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ABSTRACT

Alignment is promoting its critical role among the large language model (LLM)
scenarios, which ensures safety, controllability, and trustworthiness of the genera-
tion. The popular alignment methods, that is, reinforcement learning from human
feedback (RLHF), direct preference optimization (DPO) and such series, usually
change weights of the model by elaborate algorithm. Nevertheless, they suffer from
the compute drain for training, especially when the parameters’ size getting huge.
Worse still, people typically do not have access to the weights of the SOTA models,
such as GPT-4, which consequently renders the aforementioned algorithms unim-
plementable. In this paper, we propose to employ a separate LM as the Refiner,
an input mapping function essentially, to transform the original query into a novel
formulation that impels the final generation to align with the expectations. During
optimization, an evolution strategy, namely CMA-ES, is leveraged to fine-tune the
LM with linkage to the generation model. We conduct extensive experiments on

various refiner and generation types, and achieving surpassing results.

1 INTRODUCTION

Aligning LLM with human preference has con-
sistently proven to be essential for majority of
applications, which guarantees it generation au-
thenticity and morality, and circumvents pit-
falls of overconfidence Tian et al.| (2024); [Etha-
yarajh et al.|(2024). Distinguished from the su-
pervised fine-tuning (SFT) process, researchers
usually refer to preference data for alignment,
with rendering the disparity inside the answer
list conspicuous. Typical aligning methods,
namely RLHF |Christiano et al.|(2017) and DPO
Rafailov et al.| (2023), derive from maximiz-
ing the generation return and minimizing the
Kullback-Leibler (KL) divergence from orig-
inal distribution, and vary in implementation
types, i.e., reinforcement learning (RL) and con-
trastive learning (CL). Severing as a critical part
for post-training, they shed light on the perfor-
mance improvement among popular LLMs, like
GPT-4|OpenAl et al.| (2024) and DeepSeek-R1
DeepSeek-Al et al.| (2025). Unfortunately, the
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Figure 1: The probability graph of refined gen-
eration, i.e., X->Z->X’->Y, for alignment where
X->Y denotes the original generation, Z and X’
represent the latent variable and refined input sepa-
rately.

aforementioned techniques suffer from huge computational burden when confronting LLMs charac-
terized by a vast parametric ensemble. With exacerbating the predicament, the acquisition of model’s
weights is usually unattainable for some SOTA LLMs, such as GPT-4 and Claude-3.5 |Claude.ai
(2024), which results in the infeasibility of these training methodologies.

Black-box prompt optimization (BPO)|Cheng et al.| (2024) is proposed to steer the input to accom-
modate the generation LLM, hence evades the training issues discussed above. However, BPO
learns its prompt preference optimizer, a relatively small language model (SLM), in isolation from
the final generation process, which covers no guarantee that the training datasets they construct
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are universally applicable across models. Additionally, in the course of data collection endeavors,
BPO commences with the preference data pairs to derive the preference reason and “un-prefer —
prefer” shift fashion, capitalizing on the critical faculties of the LLMs. Notwithstanding it, given
hallucination Bouyamourn| (2023)); Xu et al.| (2024) residing within the LLMs, the preference reason
cannot entirely supplant the preference pair for training of the preference optimizer.

In light of the preceding deliberations, we propose the input Refiner (being analogous to the prompt
preference optimizer of BPO), and learn it by interacting with the generation model via Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) Hansen et al.|(2003); [Sun et al.[(2022); Wang et al.
(2024). As is displayed in Figure[T] X — Y represents original generation process, from query to
the answer. Note that since we are optimizing a black-box model, gradient descent cannot be
directly applied to train p(y|x). Therefore, we decompose it into a joint stages pair, of which the
refinement (X — Z — X’) models with a latent variable, covering information from the preference
pair, and the generation (X’ — Y) servers as a black-box model that criticizes the refinement. Our
contributions are summarized as follows:

e We devise the input refinement module by introducing a latent variable to absorb information from
preference pair and reason, which may demonstrates diversity among scenarios.

e We consider the generation part as a black-box model, and utilize CMA-ES method to revise the
refinement result for a better adaption to the generation dynamics.

e To enhance the stability within the learning and optimization processes, we introduce a series of
adaptive measures, encompassing posterior regularization (to leverage preference pair into the refiner
part) and gradient projection (to ensure quality of the refiner output).

