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ABSTRACT 
Sign language recognition and translation technologies have the po-
tential to increase access and inclusion of deaf signing communities, 
but research progress is bottlenecked by a lack of representative 
data. We introduce a new resource for American Sign Language 
(ASL) modeling, the Sem-Lex Benchmark. The Benchmark is the 
current largest of its kind, consisting of over 84k videos of isolated 
sign productions from deaf ASL signers who gave informed consent 
and received compensation. Human experts aligned these videos 
with other sign language resources including ASL-LEX, SignBank, 
and ASL Citizen, enabling useful expansions for sign and phonolog-
ical feature recognition. We present a suite of experiments which 
make use of the linguistic information in ASL-LEX, evaluating the 
practicality and fairness of the Sem-Lex Benchmark for isolated 
sign recognition (ISR). We use an SL-GCN model to show that 
the phonological features are recognizable with 85% accuracy, and 
that they are efective as an auxiliary target to ISR. Learning to 
recognize phonological features alongside gloss results in a 6% im-

provement for few-shot ISR accuracy and a 2% improvement for 
ISR accuracy overall. Instructions for downloading the data can be 
found at https://github.com/leekezar/SemLex. 
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1 INTRODUCTION 
Word recognition is the foundation of many automatic speech-
based technologies, like voice assistants, language learning apps, 
and translators. While immensely practical in day-to-day use, these 
technologies exclude signed languages and are inaccessible to deaf 
people

1 
who primarily use sign language to communicate. There 

has been an increasing enthusiasm among experts in many felds, 
including human-computer interaction, computer vision, natural 
language processing, and computer graphics in developing technol-
ogy for automatically understanding, processing, translating, and 
generating sign languages [4, 40]. 

However, such work has had variable levels of utility and success. 
One barrier to progress is a lack of adequate sign language data. 
While an array of tasks, models, and learning procedures have 
been developed to focus on signed languages [40], less attention 
has been given to building large-scale, systematically-annotated, 
and ethically-sourced datasets to fully realize the potential of these 
methods [3]. Another barrier to progress is the lack of linguistically-
informed approaches to sign recognition. Most prior work has 
treated sign recognition as a vision problem rather than a language 
problem, meaning these works have little-to-no acknowledgement 
of structural linguistic complexities of signs. For example, recent 
evidence has shown that models which treat signs as a collection 
of linguistic components (rather than holistic gestures) are up to 
6% more accurate at isolated sign recognition accuracy [21]. In 
this paper, we introduce new data for the purpose of overcoming 
these barriers, replicating the fnding that phonology improves 
sign recognition, and investigating other benefts, namely, few-shot 
generalizability and sensitivity to race and gender. 

1
There have been various conventions for referring to deaf communities, but there is 
not broad consensus on a preferred term [30]. We use ’deaf’ rather than other terms 
that are widely viewed as ofensive (e.g., ’hearing impaired’). We use the lower case 
’deaf’ here—as opposed to the capitalized ’Deaf’—to be inclusive of people with varying 
auditory access and with varying identities with respect to Deaf culture. 

https://github.com/leekezar/SemLex
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3597638.3608408
https://doi.org/10.1145/3597638.3608408
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597638.3608408&domain=pdf&date_stamp=2023-10-22
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Although datasets of isolated signs have many potential uses, 
we position this benchmark as uniquely helpful for isolated sign 
recognition (ISR2). The benchmark contains over 84k videos of iso-
lated sign productions from deaf ASL signers who gave informed 
consent and received compensation. The signs were reviewed and 
annotated by human experts using a novel labelling system that en-
ables rapid, reliable labelling of sign language data. The annotations 
are cross-referenced with reference signs from the ASL-LEX data-
base [6, 34], as well as SignBank [17], and ASL Citizen [9]. Second, 
we conduct a suite of experiments related to sign and phonological 
feature recognition. These experiments show that incorporating 
linguistic information about the composition of signs, namely the 
phonological features extracted from ASL-LEX, enables accurate 
phonological feature recognition and more accurate ISR. We also 
conduct a quantitative analysis of model sensitivity to signer appear-
ance and demographics and explore the models’ ability to recognize 
signs that had few instances in training. 

2 BACKGROUND AND RELATED WORK 
Deaf communities have worked hard for the recognition of sign 
languages as legitimate languages, as opposed to simplistic gestural 
systems or manual ways of expressing spoken language. There are 
ongoing campaigns in many countries around the world for legal 
recognition of national sign languages [8]. According to the World 
Federation of the Deaf (WFD), the lack of recognition, acceptance, 
and use of sign language represents the major barrier that prevents 
deaf people from accessing basic human rights, especially in de-
veloping countries [29]. The Linguistic Society of America passed 
a resolution [28] acknowledging that sign languages are, in fact, 
languages with all the linguistic structure inherent to any language 
(syntax, morphology, phonology, prosody, etc.). Systemic recogni-
tion of languages is important because access to sign language can 
be precarious. Deaf children are often denied the opportunity to 
acquire a signed language putting them at risk of language depriva-
tion during the critical window of childhood development [11, 13]. 
Without recognition of sign languages and robust systems for sign 
language interpreting services, deaf people are often denied full 
access to basic aspects of life such as employment, education, or 
healthcare [2, 39]. 

