

RECAST YOUR INPUT VIA A MAPPING FUNCTION FOR ALIGNMENT

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Alignment is promoting its critical role among the large language model (LLM)
012 scenarios, which ensures safety, controllability, and trustworthiness of the genera-
013 tion. The popular alignment methods, that is, reinforcement learning from human
014 feedback (RLHF), direct preference optimization (DPO) and such series, usually
015 change weights of the model by elaborate algorithm. Nevertheless, they suffer from
016 the compute drain for training, especially when the parameters' size getting huge.
017 Worse still, people typically do not have access to the weights of the SOTA models,
018 such as GPT-4, which consequently renders the aforementioned algorithms unim-
019 plementable. In this paper, we propose to employ a separate LM as the **Refiner**,
020 an input mapping function essentially, to transform the original query into a novel
021 formulation that impels the final generation to align with the expectations. During
022 optimization, an evolution strategy, namely **CMA-ES**, is leveraged to fine-tune the
023 LM with linkage to the generation model. We conduct extensive experiments on
024 various refiner and generation types, and achieving surpassing results.
025
026

1 INTRODUCTION

027 Aligning LLM with human preference has con-
028 sistently proven to be essential for majority of
029 applications, which guarantees it generation au-
030 thenticity and morality, and circumvents pit-
031 falls of overconfidence Tian et al. (2024); Etha-
032 yarajh et al. (2024). Distinguished from the su-
033 pervised fine-tuning (SFT) process, researchers
034 usually refer to preference data for alignment,
035 with rendering the disparity inside the answer
036 list conspicuous. Typical aligning methods,
037 namely RLHF Christiano et al. (2017) and DPO
038 Rafailov et al. (2023), derive from maximizing
039 the generation return and minimizing the
040 Kullback-Leibler (KL) divergence from orig-
041 inal distribution, and vary in implementation
042 types, i.e., reinforcement learning (RL) and con-
043 trastive learning (CL). Severing as a critical part
044 for post-training, they shed light on the perfor-
045 mance improvement among popular LLMs, like
046 GPT-4 OpenAI et al. (2024) and DeepSeek-R1
047 DeepSeek-AI et al. (2025). Unfortunately, the
048 aforementioned techniques suffer from huge computational burden when confronting LLMs char-
049 acterized by a vast parametric ensemble. With exacerbating the predicament, the acquisition of model's
050 weights is usually unattainable for some SOTA LLMs, such as GPT-4 and Claude-3.5 Claude.ai
(2024), which results in the infeasibility of these training methodologies.

051 Black-box prompt optimization (BPO) Cheng et al. (2024) is proposed to steer the input to accom-
052 modate the generation LLM, hence evades the training issues discussed above. However, BPO
053 learns its prompt preference optimizer, a relatively small language model (SLM), in isolation from
the final generation process, which covers no guarantee that the training datasets they construct

Figure 1: The probability graph of refined genera-
tion, i.e., $\mathbf{X} \rightarrow \mathbf{Z} \rightarrow \mathbf{X}' \rightarrow \mathbf{Y}$, for alignment where
 $\mathbf{X} \rightarrow \mathbf{Y}$ denotes the original generation, \mathbf{Z} and \mathbf{X}'
represent the latent variable and refined input sepa-
rately.

054 are universally applicable across models. Additionally, in the course of data collection endeavors,
 055 BPO commences with the preference data pairs to derive the preference reason and “un-prefer \mapsto
 056 prefer” shift fashion, capitalizing on the critical faculties of the LLMs. Notwithstanding it, given
 057 hallucination Bouyamoun (2023); Xu et al. (2024) residing within the LLMs, the preference reason
 058 cannot entirely supplant the preference pair for training of the preference optimizer.

059 In light of the preceding deliberations, we propose the input **Refiner** (being analogous to the prompt
 060 preference optimizer of BPO), and learn it by interacting with the generation model via *Covariance*
 061 *Matrix Adaptation Evolution Strategy (CMA-ES)* Hansen et al. (2003); Sun et al. (2022); Wang et al.
 062 (2024). As is displayed in Figure 1, $\mathbf{X} \rightarrow \mathbf{Y}$ represents original generation process, from query to
 063 the answer. **Note that since we are optimizing a black-box model, gradient descent cannot be**
 064 **directly applied to train $p(y|x)$.** Therefore, we decompose it into a joint stages pair, of which the
 065 refinement ($\mathbf{X} \rightarrow \mathbf{Z} \rightarrow \mathbf{X}'$) models with a latent variable, covering information from the preference
 066 pair, and the generation ($\mathbf{X}' \rightarrow \mathbf{Y}$) servers as a black-box model that criticizes the refinement. Our
 067 contributions are summarized as follows:

- 068 • We devise the input refinement module by introducing a latent variable to absorb information from
 069 preference pair and reason, which may demonstrates diversity among scenarios.
- 070 • We consider the generation part as a black-box model, and utilize CMA-ES method to revise the
 071 refinement result for a better adaption to the generation dynamics.
- 072 • To enhance the stability within the learning and optimization processes, we introduce a series of
 073 adaptive measures, encompassing *posterior regularization* (to leverage preference pair into the refiner
 074 part) and *gradient projection* (to ensure quality of the refiner output).

075 2 RELATED WORK

076 To align LLMs with human intents and preferences, various tuning and inferring strategies have been
 077 proposed. Prevalent alignment approaches can be summarized into three categories.

078 **RLHF and DPO.** Existing typical methods of steering LMs to match human preferences include
 079 RLHF Christiano et al. (2017), DPO Rafailov et al. (2023), and their variants Meng et al. (2024);
 080 Pal et al. (2024). RLHF methods learn a reward model from a curated dataset of human preferences
 081 and then use it to optimize a language model policy by RL algorithm, to generate responses assigned
 082 high reward, and using KL-penalty to keep the policy from deviating too far from the original
 083 model. RLHF has been applied to many prominent language models, and has been shown to improve
 084 performance across a wide number of capabilities, including instruction following Ivison et al. (2023)
 085 and reasoning Trung et al. (2024). Despite the widespread use and potential of this learning paradigm,
 086 aligning LLMs through RLHF remains challenging due to training instability. DPO bypasses the need
 087 for explicit reward model and implicitly optimizes the same objective as existing RLHF algorithms
 088 (reward maximization with a KL-divergence constraint), which is simple to implement and straight-
 089 forward to train. However, these post-training methods suffer from huge computational burden and
 090 cannot be proceeded further on a closed source LLMs.

