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Abstract

In knowledge graph embedding, leverag-001
ing relation-specific entity-transformation has002
markedly enhanced performance. However, the003
consistency of embedding differences before004
and after transformation remains unaddressed,005
risking the loss of valuable inductive bias in-006
herent in the embeddings. This inconsistency007
stems from two problems. First, transforma-008
tion representations are specified for relations009
in a disconnected manner, allowing dissimi-010
lar transformations and corresponding entity-011
embeddings for similar relations. Second, a012
generalized plug-in approach as a SFBR (Se-013
mantic Filter Based on Relations) disrupts this014
consistency through excessive concentration of015
entity embeddings under entity-based regular-016
ization, generating indistinguishable score dis-017
tributions among relations. In this paper, we018
introduce a plug-in KGE method, Relation-019
Semantics Consistent Filter (RSCF), containing020
more consistent entity-transformation charac-021
terized by three features: 1) shared affine trans-022
formation of relation embeddings across all023
relations, 2) rooted entity-transformation that024
adds an entity embedding to its change repre-025
sented by the transformed vector, and 3) nor-026
malization of the change to prevent scale reduc-027
tion. To amplify the advantages of consistency028
that preserve semantics on embeddings, RSCF029
adds relation transformation and prediction030
modules for enhancing the semantics. In knowl-031
edge graph completion tasks with distance-032
based and tensor decomposition models, RSCF033
significantly outperforms state-of-the-art KGE034
methods, showing robustness across all rela-035
tions and their frequencies.036

1 Introduction037

Knowledge graphs (KGs) play crucial roles in a038

wide area of machine learning and its applica-039

tions (Zhang et al., 2022b; Zhou et al., 2022; Geng040

et al., 2022). However, KGs, even on a large scale,041

still suffer from incompleteness (Dong et al., 2014).042

This problem has been extensively studied as a task 043

to predict missing entities, known as knowledge 044

graph completion (KGC). 045

An effective approach for KGC is knowledge 046

graph embedding (KGE) that learns vectors to 047

represent entities and relations in a low dimen- 048

sional space to measure the validity of triples. 049

Two primary approaches to determine the valid- 050

ity are distance-based model (DBM) using the 051

Minkowski distance and tensor decomposition 052

model (TDM) regarding KGC as a tensor com- 053

pletion problem (Zhang et al., 2020a). 054

A recently tackled issue of the models is to learn 055

only single embedding for an entity, which is insuf- 056

ficient to express its various attributes in complex 057

relation patterns such as 1-N, N-1 and N-N (Chao 058

et al., 2021; Ge et al., 2023). A proposed and effec- 059

tive approach for this issue is entity-transformation 060

based model (ETM) that uses relation-specific 061

transformations to generate different entity embed- 062

dings for relations from their original embedding, 063

enabling more complex entity and relation learn- 064

ing (Ge et al., 2023). 065

ETMs, however, have a limit to learning useful 066

inductive bias that could be obtained in semanti- 067

cally similar relations. For example, SFBR, a re- 068

cently proposed method plugged in to various KGE 069

models (Liang et al., 2021), assigns mutually dis- 070

connected relation-specific transformation to each 071

relation. Furthermore, under a significantly useful 072

regularizer such as DURA (Zhang et al., 2020a), 073

especially on TDM, the method critically concen- 074

trates entity embeddings, including unobserved en- 075

tities and generates indistinguishable score distribu- 076

tions across relations. Both issues are interpreted as 077

limited learning an important and implicit inductive 078

bias that semantically similar relation have simi- 079

lar relation-specific entity-transformation, called 080

relation-semantics consistency in this paper. 081

To alleviate the issues, we present a simple and 082

effective method, Relation-Semantically Consis- 083
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tent Filter (RSCF), that contains more consistent084

entity transformation (ET). In details, ET incorpo-085

rates three features: 1) shared affine transforma-086

tion for consistency mapping of relations to entity-087

transformations, 2) rooted entity-transformation us-088

ing the affine transformation to generate only the089

change of an entity-embedding subsequently added090

by this embedding and 3) normalization of the091

change for preventing critical scale reduction break-092

ing consistency. To amplify the benefit of the con-093

sistency, RSCFs adds relation transformation (RT)094

and relation prediction (RP) (Chen et al., 2021),095

for inducing useful relation-specific semantics on096

embeddings.097

Our contributions are as follows.098

• We raise and clarify two problems in terms099

of relation-semantics consistency in learning100

useful inductive bias on embeddings.101

• We propose a novel and significantly outper-102

forming RSCF as a plug-in KGE method,103

which induces the consistency and effectively104

learns useful semantic representations.105

• We provide experimental results on common106

benchmarks of KGC, and in-depth analysis to107

verify the causes and derived effects.108

2 Loss of Useful Inductive Bias109

Because semantically similar relations have simi-110

lar embedding (Yang et al., 2015), we define that111

mapping relation embeddings to ETs is relation-112

semantically consistent if and only if any relation113

pairs (r1, r2) and shorter pair (r1, r3) for a given114

r1 are mapped to ET pair (T1, T2) and shorter pair115

(T1, T3), respectively. This consistency serves as116

an inductive bias implying that semantically simi-117

lar relations have similar ETs and, therefore, over-118

all similar entity embeddings. Two phenomena of119

losing this inductive bias and their causes are as120

follows.121

Disconnection of Entity-Transformations Dis-122

connected ET loosely use this bias, especially123

under lack of triplet data. In existing methods,124

relation-specific ETs use separate parameters such125

as hr = Wrh and tr = Wrt, where h, t, are head126

and tail entity embedding, and Wr is a relation-127

specific transformation. Despite the disconnection,128

the methods can still learn similar Wr for given two129

similar relation embeddings if their desirable entity130

ranks are similar. However, limited observation of131

(e) Relation Embedding of TransE(a) ET-SFBR (b) ET-RSCF

(c) EE-SFBR (d) EE-RSCF
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currency
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Figure 1: Head entity-transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCF, (c) and (d) indicate
EE of SFBR and RSCF. Points in the same color are
relations in the same group. Clearly distinct groups are
selected from the original TransE (e)

Metric ET-SFBR ET-RSCF EE-SFBR EE-RSCF
Concentration Score (↑) 0.91 2.15 0.43 1.91
Inter Cluster Distance (↑) 0.27 0.82 0.40 0.85

Table 1: Concentration score and inter cluster distance
of SFBR and RSCF. Concentration score shows numer-
ical results of their in-cluster concentration and inter
cluster distance presents numerical results of the dis-
tance between different clusters.