2 RELATED WORK

To align LLMs with human intents and preferences, various tuning and infering strategies have been
proposed. Prevalent alignment approaches can be summarized into three categories.

RLHF and DPO. Existing typical methods of steering LMs to match human preferences include
RLHF |Christiano et al.|(2017)), DPO Rafailov et al.|(2023), and their variants Meng et al.| (2024);
Pal et al.|(2024)). RLHF methods learn a reward model from a curated dataset of human preferences
and then use it to optimize a language model policy by RL algorithm, to generate responses assigned
high reward, and using KL-penalty to keep the policy from deviating too far from the original
model. RLHF has been applied to many prominent language models, and has been shown to improve
performance across a wide number of capabilities, including instruction following [[vison et al.| (2023)
and reasoning Trung et al.|(2024)). Despite the widespread use and potential of this learning paradigm,
aligning LLMs through RLHF remains challenging due to training instability. DPO bypasses the need
for explicit reward model and implicitly optimizes the same objective as existing RLHF algorithms
(reward maximization with a KL-divergence constraint), which is simple to implement and straight-
forward to train. However, these post-training methods suffer from huge computational burden and
cannot be proceeded further on a closed source LLMs.

Prompt Optimization. A different perspective of alignment is to optimize user prompts to suit LLMs’
input understanding better, so as to best realize users’ intents without updating LLMs’ parameters.
BPO Cheng et al.| (2024) fit a prompt optimizer to a dataset of human preference comparisons and
then utilize it to steer human prompts to accommodate LLMs’ understanding. In a broad sense,
automatic prompt engineering [Pryzant et al.|(2023); | Yang et al.| (2024) can also be considered as
an input side alignment approach. These methods perform alignment in language space, however,
language space may not always be optimal for LLMs’ understanding. For example, most word tokens
are primarily for textual coherence and not essential for specific even implicit preferences.

Inference-time Alignment. Inference-time alignment refers to those procedures that change the
decoding strategy to perform alignment directly. One of them is the Best-of-N method. Best-of-N
Stiennon et al.| (2020); Sessa et al.|(2024)) generates N responses for a single prompt, and the best
response is selected based on the evaluation of a reward model that measures the suitability of the
responses. It is as effective as the state-of-the-art post-training procedures, however, Best-of-N
requires vastly more resources at inference time than standard decoding strategies, which makes
it computationally not viable. To address this, a computationally-viable inference-time alignment
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Figure 2: Referring to Input Refiner modeled with the latent variable, the initial query is reconfigured
into a formulation more aligned with the answer generation process (“bottom-left — bottom-right™).
We utilize CMA-ES to optimize refinement results, severing as pseudo labels for refiner, to accom-
modate the generation dynamics (“bottom-right — bottom-left — top-left”). During learning process
of input refiner (“top-right”), the posterior regularization is deployed to incorporate information from
preference pairs thus enhance the refinement efficacy.

algorithm, Speculative Rejection [Sun et al.|(2024)), is proposed and demonstrated generating high-
scoring responses comparable to Best-of-N, while being between 16 to 32 times more computationally
efficient.

3 PROPOSED METHOD

Referring to the generation process, i.e., p(y|x), we conduct dissociation from a specific language
model of “query — answer” generation and further supply the input refinement with explicitness.
Specifically, we decompose original generation via the Bayesian method as the combination of input
refinement and answer generation:

) = z,z,2)p(z,2|x) = ') p(z|z)p(a’|2),
p(ylz) Z p(yl )p(z,2'|2) Z p(ylz’) p(z|z)p(a’|2) o
(z,2") (z2") " Gen Input Refiner

where the input refiner adapts the original input x into z’, which will better stimulate the LLM’s
capacity for for an optimal alignment. p(y|z’) servers as the final generation process which generates
preferred output after the refined input. The latent variable, i.e., z in the equation, stands for an
unobservable effect, namely user preference with diversity [Kobalczyk et al.| (2024); |Qu et al.|(2024)
and reasoning paths among scenarios, which entrains generation varying potentially.