Along these lines, deaf communities have raised concerns about 
lack of recognition of sign languages as real languages in the de-
velopment of sign language technology. For example, in a paper in 
Nature Electronics, Hill laments a “lack of an appropriate linguistic 
framework” and the “lack of interdisciplinary collaboration” [15]. 
These calls highlight the need for technologists to honor sign lan-
guages as equally structured, complex, and organically-evolving 
as spoken languages. For our part, the Sem-Lex Benchmark is the 
result of collaboration among computer scientists and linguists, 
and directly relies on contemporary ideas in ASL phonology and 
machine learning. 

2
The term isolated sign language recognition or ISLR is also common. We prefer ISR to 
more clearly disambiguate the task from sign language identifcation, where a model 
must recognize which signed language is found in a video. 

2.1 Insights From Research On Sign Language 
Phonology 

Spoken words are composed of discrete, recombinable sound units, 
such as vowels or consonants (phonemes), and there is a general 
consensus that signs are made up of a fnite number of analogous 
phonological parameters. Early work on sign languages identifed 
the central parameters as handshape, movement, place of articu-
lation (location) and non-manual markers [36]. More recent work 
goes beyond these basic parameters, noting that the parameters can 
be further described in terms of phonological features3 

that have 
complex dependencies (e.g., handshape may be further specifed in 
terms of selected fngers that vary in fexion and spread) [5, 31, 38]. 
Some of these features change during the sign (e.g., the fexion or 
spread of the fngers) and some do not (e.g., the major location of the 
hand, the selected fngers). The study of sign language phonology is 
crucial for our understanding of how people learn, recognize, and 
produce signs. Additionally, we fnd it can contribute to automatic 
sign recognition. 

2.2 Labelling and Annotating Signs 
In the absence of a standard writing system for signed languages, 
the question of how to best represent signing is surrounded with 
much debate [10, 16, 19, 26, 32]. For the purposes of ISR, a useful 
labelling system should be both efcient to apply and reliably lem-

matizes signs, that is, the system should produce the same label for 
diferent instances of the same sign, and diferent labels for signs 
that are distinct. 

While most researchers have used English-like glosses, some 
signs have multiple possible English translations (one-to-many), 
some English words have many possible ASL translations (many-

to-one), and some signs have no equivalent English translations. 
Meanwhile, eforts to replace or augment English glosses with 
phonological information, like SignStream [27] and HamNoSys 
[12] rely on idiosyncratic labelling systems which require some 
amount of training to apply consistently and may result in diferent 
productions of the same sign to receive diferent labels. 

Taking these considerations into account, we chose to label the 
videos in Sem-Lex from a large collection of reference signs. This 
feature minimizes both English interference and the amount of 
linguistic knowledge needed for labelling. 

2.3 Existing Datasets 
There are a handful of existing datasets of isolated signs in ASL that 
have been used in ISR (see Table 2). Some of these datasets were 
‘curated’, meaning they were collected from participants who were 
recruited to contribute data in a specifc fashion, e.g., by modeling 
signs based on a dictionary. Some datasets were scraped from the 
internet in ways that are legally and ethically questionable, often 
without attribution to the video creators and without informed 
consent of the people in the videos [20, 22]. Further, some datasets 
include signers with unknown backgrounds—people who may or 

3
We refer to the component parts of signs as ‘phonological features’ rather than 
‘phonemes’. Spoken phonemes are sequenced, discrete bundles of phonological features 
like voicing, place of articulation, and manner. For many signs, there is one and only 
one of each phonological feature (e.g., signs must have a major location, and cannot 
have more than one major location), and the timing and sequence of features is not 
segmental as it is in speech. 
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Phonological Feature Description #Values Top Value 

Major Location The broad location where the sign is produced. 5 /neutral/ 
Minor Location The specifc location where the sign is produced. 37 /neutral/ 
Second Minor Location The specifc location after the frst minor location. 37 /n/a/ 
Contact Whether the dominant hand touches the body. 2 /true/ 
Thumb Contact Whether the dominant thumb touches the selected fngers. 3 /false/ 
Thumb Position Whether the thumb is on the palm or extended. 2 /open/ 
Nondominant Handshape Confguration of the nondominant hand. 56 /n/a/ 
Handshape Confguration of the dominant hand. 58 /open b/ 
Selected Fingers The fngers that move, or are in marked confgurations. 8 /imrp/ 
Flexion The way the fnger joints are bent. 8 /fully open/ 
Spread Whether the selected fngers touch one another. 3 /n/a/ 
Spread Change Whether Spread changes. 3 /n/a/ 
Repeated Movement Whether the movement is repeated 2+ times. 2 /false/ 
Sign Type Number of hands, and symmetry (if two handed) 6 /one handed/ 
Wrist Twist Whether the hand rotates about the wrist. 2 /false/ 
Path Movement The shape that the hand traces. 8 /straight/ 