entities due to sparse KG introduces a wide variety 132

of possible ETs and their corresponding embedding 133

distributions, thereby diluting consistency. In this 134

environment, the disconnected representation with- 135

out any specific training and initialization process 136

aiming to foster the consistency is exposed to the 137

loss of useful inductive bias of similar relations. 138

Empirical Evidence for Disconnection Figure 1 139

shows the impact of the disconnection via T- 140

SNE visualization of ET and corresponding entity 141

embeddings (EE) of TransE-SFBR (SFBR) and 142

TransE-RSCF (RSCF). We split them into relation 143

groups, defined by clearly clustered relation groups 144

in the original TransE presented in Figure 1 (e). An 145

entity for EE is randomly selected from FB15k-237. 146

Compared to RSCF, the ET and EE distribution of 147

SFBR are mostly dispersed between semantically 148

different relation groups. This phenomenon is sup- 149

ported by concentration score and inter cluster dis- 150

tance in Table 1, which implies the limit of SFBR 151

in inducing relation-semantics consistency. 1 152

Entity Embedding Concentration In particular, 153

SFBR additionally loses consistency under entity- 154

1For details about the relation group, concentration score
and inter cluster distance, please refer to the Appendix A
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(b) MRR of validation set (left) and Transformation
Scale (right)

Figure 2: Result of entity embedding concentration, and
performance and scale decrease in training. The results
are collected from ComplEX with DURA regularization.
DURA is applied in all epochs and SFBR is applied after
200 epochs (λ: regularization weight).

based regularization, DURA (Zhang et al., 2020a).155

In KGE based on TDM, DURA has shown signif-156

icant improvement enough to be inevitable. How-157

ever, ComplEX-SFBR with DURA reduces the158

scale of ET, causing a strong concentration of entire159

entity embeddings. Observed entities are relatively160

safe because the score distribution is continuously161

adjusted to predict correct triples, but unobserved162

entities are critically vulnerable to the concentra-163

tion causing indistinguishable score distributions164

for semantically different relations, implying crit-165

ically broken consistency. This cause of this phe-166

nomenon is simply derived in the following equa-167

tions of DURA in the original (above) (Zhang et al.,168

2020a) and DURA in SFBR (below).169

∑
p ||hiRj||22+||hi||22+||tk||22+||tkRj

⊤||22∑
p ||Wrj

hiRj||22+||Wrj hi||
2
2+||tk||22+||tkRj

⊤||22
(1)170

where p = (hi, rj , tk) ∈ S for total training data171

S, hi and tk are head and tail embeddings with172

indices and Rj is a matrix representing relation rj .173

In the equation 1, to minimize DURA loss, model174

always decreases the scale of ET (simple proof in175

Appendix B.1) and this causes indistinguishable176

score distribution in all score distributions.177

Empirical Evidence for Concentration Fig- 178

ure 2 presents a T-SNE visualization of score distri- 179

butions for selected queries. We selected the rela- 180

tion r1, which shows significantly low performance 181

in SFBR on FB15k-237, and selected all queries (h, 182

r1, ?) for this relation r1 in the validation set. We 183

then generate score distribution for each query us- 184

ing ComplEX-RSCF, ComplEX-SFBR, ComplEX- 185

SFBR with normalization (SFBR (N)), and the 186

ComplEX-DURA. The results show that SFBR 187

concentrates embeddings into a small cluster, while 188

the other methods are diversely dispersed. 189

Do We Need to Use DURA regularizer? Gener- 190

ating indistinguishable score distributions cannot 191

be merely resolved by handling the regularization 192

weight. Figure 2 (b) shows the valid MRR (left) of 193

SFBR and transformation scale (right) according 194

to the regularizer weight λ. In training until 200 195

epochs, largely weighted DURA shows significant 196

performance, but applying SFBR starts to decrease 197

MRR and the transformation scale. The results im- 198

ply that integrating SFBR with DURA causes per- 199

formance degradation with scale decrease ending 200

up in the entity embedding concentration. Also, the 201

result of SFBR with a small weighted DURA in- 202

dicates that simply excluding DURA on the TDM 203

will critically decrease the performance. 204

3 Method 205

Overview In this section, we propose Relation- 206

Semantics Consistent Filter (RSCF) to address the 207

consistency issues. In Figure 3, the overall filtering 208

process of RSCF, distinguished features compared 209

to ETMs, and their intended effects are illustrated. 210

RSCF represents the ET as an addition of origi- 211

nal embedding ( c⃝) and its relation-specific change. 212

The change is generated by an affine transformation 213

from relation embedding ( a⃝), and then normalized 214

( b⃝), described as 215

er = (

b⃝︷︸︸︷
Np (

a⃝︷︸︸︷
rA1)

c⃝︷︸︸︷
+1 )⊗ e

(2) 216

where A1 ∈ Rn×n is shared affine transforma- 217

tion across all relations, r and e ∈ Rnare relation 218

and entity embedding. Np(rA) = rA
∥rA∥p , and ⊗ is 219

an elementwise product. Detailed motivation and 220

effects are as follows. 221

Shared Affine Transformation for Consistency 222

A basic property of affine transformation is to main- 223

tain the parallelism of two parallel line segments 224
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Figure 3: Overview of Relation-Semantics Consistent Filter and Its Effect. Its process (left) is illustrated on SFBR
coloring changed modules. The two effects (right) are shown by comparing SFBR and RSCF on ET and entity
embeddings.

Method On a Line |AC|
|AB| > 1 |AC|

|AB| > 1.01 |AC|
|AB| > 1.02

Transformation ( a⃝) 1.000 .728 .808 .875
Normalization ( b⃝) .965 .869 .958 .994
Add one ( c⃝) 1.000 1.000 1.000 1.000

Table 2: Consistency of our ET: The numbers represent
the success rates of preserving the superiority of dis-
tances for 10,000 randomly generated samples of three
relation embeddings, notated as A, B, and C. (Line: the
rates for samples with elements exactly on a line, the
others: the rate for samples not on a line with varying
distance rate conditions.)

after the transformation and preserves the ratio of225

their lengths. This property guarantees consistent226

mapping of relation embeddings at least on a line to227

generated vectors (part a⃝ in Equation 2). Even in228

the case that embeddings are not exactly on a line,229

the consistency is maintained with high probability230

as shown in Table 2. It presents the proportion of231

consistency maintenance rate for each component232

of RSCF based on Monte Carlo simulations. The233

result indicates that our ET can preserve consis-234

tency in the most cases. (Details about this result235

are presented in Appendix B.3).236

After normalization of the generated vectors237

(part b⃝), the consistency still holds in most cases,238

showing a maximum of over 99% in the table 2.239

The addition of one vector to the normalized240

change (part c⃝) does not alter the inequality of241

distances, so the consistency is again maintained. 242

Overall, by applying the affine transformation, we 243

can maintain the consistency between relation em- 244

bedding and its ET. To implement the affine trans- 245

formation shared across relations, we simply adopt 246

a linear transformation for A. 247

Rooted Entity Transformation Sharing an 248

affine transformation across all relations inevitably 249

reduces the expressiveness of ET compared to en- 250

tirely separate relation-specific ET such as SFBR. 251

To mitigate the negative effects from this reduc- 252

tion, we decrease required expressiveness by learn- 253

ing only the changes in entity embeddings, rather 254

than learning their diverse positions. Moreover, this 255

rooted ET representation enables safely bounding 256

changes via normalization without altering original 257

entity embeddings. 2 To implement it, we add one 258

to the normalized change Np(rA) and multiply it 259

to the original entity-embedding (part c⃝). 260

Relation Prediction for More Consistent Rela- 261

tion Embedding to its Semantics The induc- 262

tive bias introduced by the RSCF is dependent 263

on the semantics of relation embeddings. There- 264

fore, directly enhancing these semantics results in 265

the improvement of RSCF performance. An effec- 266

2Refer to Appendix B.2 for details on the bounds of entity
changes.
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Model Entity Transformation Relation Transformation Training Objective
PairRE er = e ⊗ re ✗

