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ABSTRACT

We introduce a new benchmark, ChartMimic, aimed at assessing the visually-
grounded code generation capabilities of large multimodal models (LMMs). Chart-
Mimic utilizes information-intensive visual charts and textual instructions as inputs,
requiring LMMs to generate the corresponding code for chart rendering. Chart-
Mimic includes 4, 800 human-curated (figure, instruction, code) triplets, which
represent the authentic chart use cases found in scientific papers across various
domains (e.g., Physics, Computer Science, Economics, etc). These charts span
18 regular types and 4 advanced types, diversifying into 201 subcategories. Fur-
thermore, we propose multi-level evaluation metrics to provide an automatic and
thorough assessment of the output code and the rendered charts. Unlike existing
code generation benchmarks, ChartMimic places emphasis on evaluating LMMs’
capacity to harmonize a blend of cognitive capabilities, encompassing visual un-
derstanding, code generation, and cross-modal reasoning. The evaluation of 3
proprietary models and 14 open-weight models highlights the substantial chal-
lenges posed by ChartMimic. Even the advanced GPT-4o, InternVL2-Llama3-76B
only achieve an average score across Direct Mimic and Customized Mimic tasks
of 82.2 and 61.6, respectively, indicating significant room for improvement. We
anticipate that ChartMimic will inspire the development of LMMs, advancing the
pursuit of artificial general intelligence.

1 INTRODUCTION

Code generation (Sun et al., 2024) is a rather demanding task that requires advanced abstract thinking
and logical reasoning, reflecting the unique intelligence of human beings. Recently, advances in arti-
ficial general intelligence (AGI) have demonstrated the potential of large foundation models (Google,
2023; OpenAI, 2024; Anthropic, 2024; AI@Meta, 2024) to solve the tasks that are once the exclusive
domain of human abilities (Achiam et al., 2023; Zhu et al., 2024). However, existing code generation
benchmarks (Chen et al., 2021; Austin et al., 2021; Hendrycks et al., 2021; Lai et al., 2023) solely
use text as input, while humans receive information from multiple modalities when coding (Liang
et al., 2023; Fan et al., 2024). Such real-life scenarios have yet to be fully explored.

Taking a common scene in Fig. 1, researchers often need to write code for data visualization and may
already have preferred chart templates at hand. However, they usually lack either the source code or
the expertise to reproduce these chart templates. As a result, they turn to large multimodal models
(LMMs) as assistants to aid in code generation. In this scenario, coding for scientific charts entails
code generation grounded on visual understanding (i.e., chart-to-code generation), which necessitates
LMMs to integrate a variety of advanced cognitive capabilities, including visual understanding, code
generation, and cross-modal reasoning. Therefore, evaluating the performance of LMMs on this
real-world task also enables researchers to pinpoint potential areas for improving models’ capabilities.

To this end, we present ChartMimic (Fig. 2), a multimodal code generation benchmark. ChartMimic
is characterized by its (1) information-intensive visual inputs, (2) diverse chart types, and (3) multi-
level evaluation metrics. Specifically, compared to natural images, scientific charts convey nuanced
semantic meanings through intricate visual logic, thereby exhibiting higher information density.
Based on this, we define two tasks, Direct Mimic and Customized Mimic (Sec. 2.1), which utilize
charts and textual instructions as inputs. These tasks challenge LMMs to generate the corresponding
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Figure 1: The real-world example. LMMs assist scientists and researchers in understanding, inter-
preting and creating charts during the reading and writing of academic papers. These models serve as
assistants that enhance the comprehension and presentation of data in scholarly communications.

code for a given chart or to incorporate new data specified in the instructions, respectively. Through
the collection of academic documents and scientific papers, we identify 22 commonly used chart
types and 201 subcategories. Subsequently, we manually annotate a total of 4, 800 (figure, instruction,
code) triplets for these types (Sec. 2.2). Furthermore, we establish automatic evaluation metrics from
both high-level and low-level perspectives to thoroughly assess the performance of LMMs (Sec. 2.4).