Table 1: Overview of each phonological feature types found in ASL-LEX, including the number of possible values and the most 
frequent value for each type. n/a appears in some Boolean phonological feature types, resulting in three possible values instead 
of two. imrp refers to index, middle, ring, and pinky. Detailed descriptions of each feature in ASL-LEX can be found in [34]. 

may not have lived experience of deafness and may have learned 
sign language as adults [20, 22]. Like all languages, people who 
learned sign language later in life, perhaps as a second or additional 
language, have highly variable levels of profciency and articulate 
signs diferently compared to those who acquired sign language in 
childhood and use it as a primary language of communication [24]. 
This diference leads to heterogeneity and inconsistencies in how 
signs are articulated [14]. Generally, training data should match the 
anticipated end user. In most cases, the imagined end users of sign 
language technology are deaf signers. Training data that consist of a 
broad diversity of signers, including novice signers, may be suitable 
for some applications and end users. However, it is not clear that 
models developed on novice signers will generalize to deaf signers. 
Thus, we present the Sem-Lex Benchmark to solve many of the 
issues associated with existing datasets–a curated, larger than the 
state-of-the-art benchmark of isolated ASL signs produced by deaf 
fuent signers who provided informed consent and compensated 
for their efort. 

3 SEM-LEX BENCHMARK 
The Sem-Lex Benchmark contributes 84,568 isolated sign videos, 
divided into train/validation/test splits and lemmatized (� = 65, 935) 
or described with free text (� = 18, 393). Lemmatized signs were 
aligned with either ASL-LEX (� = 60, 203) or SignBank (� = 5, 732) 
(see Figure 1). The test set is entirely comprised of participants who 
are not frequently represented in sign language training data, in 
order to help quantify model bias with regard to race and gender. 
We select 10 participants among the 41 contributors whose videos 
make up approximately 20% of the entire dataset such that the 
ratio of non-white and women signers is substantially higher than 
average. We then place all of these participants’ productions in the 
test set, to ensure that they are unseen during both training and 
validation. 

The distribution of samples contributed by each participant is in 
Figure 2. The median number of samples per sign was 10 (IQR 4-26). 
A total of 3,149 unique signs were represented in the lemmatized 
data. Of these, 945 signs had fewer than fve samples. To put these 
numbers in some perspective, the current most popular benchmark 
for ISR is Word-Level American Sign Language (WLASL, [23]), 
containing 21,083 videos representing 2,000 signs for an average of 
10.5 video examples per sign. 

Phonological Feature Annotations. Although all videos have 
a split, in this work we only use the videos which have been aligned 
with ASL-LEX in order to maintain consistency among the target 
gloss labels and complete coverage of phonological feature anno-
tations. Future work might consider including the non-ASL-LEX 
videos. 

Sufcient Examples. Signs with fewer than 5 instances are 
not given a split (but may be included in future work on few-shot 
generalizability). 

3.1 Data Collection 
The dataset consists of ASL signs elicited using a free semantic asso-
ciations paradigm as part of another study aimed at understanding 
the lexical-semantic properties of the ASL lexicon [33]. For this 
study, we developed an interface for rapid data collection and an-
notation of signs called SignLab 4. Participants contributed data 
remotely from their own computers. We asked that they ensure no 
other people were visible on camera, but otherwise did not control 
the flming conditions. SignLab frst presented participants with a 
video of a cue sign from ASL-LEX (e.g., CAT) and prompted them 
to produce the frst three meaning-related signs that came to mind 
(e.g., DOG, MOUSE, MILK). Participants contributed the frst three 
signs that came to mind by 1) pressing the space bar to turn on 

4
SignLab is a work in progress, and will be forthcoming. 
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Dataset Number of Signs Number of Videos Source Participants Informed Consent 

Purdue RVL-SLLL [25] 39 546 Curated Deaf Yes 
Boston ASLLVD [1] 2,742 9,794 Curated Deaf Yes 
RWTH-BOSTON-50 [41] 50 483 Curated Deaf Yes 
MS-ASL [20] 1,000 25,513 Scraped Unknown No 
WL-ASL [22] 2,000 21,083 Scraped Unknown No 
ASL Citizen [9] 2,731 83,912 Curated Deaf Yes 
Sem-Lex Benchmark 3,149 84,568* Curated Deaf Yes 

Table 2: Existing datasets of isolated signs in ASL. *Includes unlabeled videos. 65,935 are labeled with a gloss. 