091 **Prompt Optimization.** A different perspective of alignment is to optimize user prompts to suit LLMs'
 092 input understanding better, so as to best realize users' intents without updating LLMs' parameters.
 093 BPO Cheng et al. (2024) fit a prompt optimizer to a dataset of human preference comparisons and
 094 then utilize it to steer human prompts to accommodate LLMs' understanding. In a broad sense,
 095 automatic prompt engineering Pryzant et al. (2023); Yang et al. (2024) can also be considered as
 096 an input side alignment approach. These methods perform alignment in language space, however,
 097 language space may not always be optimal for LLMs' understanding. For example, most word tokens
 098 are primarily for textual coherence and not essential for specific even implicit preferences.

099 **Inference-time Alignment.** Inference-time alignment refers to those procedures that change the
 100 decoding strategy to perform alignment directly. One of them is the Best-of-N method. Best-of-N
 101 Stiennon et al. (2020); Sessa et al. (2024)) generates N responses for a single prompt, and the best
 102 response is selected based on the evaluation of a reward model that measures the suitability of the
 103 responses. It is as effective as the state-of-the-art post-training procedures, however, Best-of-N
 104 requires vastly more resources at inference time than standard decoding strategies, which makes
 105 it computationally not viable. To address this, a computationally-viable inference-time alignment

Figure 2: Referring to **Input Refiner** modeled with the latent variable, the initial query is reconfigured into a formulation more aligned with the answer generation process (“bottom-left → bottom-right”). We utilize **CMA-ES** to optimize refinement results, severing as pseudo labels for refiner, to accommodate the generation dynamics (“bottom-right → bottom-left → top-left”). During learning process of input refiner (“top-right”), the posterior regularization is deployed to incorporate information from preference pairs thus enhance the refinement efficacy.

algorithm, Speculative Rejection Sun et al. (2024), is proposed and demonstrated generating high-scoring responses comparable to Best-of-N, while being between 16 to 32 times more computationally efficient.

3 PROPOSED METHOD

Referring to the generation process, i.e., $p(y|x)$, we conduct dissociation from a specific language model of “query \mapsto answer” generation and further supply the input refinement with explicitness. Specifically, we decompose original generation via the Bayesian method as the combination of *input refinement* and *answer generation*:

$$p(y|x) = \sum_{(z, x')} p(y|x, z, x') p(z, x'|x) = \sum_{(z, x')} \underbrace{p(y|x')}_{\text{Gen}} \underbrace{p(z|x)p(x'|z)}_{\text{Input Refiner}}, \quad (1)$$

where the input refiner adapts the original input x into x' , which will better stimulate the LLM’s capacity for an optimal alignment. $p(y|x')$ servers as the final generation process which generates preferred output after the refined input. The latent variable, i.e., z in the equation, stands for an unobservable effect, namely user preference with diversity Kobalczyk et al. (2024); Qu et al. (2024) and reasoning paths among scenarios, which entrains generation varying potentially.

Proof : As is demonstrated in Figure. 1, the joint distribution for variables (x, z, x', y) is expressed as:

$$p(x, z, x', y) = p(x)p(z|x)p(x'|x, z)p(y|x, z, x'). \quad (2)$$

In accordance with their “**head-to-tail**” connection attribute, the distribution will be simplified as:

$$p(x, z, x', y) = p(x)p(z|x)p(x'|z)p(y|x'). \quad (3)$$

Hence, we derive that $p(y|x, z, x') = p(y|x')$.

162 Similarly, it satisfies that:
163
$$p(x, z, x') = p(x)p(z|x)p(x'|z). \quad (4)$$

164 Therefore, the posterior for variables (z, x') is decomposed as: $p(z, x'|x) = p(z|x)p(x'|z)$.

166 **Algorithm 1:** Iterative Optimization

168 **Input :** $\mathcal{D}, \mathcal{D}_{es}, S, LM_{ir}, LM_{gen}, \mathcal{P}_x, \mathcal{P}_{xy}, \xi, \lambda, i_{es}, A_0, A_1$
169 **Output :** LM_{ir}

1 **DEF** `Init()` :
2 Input refiner process, with only original input: $p_{im}(\cdot) = LM_{ir}(p = \mathcal{P}_x(x))$
3 Posterior regularization, with the added output: $q_{im}(\cdot) = LM_{ir}(p = \mathcal{P}_{xy}(x, y))$
4 The response generation process: $f(\cdot) = LM_{gen}()$
5 Initialization of CMA-ES process: $es = \text{CMA}(\xi, \text{popsize} = \lambda, \text{iter} = i_{es})$

6 **DEF** `Emb(ξ)` :
7 Embedding derivation of the input refiner model: $e(\cdot) = LM_{ir}\text{-Emb}()$
8 Update for embeddings of the special tokens $[Z_s]$ and $[Z_e]$:
9
$$\begin{bmatrix} e_0 \\ e_1 \end{bmatrix} = \begin{bmatrix} e([Z_s]) \\ e([Z_e]) \end{bmatrix} + \mathcal{B} \left(\begin{bmatrix} A_0 & \mathbf{0} \\ \mathbf{0} & A_1 \end{bmatrix} \xi \right)$$

10 **return** e_0, e_1

10 **DEF** `CMA-ES()` :
11 **while** $not es.\text{stop}()$ **do**
12 Draw samples of ξ from a normal distribution $N(m, \sigma^2 C)$: $\xi \sim m + \sigma N(0, C)$
13 $e_0, e_1 = \text{Emb}(\xi); r = 0$
14 **for** $(x, y) \in \mathcal{D}_{es}$ **do**
15 Derive feedback signals from the generation:
16 $r \leftarrow r + \mathbf{CE}(f(p_{im}(x, E([Z_s]) = e_0, E([Z_e]) = e_1)), y)$
17 **end for**
18 $r \leftarrow r / |\mathcal{D}_{es}|$
19 Update CMA-ES parameters: $\xi, m, C \leftarrow es(\xi, m, C, r)$
20 **end while**
21 **return** ξ