We conduct examination of 17 LMMs on ChartMimic (Sec. 3.2), including 3 proprietary models and
14 open-weight models across parameter sizes from 2.2B to 76.0B. We observe that while several
open-weight models can match the performance of proprietary models such as GPT-4o on public
leaderboards (OpenCompass, 2023), a significant performance gap still persists on ChartMimic.
Specifically, the best open-weight model, InternVL2-Llama3-76B, lags behind GPT-4o, with an
average score gap of 20.6 on two tasks, indicating substantial room for improvement in open-source
community. Our analysis of prompting methods (Sec. 4.2) reveals that GPT-4o can improve itself
through self-reflection, which is a key manifestation of System 2 reasoning (Sloman, 1996; Kumar
et al., 2024). This discovery highlights the vital role that System 2 reasoning process plays in
LMMs when tackling the complex challenges presented by ChartMimic. Meanwhile, Correlation
analysis (Sec. 4.3) demonstrates a high correlation between our automatic metrics and human
evaluation, validating the effectiveness of these metrics. Further error analysis (Sec. 4.4) reveals that
hallucinations notably hinder the performance of LLMs on ChartMimic, as they lead to the insertion
of non-existent text into ground-truth figures and confusion between similar types of charts.

We envision ChartMimic as a comprehensive suite of benchmarks designed to guide researchers
in understanding their LMMs’ capabilities. By providing a comprehensive evaluation framework,
ChartMimic aims to facilitate the growth of foundation models for the community, offering insights
into various aspects such as visual understanding, code generation, and cross-modal reasoning.

2 THE CHARTMIMIC BENCHMARK

In this section, we first introduce the definition of two tasks involved in ChartMimic (Sec. 2.1), and
then delineate the data curation process (Sec. 2.2). Subsequently, we conduct a quantitative analysis
to assess the quality and diversity of ChartMimic (Sec. 2.3), establish evaluation metrics (Sec. 2.4),
and compare it with existing related benchmarks (Sec. 2.5).

2.1 TASK DEFINITION

LMMs’ ability to generate chart-rendering code demonstrates their visual understanding, coding, and
cross-modal reasoning skills. Specifically, given the chart X and the instruction I , the LMM f is
expected to output the code C that satisfies the requirements outlined in the instruction:

C = f(X, I). (1)

As shown in Fig. 2, based on the information provided in the instructions, we propose two tasks:

Direct Mimic. The LMMs are tasked to directly generate code that can reproduce the provided chart,
thereby assessing their visual comprehension and reasoning capabilities.

Customized Mimic. The LMMs are requested to generate code for a new chart that incorporates
customized data provided in the instruction while preserving the original chart’s aesthetic and design,
assessing their ability to integrate visual and textual information.

After obtaining the code generated by LMMs, we execute it to render the corresponding chart and
subsequently compare its similarity with the ground-truth chart. Illustrative examples of the two tasks
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Figure 2: The pipeline of ChartMimic. We provide 4, 800 human-curated (figure, instruction,
code) triplets. We use ChartMimic to evaluate LMMs’ proficiency in the multimodal chart-to-code
generation, resulting in both high-level and low-level evaluation results.

are shown in Fig. 2. To accommodate the defined tasks above, we propose ChartMimic, a benchmark
designed to evaluate the comprehension of charts and their conversion into executable code.

2.2 DATA CURATION PROCESS

ChartMimic distinguishes itself through 4 fundamental considerations: (1) diversity of chart types,
(2) balance of chart complexity, (3) reduction of data leakage, (4) integration of authentic user
requirements. We keep on these four principles to complete the data curation for ChartMimic through
a five-step pipeline. Here, we provide an overview here and more details in Appendix A.

General Filtering. We scrape figures from source files of publications on arXiv1 that hold a CC BY
4.0 license with a publication date after February 2024 with PDF format. This yields approximately
174, 100 figures across various domains (e.g., Physics, Computer Science, Economics, etc). We
then filter the figures based on the criteria of how designers select inspiring visualization examples,
including clarity and visual appeal, color schemes (Bako et al., 2022; Quispel et al., 2018), and
uniqueness of the chart within its category, resulting in a refined collection of about 15, 800 figures.

