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Abstract

As the use of predictive machine learning algo-
rithms increases in high-stakes decision-making,
it is imperative that these algorithms are fair
across sensitive groups. However, measuring and
enforcing fairness in real-world applications can
be challenging due to missing or incomplete sensi-
tive group information. Proxy-sensitive attributes
have been proposed as a practical and effective so-
lution in these settings, but only for parity-based
fairness notions. Knowing how to evaluate and
control for fairness with missing sensitive group
data for newer, different, and more flexible frame-
works, such as multiaccuracy and multicalibra-
tion, remains unexplored. In this work, we ad-
dress this gap by demonstrating that in the ab-
sence of sensitive group data, proxy-sensitive at-
tributes can provably be used to derive actionable
upper bounds on the true multiaccuracy and mul-
ticalibration violations, providing insights into a
predictive model’s potential worst-case fairness
violations. Additionally, we show that adjusting
models to satisfy multiaccuracy and multicalibra-
tion across proxy-sensitive attributes can signifi-
cantly mitigate these violations for the true, but
unknown, sensitive groups. Through several ex-
periments on real-world datasets, we illustrate that
approximate multiaccuracy and multicalibration
can be achieved even when sensitive group data
is incomplete or unavailable.
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1. Introduction
Predictive machine learning algorithms are increasingly
being used in high-stakes decision-making contexts such
as healthcare (Shailaja et al., 2018), employment (Freire
& de Castro, 2021), credit scoring (Thomas et al., 2017),
and criminal justice (Rudin et al., 2020). Although these
predictive models demonstrate impressive overall perfor-
mance, growing evidence indicates that they can often ex-
hibit biases and discriminate against certain sensitive groups
(Obermeyer & Mullainathan, 2019; Dastin, 2022; Li et al.,
2023). For instance, ProPublica’s investigation (Angwin
et al., 2022) revealed significant racial disparities in recidi-
vism risk assessment algorithms, which disproportionately
classified African Americans as high-risk for re-offending.
As the deployment of these algorithms increases, regulatory
bodies worldwide, including the US Office of Science and
Technology Policy (OSTP) (of Science & Policy, 2022),
European Union (Commission, 2021), and United Nations
(United Nations Educational & , UNESCO), have empha-
sized the importance of ensuring that predictive algorithms
avoid discrimination and uphold fairness.

These concerns have led to the emergence of algorithmic
fairness, a field dedicated to ensuring that predictive models
do not inadvertently discriminate against sensitive groups
defined by sensitive attributes such as race, age, or biologi-
cal sex. Unfortunately, measuring and controlling a model’s
fairness can be challenging in many real-world settings, as
sensitive group information is often incomplete or unavail-
able (Holstein et al., 2019; Garin et al.; Yi et al., 2025).
In certain contexts, like healthcare, privacy and legal reg-
ulations such as the HIPAA Privacy Rule restrict access
to sensitive data. In other cases, the information was not
collected because it was considered unnecessary (Weiss-
man & Hasnain-Wynia, 2011; Fremont et al., 2016; Zhang,
2018). Despite these obstacles, it remains crucial to eval-
uate a model’s fairness before and during its deployment.
This raises the question: how can we evaluate and promote
fairness when sensitive group information is imperfect or
missing altogether?

One popular approach, widely applied in healthcare (Brown
et al., 2016), finance (Zhang, 2018), and politics (Imai &
Khanna, 2016) is to utilize proxy attributes in place of true
attributes. Proxy methods have been immensely effective
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in evaluating and controlling for traditional parity-based
notions of fairness (Diana et al., 2022; Bharti et al., 2024;
Awasthi et al., 2021; Prost et al., 2021; Zhao et al., 2022;
Awasthi et al., 2020; Gupta et al., 2018; Kallus et al., 2022),
such as demographic parity (Calders et al., 2009), equalized
odds (Hardt et al., 2016), and disparate mistreatment (Zafar
et al., 2017), which all aim to equalize model statistics
across protected groups.

While enforcing parity is desirable in some settings, it can
also lead to undesirable trade-offs. For instance, in breast
cancer screening, incidence rates vary by age, with older
women generally at higher risk than younger women (Kim
et al., 2025). Thus, equalizing a model’s false positive rates
across age groups might reduce the sensitivity of cancer
detection in older women, who are more likely to have the
disease. Conversely, equalizing false negative rates might
lead to unnecessary biopsies by increasing false positive
rates in certain groups. Instead, a more appropriate fairness
criterion would be to ask that the model’s risk predictions ap-
proximately reflect true probabilities within each age group.

These types of domain-specific challenges have led to the
development of two newer fairness notions: multiaccuracy
and multicalibration (Kim et al., 2019; Gopalan et al., 2022;
Hébert-Johnson et al., 2018). Instead of enforcing parity,
these methods ensure that model predictions are unbiased
and well-calibrated across groups. They can be applied
to complex, overlapping sensitive groups—such as those
defined by race and gender—while maintaining high pre-
dictive accuracy and ensuring the model remains useful
in practice, offering significant advantages over traditional
parity-based metrics. As a result, enforcing multiaccuracy
or multicalibration is powerful and often preferable in many
contexts (Kim et al., 2019; Hébert-Johnson et al., 2018).
However, a key challenge remains: when sensitive group
data is missing, how can we build provably multiaccurate
and multicalibrated models leveraging proxies?

Tackling this issue is essential for developing models that
are fair across multiple complex groups without sacrificing
accuracy or utility. In this work, we address this gap. We
study how to estimate multiaccuracy and multicalibration
fairness violations without access to true sensitive attributes.
We show that proxy-sensitive attributes can be used to de-
rive computable upper bounds on these violations, capturing
the model’s worst-case fairness. Additionally, we demon-
strate that post-processing a model to satisfy multiaccuracy
or multicalibration across proxies effectively reduces the
worst-case fairness violations, offering practical insights. In
conclusion, we demonstrate that even when sensitive infor-
mation is incomplete or inaccessible, proxies can greatly
help in providing approximate multiaccuracy and multicali-
bration protections in a useful and meaningful way.

1.1. Related Work

Using proxy-sensitive attributes to measure and enforce
model fairness has been extensively studied for various
parity-based fairness notions.

Measuring fairness. Measuring a model’s true fairness
through proxies has become an important area of research.
Chen et al. (2019) were among the first to tackle this chal-
lenge by studying the error in measuring demographic parity
using proxies derived from thresholding the Bayes optimal
predictor for the sensitive attribute. Awasthi et al. (2021)
focus on equalized odds, identifying key properties that
proxies must satisfy to accurately estimate true equalized
odds disparities. Kallus et al. (2022) further examine the
ability to identify traditional parity-based fairness violations.
They demonstrate that, under general assumptions about
the distribution and classifiers, it is usually impossible to
pinpoint fairness violations accurately using proxies. Addi-
tionally, by assuming access to the Bayes optimal predictor
for the sensitive attribute, they provide tight upper and lower
bounds on various fairness criteria, thereby characterizing
the feasible regions for these violations. More generally,
considering any proxy model instead of the Bayes optimal,
Zhu et al. (2023) shows that estimating true parity-based
fairness disparities using proxies results in errors propor-
tional to the proxy error and the true fairness disparity. Most
recently, Bharti et al. (2024) address a setting with more lim-
ited information compared to Zhu et al. (2023), providing
computable and actionable upper bounds on true equalized
odds disparities based on the proxy’s misclassification error
and proxy group-wise predictor statistics.