21 **while** $s_i \leq S$ **do**
22 Initialize input refiner, posterior regularization, generation and the CMA-ES: `Init()`
23 $\xi^* = \text{CMA-ES}(); e_0^*, e_1^* = \text{Emb}(\xi^*)$
24 ### Get pseudo refiner output and train the refiner model:
25 **for** $(x, y) \in \mathcal{D}$ **do**
26 $x^* = p_{im}(x, E([Z_s]) = e_0^*, E([Z_e]) = e_1^*)$
27 $l_{rm} = \mathbf{CE}(p_{im}(x), x^*) + \omega \cdot \mathbf{KL}(p_{im}(x), q_{im}(x, y))$
28 $LM_{ir} \leftarrow LM_{ir} - \alpha \nabla l_{rm}$
29 **end for**
30 **end while**

201
202

203 3.1 INPUT MAPPING FUNCTION

204 The *input refiner* part in Equation 1 constitutes “ p_{im} ” for abbreviation in this paper. Inspired by Hao
205 et al., we devise p_{im} as a revised autoregressive model, with the latent variable z emerging following
206 the input x as a “soft prompt” Lester et al. (2021). Additionally, a special token pair, i.e., $[Z_s]$ and
207 $[Z_e]$, is introduced to enclose the latent variable for its position marking. As a consequence, we
208 specify the encoder-decoder item, that is, p_{im} , in a joint manner.

210
211
$$p_{im} \triangleq p(z, x'|x) = p(z|x)p(x'|z),$$

212 **s.t.** $z = H(E(\mathcal{P}_x(x)) \oplus E([Z_s])), x' \triangleq \{t_{oi} | i \in [1, L]\} = D(H(z \oplus E([Z_e]))), \quad (5)$
213

214 where operators of $E(\cdot)$ and $H(\cdot)$ are for input text encoding and hidden state calculation in the
215 autoregressive LM, correspondingly. $D(\cdot)$ represents the decoding process. t_{oi} is the token at i
position for the refined input x' and L represents the generation length. $\mathcal{P}_x(\cdot)$ is the prompt design

216 for original input x . **The latent variable z is represented as the hidden state of the original input**
 217 **x under the autoregressive LM, which is then fed back into the LM in the form of a continuous**
 218 **prompt to generate the refined input x' .** Notably, we lack any ground-truth labels for x' , making
 219 direct optimization of p_{im} infeasible. To mitigate this unlabeled-data challenge, we adopt a dual
 220 strategy: (1) employing posterior regularization to constrain the optimization space (Equation 6);
 221 (2) leveraging the CMA-ES algorithm to extract approximate x' values from feedback signals of
 222 generation process, i.e., **Gen** in Equation 1, which are then utilized as pseudo-labels x^* (Equation
 223 11).

225 3.2 POSTERIOR REGULARIZATION

226 Conspicuously, introduction of z in Equation 5 injects supervised signal with scarcity which will
 227 conduce to an unstable training of p_{im} , especially when x' being not labeled.

228 With adding more information to estimate p_{im} that satisfies the posterior regularization, we introduce
 229 q_{im} to approximate the input refinement process and derive:

$$231 \quad 232 \quad q_{im} \triangleq p(z, x'|x, y) = p(z|x, y)p(x'|z), \quad (6)$$

233 where y transfers the output information ahead as an auxiliary for the unobservable effect summarization.
 234 For the sake of its modeling, we employ a target network with the fixed parameters from p_{im} ,
 235 and distinguish the output distribution via the input prompt modification. Consequently, within the
 236 framework of q_{im} , the latent variable z admits the representation of:

$$237 \quad 238 \quad z = H(E(\mathcal{P}_{xy}(x, y)) \oplus E([Z_s])), \quad (7)$$

239 where $\mathcal{P}_{xy}(\cdot)$ is a well-designed prompt for incorporation of original input x and the output y , which
 240 supplies sufficient signals on the reason why original output is optimal. For the preference data, it
 241 highlights the rank between preference pair (details are shown in Table 1). During deployment, the
 242 training performance of p_{im} is enhanced through minimization of distributional discrepancies (e.g.,
 243 KL divergence) between p_{im} and q_{im} .

245 3.3 OPTIMIZATION OBJECTIVE

246 With freezing parameters of the **Gen** in Equation 1, we regard it as a black-box model, denoted by
 247 $f(\cdot)$, for the whole framework construction, and formulate the optimization as:

$$249 \quad 250 \quad \min \mathcal{L}(f(p_{im}(x)), y). \quad (8)$$

251 Given the inaccessibility of ∇f from the black-box model, we utilize an evolution strategy, namely
 252 CMA-ES, for optimization. Generally, via CMA-ES, a variable updates its value by sampling from a
 253 *Gaussian Distribution*, that is $N(m, \sigma^2 C)$. With further considering the truth that CMA-ES usually
 254 deals with the variable of limited dimension, we introduce the *Matrix Factorization* on the embedding
 255 bias of the latent marking tokens, i.e., $[Z_s]$ and $[Z_e]$ (referring to Equation 5), for updating from
 256 the feedback of $f(\cdot)$ and propose an iterative optimization strategy. Specifically, we decompose the
 257 embedding e as:

$$259 \quad 260 \quad \begin{bmatrix} e_0 \\ e_1 \end{bmatrix} = \begin{bmatrix} e_0^b \\ e_1^b \end{bmatrix} + \mathcal{B} \left(\begin{bmatrix} A_0 & \mathbf{0} \\ \mathbf{0} & A_1 \end{bmatrix} \begin{bmatrix} \xi_0 \\ \xi_1 \end{bmatrix} \right),$$

261 **s.t.** $e_0^b = E_b([Z_s])$, $e_1^b = E_b([Z_e])$ (9)

262 where $E_b(\cdot) \in \mathbb{R}^d$ (d is the embedding dimension) is the **initial embedding function** for the
 263 refinement model. e_i functions with adding the *embedding bias* for a stable optimization. $A_i \in \mathbb{R}^{d \times d_z}$
 264 represents the projection matrix and $\xi = [\xi_0, \xi_1]^T$ ($\xi_i \in \mathbb{R}^{d_z}$, $i \in \{0, 1\}$) is the variable updated by
 265 CMA-ES. $d_z \ll d$ means the evolution dimension. $\mathcal{B}(\cdot)$ is a constraint function that restricts the
 266 embedding bias value to a manageable scope (details are displayed in Equation 13).