Figure 1: The Sem-Lex Benchmark data is divided into 3:1:1 train/validation/test, where each subset is in turn a mix of lemmatized 
(i.e. has been matched to an entry in a lexical database) or “unlabeled” (i.e. free-text description). In our experiments, we only 
use the lemmatized items from ASL-LEX 2.0. 

their webcam, 2) producing a sign, 3) pressing the space bar to turn 
of their camera and then repeating the process up to three times. 
Participants could delete any of these responses with one button 
press (e.g., if there was an error), but could not re-record them. This 
process enabled us to rapidly collect and segment videos so each 
video contained just one sign. Because the protocol allowed partici-
pants to freely produce a sign that came to mind, it also ensured 
that participants knew and used each sign (i.e., rather than copying 
a sign they may or may not be familiar with). 

Forty-one deaf ASL signers contributed data (see Table 3). Partic-
ipants were paid $15 for the initial training, $20 per 100 trials (i.e., 
100 cue signs), and a completion bonus of $100 for every 1,000 trials 
they completed. All participants gave informed consent to sharing 
their video data in a public online repository. Consent forms were 
provided online in both written English and as ASL videos. Data 
from three participants were removed from the dataset prior to anal-
ysis because an early review of their responses indicated that they 
did not understand the task as intended (e.g., repeating the prompt 
sign, producing multi-sign responses, producing unrecognizable 
signs). 

3.2 Labelling 
We developed a novel method for labeling videos of signs which 
resolves some of the limitations of current methods using English 
glosses or phonological transcriptions as labels: we use videos of 
ASL signs as labels for ASL signs. The SignLab system presents 
the labeler with a video of a to-be-labeled sign and allows them to 
simultaneously search two lexical databases of ASL sign labels by 
typing in possible English translations (ASL-LEX and SignBank). 
The lexical databases were annotated to identify a variety of possible 
English translations for each sign, and all videos that had English 
translations that matched the typed input appeared in the search 
results. The labeler could visually scan the video thumbnails in the 
search results and play the videos by hovering their mouse over 
the thumbnail. They could click to select an entry from the lexical 
databases that matched the production. If both lexical databases 
contain the item, only the ASL-LEX label was presented to the 
labeler. If the sign did not appear in either lexical database, the 
labeler could type in a free text description of the sign. 

With respect to lemmatizing, labelers were given the following 
instructions: 



The Sem-Lex Benchmark: Modeling ASL Signs and Their Phonemes 

Overall 

(N=41) 

Age 
Mean (SD) 31.9 (11.6) 
Median [Min, Max] 27.0 [21.0, 65.0] 
Missing 2 (4.9%) 

Age of First ASL Exposure 
Mean (SD) 2.00 (3.88) 
Median [Min, Max] 0 [0, 14.0] 
Missing 4 (9.8%) 

Sex 
Female 27 (65.9%) 
Male 12 (29.3%) 
Non Binary 1 (2.4%) 
Missing 1 (2.4%) 

Ethnicity 
Not Hispanic or Latina/o/x 34 (82.9%) 
Hispanic or Latina/o/x 3 (7.3%) 
I prefer not to answer 3 (7.3%) 
Missing 1 (2.4%) 

Race 
African American/Black 3 (7.3%) 
Asian 3 (7.3%) 
White 27 (65.9%) 
More than one 3 (7.3%) 
I prefer not to answer 3 (7.3%) 
Missing 2 (4.9%) 

Table 3: Participant demographics. All signers were exposed 
to ASL early in childhood. The dataset is not representative 
in racial, ethnic, and gender makeup. 

• If the sign and label mean the same thing, but look a little 
diferent (e.g., DUCK with two fngers versus four fngers): 
the sign and label match. 

• If the sign and label mean the same thing, but look very 
diferent (e.g., CHILD and KID): the sign and label do not 
match. 

• Sign and labels that difer in more than one parameter (hand-
shape, movement, or location) are probably not a match. 

• If the sign and label mean something diferent, but look very 
similar (e.g., PEACH and EXPERIENCE): the sign and label 
do not match. 