Enforcing fairness. An equally important question is how
to ensure fairness using proxies. Awasthi et al. (2020) exam-
ine the post-processing method for equalized odds (Hardt
et al., 2016) when noisy proxies are used instead of true
sensitive attributes. They show that, under conditional inde-
pendence assumptions, using proxies in the post-processing
method results in a predictor with reduced equalized odds
disparity. Wang et al. (2020), working with a slightly dif-
ferent noise model, propose robust optimization approaches
to train fair models using noisy sensitive features. Hav-
ing proven that fairness violations are often unidentifiable,
Kallus et al. (2022) take a different approach and focus
on reducing the worst-case violations. Under additional
smoothness assumptions they derive tighter feasible regions
for fairness disparities, offering improved worst-case guar-
antees for fairness violations. More recently, Bharti et al.
(2024) characterize the predictor that has optimal worst-case
violations and provide a generalized version of Hardt et al.
(2016)’s method that returns such a predictor. Taking a
different perspective, Lahoti et al. (2020) avoid relying on
proxies altogether. Instead, they propose solving a minimax
optimization problem over a vast set of subgroups, reasoning

2



Multiaccuracy and Multicalibration via Proxy Groups

that any good proxy for a sensitive feature would naturally
be included in this set. Diana et al. (2022) address the
problem of learning proxies that enable downstream model
developers to train models that satisfy common parity-based
fairness notions. They demonstrate that this entails con-
structing a multiaccurate proxy and introduce a general
oracle-efficient algorithm to learn such proxies.

1.2. Our Contributions

There exists a rich line of work that studies how to evaluate
and enforce parity-based notions of fairness when sensitive
attribute data is missing via proxies. These, however, do not
extend to settings where multiaccuracy and multicalibration
are more appropriate, limiting their applicability in data-
scare regimes. In this work, we address this issue. Our main
contributions are the following:

1. We study the problem of estimating multiaccuracy and
multicalibration violations of a predictive model with-
out access to sensitive group information.

2. We derive computable upper bounds for multiaccuracy
and multicalibration violations using proxy-sensitive
attributes.

3. We show that post-processing a model to satisfy multi-
accuracy and multicalibration across proxies reduces
the worst-case violations, allowing us to provide mean-
ingful fairness guarantees without access to sensitive
group data.

Organization. The remainder of the paper is structured as
follows. In Section 2, we introduce the necessary notation
and formalize the setting. Section 3 provides background
on multiaccuracy and multicalibration. Our main theoretical
results are presented in Section 4 and Section 5, where we
establish computable upper bounds on the multiaccuracy
and multicalibration violations and demonstrate how to min-
imize them. Experimental results are detailed in Section 6.
Finally, in Section 7 we discus the implications of our work
and provide closing remarks.

2. Preliminaires
Notation. We consider a binary classification setting 1 with
a data distribution D supported on X ×Z ×Y , where X ⊆
Rd and Z ⊆ RK represent a d-dimensional feature space
and K-dimensional sensitive group space, respectively, and
Y = {0, 1} denotes the binary label space. For an individual
represented by the pair (X,Z), X is a vector of features
and Z is a vector of sensitive features (e.g., race, biological,
age). We denote G = {g : X × Z 7→ {0, 1}} as the set

1One can also extend this to a K-class problem using a one-vs-
all approach.

of functions that define complex, potentially intersecting
groups in X × Z . For any g ∈ G, g(X,Z) = 1 indicates
that the individual (X,Z) belongs to group g. For example,
let X1 be an individual’s credit score and let Z1 and Z2

represent the individual’s age and membership in the African
American group. Then, g(X,Z) = 1{X1 > 700 ∧ Z1 >
40 ∧ Z2 = 1} specifies the group of all African Americans
over the age of 40 with a credit score over 700. In this way, it
is easy to define arbitrary overlapping groups defined by the
intersection of basic attributes and other features. Finally,
in our setting, a model is a function f : X → R that maps
from the feature space to some discrete domain R ⊆ [0, 1].
We denote its image as Im(f) = {f(X) : X ∈ X} and
assume that |Im(f)| < ∞.

Problem Setting. In this work, the primary objective is
to assess whether a model f is fair with respect to a set of
sensitive groups G without having access to the functions in
G to determine group membership. Formally, and similar to
previous work (Awasthi et al., 2021; Kallus et al., 2022), we
consider a setting where we do not have access to samples
(X,Z, Y ) from the complete distribution D – and thus we
are unable to use the true set of grouping functions G since
their domain is supported X ×Z . Instead, we assume access
to a sufficient number of samples (X,Y ) from DXY , the
marginal distribution over X ×Y , which allow us to reliably
evaluate the overall performance of the predictor f via its
mean-squared error

MSE(f) = E
(X,Y )∼DXY

[(Y − f(X))2]. (1)

Additionally, we assume a proxy developer that has access
to samples (X,Z) from DXZ , the marginal distribution
over X × Z . They provide a set of learned proxy functions
Ĝ = {ĝ : X 7→ {0, 1}} for G that only use features X ,
allowing us to determine proxy group membership. More-
over, via the proxy developer, we know how well any proxy
ĝ ∈ Ĝ approximates its associated true g ∈ G through its
misclassification error,

err(ĝ) = P
(X,Z)∼DXZ

[ĝ(X) ̸= g(X,Z)]. (2)

Through this setup, we are modeling real-world situations
where we lack information about individuals’ basic sensi-
tive attributes, such as sex and race, preventing us from
accurately identifying individuals’ membership in complex
intersecting groups (for example, white women over the
age of 40). Instead, we rely on proxies to (approximately)
represent all groups. Importantly, we do not make stringent,
unverifiable assumptions about these proxy functions, un-
like other studies (Prost et al., 2021; Awasthi et al., 2020;
2021); we only consider knowing their error rates, err(ĝ).

With our setting fully described, we now turn to our main
objective: assessing the fairness of the model f with re-
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spect to G. In this work we focus on two fairness con-
cepts—multiaccuracy and multicalibration—which we now
formally define.

3. Multiaccuracy and Multicalibration
Multiaccuracy. Multiaccuracy (MA) is a notion of fairness
originally introduced by (Kim et al., 2019; Hébert-Johnson
et al., 2018). For any sensitive group g ∈ G, MA evaluates
the bias of a model f , conditional on membership in g via

AED(f, g) =

∣∣∣∣ED[g(X,Z)(f(X)− Y )]

∣∣∣∣ (3)

and requires that AED(f, g) be small for all groups g ∈ G.