Proof : Asis demonstrated in Figure. |1} the joint distribution for variables (x, z, ', y) is expressed
as:

p(z, z,2",y) = p(x)p(z|)p(a’ |z, 2)p(y|z, 2, 2"). 2
In accordance with their “head-to-tail” connection attribute, the distribution will be simplified as:
p(x, 2,2’ y) = p(a)p(zlx)p(z’|2)p(y|a’). 3)
Hence, we derive that p(y|x, z, ') = p(y|z’).
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Similarly, it satisfies that:
p(a,z,2") = p(2)p(z|)p(a’]2). “
Therefore, the posterior for variables (z,2') is decomposed as: p(z, 2'|z) = p(z|x)p(2'|z).

Algorithm 1: Iterative Optimization
Input :D,D.,, S, LMy, LMgen, Pz, Poy, £, A, Ges, Ao, Ar
Output: LM;,
DEF Init ():
Input refiner process, with only original input: p;,,, (.) = LM, (p = Py ()
Posterior regularization, with the added output: ¢;,,(.) = LM;,(p = Pay(,v))
The response generation process: f(.) = LM gen()
Initialization of CMA-ES process: es=CMA(, popsize=\, iter=i.)
DEF Enb (£) :
Embedding derivation of the input refiner model: e(.) = LM,;,.-Emb()
Update for embeddings of the special tokens [Z;] and [Z,]:
eo | | e([Zs]) Ay 0
{ 1 H e([2.)) }*B([ 0 A ] 2
return eg, €1
DEF CMA-ES () :
while not es.stop() do
Draw samples of ¢ from a normal distribution N (m, 02C): € ~ m + oN(0,C)
ep,e1 =Emb (£); r=20
for (x,y) € D.s do
Derive feedback signals from the generation:
r 1+ CE(f (pim (2, E((2.)) = 0, B((Z.]) = e1)), )
end for
7 4 7/|Des|
Update CMA-ES parameters: &, m, C « es(&,m,C,r)
end while
return &
while s; < S do
Initialize input refiner, posterior regularization, generation and the CMA-ES: Init ()
& =CMA-ES(); ef,ej=Emb (£*)
### Get pseudo refiner output and train the refiner model:
for (z,y) € D do
o = pim (7, E([Zs]) = €5, E([Ze]) = €})
lrm = CE(pim(x)7 x*) +w- KL(pim(x)v Qim(mv y))
LM;,. < LM;, — OéVle
end for
end while

3.1 INPUT MAPPING FUNCTION

The input refiner part in Equation|[T| constitutes “p;,,” for abbreviation in this paper. Inspired by [Hao
et al., we devise p;,, as a revised autoregressive model, with the latent variable z emerging following
the input x as a “soft prompt” Lester et al.[(2021). Additionally, a special token pair, i.e., [Z;] and
[Z.], is introduced to enclose the latent variable for its position marking. As a consequence, we
specify the encoder-decoder item, that is, p;.,, in a joint manner.

L / _ /
stz = H(E(Py(x)) ® E([Z:])), o' £ {toili € [1, L]} = D(H(z & E([Z)))), (5
where operators of E(.) and H(.) are for input text encoding and hidden state calculation in the

autoregressive LM, correspondingly. D(.) represents the decoding process. t,; is the token at i
position for the refined input 2’ and L represents the generation length. P, (.) is the prompt design
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for original input x. The latent variable 2z is represented as the hidden state of the original input
z under the autoregressive LM, which is then fed back into the LM in the form of a continuous
prompt to generate the refined input z’. Notably, we lack any ground-truth labels for z’, making
direct optimization of p;,, infeasible. To mitigate this unlabeled-data challenge, we adopt a dual
strategy: (1) employing posterior regularization to constrain the optimization space (Equation [6);
(2) leveraging the CMA-ES algorithm to extract approximate z’ values from feedback signals of
generation process, i.e., Gen in Equation |1} which are then utilized as pseudo-labels z* (Equation

3.2 POSTERIOR REGULARIZATION

Conspicuously, introduction of z in Equation [3 injects supervised signal with scarcity which will
conduce to an unstable training of p;,,, especially when z’ being not labeled.