267 For optimizing ξ_i , we conduct sampling at the **evolution step** t as:

$$268 \quad 269 \quad (\xi_i)_j^{(t)} \sim m_i^{(t-1)} + \sigma_i^{(t-1)} N(0, C_i^{(t-1)}), \quad (10)$$

270 where $j \in [1, \lambda]$ (λ means the population size for the evolution strategy) denotes the population index.
 271 $m_i^{(t-1)}$ and $\sigma_i^{(t-1)}$ are the expected value and standard deviation over the population at step $t-1$,
 272 correspondingly. $C_i^{(t-1)}$ represents the covariance matrix.
 273

274 At each iteration, we decompose the optimization process into dual stages of which one for the
 275 *Pseudo Label Derivation* and the other for the *Refinement Model Fine-tuning* (details are displayed in
 276 Algorithm 1).

278 **Pseudo Label Derivation:** Due to the absence
 279 of annotated x' (Equation 5), we employ CMA-ES
 280 to approximate x' through feedback of the gener-
 281 ation process. At the beginning of each iteration,
 282 we forward the input refiner model, that is p_{im}
 283 (seeing at Equation 5), to derive the initial gener-
 284 ation tokens, with ξ being the dependent variable
 285 for optimization. Furthermore, CMA-ES method
 286 is implemented to obtain the optimal refined in-
 287 put, i.e., x^* , referring to the black-box generation
 288 model $f(\cdot)$, which is regarded as the *Pseudo Label*
 289 for p_{im} during the implementation. The fitness
 290 expression for CMA-ES at the current generation
 291 step, i.e., $\mathcal{L}(\cdot)$ in Equation 8, is to calculate the
 292 ground-truth output y . Additionally, the optimization is conducted on a subset of the training data
 $(\mathcal{D}_{es} \subset \mathcal{D})$.

$$293 \quad x^* = p_{im}(x, E([Z_s]) = e_0^*, E([Z_e]) = e_1^*), \\ 294 \quad \text{s.t. } \begin{bmatrix} e_0^* \\ e_1^* \end{bmatrix} = \begin{bmatrix} e_0^b \\ e_1^b \end{bmatrix} + \mathcal{B}(\begin{bmatrix} A_0 & \mathbf{0} \\ \mathbf{0} & A_1 \end{bmatrix} \xi^*), \quad \xi^* = \operatorname{argmin}_{\xi} \sum_{(x,y) \in \mathcal{D}_{es}} (\mathbf{CE}(f(p_{im}(x, \xi)), y)), \\ 295 \quad (11)$$

296 where $e_i^* (i \in \{0, 1\})$ and ξ^* are for the optimal values, respectively. $\operatorname{argmin}_{\xi}$ is optimized by the
 297 CMA-ES algorithm.

301 **Refinement Model Fine-tuning:** We fine-tune the refinement model from two aspects: minimizing
 302 the cross-entropy between the pseudo label x^* and its corresponding prediction, and invoking the
 303 KL-divergence between distributions of p_{im} and q_{im} to regularize them (seeing at Equation 6).

$$304 \quad l_{rm} = \mathbf{CE}(p_{im}(x), x^*) + \omega \cdot \mathbf{KL}(p_{im} \| q_{im}), \quad (12)$$

306 where ω is the trade-off factor.

308 4 EXPERIMENTS

310 In this paper, we conduct discussions on several alignment scenarios with preference datasets, building
 311 upon some popular LMs of open access for final generation. In case of the intricate functioning of
 312 the black-box model, the vLLM Kwon et al. (2023) architecture is utilized to wrap the generation
 313 model for prohibition of parameter accessibility. Additionally, we utilize prompt engineering which
 314 converts original input into a refined one (prompt details are displayed in Table 1, where prompt for
 315 q_{im} fuses that of p_{im} and information from the preference pair).

316 **Training details:** Referring to BPO method, we construct the training datasets from four resources,
 317 namely: the **OASST1** dataset Köpf et al. (2023) which possesses response ranks from human-
 318 annotated; the **HH-RLHF** dataset Bai et al. (2022) which covers helpfulness and harmfulness
 319 responses for human preference; the **Chatbot Arena Conversations** dataset Zheng et al. (2023)
 320 collected from the online Chatbot platform; the subset of **Alpaca-GPT4** dataset Peng et al. (2023)
 321 with GPT-4 generated preference.

323 During the experiment, we randomly sample 256 instances from the dataset, which is treated as the
 324 optimization set, i.e., D_{es} in Algorithm 1, for CMA-ES method. As for the constraint function, i.e., \mathcal{B}

Type	Prompt
s	You are an expert prompt engineer. Help me improve this query to get a more helpful and harmless response.
\mathcal{P}_x	$s + \text{Please output the modifiedquery only! Query:}\{\}$
\mathcal{P}_{xy}	$s + \text{Form the judgment upon thefollowing truth. Query:}\{\} \text{ Truth:}\{\}$

Table 1: Prompt design for both p_{im} and q_{im} .
The cross-entropy value between $f(p_{im}(\cdot))$ and the
ground-truth output y . Additionally, the optimization is conducted on a subset of the training data
 $(\mathcal{D}_{es} \subset \mathcal{D})$.