Definition 3.1 (Multiaccuracy (Kim et al., 2019)). Fix a
distribution D and let G be a set of groups. A model f is
(G, α)-multiaccurate if

AEmax
D (f,G) := max

g∈G
AED(f, g) ≤ α (4)

(G, α)-MA requires that the predictions of f be approxi-
mately unbiased overall and on every group. Building on
this, (Hébert-Johnson et al., 2018) introduced a stronger
notion of group fairness known as multicalibration (MC),
which demands unbiased and calibrated predictions. Cen-
tral to evaluating MC is the expected calibration error (ECE)
for a group g ∈ G

ECED(f, g) = E
v∼Df

∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]

∣∣∣∣
where Df is the distribution of the predictions made by f
under D. MC requires that ECED(f, g) be small for all
groups g ∈ G.

Definition 3.2 (Multicalibration (Hébert-Johnson et al.,
2018)). Fix a distribution D and let G be a set of groups. A
model f is (G, α)-multicalibrated if

ECEmax
D (f,G) := max

g∈G
ECED(f, g) ≤ α. (5)

This is an l1 notion of MC as studied in (Gopalan et al.,
2022). There also exist l2 (Globus-Harris et al., 2023b)
and l∞ (Hébert-Johnson et al., 2018) variants. (G, α)-MC
requires that f ’s predictions be approximately calibrated on
all groups defined by G. Note, MC is stronger than MA
because intuitively MC requires MA on every level set of f .

Having presented these definitions, the problem we face
is now clear: Ideally, we would like to evaluate AEmax

D
and ECEmax

D . However, this requires access to samples
(X,Z, Y ) ∼ D and the functions G, neither of which we
assume to have. As alluded to before, no method exists that

can guarantee–let alone, correct–that a predictor is (G, α)-
MA/MC in the absence of ground truth groups G. Fortu-
nately, in the following sections, we demonstrate that with
proxies, one can successfully circumvent these limitations
and still provide meaningful guarantees.

4. Bounds on Multigroup Fairness Violations
We will now demonstrate that is still possible to derive
computable and useful upper bounds for the MA and MC
violations of a model f across the true groups G, even in the
absence of true group information.

Our first result provides computable upper bounds on
AED(f, g) and ECED(f, g) for any group g.

Lemma 4.1. Fix a distribution D and model f . For any
group g and its corresponding proxy ĝ,

AED(f, g) ≤ F(f, ĝ) + AED(f, ĝ) (6)
ECED(f, g) ≤ F(f, ĝ) + ECED(f, ĝ) (7)

where

F(f, ĝ) = min
(

err(ĝ),
√

MSE(f) · err(ĝ)
)
. (8)

Furthermore the upper bounds are tight.

A proof of this result is provided in Appendix B.1. We now
make a few remarks. First, the upper bounds on the true
MA/MC violations are tight: there exist non-trivial joint dis-
tributions over (f(X), g(X), ĝ(X), Y )—specifically, those
for which err(ĝ) > 0 and MSE(f) > 0—such that the
bounds are attained with equality. Please see Appendix B.1
for a comprehensive discussion regarding these statements.
Second, in our setting, both bounds can be directly evaluated
because (1) we know err(ĝ) for all g ∈ G via the proxy de-
veloper, who has access to G and a sufficient number of sam-
ples (X,Z) from DXZ to compute err(ĝ); and (2) we can
reliably compute MSE(f), AED(f, ĝ), and ECED(f, ĝ) be-
cause we have access to a sufficient number of samples
(X,Y ) from DXY .

This result aligns with intuition, showing how the relation-
ship between a proxy ĝ and the model f constrains the
maximum possible values of AED(f, g) and ECED(f, g).
If the proxy ĝ is highly accurate in that it predicts the true
group g better than f predicts the true label Y , i.e. if

err(ĝ) < MSE(f), (9)

then F(f, ĝ) = err(ĝ), and the true violations AED(f, ĝ)
and ECED(f, ĝ) are approximately bounded by their proxy
estimates. Conversely, if f is highly accurate in predicting
the label Y but the proxy is weaker, so that

MSE(f) < err(ĝ), (10)
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Algorithm 1 Multiaccuracy Regression

1: Input: Initial model f and set of groups G
2: Solve

f̂ ∈ argmin
λ∈R|G|

MSE(f̂)

s.t. f̂(X,Z) = f(X) +
∑
g∈G

λg · g(X,Z)

3: Return f̂

then F(f, ĝ) =
√

MSE(f) · err(ĝ), and one can attain a
better bound by considering a factor of

√
MSE(f) · err(ĝ)

instead of err(ĝ). Naturally, as MSE(f) decreases, the
maximum possible values of AED(f, ĝ) and ECED(f, ĝ)
decreases as well.

Most importantly, with this result, we can provide an upper
bound for the true MA and MC violations of f across G.

Theorem 4.2. Fix a distribution D and model f . Let G be
a set of true groups and Ĝ be its associated set of proxies.
Then, f is (G, β(f, Ĝ))-MA and (G, γ(f, Ĝ))-MC where

β(f, Ĝ) = max
ĝ∈Ĝ

F(f, ĝ) + AED(f, ĝ) (11)

γ(f, Ĝ) = max
ĝ∈G

F(f, ĝ) + ECED(f, ĝ) (12)

This result directly follows from Lemma 4.1, with a com-
plete proof provided in Appendix B.2. It is particularly valu-
able because, even without directly evaluating the quantities
of interest, AEmax

D (f,G) and ECEmax
D (f,G), we can still

evaluate these worst-case violations, which offers practical
utility. For instance, if we need to ensure that f is (G, α)-
MC before deployment, we can proceed confidently even
without direct access to G, provided that γ(f, Ĝ) < α. Con-
versely, if the worst-case violations are large, this suggests
that f may potentially be significantly biased or uncalibrated
for certain groups g.

In a scenario where the worst-case violations are large, as
model developers, we should pause deployment and ask:
if it is the case that β(f, Ĝ) or γ(f, Ĝ) are large, can we
reduce them such that we can provide better guarantees on
the worst-case MA and MC violations of f? We show that
it is possible in the following section.

5. Reducing Worst-Case Violations
The results from the previous section allow us to upper
bound the MA and MC violations using proxies. Now, we
show that these violations can be provably reduced, yielding
stronger worst-case guarantees. Recall that we have a fixed
set of proxies Ĝ, a model f , and access to samples (X,Y ).

Algorithm 2 Multicalibration Boosting

1: Input: Initial model f , set of groups G, and α > 0
2: Let m = ⌈ 1

α⌉, t = 0, f0 := f
3: while

max
g∈G

P[g(X,Z) = 1] · E[∆2
v,g|g(X,Z) = 1] > α

4: Set

pg,v = P[g(X,Z) = 1, ft(X) = v]

(vt, gt) = arg max
v∈[ 1

m ],g∈G
pg,v ·∆2

v,g ≥ α

Svt,gt = {X ∈ X : ft(X) = v, gt(X,Z) = 1}
ṽt = E[Y |ft(X) = vt, gt(X,Z) = 1]

v′t = arg min
v∈[ 1

m ]
|ṽt − v|

ft+1(X) =

{
v′t, if X ∈ Svt,gt

ft(X) otherwise

t = t+ 1

5: end while
6: Let T := t, f̂ := fT
7: Return f̂

Within the bounds β(f, Ĝ) and γ(f, Ĝ), there are only two
quantities we can modify by adjusting f : the mean squared
error MSE(f) and either AED(f, ĝ) or ECED(f, ĝ). Since
we lack access to the true grouping functions G and samples
(X,Z) ∼ DXZ , we cannot reduce the proxy errors err(ĝ).
Thus, the question is, what modifications can be made to f
such that the updated f̂ has smaller bounds? We answer this
question for the bound on MC in the following theorem.
Theorem 5.1. Fix a distribution D, initial model f , and set
of proxy groups Ĝ. If a model f̂ satisfies

ECEmax
D (f̂ , Ĝ) < min

ĝ∈Ĝ
ECED(f, ĝ) (13)

MSE(f̂) ≤ MSE(f) (14)

then, it will have a smaller worst-case MC violation, i.e.