With adding more information to estimate p;,,, that satisfies the posterior regularization, we introduce
Gim to approximate the input refinement process and derive:

Gim = (2,2 |z, y) = p(z|z, y)p(2']2), (6)

where y transfers the output information ahead as an auxiliary for the unobservable effect summariza-
tion. For the sake of its modeling, we employ a target network with the fixed parameters from p;,,,
and distinguish the output distribution via the input prompt modification. Consequently, within the
framework of ¢;,,, the latent variable z admits the representation of:

= H(E(,sz(x’ y)) @ E([Zé]))’ @)

where P, (.) is a well-designed prompt for incorporation of original input = and the output y, which
supplies sufficient signals on the reason why original output is optimal. For the preference data, it
highlights the rank between preference pair (details are shown in Table[T). During deployment, the
training performance of p;,, is enhanced through minimization of distributional discrepancies (e.g.,
KL divergence) between p;,,, and g, .

3.3 OPTIMIZATION OBJECTIVE

With freezing parameters of the Gen in Equation |1} we regard it as a black-box model, denoted by
f(.), for the whole framework construction, and formulate the optimization as:

Given the inaccessibility of V f from the black-box model, we utilize an evolution strategy, namely
CMA-ES, for optimization. Generally, via CMA-ES, a variable updates its value by sampling from a
Gaussian Distribution, that is N (m, 2C). With further considering the truth that CMA-ES usually
deals with the variable of limited dimension, we introduce the Matrix Factorization on the embedding
bias of the latent marking tokens, i.e., [Z;] and [Z] (referring to Equation [5), for updating from
the feedback of f(.) and propose an iterative optimization strategy. Specifically, we decompose the

embedding e as:
e el Ao 0 £
[a]-[d s A8 )
st e} = By([Z]), ) = Ey([Z.]) ®)

where Ej(.) € R? ( d is the embedding dimension) is the initial embedding function for the
refinement model. e; functions with adding the embedding bias for a stable optimization. A; € R?*=
represents the projection matrix and & = [£o, &1]7 (& € R%, 4 € {0, 1}) is the variable updated by
CMA-ES. d, < d means the evolution dimension. B(.) is a constraint function that restricts the
embedding bias value to a manageable scope (details are displayed in Equation [I3).

For optimizing ¢;, we conduct sampling at the evolution step ¢ as:

(€)\ ~miY 40N, Y, (10)
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where j € [1, \] (A means the population size for the evolution strategy) denotes the population index.
(t—1) (t=1)

: and o, are the expected value and standard deviation over the population at step ¢t — 1,

m
correspondingly. Ci(t*l) represents the covariance matrix.
At each iteration, we decompose the optimization process into dual stages of which one for the

Pseudo Label Derivation and the other for the Refinement Model Fine-tuning (details are displayed in
Algorithm T).

Pseudo Label Derivation: Due to the absence
of annotated z’ (Equation, we employ CMA-ES

to approximate z’ through feedback of the gener- Type Prompt

ation process. At the beginning of each iteration, S You are an expert prompt engineer.
we forward the input refiner model, that is p;., Help me improve this query to get a
(seeing at Equation [3)), to derive the initial gener- more helpful and harmless response.
ation tokens, with £ being the dependent variable P, s + Please output the modified
for optimization. Furthermore, CMA-ES method query only! Query:{}

is implemented to obtain the optimal refined in- -

put, i.e., z*, referring to the black-box generation ~ ©zy s + Form the judgment upon the
model f(.), which is regarded as the Pseudo Label following truth. Query:{} Truth:{}

for p;,, during the implementation. The fitness

expression for CMA-ES at the current generation ~ Table 1: Prompt design for both p;,, and gjr,.
step, i.e., £(.) in Equation [8} is to calculate the cross-entropy value between f(p;n(.)) and the
ground-truth output y. Additionally, the optimization is conducted on a subset of the training data

(Des C D).
TP iy
(2,9)€Des
(11)

where e} (¢ € {0,1}) and £* are for the optimal values, respectively. argming is optimized by the
CMA-ES algorithm.

z* :pim(x’E([ZSD = 68>E([Ze]) = €>1k)»

Cb‘m
= %O %
[V
—olow

Refinement Model Fine-tuning: We fine-tune the refinement model from two aspects: minimizing
the cross-entropy between the pseudo label x* and its corresponding prediction, and invoking the
KL-divergence between distributions of p;,,, and g;,, to regularize them (seeing at Equation 6)).

where w is the trade-off factor.