While labelers searched ASL-LEX by English translations, they 
were encouraged to ignore English when considering whether a 
sign was a match (e.g., “Do not worry if the English translation is 
not the one you would prefer to use. For example, if the ASL-LEX 
translation reads ‘father’ and you prefer the English translation 
‘dad,’ just focus on whether the signs match). In some videos, par-
ticipants mouthed English words while signing. Labelers could use 
English mouthing to the extent that it was helpful, and were free to 
match signs that difered in mouthing (e.g., a sign with the mouthing 
‘dinner’ could be a match to a reference video with the mouthing 
‘supper’). If the labeler was unable to confdently label the sign, 
they marked it as uncertain, and these videos were excluded from 
the dataset (n = 2,288). 
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Before beginning to tag signs, labelers attended a training ses-
sion with a member of the research team. They then independently 
tagged 100 training signs5 

which were checked for inter-rater re-
liability with a set of correct answers developed by the research 
team. The team also examined responses for patterns of errors that 
refected a misunderstanding of one or more of the training guide-
lines. If the inter-rater reliability (Cohen’s Kappa) was lower than 
.7, or if systematic errors emerged when reviewing the training 
signs, we held another training meeting to review the responses and 
clarify the training guidelines before they proceeded. All labellers 
passed the .7 threshold after the second round of training signs. 

By labelling using lexical databases, the Sem-Lex Benchmark 
is cross-compatible with available linguistic resources for ASL, 
namely ASL-LEX [6, 34], ASL Citizen [9], and the ASL SignBank 
[17]. ASL-LEX contains detailed, manually annotated phonolog-
ical descriptions of each of the 2,723 signs. These phonological 
transcriptions can be merged with the larger dataset as a “broad 
transcription,” making it possible to use phonological information 
in modeling without requiring manual annotation of the full dataset. 
ASL SignBank has been used to label corpora of continuous signing 
[7], which may also be leveraged in concert with the dataset we 
present here. 

4 MODELING SIGNS AND THEIR PHONEMES 
To provide empirical evidence that the Sem-Lex Benchmark data is 
both high-quality and practical, we conduct a suite of experiments 
related to sign and phoneme recognition. The experiments are 
selected to answer a diverse array of research questions pertaining 
to sign and phoneme recognition: 

4.2 Isolated sign recognition: How accurate will a model be 
at recognizing isolated signs? 

4.3 Phonological Feature Recognition: How well will a model 
trained to recognize only the phonological features perform? 

4.4 Phonological Feature+Isolated Sign Recognition: How 
will a model beneft from learning signs in tandem with their 
phonological features? 

4.5 Generalizability to Unseen & Diverse Signers: How sen-
sitive is the model to spurious correlations among signers in 
the train set? 

4.6 Few-Shot Generalizability for ISR: How well do models 
trained for Phonological Feature Recognition + ISR perform 
at recognizing signs with few training instances? 

To answer these questions, we compare quantitative measures of 
performance (accuracy@k, mean reciprocal rank) across SL-GCN 
models (described below) learned on either WL-ASL or Sem-Lex 
training data for ISR and/or phonological feature recognition. 

4.1 The Sign Language Graph Convolution 
Network 

The SL-GCN model [18] is a specialized model for tasks involving 
sign language understanding. It is an encoder-decoder model which 
takes a human pose estimation format of the input video and can 

5
These signs were randomly drawn from the dataset at the outset of labelling, and are 
not the same as the training fold of SemLex. 

https://asl-lex.org/visualization/?sign=duck
https://vimeo.com/378822204/9feba6bb0b
https://asl-lex.org/visualization/?sign=kid
https://asl-lex.org/visualization/?sign=peach
https://asl-lex.org/visualization/?sign=experience
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Figure 2: The distribution of samples per sign and per participant. The red line in the left panel represents 5 samples. 

be learned for one classifcation problem. The SL-GCN encoder con-
sists of ten repeated blocks, each of which contains (a) a decoupled 
GCN layer that encodes each keypoint in concert with its neigh-
bors, (b) spatial and temporal attention over those keypoints, and 
(c) a temporal convolution layer. The SL-GCN decoder consists of 
one fully-connected layer from the encoding to the desired output 
logits. 

We modify the decoder to allow for a variable number of classif-
cation heads by copying the encoding and providing it to multiple 
fully connected layers in parallel. Structured this way, the SL-GCN 
model must encode all of the features that are pertinent to the clas-
sifcation tasks at hand in such a way that the decoder can easily 
separate the encoding into logits for each task. 

This model architecture was selected for a variety of reasons. 
First, we use pose estimations over RGB video because it reduces 
not only the number of model parameters necessary to efectively 
process the input, but also the chance of biases due to spurious cor-
relations between production and gender, race, or age. Second, the 
SL-GCN model contains separate attention mechanisms for space 
and time at each layer, improving the model’s ability to recognize 
patterns over time (e.g. movement) or space (e.g. sign type). And 
fnally, there is empirical evidence that the SL-GCN model performs 
well on isolated sign recognition [35]. 

4.2 Isolated Sign Recognition 
For the task of ISR, we use one classifcation head of size 2,731 (for 
the Sem-Lex Benchmark data) or 2,000 (for WLASL) coresponding 
to the number of target signs. At the end of each forward pass, a 
cross-entropy loss is computed according to the one-hot encoding of 
the target label, and all model weights are trained while minimizing 

that loss. We then compare the resulting accuracy (the correct 
answer is the top prediction), recall@� (correct answer in the top-
� predictions), and mean reciprocal rank (1/rank of the correct 
answer) averaged across each item in the test set. 