γ(f̂ , Ĝ) ≤ γ(f, Ĝ). (15)

An identical result for MA is given in Appendix A and
proofs for both results are provided in Appendix B.3. This
results simply states that if we can obtain a new model f̂
that 1) is (Ĝ, α)-MC at level α = minĝ∈Ĝ ECED(f, ĝ) and
2) has smaller MSE, then it is guaranteed to have a smaller
worst-case violation. Fortunately, both objectives can be
nearly achieved using Algorithm 1, proposed by Gopalan
et al. (2022), and Algorithm 2, introduced by Roth (2022),
which produce MC and MC predictors, respectively.
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Group err(ĝ)

Black Women 0.027
White Women 0.122
Asian 0.060
Seniors 0.000
Women 0.000
Multiracial 0.047

Table 1. Proxy errors for ACSIncome

Group err(ĝ)

Black Women 0.005
White Women 0.046
Asian 0.000
Multiracial 0.000
Black Adults 0.000
Women 0.079

Table 2. Proxy errors for ACSPubCov

Group err(ĝ)

Women 0.027
White 0.092
Asian 0.068
Black 0.039
Asian Men 0.039
Black Women 0.020

Table 3. Proxy errors for CheXpert

Algorithm 1 outlines a simple algorithm for MA. The follow-
ing theorem establishes that the algorithm produces a model
f̂ that satisfies MA while also guaranteeing an improvement
or no deterioration in MSE.
Theorem 5.2. Fix a distribution D, predictor f , and set of
groups G. Algorithm 1 returns a model f̂ that is (0,G)-MA.
Moreover,

MSE(f̂) ≤ MSE(f). (16)

A proof of this result can be found in (Detommaso et al.,
2024), with finite-sample guarantees discussed in (Roth,
2022). Algorithm 1 updates the model f̂ by solving a stan-
dard linear regression problem, where the features are the
predictions of the initial model f and grouping functions g.

While Algorithm 1 solves a optimization problem to gener-
ate a MA model in a single step, Algorithm 2 is an iterative
method to ensure MC. Algorithm 2 starts by checking if f
is α-MC via the group average squared calibration error

E[∆2
v,g|g(X,Z) = 1] (17)

where ∆v,g = E[Y − f(X)|f(X) = v, g(X,Z) = 1]. If
this exceeds α, it identifies the conditioning event where the
calibration error is the largest and refines f ’s predictions. It
iterates like this until convergence and this process returns
a new model f̂ that is α-MC and has an MSE that is close,
potentially even lower, than the MSE of the initial model f .
Theorem 5.3. Fix a distribution D, predictor f and set
of groups G. Algorithm 2 stops after T < 4

α2 rounds and
returns model f̂ that is (

√
α,G)-MC. Moreover,

MSE(f̂) ≤ MSE(f) + (1− T )
α2

4
+ α (18)

A proof, along with with finite-sample guarantees can be
found in (Globus-Harris et al., 2023a; Roth, 2022).

Having introduced these algorithms for obtaining multiac-
curate and multicalibrated models f̂ , we now have a direct
path to reducing worst-case violations. By applying Algo-
rithm 1 or Algorithm 2 (at an appropriate level α) to our
initial model f using the proxies Ĝ—that is, enforcing multi-
accuracy or multicalibration with respect to the proxies—we

can systematically reduce worst-case violations on the true
groups G. This simple yet effective approach ensures al-
lows us to still provide meaningful fairness guarantees and
reliable predictions across sensitive subpopulations.

6. Experimental Results
We illustrate various aspects of our theoretical results on
two tabular datasets, ACSIncome and ACSPublicCoverage
(Ding et al., 2021), as well as on the CheXpert medical
imaging dataset (Irvin et al., 2019). For the ACS datasets,
we use a fixed 10% of the samples as the evaluation set.
The remaining 90% of the data is split into training and
validation sets, with 60% used for training the model f and
proxies Ĝ and 30% for adjusting f . All reported results are
averages over five train/validation splits on the evaluation
set. For CheXpert, we use the splits provided by (Glocker
et al., 2023) for training, calibration, and evaluation. The
results and metrics are computed on the evaluation set. We
report results for MC in the main body of the paper and
defer those for MA to Appendices C and E because MC
is a stronger notion that implies MA. The code necessary
to reproduce these experiments is available at https://
github.com/Sulam-Group/proxy_ma-mc.

6.1. ACS Experiments

For the two following tabular data experiments we use the
ACS dataset, a larger version of the UCI Adult dataset. In
particular, we use the 2018 California data, which contains
approximately 200,000 samples. We follow Hansen et al.
(2024) and define multiple sensitive groups G using basic
sensitive attributes Z (e.g., sex and race, which model
developers aim not to discriminate towards), along with
certain features X (e.g., age). Examples of groups g ∈ G
include white women and black adults. For both
experiments, we simulate missing sensitive attributes by
excluding some Zi from the data we use to train our predic-
tive model f . Instead, with an auxiliary dataset of samples
(X,Z) and the true set of grouping functions G, we obtain
a set of proxy functions Ĝ to approximate G.

For our initial model f , we report the worst-case violations,
which we can evaluate in our setting. To demonstrate that

6

https://github.com/Sulam-Group/proxy_ma-mc
https://github.com/Sulam-Group/proxy_ma-mc


Multiaccuracy and Multicalibration via Proxy Groups

g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10

Groups

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

EC
E(

f,g
)

MC Violations and Bounds 
 (Before Adjustment)

True Violation
Upper Bound

g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10

Groups

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

EC
E(

f a
dj

, g
)

MC Violations and Bounds 
 (After Adjustment)

True Violation
Upper Bound

(a) ECE, ECEmax (dotted red line), and worst case violations
(dotted blue line) of the original model f and adjusted model fadj
on ACS Income. Here, f is a decision tree.
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(b) ECE, ECEmax (dotted red line), and worst case violations
(dotted blue line) of the original model f and updated model fadj
on ACSPubcov. Here, f is a decision tree.

enforcing MA and MC with respect to Ĝ provably reduces
our upper bounds, we apply Algorithm 1 and Algorithm 2
to obtain an adjusted predictor fadj and report its worst-
case violations as well. Additionally, for both the initial
model f and adjusted model fadj we report the AE and
ECE, with respect to the true groups g ∈ G, along with
their maximums, AEmax and ECEmax. Recall that in our
setting, we cannot actually evaluate these quantities but we
report them to showcase that they lie under our bounds,
illustrating the validity of our theoretical results. For these
tabular experiments, we model f with a logistic regression
model, a decision tree, and Random Forest. We report the
results for the decision tree in the following sections and
defer the remainder to Appendices C and E.