4 EXPERIMENTS

In this paper, we conduct discussions on several alignment scenarios with preference datasets, building
upon some popular LMs of open access for final generation. In case of the intricate functioning of
the black-box model, the vLLM [Kwon et al.|(2023) architecture is utilized to wrap the generation
model for prohibition of parameter accessibility. Additionally, we utilize prompt engineering which
converts original input into a refined one (prompt details are displayed in Table|l| where prompt for
@im fuses that of p;,,, and information from the preference pair).

Training details: Referring to BPO method, we construct the training datasets from four resources,
namely: the OASST1 dataset Kopf et al.| (2023)) which possesses response ranks from human-
annotated; the HH-RLHF dataset Bai et al| (2022) which covers helpfulness and harmfulness
responses for human preference; the Chatbot Arena Conversations dataset Zheng et al.| (2023)
collected from the online Chatbot platform; the subset of Alpaca-GPT4 dataset|Peng et al.| (2023)
with GPT-4 generated preference.

During the experiment, we randomly sample 256 instances from the dataset, which is treated as the
optimization set, i.e, D4 in Algorithm for CMA-ES method. As for the constraint function, i.e., B
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BPO-test Dolly Vicuna Self-instruct
win loss tie win loss tie win loss tie win loss tie
ours ORG 570 410 2.0 | 54.0 435 2.5 56.3 425 1.2 | 51.6 456 2.8
ours ' ORG 51.8 | 460 | 2.2 | 514 | 464 | 22 | 513 | 48.1 0.6 | 53.3 | 447 2.0
ours BoN 520 | 460 [ 2.0 | 52.0 | 46.0 | 2.0 | 57.5 | 425 00 | 489 | 50.3 | 0.8
ours' BoN 46.5 510 | 25 495 | 485 20 | 550 | 450 | 0.0 | 50.8 | 47.2 2.0
Llama-SB ours SR 70.5 275 20 | 64.0 340 | 20 | 675 31.2 1.3 72.6 | 258 1.6
ours ' SR 73.5 24.5 20 | 63.0 36.0 | 0.1 68.7 | 313 00 | 67.9 31.3 0.8
ours DPO 495 | 475 30 | 50.0 | 475 2.5 550 [ 450 [ 00 | 519 | 476 | 05
ours ' DPO 51.5 | 460 | 25 49.0 | 490 | 20 | 51.3 | 487 00 | 524 | 472 | 04
ours BPO 50.5 | 445 50 [ 565 | 410 | 25 62.5 375 00 | 504 | 472 2.4
ours' BPOf 60.0 | 36.8 32 | 559 | 405 36 | 588 | 38.8 24 | 599 38.3 1.8
ours ORG 56.5 | 410 | 25 575 | 420 | 05 638 | 362 | 00 | 56.0 | 432 | 0.8
ours ' ORG 59.5 375 3.0 | 60.0 39.5 0.5 60.0 | 38.1 1.9 518 | 474 | 0.8
ours BoN 54.0 | 43.0 3.0 | 495 500 [ 05 51.3 | 487 00 | 46.8 51.9 1.3
ours' BoN 54.5 | 435 20 | 545 | 440 1.5 43.7 537 | 26 | 472 | 51.2 1.6
Mistral-7B ours SR 715 | 275 1.0 | 675 31.0 1.5 700 | 275 25 67.8 31.3 0.9
ours' SR 740 | 240 | 2.0 | 675 320 | 05 66.3 | 313 24 | 64.3 349 | 0.8
ours BPO 58.0 | 395 2.5 60.0 39.0 1.0 | 575 | 425 00 | 524 | 456 2.0
ours’ BPOT 61.5 | 38.0 | 05 58.0 39.5 2.5 62.5 350 | 25 59.1 38.9 2.0
ours ORG 57.0 | 395 35 56.0 | 43.0 1.0 | 650 | 338 1.2 53.7 | 43.0 | 33
ours ' ORG 61.7 | 34.6 3.7 59.0 | 40.1 09 | 65.6 | 325 1.9 548 | 422 3.0
ours BoN 495 | 475 3.0 | 68.0 31.0 10 | 525 | 450 | 25 515 | 476 | 09
Qwen-14B ours' BoN 54.0 | 435 25 | 4715 520 | 05 55.0 | 43.8 12 | 452 | 532 1.6
ours DPO 68.0 [ 28,0 [ 40 | 67.0 30.5 2.5 775 22.5 0.0 | 64.7 31.7 3.6
ours’ DPO 67.0 | 295 3.5 65.0 34.5 0.5 80.0 17.5 2.5 68.6 31.0 | 04
ours BPO 59.5 340 | 65 59.0 37.5 35 575 | 413 1.2 1 560 | 41.7 2.3
ours’ BPO' 60.0 | 37.0 3.0 | 62.0 37.5 0.5 75.0 | 23.8 1.2 | 63.1 353 1.6