4.3 Phonological Feature Recognition 
For the task of phonological feature recognition, we train 16 classi-
fcation heads ranging from size 2 to 58, one for each phonological 
feature type (see Table 1 for the complete enumeration of types) 
that each take in the SL-GCN encoder representation of the sign 
video. To compare with WLASL, we augment the dataset similarly 
to Tavella et al. [37] such that each video entry also contains esti-
mations of its phonological features. At the end of each forward 
pass, a summed cross-entropy loss is computed according to the 
one-hot encoding of the target label within each type. We then 
compare the resulting accuracy, recall-at-� , and mean reciprocal 
rank on the test set. 

4.4 Phonological Features + Sign Recognition 
Following Kezar et al. [21], we explore the possibility that ISR and 
phonological feature recognition are “symbiotic” tasks, meaning 
that a model which is trained to do both tasks simultaneously will 
be more accurate than one trained for either task alone. We experi-
ment with learning to recognize gloss alongside all 16 phonological 
feature types, as well as gloss alongside a small but informative sub-
set of phonological feature types (handshape and minor location). 
Otherwise, the model architecture is identical to the one described 
in Section 4.3 only with an extra classifcation head for gloss. 
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Task 

Test Set ISR ISR+PFR 

acc1 acc3 mrr acc1 acc3 mrr 

WLASL-2000 26.4% 50.2% .43 38.1% 61.0% .52 
Sem-Lex 66.6% 81.5% .39 68.6% 82.0% .40 

Table 4: Comparison of SL-GCN models trained with WLASL 
vs. Sem-Lex pose data (acc1 = top-1 accuracy, acc3 = 
top-3 accuracy, and mrr = mean reciprocal rank). ISR mod-

els are trained to predict gloss only, ISR+PFR models predict 
both gloss and phonological features. 

4.5 Generalizability to Unseen & Diverse Signers 
To explore the infuence of spurious correlations between produc-
tions and the people who sign them (which is undesirable for most 
applications), we additionally compare the models trained for ISR 
and phonological feature recognition (separately) with regard to 
the validation set (seen and less diverse) vs. the test set (unseen 
and more diverse). To the extent that the test set yields worse per-
formance than the validation set, we may attribute some amount 
of the diference to the model relying on factors pertaining to race 
and/or gender. 

4.6 Few-Shot Generalizability for ISR 
To illustrate the practicality of learning phonology, we explore 
the average model performance with respect to the number of 
training instances per sign. We compare the models described in 
Sections 4.2 and 4.4 to provide empirical support that learning 
phonology enables a model to learn robust representations of signs 
more easily. Among the itemized test results for each of these 
models, we frst group signs by the number of instances found in 
training (in particular, those with 4–10 instances in the training 
set), and then compute the average performance within each group. 

5 RESULTS 

5.1 Isolated Sign Recognition 
When learned to recognize only gloss, the SL-GCN model has a top-
1 accuracy of 67.7%, a top-3 accuracy of 81.5%, and a mean reciprocal 
rank (MRR) of 0.396 (see Table 4). We juxtapose these results to 
WLASL, which has a smaller vocabulary of 2,000 signs, but the SL-
GCN model performs worse, with a top-1 accuracy of 26.4%, a top-3 
accuracy of 45.7%, and an MRR of 0.228. This experiment shows 
that, relative to the WL-ASL benchmark, the Sem-Lex Benchmark 
data is well-labeled and therefore more tractible, but not trivial. 

5.2 Phonological Feature Recognition 
Table 5 shows the top-1 accuracies for phonological feature recogni-
tion (feature types described in Table 1). When learned to recognize 
the 16 phonological feature types presented in the Sem-Lex Bench-
mark, the SL-GCN is 85% accurate on average regardless of how 
it learns them (individually by fne-tuning the entire model or by 
learning them all at once). The most accurate phonological feature 
types were Wrist Twist (92.6% accurate), Thumb Contact (91.7% 
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Learning Method 
Phonological Feature Type 

Fine-Tune Multitask 

Major Location 0.877 0.875 
Minor Location 0.792 0.781 
Second Minor Location 0.787 0.772 
Contact 0.893 0.886 
Thumb Contact 0.917 0.911 
Sign Type 0.889 0.879 
Repeated Movement 0.855 0.854 
Path Movement 0.756 0.754 
Wrist Twist 0.924 0.926 
Selected Fingers 0.911 0.902 
Thumb Position 0.915 0.915 
Flexion 0.812 0.810 
Spread 0.884 0.880 
Spread Change 0.903 0.895 
Nondominant Handshape 0.835 0.817 
Handshape 0.774 0.747 

Average 0.858 0.850 

Table 5: Phoneme feature recognition accuracy (top-1) be-
tween SL-GCN models fne-tuned to predict each type at a 
time or by learning them all at once, as evaluated on Sem-

Lex���� . All models are SL-GCNs pre-trained to predict gloss 
�� and then trained to predict phonological feature types �� 
(� ∈ P) with the Sem-Lex����� dataset. Bold values indicate 
the highest per row. 

accurate), and Thumb Position (91.5% accurate). The least accurate 
types were Path Movement (75.6% accurate), Handshape (77.4% 
accurate), and Second Minor Location (78.7% accurate). 