6.1.1. ACSINCOME

For this experiment, we consider the task of predicting
whether working adults living in California have a yearly in-
come that exceeds $50,000. Examples of features X include
occupation and education. To simulate missing sen-
sitive attributes, we exclude the race attribute.

In Table 1, we report the errors of the learned proxies Ĝ
for specific groups. For groups that do not depend on
race, such as seniors and women, their respective
proxies ĝ are perfectly accurate, exhibiting zero misclas-
sification error. However, for groups like multiracial
and white women, the proxies exhibit some error, albeit
small. This proves to be useful in providing meaningful
guarantees on how multiaccurate and multicalibrated the
model f may potentially be with respect to the true (but
unobserved) groups G.

Figure 1a showcases the utility of our bounds. Notably, the
worst-case violation (dotted red line) allows us to certify that
the initial model is approximately 0.21-multicalibrated with
respect to the true groups G. This is indeed practically useful
as it enables practitioners to obtain a certificate on the MC
violation without having access to the true sensitive group
information. Additionally, the right-hand graph in Figure 1a

highlights the benefit of applying Algorithm 2 and multical-
ibrating the initial model f with respect to the proxy groups
Ĝ. After adjusting f , the upper bound decreases, allowing
us to certify that the resulting model fadj is approximately
0.13-multicalibrated–a substantial improvement of 38%.

6.1.2. ACSPUBLICCOVERAGE (ACSPUBCOV)

In this experiment, we consider the task of predicting
whether low-income individuals (< $30,000) , not eligi-
ble for Medicare, have coverage from public health insur-
ance. Examples of features X include age, education,
income, and more. To simulate missing sensitive attributes,
we exclude the sex attribute.

In Table 2, we report the errors of the learned proxies Ĝ for
specific groups. Notably, for groups independent of sex,
such as asian and multiracial, the proxies ĝ are per-
fectly accurate, exhibiting zero misclassification error. How-
ever, for groups like black women and white women,
the proxies exhibit some error, though they are small. This
arises because, although the proxies functions ĝ are not
explicit functions of sex attribute, there exists a feature,
fertility, that indicates whether an individual has given
birth within the past 12 months and serves as a good predic-
tor of sex. This is a prime example of a real-world setting
where, even though sensitive attributes may be missing,
strong proxies can still enable us to determine true sensitive
group membership with high accuracy.

In Figure 1b, we show the results of applying Algorithm 2 to
multicalibrate the initial model f with respect to the proxies
Ĝ. Notably, our approach allows us to certify that the initial
model is approximately 0.25-MC with respect to the true
groups G despite not having access to them. This result high-
lights the utility of our method, as it enables practitioners
to obtain performance guarantees without needing the true
group information. Furthermore, after applying Algorithm 2
to f , the resulting model fadj is certified to be approximately
0.09-MC, thereby providing a stronger guarantee.
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(a) ECE, ECEmax (dotted red line), and worst case violations
(dotted blue line) of the original model f and adjusted model fadj
on CheXpert. Here f is a decision tree trained on embeddings of a
DenseNet-121 model pretrained on ImageNet.
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(b) ECE, ECEmax (dotted red line), and worst case violations
(dotted blue line) of the original, unadjusted, logistic regression
model (left) and end-to-end trained DenseNet-121 model (right).

6.2. CheXpert

CheXpert is a large public dataset for chest radiograph inter-
pretation, with labeled annotations for 14 observations (pos-
itive, negative, or unlabeled) including cardiomegaly,
atelectasis, and several others. The dataset contains
self-reported sensitive attributes including race, sex, and
age. Following the set up of Glocker et al. (2023), we work
with a sample containing a total of 127,118 chest X-ray
scans and consider the task of predicting the presence of
pleural effusion in the X-rays.

We consider all 14 groups that can be made from conjunc-
tions of sex and race. Examples of groups g ∈ G include
black men, asian women, white women, etc. In
this example, we assume that we do not have direct knowl-
edge of patient’s self-reported sex or race when train-
ing or evaluating our model f (as is common for privacy
reasons). Instead, with an auxiliary dataset with samples
(X,Z) we use the X-rays to learn proxy functions for sex
and race. We then use them to construct proxies for all
conjunctions as well. In Table 3, we report the proxy errors
for specific groups.

We consider three different models for f . The first is a
decision tree classifier trained on features extracted from
a DenseNet-121 model (Huang et al., 2017) pretrained on
ImageNet (Deng et al., 2009). The second is a linear model
(Breiman, 2001) trained on the same features. The third is a
DenseNet-121 trained end-to-end on the X-rays.

Figure 2a illustrates the results for the decision tree model.
Before any adjustments, our worst-case violation serves
as an early warning that the model f may be significantly
uncalibrated on certain groups, with a violation as large as
α ≈ 0.42. In a medical setting like this, such a finding is cru-
cial, as it indicates that our predictions could be either overly
confident or underconfident on sensitive groups. On the
other hand, the right-hand graph of Figure 2a demonstrates
the practical benefit of applying Algorithm 2 to multicali-

brate the initial model f with respect to our highly accurate
proxies Ĝ. After a straightforward adjustment, the upper
bound on the worst-case violation decreases significantly,
certifying that the adjusted model fadj is approximately 0.13-
MC with respect to the true groups.

Figure 2b presents the results for the logistic regression and
fully-trained DenseNet models. In these cases, the worst-
case violations for both models indicate that they are guar-
anteed to be approximately 0.11 and 0.12-multicalibrated
with respect to the true groups. Notably, both models are ap-
proximately 0.03-multicalibrated with respect to the proxies.
Thus, further adjustments provide negligible improvements.

7. Conclusion
In this work, we address the challenge of measuring multiac-
curacy and multicalibration with respect to sensitive groups
when sensitive group data is missing or unobserved. By
leveraging proxy-sensitive attributes, we derive actionable
upper bounds on true the multiaccuracy and multicalibration
violations, offering a principled approach to assessing worst-
case fairness violations. Furthermore, we demonstrate that
adjusting models to be multiaccurate or multicalibrated with
respect to proxy-sensitive attributes can significantly reduce
these upper bounds, thereby providing useful guarantees on
multiaccuracy and multicalibration violations for the true,
but unknown, sensitive groups.

Through empirical validation on real-world datasets, we
show that multiaccuracy and multicalibration can be approx-
imated even in the absence of complete sensitive group data.
These findings highlight the practicality of using proxies to
assess and enforce fairness in high-stakes decision-making
contexts, where access to demographic information is often
restricted. In particular, we illustrate the practical benefit of
enforcing multiaccuracy and multicalibration with respect to
proxies, providing practitioners with a simple and effective
tool to improve fairness in their models.
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Naturally, multiaccuracy and multicalibration may not be
the most appropriate fairness metrics across all settings.
Nonetheless, whenever these notions are relevant, our meth-
ods offer, for the first time, the possibility to provide cer-
tificates and strengthen them without requiring access to
ground truth group data. Lastly, note that without our rec-
ommendations of correcting for worst-case fairness with
proxies, models trained on this data can inadvertently learn
these sensitive attributes indirectly and base decisions on
them, leading to potential negative outcomes. Our results
and methodology prevent this by providing a principled
approach to adjust models and reduce worst-case multiaccu-
racy and multicalibration violations.