Gen Model Pair

Table 2: The comparison score(%) for alignment evaluation. Llama-3.2-3b-instruct is employed as
the input refiner model (except for T). T means Llama-3.2-1b-instruct is utilized for refinement.

in Equation 9] we devise it in combination with the gradient descent mechanism, which ensures a
reasonable searching space without bringing about a chaotic generation result:

€p; * Veﬁ?

Blew) = —axolGagea

Ve, (13)
where e;; = A;&; is the embedding bias for e’ (A; is the projection matrix in Equation El), a(.)
represents the sigmoid function. The item within o(.) is to project the bias value into the gradient
direction which maintains a controllable generation initialization for CMA-ES optimization (the
schematic representation is shown in the top-left part of Figure[2). « is a coefficient acting in a manner
comparable to the learning rate. We calculate Ve by feeding back the loss value, i.e., CE(pim, v),
with freezing other layers of the model. Moreover, by employing the Total Differential Formula, it is
derived that:

e 9 §(&) - (Ve x Ay)

6(0(9)) = (1+e9)2 * Vel - Veb )
epi - Vel
tog= ——"L 14

where the operator x means the common matmul product. Therefore, we initialize the step value, i.e,
o = 6(&;), with §(c(g)) as 0.001. Referring to the population size, i.e., A in Algorithm[I] we set its
value in accordance with Hansen & Kern, i.e., A = 4 + In Z;, where Z; = 2 * d is the dimension
for optimization variable.

For the sake of the truth completion (g;,, in Table E]), we implement a simple measure which
demonstrates the ranks between the preference pair explicitly. The template we employ is:

The response of "s1" is better than that of "s2" to resolve the query. [Z;]z[Z].

where the suffix pattern, referring to Equation [3] is to summarize the truth expression in a latent
manner.



Under review as a conference paper at ICLR 2026

Evaluation datasets: The BPO-test dataset is sub-sampled from the construced data of BPO
baseline. Dolly Eval is a subset of the Dolly dataset /Conover et al.| (2023). Vicuna Eval is collected
by the Vicuna Team (Chiang et al.| (2023)) amongst eight categories for LLM quality evaluation.
Self-instruct is introduced by [Wang et al., under several manually-written novel tasks for instruction-
following finetuning.

Baselines for comparison: BoN (Best-of-N sampling|Stiennon et al.|(2020)); |Sessa et al.| (2024))
which selects the highest-score generation amongst N (= 120 for the experiment) candidates
according to the reward model; SR (Speculative Rejection |Sun et al.[ (2024)) that dynamically
decreases the candidates number for sampling efficiency. DPO Rafailov et al.|(2023) transfers the RL
process into a contrastive learning manner. BPO Cheng et al.| (2024) modifies the input by employing
a Seq2Seq model for better alignment. ORG demonstrates the comparison results with a direct
generation by the original language model.

4.1 MAIN RESULTS

We conduct the win-rate assessment on three generation models, that is, Llama-8B (Meta-Llama-3-
8B-Instruct |Grattafiori et al.| (2024)), Mistral-7B (Mistral-7B-Instruct-v0.3 Nadhavajhala & Tong
(2024)) and Qwen-14B (Qwen2.5-14B-Instruct|Yang & et al.|(2025))), with the generation quality
being evaluated by Qwen-72B. Specifically, we supply the evaluator with three distinct options for
comparative assessment: A) the former is superior to the latter, B) the latter surpasses the former,
and C) both are on par, rendering them indistinguishable. These options are designed to facilitate a
nuanced and precise evaluation of a pair of generated outcomes, ensuring a rigorous and objective
comparison. As for the refiner, we engineer it with a couple of models of relatively small size, i.e.,
Llama-3.2-1b-instruct and Llama-3.2-3b-instruct.