5.3 Phonological Features + Sign Recognition 
When learned to recognize both gloss and the 16 phonological 
feature types, the SL-GCN model is more accurate at ISR (71.3%) 
than when trained to predict gloss alone (67.7%). This increase 
in performance is consistent with the results presented in Kezar 
et al. [21], which shows that phonology is a useful auxiliary task to 
learning to recognize isolated signs. 

5.4 Few-Shot Generalizability 
Focusing on signs which are “rare” (i.e. had 4 ≤ � ≤ 10 examples 
during training), we observe a Pearson � correlation of 0.73 between 
number of instances and average top-1 accuracy per sign class for 
Sem-Lex Benchmark. This suggests a strong relationship between 
test accuracy and number of signs seen in training. With only 4 
signs in training, the SL-GCN model is able to recognize a sign 
with 62.2% accuracy, and with 10 signs in training, that accuracy 
jumps to 72.3%. This is compared to WL-ASL, where the model 
recognizes 18.4% and 31.3%, respectively, for 4 and 10 training 
samples (see Table 6). Given the realistic, long-tailed distribution of 
signs in Sem-Lex Benchmark (specifcally, 45% signs have less than 
10 instances), these fndings indicate the SL-GCN model trained on 
Sem-Lex Benchmark is both efective at ISR, and in particular at 
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Dataset Task 
val��� 

Evaluation Set 

test��� test�=10 test�=4 

WLASL ISR — 26.4% 31.3% 18.4% 
Sem-Lex ISR 68.2% 66.6% 72.3% 62.2% 
Sem-Lex ISR+PFR 69.8% 68.6% 73.0% 68.2% 

Table 6: Comparison* of ISR accuracy (top-1) for varying eval-
uation sets and learning targets. The validation set (val��� ) 
and test set (test��� ) intentionally difer with respect to signer 
race and gender, in addition to the latter set containing only 
unseen signers. test�=� is only the signs in the test set which 
have exactly � corresponding instances in the training set. * 
Without zero-shot transfer from one test set to the other or 
human performance baselines, this comparison is limited in 
interpretability. 

recognizing signs with more consistent performance regardless of 
their frequency in the vocabulary. 

Additionally, we report how learning gloss alongside phonolog-
ical feature recognition infuences few-shot generalizability. The 
SL-GCN model, when learned to recognize both gloss and phonolog-
ical features, is 68.2% and 73.0%, respectively, for 4 and 10 training 
samples. In general, we observe that learning phonology as an aux-
iliary task not only improves overall gloss recognition accuracy, 
but also lessens the gap between less and more frequent signs. 

5.5 Seen vs. Unseen Signers 
In Table 6, we additionally report the model’s reliance on spurious 
correlations pertaining to individual signer diferences by com-

paring performance on the validation set containing seen signers 
(� = 11, 954) and test set containing unseen signers representing 
more diverse demographics (� = 11, 127). For seen signers, the 
SL-GCN trained to only predict gloss is 68.2% accurate, while for 
unseen signers, the SL-GCN is 66.6%. These fndings illustrate that 
there is a slight reliance on undesirable factors when learning to 
recognize signs. Because we only use pose estimations of the videos, 
we believe the diference in performance is most likely attribut-
able to diferences in articulation, as opposed to visual diferences 
among signers which are only observable with pixel-level informa-

tion, such as skin color (which an RGB model might leverage to 
learn a spurious correlation with race or ethnicity). 

6 DISCUSSION 
We present the Sem-Lex Benchmark for modeling ASL signs and 
their phonemes. Our experiments show that Sem-Lex enables accu-
rate models for recognizing signs and phonemes. We additionally 
show that learning these tasks simultaneously improves accuracy 
across the board, including few-shot and unseen signers. The suc-
cess at few-shot generalization is especially true for the SL-GCN 
learned to predict both gloss and phonological features, demon-

strating that learning phonology is an even more efective auxiliary 
task to learning ISR than previous work had shown. However, there 
appears to be a slight reliance on spurious correlations, as demon-

strated by the slightly lower performance on unseen and more 

diverse signers. A unique aspect of the Sem-Lex Benchmark is that 
the signs were spontaneously produced by deaf fuent signers using 
a widely-used experimental paradigm in psycholinguistic research. 
This approach ensures that signers were familiar with the signs 
they produced, and were not simply reproducing signs they may 
or may not know (e.g., [9]). 