Impact Statement
In this work, we propose an effective solution to a techni-
cal problem: estimating and controlling for multiaccuracy
and multicalibration using proxies. While proxies can be
controversial and pose risks—such as reinforcing discrimi-
nation or compromising privacy—predictive models often
learn sensitive attributes indirectly, leading to unintended
harm. When used carefully, proxies can help mitigate these
risks, as we demonstrate in this work. However, deploying
proxies in real-world scenarios requires a careful evalua-
tion of trade-offs through discussions with policymakers,
domain experts, and other stakeholders. Ultimately, proxies
should be employed responsibly and solely for assessing
and promoting fairness.
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A. Additional Theoretical Results
Here we present a version of Theorem 5.1 for multiaccuracy.

Theorem A.1. Fix a distribution D, initial model f , and set of proxy groups Ĝ. If a model f̂ satisfies

AEmax(f̂ , Ĝ) < min
ĝ ∈Ĝ

AED(f, ĝ) (19)

MSE(f̂) ≤ MSE(f) (20)

then, it will have a smaller worst-case MA violation, i.e. β(f̂ , Ĝ) ≤ β(f, Ĝ).

A proof of this result is provided in Appendix B.3.

B. Proofs
B.1. Proof of Lemma 4.1

Proof. Throughout these proofs, denote

µg
i,j = P[g(X,Z) = i, ĝ(X) = j] and µg

i,j(v) = P[g(X,Z) = i, ĝ(X) = j | f(X) = v]. (21)

We begin with proving the result for multiaccuracy.

Step 1: Establishing the Multiaccuracy Bound

Fix a distribution D and predictor f . Consider any group g ∈ G and its corresponding proxy ĝ ∈ Ĝ. Then,

AED(f, g) =

∣∣∣∣E[g(X,Z)(f(X)− Y )]

∣∣∣∣ (22)

=

∣∣∣∣E[g(X,Z)(f(X)− Y )]− E[ĝ(X)(f(X)− Y )] + E[ĝ(X)(f(X)− Y )]

∣∣∣∣ (23)

≤
∣∣∣∣E[g(X,Z)(f(X)− Y )]− E[ĝ(X)(f(X)− Y )]

∣∣∣∣+ ∣∣∣∣E[ĝ(X)(f(X)− Y )]

∣∣∣∣ (24)

=

∣∣∣∣E[g(X,Z)(f(X)− Y )− ĝ(X)(f(X)− Y )]

∣∣∣∣+ AED(f, ĝ) (25)

=

∣∣∣∣E[(g(X,Z)− ĝ(X)) · (f(X)− Y )]

∣∣∣∣+ AED(f, ĝ) (26)

≤ E[|g(X,Z)− ĝ(X)| · |f(X)− Y )|] + AED(f, ĝ) (27)

≤ min
(√

E[|g(X,Z)− ĝ(X)|2] · E[|f(X)− Y |2], E[|g(X,Z)− ĝ(X)|]
)
+ AED(f, ĝ) (28)

= min
(√

MSE(f) · err(ĝ), err(ĝ)
)
+ AED(f, ĝ). (29)

Here we applied the triangle inequality in line 24, Jensen’s inequality in line 27, and Holder’s inequality in line 28.

Step 2: Tightness of the Multiaccuracy Bound

We now show these bounds are tight. To be precise, we will prove that there exists a joint distribution over the random
variables (f(X), Y, g(X,Z), ĝ(X)) for which these bounds hold with equality.

Consider a group g ∈ G and its corresponding proxy ĝ ∈ Ĝ. First, consider the scenario where MSE(f) ≤ err(ĝ) so that by
the first result of Lemma 4.1 we have

AED(f, g) ≤ AED(f, ĝ) +
√

err(ĝ) ·
√

MSE(f). (30)

Consider the following data generating process:

• Conditioned on the event {g(X,Z) = ĝ(X)}, one has f(X) = Y ,
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• Conditioned on the event {g(X,Z) = 1, ĝ(X) = 0}, one has that f(X) =

√
MSE(f)√
err(ĝ)

and Y = 0,

• µg
0,1 = 0 so that err(ĝ) = µg

1,0.

Then,

E[g(X,Z)(f(X)− Y )] = E[f(X)− Y | g(X,Z) = 1, ĝ(X) = 1]µg
1,1 + E[f(X)− Y | g(X,Z) = 1, ĝ(X) = 0]µg

1,0

(31)

=
√

err(ĝ) ·
√

MSE(f). (32)

Further,

E[ĝ(X)(f(X)− Y )] = E[f(X)− Y | g(X,Z) = 1, ĝ(X) = 1]µg
1,1 + E[f(X)− Y | g(X,Z) = 0, ĝ(X) = 1]µg

0,1

(33)

= 0. (34)

As a result, ∣∣∣∣E[g(X,Z)(f(X)− Y )]

∣∣∣∣ = ∣∣∣∣E[ĝ(X)(f(X)− Y )] +
√

err(ĝ) ·
√

MSE(f)
∣∣∣∣ (35)

=

∣∣∣∣E[ĝ(X)(f(X)− Y )]

∣∣∣∣+√
err(ĝ) ·

√
MSE(f). (36)

Now, consider the scenario where MSE(f) > err(ĝ) so that by the first result of Lemma 4.1 we have

AED(f, g) ≤ AED(f, ĝ) + err(ĝ). (37)

Consider the following data generating process:

• Conditional on the event {g(X,Z) = ĝ(X)}, f(X) ≥ Y

• Conditional on the event {g(X,Z) = 1, ĝ(X) = 0}, f(X) = 1 and Y = 0.

• µg
0,1 = 0 so that err(ĝ) = µg

1,0

Then,

E[g(X,Z)(f(X)− Y )] = E[f(X)− Y | g(X,Z) = 1, ĝ(X) = 1]µg
1,1 + E[f(X)− Y | g(X,Z) = 1, ĝ(X) = 0]µg

1,0

(38)

= E[f(X)− Y | g(X,Z) = 1, ĝ(X) = 1]µg
1,1 + err(ĝ). (39)

Further,

E[ĝ(X)(f(X)− Y )] = E[f(X)− Y | g(X,Z) = 1, ĝ(X) = 1]µg
1,1 + E[f(X)− Y | g(X,Z) = 0, ĝ(X) = 1]µg

0,1

(40)

= E[f(X)− Y | g(X,Z) = 1, ĝ(X) = 1]µg
1,1 ≥ 0. (41)

In passing, note that requiring f(X) ≥ Y above is much more than needed, but we take this for simplicity. Moving on, and
as a result, ∣∣∣∣E[g(X,Z)(f(X)− Y )]

∣∣∣∣ = ∣∣∣∣E[ĝ(X)(f(X)− Y )] + err(ĝ)
∣∣∣∣ = ∣∣∣∣E[ĝ(X)(f(X)− Y )]

∣∣∣∣+ err(ĝ). (42)
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We now prove the result for multicalibration.