As is displayed in Table [2] with devised refiner framework, the final generation demonstrates
superiority over that of the correspondingly original model, which varies among model architecture
and size. Concretely speaking, the transition from original model to the proposed method, refiner
size being 3b, yields an average improvement of 11.58% in win-rate (win — loss) across four
distinct datasets, with Llama-8B serving as the generation cornerstone. The observed performance
enhancements for Mistral-7B and Qwen-14B are at 17.85% and 18.18%, respectively. Our method
still dominates for the 1b refiner that the concomitantly results are 5.65%/ 17.2%/ 22.93%.

Gen Model _BPO-test ] _ Dolly ] ] Vicuna _ .Self-lnstruct_ Ve
win | loss | tie | win | loss | tie | win | loss | tie | win | loss | tie

Llama-8B | 53.5 | 450 | 1.5 | 48.0 | 49.6 | 24 | 51.5 | 455 | 3.0 | 51.2 | 488 | 0.0 | 3.83
Mistral-7B | 53.0 | 445 | 25 | 48.6 | 49.6 | 1.8 | 49.0 | 490 | 20 | 51.9 | 48.1 | 0.0 | 2.83
Qwen-14B | 51.5 | 475 | 1.0 | 52.7 | 457 | 1.6 | 55.0 | 425 | 2.5 | 53.0 | 45.0 | 2.0 | 7.87

Table 3: The comparison score(%) for “W/.(CMA-ES) - W/O.(CMA-ES)” pair. Llama-3.2-3b-instruct
is the input refiner.

WIN
Loss X 49.0 49.0 I 48.5 50.4 | 49.0 50.0 |
- TIE &
<
) 56.5 41.0 I 54.2 44.4 I 55.5 43.0 I
00
-
o
8 46.3 52.3 | 54.5 44.7 | 50.6 48.1 |
\
8
\“5, 55.6 42.9 I 53.3 45.9 | 52.0 47.2 |
s
S
o
o 53.0 45.1 I 52.4 46.6 | 52.0 46.9 |
<4
»
0 20 40 60 80 100 © 20 40 60 80 100 © 20 40 60 80 100
Meta-Llama3-8B-Instruct Mistral-7B-Instruct-v0.3 Qwen2.5-14B-Instruct

Figure 3: Evaluation on the “W/.(¢;y,) - W/O.(g:,)” pair, where the refiner is constructed by Llama-
3.2-3b-instruct.
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In comparison with BPO, our model also show-

cases superior performance and enhanced capa- —-0ss ss4  [EEEEN
bilities. Delving into the specifics, it attains &

12.43% augmentation in the win-rate metric, . o™ s25 [N
leveraging 3b size for refiner and Llama-8B @ 0 [EEENE
for generation. Referring to refiner of 1b, our g

model spearheads an advancement to score of & s22  [EEEI
20.05%, elucidating that its preeminence over :\oe“"

BPO is markedly amplified when deployed with o o s.6  [NECEEN
a small size refiner. An exact phenomenon is » T30 w0 o s 10
observed across the other two models as well Qwen2.5-14B-Instruct

(15.33% — 22.43% for Mistral with refiner

from 1b to 3b, 19.38% — 31.63% for Qwen). Figure 4: Evaluation on the “Ours-BPO” pair with
This substantiates the premise that a further op- GPT-4.

timization of the refiner via interaction with

the generation process can indeed enhance its adaptability to the generation dynamics. It is
manifest for refiner of deficient capability. We also employ gpt-4-turbo-128k as the evaluator, to
judge the results between the propose method and BPO, with Qwen-14B as the answer generator.
Referring to Figure[d] our method surpasses BPO by average of 7.2% under the GPT-4 evaluation,
with Qwen-14B severing for generation, which also substantiates the preeminence of our model.

When contrasted with SR ad DPO, our method consistently evinces a pronounced superiority, where
the improved values are 38.47% and 22.79% averagely among generation architecture and refiner
size. It demonstrates comparable efficacy to BoN, e.g., +2.53% for Llama-8B with 1b refiner, and
+1.88% for Mistral-7B, nevertheless, BoN necessitates multiple generations at the inference time,
each of which is subsequently evaluated and scored to ascertain the optimal output by a reward model.
Consequently, this process incurs a substantial expenditure of computational resources, rendering the
inference markedly resource-intensive.