∑
p ϕ(hr|r, tr) + ϕ(tr|hr, r)

SFBR er = Wr · e + b ✗
∑

p ϕ(hr|r, tr) + ϕ(tr|hr, r)

CompoundE er = Tr · Rr(θ) · Sr · e ✗
∑

p ϕ(hr|r, tr) + ϕ(tr|hr, r)

RSCF er = ψ(r) ⊗ e rht = ψ(h) ⊗ ψ(t) ⊗ r
∑

p ϕ(hr|rht, tr) + ϕ(tr|hr, rht) + λϕ(r|h, t) (Chen et al., 2021)

Table 3: Difference between RSCF and ETMs, where er is transformed entity embedding that contains both head
entity hr and tail entity tr. ψ is a rooted transformation that is presented in Equations 2, 4 and ϕ is a loss function
with a score function that depends on the model. Complexity analysis is presented in Appendix C.5

tive approach is Relation Prediction (RP) (Chen267

et al., 2021) forming a cluster for semantically sim-268

ilar relations and improving discrimination of dis-269

similar relations. We add the training objective of270

RP (Chen et al., 2021) to RSCF as follows:271

L =
∑
p

ϕ(hr|rht, tr) + ϕ(tr|hr, rht) + λϕ(r|h, t) (3)272

where ϕ is a loss function with a score function273

and λ is a hyper-parameter that controls the contri-274

bution of RP.275

Relation Transformation for Relation Embed-276

ding of its Fine-Grained Semantics In KGs,277

some relations have various semantic meanings278

that can be divided into fine-grained sub-relations279

according to their semantics (Zhang et al., 2018).280

Because the semantic meanings of sub-relations are281

determined by their context, which is defined by282

head and tail entities (Jain and Krestel, 2022), we283

propose an entity-specific relation transformation284

(RT) to split relations into sub-relations, and apply285

the filter of ET of RSCF for the same purpose. By286

using Equation 2, we present the RT as follows:287

rht = (Np(hA2) + 1)⊗ (Np(tA3) + 1)⊗ r
(4)

288

where A2 ∈ Rn×n and A3 ∈ Rn×n are shared289

affine transformation across all heads and tails. To290

predict score of given triplet (h, r, t), transformed291

entities er and relation rhr are used. The difference292

of RSCF and ETMs and are summarized in Table 3.293

4 Related Works294

Knowledge Graph Embedding KGE encodes295

entities and relations into low-dimensional latent296

spaces to assess the validity of triples. TransE (Bor-297

des et al., 2013) and RotatE (Sun et al., 2018) de-298

scribe each relation as a translation and rotation be-299

tween entities, respectively. DistMult (Yang et al.,300

2015) regards KGC as a tensor completion prob-301

lem in euclidean space, and ComplEX (Trouillon302

et al., 2016) extends it to complex space. Tran- 303

sHRS (Zhang et al., 2018) improves knowledge 304

representation by using the information from the 305

HRS. DURA (Zhang et al., 2020a), AnKGE (Yao 306

et al., 2023), and CompliE (Cui and Zhang, 2024) 307

are methods that can be applied to KGE models 308

to prevent overfitting, provide analogical inference 309

and enable composition reasoning. VLP (Li et al., 310

2023) presents an explicit copy strategy to allow re- 311

ferring to related factual triples. GreenKGC (Wang 312

et al., 2023) and SpeedE (Pavlović and Sallinger, 313

2024) propose low-dimensional embedding meth- 314

ods to handle large-scale KGs. WeightE (Zhang 315

et al., 2023) utilizes a reweighting technique to al- 316

leviate the data imbalance issue. UniGE (Liu et al., 317

2024) introduce integration KGE in both euclidean 318

and hyperbolic to capture various relational pat- 319

terns. However, using only a single embedding for 320

an entity or a relation can restrict the learning of 321

complex relation patterns. 322

Entity Transformation Models ETM is a model 323

that uses relation-specific ET to model various at- 324

tributes of an entity. Models such as TransH (Wang 325

et al., 2014), TransR (Lin et al., 2015), and 326

TransD (Ji et al., 2015) are variants of TransE (Bor- 327

des et al., 2013), designed to handle complex rela- 328

tions by employing hyperplanes, projection ma- 329

trices, and dynamic mapping matrices for their 330

transformation functions, respectively. Recently, 331

AutoETER (Niu et al., 2020) learns the type em- 332

bedding for each entity with relation-specific trans- 333

formation. PairRE (Chao et al., 2021) performs a 334

scaling operation through the Hadamard product 335

to the head and tail entities. SFBR (Liang et al., 336

2021) and AT (Yang et al., 2021) present a univer- 337

sal entity transformation applicable to both DBM 338

and TDM. ReflectE (Zhang et al., 2022a) intro- 339

duces relation-specific householder transformation 340

to handle sophisticated relation mapping properties. 341

CIBLE (Cui and Chen, 2022) use relation-aware- 342

transformation for prototype modeling to represent 343

the knowledge graph. CompoundE (Ge et al., 2023) 344

applied compound operation to both head and tail 345
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Knowledge Graph Embedding WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TransE (Bordes et al., 2013) .226 - .501 .294 - .465 - - -
DistMult (Yang et al., 2015) .430 .390 .490 .241 .155 .419 - - -
ComplEX (Trouillon et al., 2016) .440 .410 .510 .247 .158 .428 - - -
RotatE (Sun et al., 2018) .476 .428 .571 .338 .241 .533 - - -
DistMult-HRS (Zhang et al., 2018) - - - .315 .241 .496 - - -
AutoETER (Niu et al., 2020) - - - .344 .250 .538 .550 .465 .699
ComplEX-DURA (Zhang et al., 2020a) .491 .449 .571 .371 .276 .560 .584 .511 .713
PairRE (Chao et al., 2021) - - - .351 .256 .544 - - -
CIBLE (Cui and Chen, 2022) .490 .446 .575 .341 .246 .532 - - -
ReflectE (Zhang et al., 2022a) .488 .450 .559 .358 .263 .546 - - -
HAKE-AnKGE (Yao et al., 2023) .500 .454 .587 .385 .288 .572 - - -
CompoundE (Ge et al., 2023) .491 .450 .576 .357 .264 .545 - - -
RotatE-GreenKGC (Wang et al., 2023) .411 .367 .491 .345 .265 .507 .453 .361 .629
RotatE-VLP (Li et al., 2023) .498 .455 .582 .362 .271 .542 - - -
RotatE-WeightE (Zhang et al., 2023) .501 .448 .592 .371 .281 .557 .580 .504 .713
CompliE-DURA (Cui and Zhang, 2024) .495 .453 .579 .372 .277 .563 - - -
SpeedE (Pavlović and Sallinger, 2024) .493 .446 - .320 .227 - .413 .332 -
UniGE (Liu et al., 2024) .502 .455 .592 .357 .264 .559 .583 .512 .715
TransE-SFBR (Liang et al., 2021) .242 .028 .548 .338 .240 .538 - - -
ComplEX-DURA-SFBR (Liang et al., 2021) .498 .454 .584 .374 .277 .567 .584 .512 .712