Diversity and Information Density Filtering. The filtering process involves two stages. In the
first stage, we establish a data pool and categorize chart types. Charts with significant differences in
complexity or information density are added to ensure diversity and effective communication (Bako
et al., 2022). In the second stage, five experts from various fields independently evaluate the data,
creating separate selection pools. We preserve the intersection of their selections and finalize the set
through a voting process. This meticulous approach refines our collection to 279 charts.

Manual Selection and Filling. In addition to sourcing from arXiv, we also collect charts from
various platforms, including the Matplotlib gallery, Stack Overflow, and plotting-related forums on
Twitter and Reddit. These charts are selected for their unique styles not represented in our arXiv
curated 279 charts. To mitigate the risk of data leakage, we rigorously process the data and color
styling of these charts, replacing existing color schemes with those unseen in our data pool while
maintaining their aesthetic appeal. Consequently, we obtain 600 prototype charts for ChartMimic.

Code and Instruction Writing. We propose to manually write codes and instructions for ChartMimic
based on the collected 600 prototype charts. Initially, annotators are tasked with meticulously
reproducing the 600 prototype charts using Python code, resulting in a set of 600 (figure, code,
instruction) triplets for the Direct Mimic task. Although other coding languages such as JavaScript
and R can be used to create charts, current LMMs perform poorly when doing chart-to-code using
these other languages (Sun et al., 2024). Therefore, we focus on Python code generation in the current

1https://arxiv.org/
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Table 1: Statistics of ChartMimic. We measure code length in terms of tokens, utilizing the Llama3
tokenizer. In the level count, “A/B/C” denotes the number of “easy/medium/hard” level, respectively.

Type Bar Line ErrorBar Heatmap Box Scatters Hist Radar 3D Pie ErrorPoint Violin

Count 320 280 120 120 100 100 80 80 80 80 80 80
Subcategories 16 8 12 4 6 4 3 6 5 8 5 3

Code Length (AVG.) 689.6 794.0 681.2 685.8 689.0 655.0 529.6 779.8 655.4 418.4 624.3 975.6
Code Length (STD.) 237.8 244.4 144.7 258.7 228.2 253.0 147.1 144.3 241.4 99.5 197.7 252.3

Level Count 176 / 120 / 24 256 / 24 / 0 68 / 52 / 0 0 / 76 / 44 60 / 40 / 0 80 / 20 / 0 52 / 28 / 0 52 / 28 / 0 8 / 48 / 24 52 / 28 / 0 44 / 28 / 8 32 / 44 / 4

Type Area Contour Density Graph Quiver Treemap Combination HR Muiltidiff PIP Total

Count 80 80 80 80 80 80 120 100 100 80 2400
Subcategories 2 3 4 4 4 4 30 25 25 20 201(101 + 100)

Code Length (AVG.) 774.4 489.4 540.0 564.5 893.4 342.2 697.4 718.9 798.2 1083.9 696.0
Code Length (STD.) 161.8 87.8 104.7 117.5 631.0 36.3 163.6 265.5 271.2 290.1 278.4

Level Count 52 / 28 / 0 0 / 28 / 52 44 / 32 / 4 56 / 24 / 0 0 / 52 / 28 52 / 28 / 0 12 / 76 / 32 4 / 16 / 80 0 / 48 / 52 0 / 0 / 80 1100 / 868 / 432

version of ChartMimic. Subsequently, to simulate the scenario of Customized Mimic, annotators are
instructed to modify the chart data in the Direct Mimic task by integrating new data from various
domains. They are then required to modify the corresponding code and instructions, leading to the
600 (figure, code, instruction) triplets for the Customized Mimic task. Consequently, we establish the
ChartMimic benchmark, comprising 1, 200 high-quality seed data.