4.2 ABLATION STUDY

We conduct ablation studies to validate the indispensability of each component. The evaluations are
displayed in Table [3|and Figure [3] correspondingly.

Evaluation on CMA-ES optimization: We fine-tune the basic model with the latent variable
and posterior regularization, and eliminate the CMA-ES module for comparison. Table [3|elucidate
impact of this part that being comparison with the complete model, the evaluator prefer to rank
worse for this setting. Specifically, the win-rate descents by average 3.83% without the module, with
Llama-8B in the generation process. The corresponding results are 2.83% and 7.87% for Mistral-7B
and Qwen-14B, separately.

Evaluation on Posterior Regularization: For this setting, we ignore the information from the
preference pair, i.e., ¢;m,, and assign 0 to w in Equation @ As is demonstrated in Figure E], the
complete model exhibits a superior win-rate, surpassing that of g;,,, free model by 7.9% for Llama-
8B generator. The metrics are 5.8% and 5.1% for other two models. This empirical evidence
unequivocally validates the instrumental role of g;,,, in augmenting the performance of the refinement.

5 CONCLUSIONS

In the realm of LLM alignment, with cognizant of the computational burden entailed by parameter
optimization of the original model, we innovatively harness Bayesian method to introduce the input
refiner which functions for query refinement and adaptation to the answer generator. Diverging
from BPO, our refiner model is architected upon a latent variable, meticulously encapsulating the
heterogeneity inherent of “input - refinement” pairs and assimilating insights from preference pairs.
Moreover, we integrate the CMA-ES method to establish a connection between refiner and the
generation process, ensuring that the refinement exhibit a heightened congruence with expectations.
We conduct experiments on generation models of distinct architecture and size, evincing efficacy of
the proposed method.
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A ESSENTIAL NOTATIONS

Variable Description Type
z original input text
z latent variable vector
[Zs], [ Ze] position markers for z token
e, e initial embeddings for [Z,], [Z.] vector
x’ refined input, derived from the latent variable z. | text
T pseudo label for x’, derived from CMA-ES. text
13 the optimizable variable for CMA-ES vector
Y final output, preferable response. text

Table 4: Essential notations of the proposed method.

B TRAINING SETTINGS

All experiments are designed and executed utilizing NVIDIA A800-SXM4-80GB GPUs, with
comprehensive training specifications delineated in Table 3}

Description Refiner | CMA-ES

N training data led 256
ng maximum generation response length 64 128
d, | dimension of CMA-ES latent variable, i.e., z _ 16

Ir learning rate le-5 2e-6

S training epochs or optimization steps 3 30
CLl KL loss coefficient 0.02 _

bs training batchsize 8 _

Table 5: Training Details for our experimental setting.

C EVALUATION PROMPT

1: Evaluation-Aware Prompt

Please act as an impartial judge and evaluate the quality of the responses provided by two Al
assistants to the user question displayed below.

You should choose the assistant that follows the user’s instructions and answers the user’s
question better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses.

Begin your evaluation by comparing the two responses and provide a short explanation. Avoid
any position biases and ensure that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as objective as possible.

After providing your explanation, output your final verdict by strictly following this format:

[[A]]if assistant A is better, [[B]]if assistant B is better, and [[C]]for a tie."
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“prompt template’:

“[User Question]{question }[The Start of Assistant A’s Answer]{answer a}[The End of Assis-
tant A’s Answer][The Start of Assistant B’s Answer]{answer b}[The End of Assistant B’s
Answer]”,

“description”: “Prompt for general questions”,

“category’: “general”,
“output format™: “[[A]]”

D LIMITATIONS

In this paper, we propose a joint strategy that establishes a connection between input refiner and
the answer generation process via CMA-ES algorithm. With it, initial refinement results will get
optimized and adpated to the generation dynamics, hence derive a better aligned expression.

The method still harbors minor imperfections that necessitate improvement. For instance, the CMA-
ES algorithm exhibits a dependency on initial values (despite the incorporation of certain robustness
measures within the algorithm, i.e., the gradient project and initial step size in Equations[T3]and [T4).
Additionally, the data sampled (D.) for the CMA-ES process can also influence the efficacy of the
optimization. These issues warrant further exploration and investigation.

E LLM USAGE CLARIFICATION

The application of LLMs in this paper is limited exclusively to polishing the text, particularly in
refining specific vocabulary and phrases.
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