TransE-RSCF (Ours) .267 .066 .546 .363 .264 .558 - - -
±.001 ±.002 ±.002 ±.001 ±.001 ±.001 - - -

ComplEX-DURA-RSCF (Ours) .503 .460 .588 .388 .295 .573 .589 .516 .718
±.001 ±.001 ±.002 ±.001 ±.002 ±.004 ±.002 ±.003 ±.002

Table 4: Test performance of KGE-based KGC on FB15k-237, WN18RR and YAGO3-10. Bold indicates the best
result, and underlined signifies the second best result. ± indicates standard deviation. (The comparison results of
RSCF, SFBR, and other KGE models presented in Appendix C.2.)

entities. However, these models have no chance for346

inductive bias sharing due to the separate parameter347

of ET, and SFBR (Liang et al., 2021), which can348

be applied to both DBM and TDM, suffers from349

indistinguishable score distribution because of the350

entity embedding concentrations.351

5 Experiments352

5.1 Settings353

Dataset To evaluate our proposed RSCF354

models, we consider three KGs datasets:355

WN18RR (Dettmers et al., 2018), FB15k-356

237 (Toutanova and Chen, 2015), and YAGO3-357

10 (Mahdisoltani et al., 2013). The statistics for the358

three benchmarks are shown in Appendix C.1.359

Evaluation Protocol We evaluated the perfor-360

mance of KGC following the filtered setting (Bor-361

des et al., 2013). The filtered setting removes all362

valid triples from the candidate set when evaluat-363

ing, except for the predicted triple. We adopt the364

MRR and Hits@N to compare the performance of365

different KGE models. MRR is the average of the366

inverse mean rank of the entities and Hits@N is the367

proportion of correct entities ranked within top k.368

Baselines and Training Protocol We compare369

the performance of RSCF with the KGE models:370

TransE, DistMult, ComplEX, RotatE, DistMult-371

HRS, AutoETER, ComplEX-DURA, PairRE,372

SFBR, CIBLE, ReflectE, HAKE-AnKGE, Com-373

poundE, RotatE-GreenKGC, RotatE-VLP, RotatE- 374

WeightE, CompliE-DURA, SpeedE, and UniGE. 375

Because RSCF is a module that is plugged in 376

based on existing models, we use DBM, including 377

TransE, RotatE, and TDM, including CP, RESCAL, 378

and ComplEX as base models. Additionally, fol- 379

lowing the setting of SFBR, ET is applied to both 380

head and tail entities in DBM, while it is applied 381

only to the head entity in TDM due to computa- 382

tional cost (Liang et al., 2021). For the same reason, 383

both head and tail entities are utilized for RT in 384

DBM, while only the head entity is used in TDM. 385

In the FB15k-237, the entity/relation ratio and the 386

triple/relation ratio are significantly lower than in 387

the other two datasets, limiting the context infor- 388

mation available to each relation. This limitation 389

is particularly critical in TDM, which relies solely 390

on the head entity. Therefore, RT is not applied to 391

TDM in the FB15k-237 dataset. 392

5.2 Performance 393

Performance on KGC Table 4 shows the perfor- 394

mance comparison of the RSCF and other KGE 395

models on WN18RR, FB15k-237 and YAGO3-10. 396

Overall, RSCF shows higher or competitive perfor- 397

mance compared to other KGE models. Especially 398

in FB15k-237 and YAGO3-10, RSCF outperforms 399

other state-of-the-art models that include HAKE- 400

AnKGE and CompliE-DURA. 401

Ablation Study Table 6 presents ablation studies 402

of RSCF to verify the effectiveness of each com- 403
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Query (h, r, ?) | Correct Answer Related Triples in Training Set Rank(R/S)

(Guillermo del Toro, /people/person/place_of_birth, ?) | Guadalajara (Guillermo del Toro, /people/person/places_lived./people/place_lived/location, Jalisco) 5 / 35(Guillermo del Toro, /people/person/nationality, Mexico)

(Shawn Pyfrom, /people/person/places_lived./people/place_lived/location, ?) | Florida (Shawn Pyfrom, /people/person/place_of_birth, Tampa) 3 / 32(Shawn Pyfrom, /people/person/nationality, United States of America)

(Walt Whitman, /people/person/places_lived./people/place_lived/location, ?) | New York (Walt Whitman, /people/deceased_person/place_of_death, Camden) 10 / 21(Walt Whitman, /people/person/nationality, United States of America)

Table 5: Example KGC results of RSCF compared to SFBR (R: rank of RSCF, S: rank of SFBR). Related triples
show that similar relations to the queries have similar entities to the correct answers in the training set. TransE is
used as baseline

Model ET RP RT T C
a⃝ b⃝ & c⃝ MRR MRR

RSCF ✓ ✓ ✓ ✓ .363 .387
+ w/o ET ✗ ✗ ✓ ✓ .356 .385
+ w/o RP ✓ ✓ ✗ ✓ .358 .374
+ w/o RT ✓ ✓ ✓ ✗ .356 .388

+ w/o RP ✓ ✓ ✗ ✗ .349 .375
+ w/o ET ✗ ✗ ✓ ✗ .338 .385
+ w/o a⃝ ✗ ✓ ✓ ✗ .354 .386
+ w/o b⃝ & c⃝ ✓ ✗ ✓ ✗ .353 .377

Table 6: Results of an ablation study of RSCF on FB15k-
237. TransE and ComplEX are used as base models. T
and C indicate the base models of RSCF, which denote
TransE and ComplEX, respectively. MRR is used for
performance comparison.
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Figure 4: MRR changes over epochs of RSCF, RSCF
(w/o N), SFBR (N), SFBR, and ComplEX on FB15k-
237.

ponent. a⃝ and b⃝ & c⃝ are the components of ET404

described in Equation 2. In the ablation study, b⃝405

& c⃝ are combined because b⃝ & c⃝ should be406

used simultaneously to maintain the original scale.407

In Table 6, RSCF shows higher performance com-408

pared to the other ablated models in both TransE409

and ComplEX, suggesting that each component of410

RSCF contributes to the effectiveness of RSCF. Es-411

pecially, Figure 4 shows that w/o normalization ( b⃝412

& c⃝) can significantly reduce model performance413

and w/ normalization maintain model performance414

in both RSCF and SFBR in ComplEX, indicating415

that normalization is necessary to maintain the per-416

formance of models that use DURA regularizer.3 In417

addition, please note that RT can reduce the perfor-418

mance of ComplEX-RSCF on FB15k-237 because419

of context information restriction.420

3Detailed description of SFBR (N) is presented in Ap-
pendix C.3.