Step 1: Establishing the Multicalibration Bound

Fix a distribution D and predictor f . Consider any group g ∈ G and its corresponding proxy ĝ ∈ Ĝ. Then,

ECED(f, g) = E
[∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]

∣∣∣∣] (43)

= E
[∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]

∣∣∣∣− ∣∣∣∣E[ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣ (44)

+

∣∣∣∣E[ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣] (45)

= E
[∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]

∣∣∣∣− ∣∣∣∣E[ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣]+ ECED(f, ĝ) (46)

≤ E
[∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]− E[ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣]+ ECED(f, ĝ) (47)

= E
[∣∣∣∣E[g(X,Z)(f(X)− Y )− ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣]+ ECED(f, ĝ) (48)

≤ E
[
E
[∣∣∣∣g(X,Z)(f(X)− Y )− ĝ(X)(f(X)− Y )

∣∣∣∣|f(X) = v

]]
+ ECED(f, ĝ) (49)

= E
[∣∣∣∣g(X,Z)(f(X)− Y )− ĝ(X)(f(X)− Y )

∣∣∣∣]+ ECED(f, ĝ) (50)

= E
[∣∣∣∣(g(X,Z)− ĝ(X)) · (f(X)− Y )

∣∣∣∣]+ ECED(f, ĝ) (51)

≤ min
(√

E[|g(X,Z)− ĝ(X)|2] · E[|f(X)− Y |2], E[|g(X,Z)− ĝ(X)|]
)
+ ECED(f, ĝ) (52)

= min
(√

MSE(f) · err(g, ĝ), err(ĝ)
)
+ ECED(f, ĝ) (53)

Here we applied the reverse triangle inequality in (47), Jensen’s inequality in line (49), and Holder’s inequality in line (52).

Step 2: Tightness of the Multicalibration Bound

We now show these bounds are tight. To be precise, we will prove that there exists a joint distribution over the random
variables (f(X), Y, g(X,Z), ĝ(X)) for which these bounds hold with equality.

Consider a group g ∈ G and its corresponding proxy ĝ ∈ Ĝ. First, consider the scenario where MSE(f) ≤ err(ĝ) so that by
the first result of Lemma 4.1 we have

ECED(f, g) ≤ ECED(f, ĝ) +
√

err(ĝ) ·
√

MSE(f). (54)

Consider the same data generating process used to establish the MA bound, AED(f, g) ≤ AED(f, ĝ)+
√

err(ĝ)·
√

MSE(f).
Then,

E
v∼Df

∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]

∣∣∣∣ = E
v∼Df

∣∣∣∣E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 1] · µg
1,1(v) (55)

+ E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 0] · µg
1,0(v)

∣∣∣∣ (56)

= E
v∼Df

∣∣∣∣
√

MSE(f)√
err(ĝ)

· µg
1,0(v)

∣∣∣∣ (57)

=

√
MSE(f)√
err(ĝ)

· E
v∼Df

∣∣∣∣µg
1,0(v)

∣∣∣∣ (58)

=

√
MSE(f)√
err(ĝ)

· µg
1,0 =

√
MSE(f)

√
err(ĝ). (59)
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Further,

E
v∼Df

∣∣∣∣E[ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣ = E
v∼Df

∣∣∣∣E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 1] · µg
1,1(v) (60)

+ E[f(X)− Y | f(X) = v, g(X,Z) = 0, ĝ(X) = 1] · µg
0,1(v)

∣∣∣∣ (61)

= 0. (62)

As a result,

E
v∼Df

∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]

∣∣∣∣ = E
v∼Df

∣∣∣∣E[ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣+√
MSE(f)

√
err(ĝ). (63)

Now, consider the scenario where MSE(f) > err(ĝ) so that by the first result of Lemma 4.1 we have

ECED(f, g) ≤ ECED(f, ĝ) + err(ĝ). (64)

Consider the same data generating process used to establish the MA bound, AED(f, g) ≤ AED(f, ĝ) + err(ĝ). Then,

E
v∼Df

∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]

∣∣∣∣ = E
v∼Df

∣∣∣∣E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 1] · µg
1,1(v) (65)

+ E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 0] · µg
1,0(v)

∣∣∣∣ (66)

= E
v∼Df

∣∣∣∣E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 1] · µg
1,1(v) + µg

1,0(v)

∣∣∣∣
(67)

= E
v∼Df

∣∣∣∣E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 1] · µg
1,1(v)

∣∣∣∣ (68)

+ E
v∼Df

[µg
1,0(v)] (69)

= E
v∼Df

∣∣∣∣E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 1] · µg
1,1(v)

∣∣∣∣+ µg
1,0.

(70)

Further,

E
v∼Df

∣∣∣∣E[ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣ = E
v∼Df

∣∣∣∣E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 1] · µg
1,1(v) (71)

+ E[f(X)− Y | f(X) = v, g(X,Z) = 0, ĝ(X) = 1] · µg
0,1(v)

∣∣∣∣ (72)

= E
v∼Df

∣∣∣∣E[f(X)− Y | f(X) = v, g(X,Z) = 1, ĝ(X) = 1] · µg
1,1(v)

∣∣∣∣ (73)

As a result,

E
v∼Df

∣∣∣∣E[g(X,Z)(f(X)− Y )|f(X) = v]

∣∣∣∣ = E
v∼Df

∣∣∣∣E[ĝ(X)(f(X)− Y )|f(X) = v]

∣∣∣∣+ err(ĝ). (74)

The following bounds are tight in that we show there exists a distribution for which the bound is attained. The bounds
can nonetheless be improved by assuming complete access to the marginal distributions over (f(X), Y, ĝ(X)) and
(g(X,Z), ĝ(X)). In this case, one could derive tight bounds that agree with this observed information with techniques used
in(Kallus et al., 2022; Bharti et al., 2024) that rely on the Fréchet inequalities.
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B.2. Proof of Theorem 4.2

Proof. We prove the result for multiaccuracy. Recall Lemma 4.1, which states that for any group g and its proxy ĝ

AED(f, g) ≤ F(f, ĝ) + AED(f, ĝ) (75)

Thus, ∀g ∈ G,

AED(f, g) ≤ β(f, Ĝ) := max
ĝ∈Ĝ

F(f, ĝ) + AED(f, ĝ). (76)

This proves that f is (G, β(f, Ĝ))-multiaccurate. The proof for multicalibration follows an identical argument.

B.3. Proof of Theorem 5.1

Proof. Fix a distribution D, model f , set of groups G and its corresponding proxies Ĝ. Recall by Theorem 4.2 that f is
(G, γ(f,̂ )-multicalibrated where

γ(f, Ĝ) = max
ĝ∈G

min
(

err(ĝ),
√

MSE(f) · err(ĝ)
)
+ ECED(f, ĝ) (77)

First, note that for MSE(f) > err(ĝ), the term

min
(

err(ĝ),
√

MSE(f) · err(ĝ)
)

(78)

is constant with respect to MSE(f) and for MSE(f) ≤ err(ĝ) it increases as MSE(f) increases.