Data Augmentation. Following the development of seed triplets, we initiate a process of manual data
augmentation. Annotators are tasked with altering various elements of each seed triplet, including
data, color schemes, mark styles, etc., to produce augmented triplets. For each seed triplet, we create
3 additional augmented triplets. This process enhances our dataset, yielding a total of 4, 800 triplets
that reflect a wide range of realistic and practical chart use cases.

2.3 DATA STATISTICS AND DIVISION

The (figure,code,instruction) triplets for both Direct and Customized Mimic tasks share the same
figure. Therefore, we detail the data statistics for the 2, 400 triplets in the Direct Mimic task. As
depicted on the left side of Fig. 2, ChartMimic encompasses a total of 22 categories, with 18 types
of regular charts and 4 types of advanced charts. For the 18 regular chart types, we identify 101
subcategories, with the definitions and examples of each subcategory provided in Appendix C. The
advanced chart types such as Plot-in-Plot (PIP), Multidiff, and Combination are distinct forms of
amalgamating multiple chart sets into a singular chart. Given the variety of their internal combination
elements, each of these can be treated as a unique subcategory. Meanwhile, the Hard-to-Recognize
(HR) category encapsulates unclassifiable charts, with each chart in the seed data being considered
a category unto itself. When we factor in the additional 100 subcategories represented by these
advanced chart types, ChartMimic encompasses a total of 201 subcategories. This extensive diversity
underscores the comprehensive nature of our benchmark. We employ Llama3 (AI@Meta, 2024)
tokenizer to measure the code length. As shown in Tab. 1, ChartMimic has average code token length
of 696.0 with a standard deviation of 278.4. Addtionally, we manually categorize charts into three
complexity levels: easy (1,100), medium (868), and hard (432). The detailed categorization criteria
and assessment methodology are thoroughly documented in Appendix A.

We further divide the 4, 800 examples of ChartMimic into two subsets: test and testmini set. The test
set comprises 3, 600 examples, while the testmini set is composed of 1, 200 examples. The testmini
set is designed for rapid model development validation. Our partitioning strategy ensures each chart
type is proportionally represented, preserving a distribution in the testmini set that closely aligns with
the test set. Detailed comparative experimental results, discussed in Appendix B, demonstrate the
consistency across two subsets. Unless otherwise stated, we report results on the testmini set.

2.4 EVALUATION METRICS

For tasks within ChartMimic, an appropriate evaluation necessitates comparing the visual similarity
between the generated and ground-truth figures. To achieve this, we propose multi-level metrics (i.e.,
high-level and low-level) to assess the similarity at different granularities. Specifically, the high-level
metric encompasses GPT-4o Score and the low-level metric encompasses Text, Layout, Type and
Color Score. We compute the average score between the high-level and low-level scores, ranging
from 0 to 100, as the overall score. The illustration of the multi-level metrics is depicted in Fig. 2.

GPT-4o Score. Following the successful use of large foundation models for evaluation in both
natural language processing (Zheng et al., 2024; Li et al., 2023; Dubois et al., 2024) and computer
vision (Zhang et al., 2023; Yang et al., 2024; Wu et al., 2024b), we adopt GPT-4o score as our high-
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Table 2: A comparison of our proposed ChartMimic to other benchmarks. “I” and “NL” indicate
“Image” and “Natural Language” respectively.

Benchmarks Source # of Chart Types # of Test Instances Input Format Output Format Evaluation Metric

Chart Understanding Benchmarks

ChartQA (Masry et al., 2022) Human Curated 3 10K I+NL NL Accuracy
Chart-to-Text (Kantharaj et al., 2022) Crawl 6 44K I+NL NL Match-based
ChartSumm (Rahman et al., 2023) Human Curated 3 84K I+NL NL Match-based
CharArXiv (Wang et al., 2024b) Human Curated 18 93K I+NL NL GPT-4 Score