Figure 5: KGC performance of the relation set that is
sorted by their frequency (above) and groups of seman-
tically similar relations observed in Figure 1 (e) (below)
on FB15k-237

Performance on Relation Frequency and Se- 421

mantically Distinguished Relation Groups To 422

demonstrate the generality of applying RSCF re- 423

gardless of relation frequency, we sort relations by 424

their frequency and divide them into ten sets. Each 425

set has an equal number of relations. Figure 5 above 426

shows the MRR for each set in TransE, RSCF, and 427

SFBR. The results shows that RSCF outperform 428

SFBR and TransE in all sets, demonstrating the ro- 429

bustness of RSCF to relation frequency and show- 430

ing that RSCF can be applied without trade-off 431

between high and low frequency of relations. 432

Figure 5 below shows the MRR for each relation 433

group as defined in Figure 1 (e). RSCF outper- 434

formed SFBR and TransE in all groups, demon- 435

strating that RSCF can be utilized without specific 436

bias to the semantics of relations and that incorpo- 437

rating relation semantics into the transformation 438

function can improve model performance. 439

Qualitative Example Analysis For qualitative 440

analysis, Table 5 presents sampled queries, their 441

correct answers, related triples with the sample 442
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Figure 6: Entity transformation scale (left) and final
entity embedding scale (right) of RSCF, SFBR (N),
SFBR, and ComplEX-DURA over epochs on FB15k-
237. DURA is applied in all epochs and RSCF and
SFBR are applied after 200 epochs.

queries, and the ranks obtained by RSCF and SFBR.443

Relations in sample queries and related triples be-444

long to the same relation group (people place).445

In Table 5, RSCF shows enhanced performance446

compared to SFBR, indicating that RSCF can use447

trained bias between semantically similar relations.448

5.3 In-Depth Analysis449

Relation-Semantics Consistency of ET and EE450

Figure 1 shows ET and their corresponding EE451

of SFBR and RSCF via T-SNE. RSCF represents452

a more concentrated cluster compared to SFBR,453

which indicates that similar relations have similar454

ET and EE in RSCF; in other words, RSCF satisfies455

relation-semantic consistency.456

Recovery of Embedding Scale and Score Dis-457

tribution Figure 6 presents transformation scale458

and final entity embedding scale over epochs on459

FB15k-237, using ComplEX as the baseline. Fol-460

lowing the approach of SFBR, DURA is applied461

in all epochs, and RSCF and SFBR are plugged462

in after 200 epochs. The results show that SFBR463

decreases both transformation scale and final en-464

tity embedding scale. In contrast, RSCF and SFBR465

(N) maintain scales, indicating that normalization466

helps preserve the embedding scale due to normal-467

ization. As shown in Figure 4, MRR decreases for468

SFBR and RSCF w/o normalization but increases469

for both RSCF and SFBR (N), implying that en-470

tity embedding concentration negatively impacts471

model performance.472

To investigate the detailed change of score dis-473

tribution, we present the score distribution of ran-474

domly sampled queries from Figure 2 (a) in Fig-475

ure 7. SFBR shows near-zero scores for most enti-476

ties, with significantly similar distributions across477

queries. However, by applying normalization or us-478

ing RSCF, the diversity of scores is recovered as479

the original base model.480

Figure 7: Score distribution of all entities for randomly
selected queries from Figure 2 (a)

Model MRR H@10 Concentration
ComplEX-RSCF .375 .609 ✗
ComplEX-SFBR (N) .366 .587 ✗
ComplEX-SFBR .267 .522 ✓
ComplEX-DURA .347 .609 ✗

Table 7: KGC performance of all queries associated
with the relation that shows strong concentration of en-
tity embedding in SFBR. Concentration presents entity
embedding concentration.

Performance Decrease by Entity Embedding 481

Concentration To assess the impact of indistin- 482

guishable score distribution, we conducted a per- 483

formance evaluation for the selected relation that 484

shows critical entity embedding concentration in 485

Figure 2. Table 7 presents the MRR for all queries 486

associated with the selected relation. SFBR shows 487

significantly lower performance than RSCF, SFBR 488

(N), and the ComplEX. This result implies that in- 489

distinguishable score distribution strongly affects 490

the prediction of SFBR, and simply applying nor- 491

malization can recover it. 492

6 Conclusion 493

In this paper, we address the limit in inducing 494

relation-semantics consistency, implying that se- 495

mantically similar relations have similar entity 496

transformation, on entity transformation models 497

for KGC, especially SFBR. We clarify two causes, 498

disconnected entity transformation representation 499

and entity embedding concentration, and provide 500

a novel relation-semantics consistent filter (RSCF) 501

method using shared affine transform to generate 502

the change of entity embedding, normalize it and 503

add it to the embedding. This method significantly 504

improves the performance of KGC compared to 505

state-of-the-art KGE methods for overall relations. 506
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7 Limitations507

RSCF uses the simplest form of affine transforma-508

tion, but it has a limit of expressing all changes509

across all embeddings, which requires more ad-510

vanced approach. Future work should extend the511

method to additional KGE models to enhance gen-512

erality.513
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A Appendix A750

A.1 Relation Groups for Entity751

Transformation752

Figure 8 illustrates the relation embedding of753

TransE. We select ten relation groups whose re-754

lation embeddings build clear and mutually decou-755

pled clusters, which implies semantically distin-756

guished relation groups. The other relations are757

plotted as grey points. The relations correspond-758

ing to each group are listed in Table 14. Note that759

similar relations belong to the same group.760

position

currency

film production

film actor

people place

film place

music role

organization place

producer type

award category

others

Figure 8: Visualization of relation embeddings of
TransE using T-SNE

A.2 Distribution of Tail 761

Entity-Transformations and 762

Corresponding Entity Embedding 763

Figure 9 presents the T-SNE visualization of tail ET 764

and corresponding EE of RSCF and SFBR. Even 765

in the tail, RSCF shows more concentrated clusters. 766

Also, in Table 8, RSCF exhibits higher concentra- 767

tion scores and inter class distance compared to 768

SFBR. 769

(a) ET-SFBR (b) ET-RSCF

(c) EE-SFBR (d) EE-RSCF

Figure 9: Tail entity-transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCF, (c) and (d) indicate
EE of SFBR and RSCF.

Metric ET-SFBR ET-RSCF EE-SFBR EE-RSCF
Concentration Score (↑) 0.19 1.90 0.34 1.50
Inter Cluster Distance (↑) 0.46 0.70 0.46 0.74

Table 8: Concentration score and inter cluster distance
of tail entity transformation and entity embedding of
SFBR and RSCF.