324	325	Gen Model	Pair	BPO-test			Dolly			Vicuna			Self-instruct			
				win	loss	tie	win	loss	tie	win	loss	tie	win	loss	tie	
326	327	Llama-8B	ours	ORG	57.0	41.0	2.0	54.0	43.5	2.5	56.3	42.5	1.2	51.6	45.6	2.8
			ours [†]	ORG	51.8	46.0	2.2	51.4	46.4	2.2	51.3	48.1	0.6	53.3	44.7	2.0
			ours	BoN	52.0	46.0	2.0	52.0	46.0	2.0	57.5	42.5	0.0	48.9	50.3	0.8
			ours [†]	BoN	46.5	51.0	2.5	49.5	48.5	2.0	55.0	45.0	0.0	50.8	47.2	2.0
			ours	SR	70.5	27.5	2.0	64.0	34.0	2.0	67.5	31.2	1.3	72.6	25.8	1.6
			ours [†]	SR	73.5	24.5	2.0	63.0	36.0	0.1	68.7	31.3	0.0	67.9	31.3	0.8
			ours	DPO	49.5	47.5	3.0	50.0	47.5	2.5	55.0	45.0	0.0	51.9	47.6	0.5
			ours [†]	DPO	51.5	46.0	2.5	49.0	49.0	2.0	51.3	48.7	0.0	52.4	47.2	0.4
328	329	Mistral-7B	ours	BPO	50.5	44.5	5.0	56.5	41.0	2.5	62.5	37.5	0.0	50.4	47.2	2.4
			ours [†]	BPO [†]	60.0	36.8	3.2	55.9	40.5	3.6	58.8	38.8	2.4	59.9	38.3	1.8
			ours	ORG	56.5	41.0	2.5	57.5	42.0	0.5	63.8	36.2	0.0	56.0	43.2	0.8
			ours [†]	ORG	59.5	37.5	3.0	60.0	39.5	0.5	60.0	38.1	1.9	51.8	47.4	0.8
			ours	BoN	54.0	43.0	3.0	49.5	50.0	0.5	51.3	48.7	0.0	46.8	51.9	1.3
			ours [†]	BoN	54.5	43.5	2.0	54.5	44.0	1.5	43.7	53.7	2.6	47.2	51.2	1.6
			ours	SR	71.5	27.5	1.0	67.5	31.0	1.5	70.0	27.5	2.5	67.8	31.3	0.9
			ours [†]	SR	74.0	24.0	2.0	67.5	32.0	0.5	66.3	31.3	2.4	64.3	34.9	0.8
330	331	Qwen-14B	ours	BPO	58.0	39.5	2.5	60.0	39.0	1.0	57.5	42.5	0.0	52.4	45.6	2.0
			ours [†]	BPO [†]	61.5	38.0	0.5	58.0	39.5	2.5	62.5	35.0	2.5	59.1	38.9	2.0
			ours	ORG	57.0	39.5	3.5	56.0	43.0	1.0	65.0	33.8	1.2	53.7	43.0	3.3
			ours [†]	ORG	61.7	34.6	3.7	59.0	40.1	0.9	65.6	32.5	1.9	54.8	42.2	3.0
			ours	BoN	49.5	47.5	3.0	68.0	31.0	1.0	52.5	45.0	2.5	51.5	47.6	0.9
			ours [†]	BoN	54.0	43.5	2.5	47.5	52.0	0.5	55.0	43.8	1.2	45.2	53.2	1.6
			ours	DPO	68.0	28.0	4.0	67.0	30.5	2.5	77.5	22.5	0.0	64.7	31.7	3.6
			ours [†]	DPO	67.0	29.5	3.5	65.0	34.5	0.5	80.0	17.5	2.5	68.6	31.0	0.4
332	333	Qwen-14B	ours	BPO	59.5	34.0	6.5	59.0	37.5	3.5	57.5	41.3	1.2	56.0	41.7	2.3
			ours [†]	BPO [†]	60.0	37.0	3.0	62.0	37.5	0.5	75.0	23.8	1.2	63.1	35.3	1.6

Table 2: The comparison score(%) for alignment evaluation. Llama-3.2-3b-instruct is employed as the input refiner model (except for [†]). [†] means Llama-3.2-1b-instruct is utilized for refinement.

in Equation 9, we devise it in combination with the *gradient descent mechanism*, which ensures a reasonable searching space without bringing about a chaotic generation result:

$$\mathcal{B}(e_{bi}) = -\alpha * \sigma\left(\frac{e_{bi} \cdot \nabla e_i^b}{\nabla e_i^b \cdot \nabla e_i^b}\right) \nabla e_i^b, \quad (13)$$

where $e_{bi} = A_i \xi_i$ is the embedding bias for e_i^b (A_i is the projection matrix in Equation 9), $\sigma(\cdot)$ represents the *sigmoid* function. The item within $\sigma(\cdot)$ is to project the bias value into the gradient direction which maintains a controllable generation initialization for CMA-ES optimization (the schematic representation is shown in the top-left part of Figure 2). α is a coefficient acting in a manner comparable to the learning rate. We calculate ∇e_i^b by feeding back the loss value, i.e., $\text{CE}(p_{im}, y)$, with freezing other layers of the model. Moreover, by employing the *Total Differential Formula*, it is derived that:

$$\delta(\sigma(g)) = \frac{e^{-g}}{(1 + e^{-g})^2} * \frac{\delta(\xi_i) \cdot (\nabla e_i^b \times A_i)}{\nabla e_i^b \cdot \nabla e_i^b}, \quad \text{s.t. } g = \frac{e_{bi} \cdot \nabla e_i^b}{\nabla e_i^b \cdot \nabla e_i^b}, \quad (14)$$

where the operator \times means the common *matmul product*. Therefore, we initialize the step value, i.e., $\delta_0 = \delta(\xi_i)$, with $\delta(\sigma(g))$ as 0.001. Referring to the population size, i.e., λ in Algorithm 1, we set its value in accordance with Hansen & Kern, i.e., $\lambda = 4 + \ln Z_d$, where $Z_d = 2 * d_z$ is the dimension for optimization variable.

For the sake of the truth completion (q_{im} in Table 1), we implement a simple measure which demonstrates the ranks between the preference pair explicitly. The template we employ is:

The response of "s1" is better than that of "s2" to resolve the query. $[Z_s]z[Z_e]$.

where the suffix pattern, referring to Equation 5, is to summarize the truth expression in a latent manner.