Now, suppose another model f̂ satisfies the following

ECEmax(f̂ , Ĝ) < min
ĝ∈Ĝ

ECED(f, ĝ) (79)

MSE(f̂) ≤ MSE(f). (80)

Then,

γ(f̂ , Ĝ) = max
ĝ∈G

min

(
err(ĝ),

√
MSE(f̂) · err(ĝ)

)
+ ECED(f̂ , ĝ) (81)

≤ max
ĝ∈G

min
(

err(ĝ),
√

MSE(f) · err(ĝ)
)
+ ECED(f̂ , ĝ) (82)

≤ max
ĝ∈G

min
(

err(ĝ),
√

MSE(f) · err(ĝ)
)
+ ECEmax(f̂ , Ĝ) (83)

≤ max
ĝ∈G

min
(

err(ĝ),
√

MSE(f) · err(ĝ)
)
+min

ĝ∈Ĝ
ECED(f, ĝ) (84)

≤ max
ĝ∈G

min
(

err(ĝ),
√

MSE(f) · err(ĝ)
)
+ ECED(f, ĝ) (85)

= γ(f, Ĝ). (86)

The proof of the multiaccuracy result in Theorem A.1 follows an identical argument.
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C. Additional Experiment Details
C.1. ACS Experiments

Models. In the ACSIncome and PubCov experiments, we use Random Forests as the proxy models ĝ, and train three types
of models f : logistic regression, decision tree, and Random Forest.

Results. The sensitive groups we use along with their proxy errors are reported in Tables 4 and 5. All MA related results for
the different models f are presented in Appendices E.1 and E.2. Note, all of the models are MA with respect to G and Ĝ.
As a result, adjusting with respect to the proxies provides no benefit. All MC related results for the different models f are
presented in Appendices E.4 and E.5. Note, the logistic regression and Random Forest models are highly multicalibrated
with respect to G and Ĝ. As a result, adjusting provides no benefit. On the other hand, the decision tree is grossly uncalibrated
with respect to some proxies. As a result, we see a benefit in multicalibrating with respect to the proxies.

C.2. CheXpert

Models. In the CheXpert experiment, we follow Glocker et al. (2023) and train a DenseNet-121 model for the to predict
race and sex. For the models f , we use three types. The first is a decision tree classifier trained on features extracted
from a DenseNet-121 model (Huang et al., 2017) pretrained on ImageNet (Deng et al., 2009). The second is a linear model
(Breiman, 2001) trained on the same features. The third is a DenseNet-121 model trained end-to-end on the raw X-ray
images.

Results. The groups used along with proxy errors are reported in Table 6. All multiaccuracy related results for the different
types of models f are presented in Appendix E.3. Note, all of the models are multiaccurate with respect to G and Ĝ. As a
result, adjusting provides no benefit. All multicalibration related results for the different types of models f are presented in
Appendix E.6. Note, the logistic regression and fully trained DenseNet-121 models are highly multicalibrated with respect
to G and Ĝ. As a result, adjusting provides no benefit. On the other hand, the decision tree is grossly uncalibrated with
respect to some proxies. As a result, we see a benefit in multicalibrating with respect to the proxies.

D. Additional Tables

Group err(ĝ)

Black Adults 0.044
Black Women 0.027
Women 0.000
Never Married 0.000
American Indian 0.007
Seniors 0.000
White Women 0.123
Multiracial 0.047
White Children 0.002
Asian 0.060

Table 4. Sensitive groups and the proxy er-
rors used in the ACSIncome experiment

Group err(ĝ)

Black Adults 0.044
Black Women 0.027
Women 0.000
Never Married 0.000
American Indian 0.007
White Women 0.123
Multiracial 0.047
White Children 0.002
Asian 0.060

Table 5. Sensitive groups and the proxy er-
rors used in the ACSPubCov experiment

Group err(ĝ)

Men 0.027
Women 0.027
White 0.920
Asian 0.068
Black 0.039
Asian Men 0.039
Asian Women 0.034
Black Men 0.021
Black Women 0.020
White Men 0.067
White Women 0.062

Table 6. Sensitive groups and the proxy er-
rors used in the CheXpert experiment
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E. Additional Figures
E.1. Multiaccuracy results for ACSIncome

g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10

Groups

0.02

0.04

0.06

0.08

0.10

0.12

AE
(f,

g)

MA Violations and Bounds 
 (Before Adjustment)

True Violation
Upper Bound

g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10

Groups

0.02

0.04

0.06

0.08

0.10

0.12

AE
(f a

dj
, g

)

MA Violations and Bounds 
 (After Adjustment)

True Violation
Upper Bound

Figure B.1. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on ACSIncome. Here, f is a logistic regression.
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Figure B.2. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on ACSIncome. Here, f is a decision tree.
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Figure B.3. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on ACSIncome. Here, f is a Random Forest.

18



Multiaccuracy and Multicalibration via Proxy Groups

E.2. Multiaccuracy results for ACSPubCov
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Figure B.4. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on ACSPubCov. Here, f is a logistic regression.
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Figure B.5. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on ACSPubCov. Here, f is a decision tree.
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Figure B.6. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on ACSPubCov. Here, f is a Random Forest.
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E.3. Multiaccuracy results for CheXpert

g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 11

Groups

0.02

0.04

0.06

0.08

AE
(f,

g)

MA Violations and Bounds 
 (Before Adjustment)

True Violation
Upper Bound

g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 11

Groups

0.02

0.04

0.06

0.08

AE
(f a

dj
, g

)

MA Violations and Bounds 
 (After Adjustment)

True Violation
Upper Bound

Figure B.7. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on CheXpert. Here, f is a logistic regression.
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Figure B.8. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on CheXpert. Here, f is a decision tree.
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Figure B.9. AE(f, g), AEmax(f, g) (dotted red line), and worst case
violations (dotted blue line) of the original model f and adjusted
model fadj on CheXpert. Here, f is a DenseNet-121 model.
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E.4. Multicalibration results for ACSIncome
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Figure B.10. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on ACSIncome. Here, f is a logistic regression.
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Figure B.11. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on ACSIncome. Here, f is a decision tree.
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Figure B.12. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on ACSIncome. Here, f is a Random Forest.
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E.5. Multicalibration results for ACSPubCov
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Figure B.13. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on ACSPubCov. Here, f is a logistic regression.
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Figure B.14. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on ACSPubCov. Here, f is a decision tree.
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Figure B.15. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on ACSPubCov. Here, f is a Random Forest.
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E.6. Multicalibration results for CheXpert
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Figure B.16. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on CheXpert. Here, f is a logistic regression.
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Figure B.17. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on CheXpert. Here, f is a decision tree.
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Figure B.18. ECE, ECEmax (dotted red line), and worst case viola-
tions (dotted blue line) of the original model f and adjusted model
fadj on CheXpert. Here, f is a DenseNet-121 model.
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