A.3 Measurement of Cluster Concentration 770

To measure cluster concentration, we defined con- 771

centration score as follows: 772

n∑
k

m∑
i

||(ki − Ck)||
n||Ck||

(5) 773

where k is clear and mutually decoupled clusters 774

and ki is i-th vector embedding of ET in group k 775

and Ck is centroid of cluster k that can be calcu- 776

lated as: 777

Ck =

∑m
i ki
m

(6) 778

In the equation 5, the vector norm of C (||C||) is 779

used because of the relative concentration score 780
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for clusters. We use the reciprocal of equation 5 as781

concentration score. Also to evaluate the distance782

between different clusters we defined inter cluster783

distance score as follows:784

n∑
k

||(Ck − Ckc)||∑m
i ||ki||

(7)785

where Ckc represent the centroid that is closest to786

Ck, and it can be written as:787

Ckc = min
k ̸=j

{||Ck − Cj ||} (8)788

In Equation 7, the norm of the cluster, which is789

calculated as the sum of the elements in the cluster,790

is used for the relative inter cluster distance.791

B Appendix B792

B.1 Proof of scale decrease of ET793

Let Wrj is the ET of SFBR and wrj ,n is n-th ele-794

ment of Wrj , than the gradient of wrj ,n in DURA795

can be calculated as:796 ∑
p

dL

dwrj ,n
||wrj,nhi,nrj,n||

2
2 + ||wrjnhi,n||22

=
∑
p

dL

dwrj ,n
w2
rj,n

(hi,nrj,n)
2 + w2

rjnhi,n
2

=
∑
p

2wrj,n(hi,nrj,n)
2 + 2wrjnhi,n

2

(9)797

The gradient of ET shows that the gradient of wrj ,n798

has always same sign withwrj ,n parameters. There-799

fore, gradient descent always reduces the scale of800

the parameters regardless of their sign.801

B.2 Normalization of Change for Reducing802

Entity Embedding Concentration803

The change generated from the affine transfor-804

mation is normalized by its length, expressed as805

Np(rA) in the part b⃝. This normalization allevi-806

ates critical entity embedding concentration via re-807

ducing scale decrease of transformed entity embed-808

dings er in DURA regularization. In our relation-809

specific rooted ET, the change of er is simply writ-810

ten as811

∥α⊗ e∥p (10)812

where α = Np(rA). This value has a maximum813

when α has the same direction to e. Since α is a814

unit vector in p-norm, α = e/∥e∥p . Then, the 815

maximum change is 816

∥ e

∥e∥p
⊗ e∥p = ∥ e2

∥e∥p
∥p =

∥e2∥p
∥e∥p

(11) 817

In practice, the elements of embedding vectors are 818

much less than 1 in most cases. Therefore, the max- 819

imum change ∥e2∥p/∥e∥p is significantly lower 820

than the unrestricted scale change in SFBR. 821

B.3 Empirical Experiments on Maintaining 822

Consistency through Monte Carlo 823

Simulation 824

Linear transformation ensures consistency when 825

relation embeddings exist on a line. Furthermore, 826

for relations that do not lie on the line, we can pre- 827

dict that that similar relations will have similar ETs 828

because of the continuous property of linear trans- 829

formation, i.e. if r1 ≈ r2 then r1A ≈ r2A. How- 830

ever, there has been no research on the proportion 831

of these relations that maintain consistency after 832

transformation and after normalization, and it is 833

extremely challenging to determine this proportion 834

through mathematical formulations. Therefore, we 835

conducted an empirical analysis using Monte Carlo 836

simulations to investigate the consistency of points 837

that do not lie on the line. Table 2 presents the pro- 838

portion of consistency maintained under various 839

conditions based on Monte Carlo simulations. For 840

the experiment, we divided the scenarios into four 841

cases: (1) when three randomly generated points 842

(A, B, C) lie on the same line and the distance 843

between A and C is greater than the distance be- 844

tween A and B (Line), (2) when the three points 845

(A, B, C) do not lie on the line and the distance 846

between A and C is greater than the distance be- 847

tween A and B( |AC|
|AB| > 1), (3) when the distance 848

between A and C is at least 1.01 times greater than 849

the distance between A and B ( |AC|
|AB| > 1.01), and 850

(4) when the distance between A and C is at least 851

1.02 times greater than the distance between A and 852

B ( |AC|
|AB| > 1.02) and sampling was performed 853

10,000 times for each condition. Under each con- 854

dition, we measured the proportion of cases where 855

(|AC| > |AB|) was maintained even after Trans- 856

formation ( a⃝), Normalization ( b⃝), and the Add 857

one ( c⃝). The results showed that consistency was 858

preserved in most cases, even when the three points 859

did not lie on the same line. Specifically, in con- 860

dition where ( |AC|
|AB| > 1), over 72.8% of the sam- 861

ples maintained consistency in Transformation ( a⃝). 862
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Knowledge Graph Embedding WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TuckER (Balažević et al., 2019) .470 .443 .526 .358 .266 .544 - - -
QuatE (Zhang et al., 2019) .488 .438 .582 .348 .248 .550 - - -
MuRP (Balazevic et al., 2019) .481 .440 .566 .335 .243 .518 - - -
HAKE (Zhang et al., 2020b) .497 .452 .582 .346 .250 .542 .545 .462 .694
RoTH (Chami et al., 2020) .496 .449 .586 .344 .246 .535 .570 .495 .706
DualE (Cao et al., 2021) .492 .444 .584 .365 .268 .559 - - -
FieldE (Nayyeri et al., 2021) .48 .44 .57 .36 .27 .55 .51 .41 .68
Rot-Pro (Song et al., 2021) .457 .397 .577 .344 .246 .540 .542 .443 .699
HAKE-CAKE (Niu et al., 2022) - - - .321 .226 .515 - - -
GIE (Yang et al., 2022) .491 .452 .575 .362 .271 .552 .579 .505 .709
ComplEX-ER (Cao et al., 2022) .494 .453 .575 .374 .282 .563 .588 .515 .718
TranSHER (Li et al., 2022) - - - .360 .264 .551 - - -
STaR-DURA (Li and Yang, 2022) .497 .452 .583 .368 .273 .557 .585 .513 .713

ComplEX-DURA-RSCF (Ours) .503 .460 .588 .388 .295 .573 .589 .516 .718
±.001 ±.001 ±.002 ±.001 ±.002 ±.004 ±.002 ±.003 ±.002

Table 9: Test performance of KGE-based KGC on FB15k-237, WN18RR and YAGO3-10. Bold indicates the best
result, and underlined signifies the second best result.

