters, Pradeep Dasigi, Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels in a changing climate: Enhancing LM adaptation with tulu 2. *CoRR*, abs/2311.10702, 2023. doi: 10. 48550/ARXIV.2311.10702. URL https://doi.org/10.48550/arXiv.2311.10702.
 - Katarzyna Kobalczyk, Claudio Fanconi, Hao Sun, and Mihaela van der Schaar. Few-shot steerable alignment: Adapting rewards and llm policies with neural processes, 2024. URL https://arxiv.org/abs/2412.13998.
 - Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and Alexander Mattick. Openassistant conversations democratizing large language model alignment. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, SOSP '23, pp. 611–626, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.
 - Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wentau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243/.
 - Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free reward. *CoRR*, abs/2405.14734, 2024. doi: 10.48550/ARXIV.2405.14734. URL https://doi.org/10.48550/arXiv.2405.14734.
 - Sanjay Nadhavajhala and Yingbei Tong. Rubra-mistral-7b-instruct-v0.3, 2024. URL https://huggingface.co/rubra-ai/Mistral-7B-Instruct-v0.3.
 - OpenAI, Josh Achiam, Steven Adler, and Sandhini Agarwal et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
 - Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White. Smaug: Fixing failure modes of preference optimisation with dpo-positive. *CoRR*, abs/2402.13228, 2024. doi: 10.48550/ARXIV.2402.13228. URL https://doi.org/10.48550/arXiv.2402.13228.
 - Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with gpt-4, 2023. URL https://arxiv.org/abs/2304.03277.
 - Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt optimization with "gradient descent" and beam search. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 7957–7968. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.494. URL https://doi.org/10.18653/v1/2023.emnlp-main.494.
 - Yun Qu, Yuhang Jiang, Boyuan Wang, Yixiu Mao, Cheems Wang, Chang Liu, and Xiangyang Ji. Latent reward: Llm-empowered credit assignment in episodic reinforcement learning. *arXiv* preprint arXiv:2412.11120, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=HPuSIXJaa9.

- Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre Ramé, Bobak Shahriari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk, Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn, Matt Hoffman, Nikola Momchev, and Olivier Bachem. Bond: Aligning Ilms with best-of-n distillation. *CoRR*, abs/2407.14622, 2024. URL https://doi.org/10.48550/arXiv.2407.14622.
- Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
- Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=348hfcprUs.
- Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for language-model-as-a-service. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 20841–20855. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/sun22e.html.
- Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D Manning, and Chelsea Finn. Fine-tuning language models for factuality. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=WPZ2yPaq4K.
- Luong Quoc Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning with reinforced fine-tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics* (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 7601–7614. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.410. URL https://doi.org/10.18653/v1/2024.acl-long.410.
- Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13484–13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.
- Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Connecting the dots: Collaborative fine-tuning for black-box vision-language models. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=jZEY5SxbL4.
- Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of large language models, 2024. URL https://arxiv.org/abs/2401.11817.
- Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.
- Qwen: An Yang and et al. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL https://openreview.net/forum?id=uccHPGDlao.

A ESSENTIAL NOTATIONS

Variable	Description	Type
\overline{x}	original input	text
\overline{z}	latent variable	vector
$\overline{[Z_s],[Z_e]}$	position markers for z	token
e_0^b, e_1^b	initial embeddings for $[Z_s],[Z_e]$	vector
x'	refined input, derived from the latent variable z .	text
x^*	pseudo label for x' , derived from CMA-ES.	text
ξ	the optimizable variable for CMA-ES	vector
\overline{y}	final output, preferable response.	text

Table 4: Essential notations of the proposed method.

B TRAINING SETTINGS

All experiments are designed and executed utilizing NVIDIA A800-SXM4-80GB GPUs, with comprehensive training specifications delineated in Table 5.

	Description	Refiner	CMA-ES
N	training data	1e4	256
\mathbf{n}_g	maximum generation response length	64	128
\mathbf{d}_z	dimension of CMA-ES latent variable, i.e., z	_	16
lr	learning rate	1e-5	2e-6
\mathbf{S}	training epochs or optimization steps	3	30
\mathbf{c}_{kl}	KL loss coefficient	0.02	_
bs	training batchsize	8	_

Table 5: Training Details for our experimental setting.

C EVALUATION PROMPT

1: Evaluation-Aware Prompt

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below.

You should choose the assistant that follows the user's instructions and answers the user's question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses.

Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any position biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

After providing your explanation, output your final verdict by strictly following this format: [[A]]ïf assistant A is better, [[B]]ïf assistant B is better, and [[C]]for a tie."

"prompt template":

"[User Question]{question}[The Start of Assistant A's Answer]{answer a}[The End of Assistant A's Answer][The Start of Assistant B's Answer]{answer b}[The End of Assistant B's Answer]",

"description": "Prompt for general questions",

"category": "general",

"output format": "[[A]]"

D LIMITATIONS

In this paper, we propose a joint strategy that establishes a connection between **input refiner** and the answer generation process via **CMA-ES** algorithm. With it, initial refinement results will get optimized and adpated to the generation dynamics, hence derive a better aligned expression.

The method still harbors minor imperfections that necessitate improvement. For instance, the CMA-ES algorithm exhibits a dependency on initial values (despite the incorporation of certain robustness measures within the algorithm, i.e., the gradient project and initial step size in Equations 13 and 14). Additionally, the data sampled (\mathcal{D}_{es}) for the CMA-ES process can also influence the efficacy of the optimization. These issues warrant further exploration and investigation.

E LLM USAGE CLARIFICATION

The application of LLMs in this paper is limited exclusively to polishing the text, particularly in refining specific vocabulary and phrases.