6.1 Limitations 
First, while there are more signs included in this benchmark than in 
other ASL datasets, it is still not representative of the full breadth of 
ASL. Our participants represent a small cross-section of all signers, 
who vary along many axes like experience and gender. The data is 
not representative of the larger population of ASL users in terms 
of race, ethnicity, and gender. Additionally, fngerspelled words 
are underrepresented in the lexical databases we used for labelling, 
and so while participants may have contributed fngerspelled items, 
these are not among the labelled benchmark released here. Similarly, 
much of the morphology of ASL is not well represented in the 
labelled benchmark either (e.g., signs that are infected for verb 
agreement, compound signs, etc.). Depicting signs and classifer 
constructions—semantically dense constructions which are unique 
to many signed languages—are also underrepresented in the Sem-

Lex Benchmark. 
Second, we note that models based on this benchmark alone 

(or any benchmark of isolated signs) may not generalize to con-
tinuous sign recognition (CSR). By focusing on isolated signs, the 
benchmark is not representative of grammatical features (e.g. ref-
erential use of space, certain facial expressions) or coarticulation. 
Researchers who intend to use these data or models for CSR or 
translation in any way should be aware of these discrepancies as 
they make and evaluate their models. 

Finally, it should be noted that despite decades of sign linguis-
tics research, many aspects of ASL phonology remain much less 
understood. The phonological descriptions of signs in ASL-LEX are 
incomplete, and so this paper represents an early step toward mod-

eling sign phonology. While we did not conduct a direct validation 
of the models through research activities with the representative 
end users, this work is anchored in prior research involving the 
representative users and has been motivated by their priorities (see 
Section 2). 

6.2 Accessing Data 
The goal of this paper is to share a benchmark which includes 
videos that were contributed with informed consent by deaf peo-
ple who were compensated and recognized for their contributions 
(fnancially and/or via authorship). We hope that this benchmark is 
broadly useful, and spurs creativity and innovation. At the same 
time, ethical considerations for how sign language data are used 
are complex and sensitive [3]. Prior to submitting this work, we 
convened a large group of deaf and signing scholars from a range 
of disciplines to consider how the community would like to share 
data. Following the recommendations of this group, we ask that 
users of these data: 

• commit to “do no harm,” 
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• work closely with deaf signing communities–the people who 
will be most impacted by sign language technology–to iden-
tify and mitigate possible harms, and maximize benefts to 
these communities 

• recognize deaf contributors fairly (fnancially, through attri-
bution, or other acknowledgement, as appropriate) 

• work to mitigate possible power imbalances 
• limit claims to those that are appropriate to the technology 
(e.g., even high-performing ISR models do not obviate the 
need for human interpreters or teachers who are fuent in 
sign language) 

We refer users who do not have connections to deaf communities 
to the CREST network at Gallaudet University, which aims to foster 
collaboration on sign-related technologies. 

6.3 Future Work 
The benchmark we present here was developed as part of a larger 
linguistic investigation of the semantic structure of the ASL lexicon. 
By identifying signs that people freely associate, we can learn how 
signs are related in meaning to one another. These associations can 
inform questions about how people learn and use signs. We are 
also eager to see this benchmark used for linguistic research (e.g., 
exploring variation in how diferent signers produce signs). 

Interdisciplinary work between linguists and technologists can 
be mutually benefcial. As we have laid out here, incorporating 
knowledge and resources from linguistics can aid in the develop-
ment of sign language technology. Similarly, we believe modeling 
sign phonology will also beneft linguistics and psychology. Models 
of sign phonology can inform linguistic theories as to the phono-
logical composition of signs. They can also be used to help build 
knowledge about relatively low-resource sign languages (e.g., those 
that do not have manually annotated databases), and can ofer meth-

ods for cross-linguistic comparisons. This project paves the way for 
ethically sourced, efcient, and reproducible sign language research 
and more successful sign recognition technologies down the line. 

7 CONCLUSION 
The Sem-Lex Benchmark introduces new, high-quality data for 
modeling signs and their phonemes. The 84,568 isolated sign pro-
ductions were collected directly from Deaf participants with in-
formed consent and fnancial compensation for their contributions. 
Additionally, some 78% are aligned with other datasets, allowing for 
phonological featurization for each video. We show that modeling 
phonology is is worthwhile: when learned to classify phonological 
features in concert with gloss, a state-of-the-art model is able to 
recognize signs more accurately, and in particular signs that are 
rare. With these data, we hope to inspire future work on studying 
signed languages in a more representative and ethical way, and 
with these insights, create more robust models for sign language 
understanding in direct collaboration with the Deaf community. 
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