Dataset Entities Relations Entities/Relations Triples/Relations Triples
Train Valid Test

WN18RR 40,943 11 3,722 7,894 86,835 3,034 3,134
FB15k-237 14,541 237 61 1,148 272,115 17,535 20,466
YAGO3-10 123,182 37 3,329 29,163 1,079,040 5,000 5,000

Table 10: Statistics of KGC Benchmark Datasets

Furthermore, in cases where ( |AC|
|AB| > 1.02) ap-863

proximately 87.5% of the samples maintained con-864

sistency after Transformation ( a⃝). Also in Nor-865

malization ( a⃝), over 86.9% of the samples main-866

tained consistency in ( |AC|
|AB| > 1) and 99.4% in867

( |AC|
|AB| > 1.02). Considering that relations tend to868

form clusters based on their semantics because of869

score function and RP (Chen et al., 2021), it is diffi-870

cult that these conditions are unrealistic, indicating871

that our method performs robustly across various872

conditions.873

C Appendix C874

C.1 Datasets875

We evaluate the RSCF using three widely-used876

datasets: WN18RR, FB15k-237, and YAGO3-10.877

WN18RR, FB15k-237 and YAGO3-10 are subsets878

of WN18 (Bordes et al., 2013), FB15k (Bordes879

et al., 2013), and YAGO3 (Mahdisoltani et al.,880

2013), respectively, designed to alleviate the test881

set leakage problem. Statistics of these datasets are882

shown in Table 10.883

C.2 Performance Comparison of RSCF,884

SFBR, and Other KGE models885

Table 9 shows the performance comparison of886

the RSCF and previous KGE-based models on887

WN18RR, FB15k-237 and YAGO3-10. Overall,888

ComplEX-DURA+RSCF shows higher perfor-889

mance than other KGE models in all settings,890

demonstrating that the effectiveness of the RSCF 891

for the KGC task. 892

Table 11 shows the performance comparison of 893

the DBM-RSCF and DBM-SFBR on WN18RR and 894

FB15k-237. Overall, DBM-RSCF shows similar or 895

higher performance than DBM-SFBR in most set- 896

tings. Table 12 shows the performance comparison 897

in TDMs. Compared to TDM-SFBR, TDM-RSCF 898

shows consistent performance improvements in all 899

datasets and settings. 900

C.3 SFBR with Normalization 901

To prevent entity embedding concentration, We 902

apply normalization to SFBR that is presented as 903

SFBR (N). Let Wr is relation-specific ET using 904

separate parameters, then SFBR with normalization 905

can be written as: 906

Np(Wr) + 1 (12) 907

where Np(Wr) = Wr
∥Wr∥p . Additionally, trans- 908

formed entity embedding can be described as: 909

er = (Np(Wr) + 1)e (13) 910

where e is a original entity embedding. 911

C.4 Extension of RSCF 912

The shared affine transformation can be easily ex- 913

tended to Linear − 2 that is introduced in SFBR 914

by extending shared affine transformation We ∈ 915

Rn×n to We ∈ Rn×2n. Therefore, RSCF (Linear- 916
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Distance-Based Model
with Entity Transformation

WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

TransE-SFBR (Diag) (Liang et al., 2021) .242 .028 .548 .338 .240 .538
TransE-SFBR (Linear-2) (Liang et al., 2021) .263 .110 .495 .354 .258 .545
RotatE-SFBR (Diag) (Liang et al., 2021) .489 .437 .593 .351 .254 .549
RotatE-SFBR (Linear-2) (Liang et al., 2021) .490 .447 .576 .355 .258 .553

TransE-RSCF .267 .063 .550 .364 .266 .560
±.001 ±.002 ±.002 ±.001 ±.001 ±.001

TransE-RSCF (Linear-2) .343 .232 .499 .359 .262 .552
±.009 ±.014 ±.003 ±.001 ±.001 ±.001

RotatE-RSCF .493 .447 .584 .363 .268 .556
±.001 ±.001 ±.001 ±.000 ±.001 ±.001

RotatE-RSCF (Linear-2) .495 .452 .578 .364 .268 .556
±.001 ±.001 ±.001 ±.000 ±.000 ±.001

Table 11: Test performance of DBM-based RSCF and SFBR on FB15k-237 and WN18RR. Bold indicates the best
result, and underlined signifies the second best result.

Tensor Decomposition Model
with Eentity Transformation

WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

CP-DURA + SFBR (Liang et al., 2021) .485 .447 .561 .370 .274 .563 .582 .510 .711
RESCAL-DURA + SFBR (Liang et al., 2021) .500 .458 .581 .369 .276 .555 .581 .509 .712
ComplEX-DURA + SFBR (Liang et al., 2021) .498 .454 .584 .374 .277 .567 .584 .512 .712

CP-DURA + RSCF .486 .447 .561 .379 .287 .565 .585 .514 .711
±.001 ±.001 ±.001 ±.000 ±.000 ±.001 ±.000 ±.001 ±.001

RESCAL-DURA + RSCF .507 .467 .581 .381 .289 .562 .584 .511 .716
±.000 ±.000 ±.000 ±.000 ±.000 ±.000 ±.000 ±.000 ±.000

ComplEX-DURA + RSCF .503 .460 .588 .389 .296 .575 .590 .518 .719
±.001 ±.001 ±.002 ±.001 ±.002 ±.004 ±.002 ±.003 ±.002

Table 12: Test performance of TDM-based RSCF and SFBR on FB15k-237, WN18RR, and YAGO3-10. Bold
indicates the best result, and underlined signifies the second best result.

2) can be written as:917

Wr
Linear-2 =

[
diag(w1) diag(w2)
diag(w3) diag(w4)

]
(14)918

where Wr
Linear-2 ∈ Rn×n is ET built from the919

relation-specific change vector Np(rA) + 1 of920

RSCF that is notated as concatenation of diago-921

nal values of w1,w2,w3,w4 ∈ Rn/2.922

C.5 Complexity Analysis923

Table 13 presents the complexity comparison be-924

tween RSCF and other ETMs. In general, because925

the number of parameters in KGE methods is sig-926

nificantly influenced by the number of entities927

and relations, the parameter difference between928

RSCF and ETMs is marginal. Additionally, al-929

though RSCF requires more training time com-930

pared to other models, considering that the pro-931

posed KGE models assume an offline learning set-932

ting and have similar inference times to RSCF, this933

is not a significant drawback.934

C.6 Implementation Details935

When training the RSCF, we followed the exper-936

imental settings described in the SFBR (Liang937

et al., 2021). Following the settings of SFBR, RSCF938

and RSCF (Linear-2) are applied to both head939

and tail entities in DBM, and RSCF is applied 940

to only the head entity in TDM due to compu- 941

tational costs (Liang et al., 2021). For the same 942

reason, both head and tail entities are used for RT 943

in DBM, whereas only the head entity is used in 944

TDM. In FB15k-237, the entity/relation ratio and 945

the train/relation ratio are significantly lower com- 946

pared to the other two datasets, which restricts the 947

context information that each relation can obtain. 948

This restriction is more critical in TDM, which uses 949

only the head entity, and thus RT is not applied 950

to TDM on FB15k-237. The hyper-parameters in 951

DBM are consistent with the hyper-parameters 952

in Sun et al. (2018), and hyper-parameters of TDM 953

are consistent with the hyper-parameters in Zhang 954

et al. (2020a). The presented results of RSCF repre- 955

sent mean of the three runs for each model.] Experi- 956

ments for the DBM were conducted on an NVIDIA 957

3090 with 24GB of memory, while experiments for 958

the TDM were conducted on an NVIDIA 2080TI 959

with 11GB and an A100 with 40GB of memory 960

was used for both DBM and TDM. 961

D Appendix D 962

D.1 Special Cases with RSCF 963

Let hr, tr are transformed head and tail embed- 964

ding by RSCF, then the score function dr(h, r) of 965
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Model Training Time Inference Time # Params
WN18RR FB15k-237 WN18RR FB15k-237 WN18RR FB15k-237