Evaluation datasets: The **BPO-test** dataset is sub-sampled from the construed data of BPO baseline. **Dolly Eval** is a subset of the Dolly dataset Conover et al. (2023). **Vicuna Eval** is collected

378 by the Vicuna Team Chiang et al. (2023) amongst eight categories for LLM quality evaluation.
 379 **Self-instruct** is introduced by Wang et al., under several manually-written novel tasks for instruction-
 380 following finetuning.
 381

382 **Baselines for comparison:** **BoN** (Best-of-N sampling Stiennon et al. (2020); Sessa et al. (2024))
 383 which selects the highest-score generation amongst N ($= 120$ for the experiment) candidates
 384 according to the reward model; **SR** (Speculative Rejection Sun et al. (2024)) that dynamically
 385 decreases the candidates number for sampling efficiency. **DPO** Rafailov et al. (2023) transfers the RL
 386 process into a contrastive learning manner. **BPO** Cheng et al. (2024) modifies the input by employing
 387 a Seq2Seq model for better alignment. **ORG** demonstrates the comparison results with a direct
 388 generation by the original language model.
 389

390 4.1 MAIN RESULTS

391 We conduct the **win-rate** assessment on three generation models, that is, **Llama-8B** (Meta-Llama-3-
 392 8B-Instruct Grattafiori et al. (2024)), **Mistral-7B** (Mistral-7B-Instruct-v0.3 Nadhavajhala & Tong
 393 (2024)) and **Qwen-14B** (Qwen2.5-14B-Instruct Yang & et al. (2025)), with the generation quality
 394 being evaluated by **Qwen-72B**. Specifically, we supply the evaluator with three distinct options for
 395 comparative assessment: A) the former is superior to the latter, B) the latter surpasses the former,
 396 and C) both are on par, rendering them indistinguishable. These options are designed to facilitate a
 397 nuanced and precise evaluation of a pair of generated outcomes, ensuring a rigorous and objective
 398 comparison. As for the refiner, we engineer it with a couple of models of relatively small size, i.e.,
 399 Llama-3.2-1b-instruct and Llama-3.2-3b-instruct.
 400

401 As is displayed in Table 2, with devised refiner framework, the final generation demonstrates
 402 superiority over that of the correspondingly original model, which varies among model architecture
 403 and size. Concretely speaking, the transition from original model to the proposed method, refiner
 404 size being 3b, yields an average improvement of 11.58% in win-rate (*win* – *loss*) across four
 405 distinct datasets, with Llama-8B serving as the generation cornerstone. The observed performance
 406 enhancements for Mistral-7B and Qwen-14B are at 17.85% and 18.18%, respectively. Our method
 407 still dominates for the 1b refiner that the concomitantly results are 5.65% / 17.2% / 22.93%.
 408

Gen Model	BPO-test			Dolly			Vicuna			Self-instruct			↗
	win	loss	tie	win	loss	tie	win	loss	tie	win	loss	tie	
Llama-8B	53.5	45.0	1.5	48.0	49.6	2.4	51.5	45.5	3.0	51.2	48.8	0.0	3.83
Mistral-7B	53.0	44.5	2.5	48.6	49.6	1.8	49.0	49.0	2.0	51.9	48.1	0.0	2.83
Qwen-14B	51.5	47.5	1.0	52.7	45.7	1.6	55.0	42.5	2.5	53.0	45.0	2.0	7.87

414 Table 3: The comparison score(%) for “W/.(CMA-ES) - W/O.(CMA-ES)” pair. Llama-3.2-3b-instruct
 415 is the input refiner.

430 Figure 3: Evaluation on the “W/.(q_im) - W/O.(q_im)” pair, where the refiner is constructed by Llama-
 431 3.2-3b-instruct.

432 In comparison with BPO, our model also shows
 433 showcases superior performance and enhanced capabilities. Delving into the specifics, it attains
 434 12.43% augmentation in the win-rate metric,
 435 leveraging 3b size for refiner and Llama-8B
 436 for generation. Referring to refiner of 1b, our
 437 model spearheads an advancement to score of
 438 20.05%, elucidating that its preeminence over
 439 BPO is markedly amplified when deployed with
 440 a small size refiner. An exact phenomenon is
 441 observed across the other two models as well
 442 (15.33% \rightarrow 22.43% for Mistral with refiner
 443 from 1b to 3b, 19.38% \rightarrow 31.63% for Qwen).
 444 This substantiates the premise that **a further optimization of the refiner via interaction with**
 445 **the generation process can indeed enhance its adaptability to the generation dynamics.** It is
 446 manifest for refiner of deficient capability. We also employ *gpt-4-turbo-128k* as the evaluator, to
 447 judge the results between the propose method and BPO, with Qwen-14B as the answer generator.
 448 Referring to Figure 4, our method surpasses BPO by average of 7.2% under the GPT-4 evaluation,
 449 with Qwen-14B severing for generation, which also substantiates the preeminence of our model.
 450

451 When contrasted with SR ad DPO, our method consistently evinces a pronounced superiority, where
 452 the improved values are 38.47% and 22.79% averagely among generation architecture and refiner
 453 size. It demonstrates comparable efficacy to BoN, e.g., +2.53% for Llama-8B with 1b refiner, and
 454 +1.88% for Mistral-7B, nevertheless, BoN necessitates multiple generations at the inference time,
 455 each of which is subsequently evaluated and scored to ascertain the optimal output by a reward model.
 456 Consequently, this process incurs a substantial expenditure of computational resources, rendering the
 457 inference markedly resource-intensive.

458 It is evident that the training and test data follow different distributions. Methods like DPO require
 459 fine-tuning the parameters of the generation LLM, whereas both BPO and our approach only train
 460 the input refinement model. Consequently, our methods preserve the original LLM’s capabilities and
 461 can intuitively achieve stronger performance on out-of-distribution data. This explains the superior
 462 results of our method compared to DPO in Table 2.

463 4.2 ABLATION STUDY

464 **Evaluation on CMA-ES optimization:** We fine-tune the basic model with the latent variable
 465 and posterior regularization, and eliminate the CMA-ES module for comparison. Table 3 elucidate
 466 impact of this part that being comparison with the complete model, the evaluator prefer to rank
 467 worse for this setting. Specifically, the win-rate descents by average 3.83% without the module, with
 468 Llama-8B in the generation process. The corresponding results are 2.83% and 7.87% for Mistral-7B
 469 and Qwen-14B, separately.