Code Generation Benchmarks

HumanEval (Chen et al., 2021) Human Curated - 164 Code Code Pass Rate
MBPP (Austin et al., 2021) Human Curated - 500 NL+Code Code Pass Rate
MMCode (Li et al., 2024b) Crawl - 263 I+NL Code Pass Rate
MatPlotBench (Yang et al., 2024) Human Curated 13 100 NL Code GPT-4 Score
Plot2Code (Wu et al., 2024a) Crawl 15 132 I+NL Code Multi-Level
Design2Code (Si et al., 2024) Crawl HTML 484 I+NL Code Multi-Level

ChartMimic (Ours) Human Curated 22 4,800 I+NL Code Multi-Level

level metric. Specifically, we input both the ground-truth figure and the generated figure into GPT-4o,
and instruct it to output a high-level similarity score ranging 0 to 100. Although CLIP Score (Radford
et al., 2021) is widely used for assessing image similarity, in our preliminary experiments, it has
struggled to distinguish variations in types and other critical elements in charts, resulting in a low
correlation with human evaluation results. Therefore, we use only GPT-4o Score as our high-level
evaluation metric. The detailed description of GPT-4o Score can be found in Appendix D.

In addition to high-level similarity, evaluating the similarity among low-level elements between
generated and ground-truth figures can provide a more fine-grained analysis of LMMs. Therefore, we
propose to evaluate four key low-level elements in charts (Savva et al., 2011; Poco & Heer, 2017):
text, layout, type and color. Extracting them from figures is a challenging task, as existing extraction
models often fall short in terms of accuracy (Meng et al., 2024). Considering that figures are rendered
based on the code, we design a code tracer to monitor the execution processes of the ground-truth
code and generated code. The code tracer records the text, layout, type and color information. We
calculate the F1 score of these elements as their corresponding score. And we average text, layout,
type and color scores to get the low-level score. The methodology for obtaining these elements is
briefly introduced as follows, with detailed descriptions provided in Appendix D.

Text Score. During the code execution process, for the function responsible for adding text elements
to the rendered figures, the code tracer monitors it and records each text element parameter.

Layout Score. Layout refers to the arrangement of subplots in the figure. At the end of the code
execution, the code tracer traverses all subplots in the figure and obtains their layout information.

Type Score. For each plot function, which serves the purpose of adding a specific chart type instance
to the figure, the code tracer monitors its invocation status and records every invoked plot function.

Color Score. For each plot function, it will return the chart type instance at the end of the function
invocation. The code tracer accesses the color attributes of these chart type instances.

It is important to note that code execution success rate is a standard metric for code generation
tasks (Sun et al., 2024). We have implicitly incorporated this aspect into our high-level and low-level
scores. Specifically, if the code fails to execute successfully, both the low-level and high-level scores
are assigned a value of 0. Therefore, we do not separately weight it into the overall score.

2.5 COMPARISONS WITH EXISTING BENCHMARKS

To further distinguish the difference between ChartMimic and other existing ones, we elaborate the
benchmark details in Tab. 2. From the chart understanding perspective, the prior benchmarks (Masry
et al., 2022; Kantharaj et al., 2022; Rahman et al., 2023; Wang et al., 2024b) are only focused on
questions about the data in the charts without necessitating the advanced cognitive capabilities of
LMMs, which include visual understanding, code generation, and cross-modal reasoning. In the
code generation aspect, HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021) and MatPlot-
Bench (Yang et al., 2024) only consider tasks with text inputs, which may not meet requirements
in the era of LMMs. Recently, MMCode (Li et al., 2024b) attempted to create a benchmark for
multimodal code generation, but the vision inputs for their task are still overly simple and only have a
single pass rate evaluation metric. Design2Code (Si et al., 2024) and Plot2Code (Wu et al., 2024a)
are the most similar one to ours. Although they use multi-level evaluation metrics like ours, their
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Table 3: The ChartMimic leaderboard with Direct Mimic task. The best scores are in bold. We also
include the code execution success rate (Exec. Rate) and model size (Params).