TransE 45m 1h 30s 1m 20s 20.48M 14.78M
PairRE - 3h 30s 1m 20s - 22.52M
T-SFBR 1h 1h 15m 30s 1m 30s 20.49M 15.25M
CompoundE 2h 40m 2h 20m 30s 1m 20s 20.5M 9.58M
T-RSCF 3h 10m 5h 30m 30s 1m 50s 21.48M 18.78M

Table 13: Training time, inference time and number of parameters of RSCF and ETMs, T-SFBR (Diag) and T-RSCF
indicate TransE-SFBR and TransE-RSCF, respectively. Inference Time denotes inference time on test set. Both
training and inference time are measured on RTX3090.

TransE-RSCF can be expressed as:966

dr(h, r) = ∥hr + rht − tr∥ (15)967

The score function dr(h, r) of RotatE-RSCF can968

be expressed as:969

dr(h, r) = ∥hr ◦ rht − tr∥ (16)970

The score function dr(h, r) of RESCAL-RSCF can971

be expressed as:972

dr(h, r) = ∥hrrht∥ (17)973

In TDM, tail embeddings are not transformed ac-974

cording to the settings of SFBR in order to reduce975

computational costs. For the same reason, only the976

head entity is used for relation transformation.977
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Relation Group Relations

position

/sports/sports_team/roster./basketball/basketball_roster_position/position

/soccer/football_team/current_roster./soccer/football_roster_position/position

/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position

/sports/sports_team/roster./american_football/football_historical_roster_position/position_s

/sports/sports_team/roster./baseball/baseball_roster_position/position

/sports/sports_team/roster./american_football/football_roster_position/position

/american_football/football_team/current_roster./sports/sports_team_roster/position

/soccer/football_team/current_roster./sports/sports_team_roster/position

currency

/location/statistical_region/gdp_nominal_per_capita./measurement_unit/dated_money_value/currency

/film/film/estimated_budget./measurement_unit/dated_money_value/currency

/business/business_operation/operating_income./measurement_unit/dated_money_value/currency

/organization/endowed_organization/endowment./measurement_unit/dated_money_value/currency

/business/business_operation/revenue./measurement_unit/dated_money_value/currency

/business/business_operation/assets./measurement_unit/dated_money_value/currency

/location/statistical_region/rent50_2./measurement_unit/dated_money_value/currency

/education/university/local_tuition./measurement_unit/dated_money_value/currency

/location/statistical_region/gdp_real./measurement_unit/adjusted_money_value/adjustment_currency

/education/university/domestic_tuition./measurement_unit/dated_money_value/currency

/education/university/international_tuition./measurement_unit/dated_money_value/currency

/location/statistical_region/gdp_nominal./measurement_unit/dated_money_value/currency

/location/statistical_region/gni_per_capita_in_ppp_dollars./measurement_unit/dated_money_value/currency

/base/schemastaging/person_extra/net_worth./measurement_unit/dated_money_value/currency

film production

/film/film/costume_design_by

/film/film/executive_produced_by

/award/award_winning_work/awards_won./award/award_honor/award_winner

/tv/tv_program/program_creator

/film/film/film_art_direction_by

/film/film/music

/film/film/film_production_design_by

/film/film/other_crew./film/film_crew_gig/crewmember

/film/film/produced_by

/tv/tv_program/regular_cast./tv/regular_tv_appearance/actor

/film/film/edited_by

/film/film/written_by

/film/film/personal_appearances./film/personal_film_appearance/person

/film/film/story_by

/film/film/cinematography

/film/film/dubbing_performances./film/dubbing_performance/actor

/film/film/production_companies

film actor

/award/award_nominee/award_nominations./award/award_nomination/nominated_for

/tv/tv_network/programs./tv/tv_network_duration/program

/film/special_film_performance_type/film_performance_type./film/performance/film

/film/director/film

/tv/tv_personality/tv_regular_appearances./tv/tv_regular_personal_appearance/program

/film/film_set_designer/film_sets_designed

/tv/tv_writer/tv_programs./tv/tv_program_writer_relationship/tv_program

/film/actor/film./film/performance/film

/tv/tv_producer/programs_produced./tv/tv_producer_term/program

/media_common/netflix_genre/titles

/film/film_distributor/films_distributed./film/film_film_distributor_relationship/film
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/film/film_subject/films

people place

/music/artist/origin

/people/person/places_lived./people/place_lived/location

/people/person/place_of_birth

/government/politician/government_positions_held./government/government_position_held/jurisdiction_of_office

/people/deceased_person/place_of_death

/people/person/nationality

/people/deceased_person/place_of_burial

/people/person/spouse_s./people/marriage/location_of_ceremony

film place

/film/film/distributors./film/film_film_distributor_relationship/region

/film/film/featured_film_locations

/film/film/release_date_s./film/film_regional_release_date/film_release_region

/film/film/release_date_s./film/film_regional_release_date/film_regional_debut_venue

/film/film/country

/film/film/runtime./film/film_cut/film_release_region

/tv/tv_program/country_of_origin

/film/film/film_festivals

music role

/music/group_member/membership./music/group_membership/role

/music/artist/track_contributions./music/track_contribution/role

/music/artist/contribution./music/recording_contribution/performance_role

organization place

/organization/organization/headquarters./location/mailing_address/state_province_region

/organization/organization/place_founded

/user/ktrueman/default_domain/international_organization/member_states

/organization/organization/headquarters./location/mailing_address/country

/people/marriage_union_type/unions_of_this_type./people/marriage/location_of_ceremony

/base/schemastaging/organization_extra/phone_number./base/schemastaging/phone_sandbox/service_location

/government/legislative_session/members./government/government_position_held/district_represented

/organization/organization/headquarters./location/mailing_address/citytown

producer type

/tv/tv_producer/programs_produced./tv/tv_producer_term/producer_type

/film/film/other_crew./film/film_crew_gig/film_crew_role

/tv/tv_program/tv_producer./tv/tv_producer_term/producer_type

award category

/award/award_category/winners./award/award_honor/award_winner

/award/award_category/winners./award/award_honor/ceremony

/award/award_category/category_of

/award/award_category/nominees./award/award_nomination/nominated_for

/award/award_category/disciplines_or_subjects

Table 14: Clearly distinct relation groups that are selected from original TransE
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