470 **Evaluation on Posterior Regularization:** For this setting, we ignore the information from the
 471 preference pair, i.e., q_{im} , and assign 0 to ω in Equation 12. As is demonstrated in Figure 3, the
 472 complete model exhibits a superior win-rate, surpassing that of q_{im} free model by 7.9% for Llama-
 473 8B generator. The metrics are 5.8% and 5.1% for other two models. This empirical evidence
 474 unequivocally validates the instrumental role of q_{im} in augmenting the performance of the refinement.

475 5 CONCLUSIONS

476 In the realm of LLM alignment, we innovatively harness Bayesian method to introduce the **input**
 477 **refiner** which functions for query refinement and adaptation to the answer generator. Our refiner
 478 model is architected upon a latent variable, meticulously encapsulating the heterogeneity inherent of
 479 “input - refinement” pairs and assimilating insights from preference pairs. Moreover, we integrate
 480 the **CMA-ES** method to establish a connection between refiner and the generation process, ensuring
 481 that the refinement exhibit a heightened congruence with expectations. We conduct experiments on
 482 generation models of distinct architecture and size, evincing efficacy of the proposed method.

Figure 4: Evaluation on the “Ours-BPO” pair with GPT-4.

486 REFERENCES
487

488 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
489 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
490 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
491 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
492 Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
493 Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.
494 URL <https://arxiv.org/abs/2204.05862>.
495

495 Adam Bouyamoun. Why LLMs hallucinate, and how to get (evidential) closure: Percep-
496 tual, intensional, and extensional learning for faithful natural language generation. In Houda
497 Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empir-
498 ical Methods in Natural Language Processing*, pp. 3181–3193, Singapore, December 2023.
499 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.192. URL
500 <https://aclanthology.org/2023.emnlp-main.192/>.
501

501 Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, and Minlie
502 Huang. Black-box prompt optimization: Aligning large language models without model training.
503 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual
504 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3201–
505 3219, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
506 v1/2024.acl-long.176. URL <https://aclanthology.org/2024.acl-long.176/>.
507

507 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
508 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
509 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.
510

511 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
512 Deep reinforcement learning from human preferences. In *Proceedings of the 31st International
513 Conference on Neural Information Processing Systems*, NIPS’17, pp. 4302–4310, Red Hook, NY,
514 USA, 2017. Curran Associates Inc. ISBN 9781510860964.
515

516 Claude.ai. The technical marvel behind claude 3.5 sonnet, 2024. URL <https://claude3.pro/the-technical-marvel-behind-claude-3-5-sonnet/>.
517

518 Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
519 Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
520 instruction-tuned llm, 2023. URL <https://www.databricks.com/blog/2023/04/12/dolly-first-commercially-viable-instruction-tuned-llm>.
521

523 DeepSeek-AI, Daya Guo, Dejian Yang, and Haowei Zhang et al. Deepseek-r1: Incentivizing reasoning
524 capability in llms via reinforcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.
525

526 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model
527 alignment as prospect theoretic optimization. In *Forty-first International Conference on Machine
528 Learning*, 2024. URL <https://openreview.net/forum?id=iUwHnoENn1>.
529

530 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and et al. The llama 3 herd of models, 2024.
531 URL <https://arxiv.org/abs/2407.21783>.
532

533 Nikolaus Hansen and Stefan Kern. Evaluating the cma evolution strategy on multimodal test functions.
534 In Xin Yao, Edmund K. Burke, José A. Lozano, Jim Smith, Juan Julián Merelo-Guervós, John A.
535 Bullinaria, Jonathan E. Rowe, Peter Tiňo, Ata Kabán, and Hans-Paul Schwefel (eds.), *Parallel
536 Problem Solving from Nature - PPSN VIII*, pp. 282–291, Berlin, Heidelberg, 2004. Springer Berlin
537 Heidelberg. ISBN 978-3-540-30217-9.
538

538 Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time complexity of
539 the derandomized evolution strategy with covariance matrix adaptation (cma-es). *Evolutionary
Computation*, 11(1):1–18, 2003. doi: 10.1162/106365603321828970.

540 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 541 Tian. Training large language models to reason in a continuous latent space, 2024. URL <https://arxiv.org/abs/2412.06769>.

543 Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew E. Peters, Pradeep
 544 Dasigi, Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels in
 545 a changing climate: Enhancing LM adaptation with tulu 2. *CoRR*, abs/2311.10702, 2023. doi: 10.
 546 48550/ARXIV.2311.10702. URL <https://doi.org/10.48550/arXiv.2311.10702>.

548 Katarzyna Kobalczyk, Claudio Fanconi, Hao Sun, and Mihaela van der Schaar. Few-shot steerable
 549 alignment: Adapting rewards and llm policies with neural processes, 2024. URL <https://arxiv.org/abs/2412.13998>.

551 Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
 552 Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
 553 David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
 554 Alexander Mattick. Openassistant conversations - democratizing large language model alignment.
 555 In *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 556 NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.

558 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 559 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 560 serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems
 561 Principles*, SOSP '23, pp. 611–626, New York, NY, USA, 2023. Association for Computing
 562 Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL <https://doi.org/10.1145/3600006.3613165>.

564 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
 565 prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
 566 tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
 567 guage Processing*, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
 568 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
 569 <https://aclanthology.org/2021.emnlp-main.243>.

570 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 571 free reward. *CoRR*, abs/2405.14734, 2024. doi: 10.48550/ARXIV.2405.14734. URL <https://doi.org/10.48550/arXiv.2405.14734>.

573 Sanjay Nadhavajhala and Yingbei Tong. Rubra-mistral-7b-instruct-v0.3, 2024. URL <https://huggingface.co/rubra-ai/Mistral-7B-Instruct-v0.3>.

576 OpenAI, Josh Achiam, Steven Adler, and Sandhini Agarwal et al. Gpt-4 technical report, 2024. URL
 577 <https://arxiv.org/abs/2303.08774>.

579 Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
 580 Smaug: Fixing failure modes of preference optimisation with dpo-positive. *CoRR*, abs/2402.13228,
 581 2024. doi: 10.48550/ARXIV.2402.13228. URL <https://doi.org/10.48550/arXiv.2402.13228>.

583 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
 584 gpt-4, 2023. URL <https://arxiv.org/abs/2304.03277>.

585 Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
 586 optimization with "gradient descent" and beam search. In Houda Bouamor, Juan Pino, and Kalika
 587 Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
 588 Processing*, EMNLP 2023, Singapore, December 6-10, 2023, pp. 7957–7968. Association for
 589 Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.494. URL <https://doi.org/10.18653/v1/2023.emnlp-main.494>.

592 Yun Qu, Yuhang Jiang, Boyuan Wang, Yixiu Mao, Cheems Wang, Chang Liu, and Xiangyang Ji.
 593 Latent reward: Llm-empowered credit assignment in episodic reinforcement learning. *arXiv
 preprint arXiv:2412.11120*, 2024.

594 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 595 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 596 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=HPuSIXJaa9>.
 597

598 Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
 599 Ramé, Bobak Shahriari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk,
 600 Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn, Matt Hoff-
 601 man, Nikola Momchev, and Olivier Bachem. Bond: Aligning llms with best-of-n distillation. *CoRR*,
 602 abs/2407.14622, 2024. URL <https://doi.org/10.48550/arXiv.2407.14622>.
 603

604 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 605 Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In *Proceedings*
 606 *of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red
 607 Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

608

609 Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang,
 610 Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. In *The*
 611 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=348hfcpUs>.
 612

613 Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
 614 for language-model-as-a-service. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
 615 Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Confer-
 616 ence on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp.
 617 20841–20855. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/sun22e.html>.
 618

619 Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D Manning, and Chelsea Finn. Fine-
 620 tuning language models for factuality. In *The Twelfth International Conference on Learning
 621 Representations*, 2024. URL <https://openreview.net/forum?id=WPZ2yPag4K>.
 622

623 Luong Quoc Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft:
 624 Reasoning with reinforced fine-tuning. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
 625 mar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
 626 (Volume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11–16, 2024, pp. 7601–7614.
 627 Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.410. URL
 628 <https://doi.org/10.18653/v1/2024.acl-long.410>.
 629

630 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 631 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
 632 Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual
 633 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13484–
 634 13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/
 635 2023.acl-long.754. URL <https://aclanthology.org/2023.acl-long.754>.
 636

636 Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Connecting the dots: Collaborative
 637 fine-tuning for black-box vision-language models. In *Forty-first International Conference on
 638 Machine Learning*, 2024. URL <https://openreview.net/forum?id=jZEY5SxbL4>.
 639

640 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 641 large language models, 2024. URL <https://arxiv.org/abs/2401.11817>.
 642

643 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
 644 Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning
 645 Representations, ICLR 2024, Vienna, Austria, May 7–11, 2024*. OpenReview.net, 2024. URL
 646 <https://openreview.net/forum?id=Bb4VGOWELI>.
 647

647 Qwen: An Yang and et al. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.

648 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
649 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
650 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on*
651 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGDlao>.
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
A ESSENTIAL NOTATIONS

705 706 707 708 709 710 711 712 713 714 715 716 Variable	705 706 707 708 709 710 711 712 713 714 715 716 Description	705 706 707 708 709 710 711 712 713 714 715 716 Type
x	original input	text
z	latent variable	vector
$[Z_s], [Z_e]$	position markers for z	token
e_0^b, e_1^b	initial embeddings for $[Z_s], [Z_e]$	vector
x'	refined input, derived from the latent variable z .	text
x^*	pseudo label for x' , derived from CMA-ES.	text
ξ	the optimizable variable for CMA-ES	vector
y	final output, preferable response.	text

717
718
719
Table 4: Essential notations of the proposed method.720
721
B TRAINING SETTINGS722
723
All experiments are designed and executed utilizing NVIDIA A800-SXM4-80GB GPUs, with
comprehensive training specifications delineated in Table 5.

725 726 727 728 729 730 731 732 733 734 735 N	725 726 727 728 729 730 731 732 733 734 735 Description	725 726 727 728 729 730 731 732 733 734 735 Refiner	725 726 727 728 729 730 731 732 733 734 735 CMA-ES
n_g	maximum generation response length	64	128
d_z	dimension of CMA-ES latent variable, i.e., z	—	16
lr	learning rate	1e-5	2e-6
S	training epochs or optimization steps	3	30
c_{kl}	KL loss coefficient	0.02	—
bs	training batchsize	8	—

736
737
738
Table 5: Training Details for our experimental setting.739
740
C EVALUATION PROMPT741
742
1: Evaluation-Aware Prompt743
744
Please act as an impartial judge and evaluate the quality of the responses provided by two AI
assistants to the user question displayed below.745
746
747
748
You should choose the assistant that follows the user's instructions and answers the user's
question better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses.749
750
751
752
Begin your evaluation by comparing the two responses and provide a short explanation. Avoid
any position biases and ensure that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as objective as possible.753
754
755
After providing your explanation, output your final verdict by strictly following this format:
[[A]]if assistant A is better, [[B]]if assistant B is better, and [[C]]for a tie."

756

757

758

“prompt template”:

759 “[User Question]{question}[The Start of Assistant A’s Answer]{answer a}[The End of Assis-
760 tant A’s Answer][The Start of Assistant B’s Answer]{answer b}[The End of Assistant B’s
761 Answer]”,

762 “description”: “Prompt for general questions”,

763 “category”: “general”,

764 “output format”: “[A]”

765

766

D LIMITATIONS

767

768 In this paper, we propose a joint strategy that establishes a connection between **input refiner** and
769 the answer generation process via **CMA-ES** algorithm. With it, initial refinement results will get
770 optimized and adapted to the generation dynamics, hence derive a better aligned expression.

771

772 The method still harbors minor imperfections that necessitate improvement. For instance, the CMA-
773 ES algorithm exhibits a dependency on initial values (despite the incorporation of certain robustness
774 measures within the algorithm, i.e., the gradient project and initial step size in Equations 13 and 14).
775 Additionally, the data sampled (\mathcal{D}_{es}) for the CMA-ES process can also influence the efficacy of the
776 optimization. These issues warrant further exploration and investigation.

777

778

E LLM USAGE CLARIFICATION

779

780 The application of LLMs in this paper is limited exclusively to polishing the text, particularly in
781 refining specific vocabulary and phrases.

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809