Model Params Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GeminiProVision - 68.2 52.6 64.2 51.3 47.1 53.8 53.3 53.6
Claude-3-opus - 83.3 66.8 83.1 49.9 42.1 60.5 60.1 60.3
GPT-4o - 93.2 81.5 89.8 77.3 67.2 79.0 83.5 81.2

Open-Weight

IDEFICS2-8B 7.6B 49.0 6.2 33.1 9.2 9.0 14.4 17.6 16.0
DeepSeek-VL-7B 7.3B 41.3 15.3 26.6 19.7 14.5 19.0 20.4 19.7
LLaVA-Next-Yi-34B 34.8B 50.2 15.9 29.6 17.6 15.2 19.6 20.6 20.1
LLaVA-Next-Mistral-7B 7.6B 59.7 14.0 31.1 19.8 17.8 20.7 21.3 21.0
Qwen2-VL-2B 2.6B 47.0 20.1 29.5 21.3 17.9 22.2 23.4 22.8
Cogvlm2-llama3-chat-19B 19.2B 50.5 21.3 31.8 18.4 17.0 22.1 24.5 23.3
InternVL2-2B 2.2B 52.5 23.6 35.8 16.0 15.4 22.7 24.2 23.5
Qwen2-VL-7B 8.2B 67.0 26.4 51.0 31.0 23.3 32.9 35.0 34.0
InternVL2-4B 4.2B 66.2 34.7 51.7 25.2 23.6 33.8 38.4 36.1
InternVL2-8B 8.1B 61.8 31.5 51.1 28.6 26.2 34.4 38.9 36.6
MiniCPM-Llama3-V-2.5 8.4B 80.3 30.7 49.6 38.6 27.6 36.6 42.1 39.4
Phi-3-Vision-128K 4.2B 66.7 37.5 49.6 37.4 29.8 38.6 41.0 39.8
InternVL2-26B 26.0B 69.3 39.2 58.7 35.9 31.8 41.4 47.4 44.4
InternVL2-Llama3-76B 76.0B 83.2 54.1 74.5 49.2 41.5 54.8 62.2 58.5

test are crawled directly from the internet or existing dataset, which may pose a risk of data leakage.
Our ChartMimic benchmark gives complex scientific charts as inputs, demanding capabilities on
grounding visual understanding into code generation, and provides multi-level evaluation metrics.

3 EXPERIMENT

3.1 BASELINE SETUP

We benchmark 17 widely utilized proprietary and open-source models currently available in the
field. For proprietary models, we consider 3 representative models: GPT-4o (OpenAI, 2024), Claude-
3-opus (Anthropic, 2024) and GeminiProVision (Google, 2023). For the open-weight models, we
choose 14 competitive models with total parameter size from 2.2B to 76.0B: InternVL2(2B, 4B,
8B, 26B, 76B) (Chen et al., 2023), Qwen2-VL(2B, 7B) (Wang et al., 2024a), Phi-3-Vision (phi,
2024), DeepSeek-VL-7B (Lu et al., 2024), LLaVA-Next(7B, 34B) (Li et al., 2024a), IDEFICS2-
8B (Laurençon et al., 2024), MiniCPM-Llama3-V2.5 (Xu et al., 2024) and Cogvlm2-llama3-chat-
19B (Wang et al., 2023a). We start with the direct prompting, which provides the reference chart with
direct instructions. The specific instructions and model configurations can be found in Appendix E.

3.2 MAIN RESULTS

We present the main results of 17 LMMs on ChartMimic. Tab. 3 and Tab. 4 show the results on the
Direct Mimic and Customized Mimic task, respectively. The key findings are as follows:

GPT-4o performs best among proprietary models, while InternVL2-Llama3-76B excels among
open-weight models. In proprietary models, GPT-4o achieves an overall score of 81.2 in Direct
Mimic and 83.2 in Customized Mimic. Within open-weight models, InternVL2-Llama3-76B, reaches
the overall score of 58.5 in Direct Mimic and 64.7 in Customized Mimic, which have compareble per-
fromance with proprietary model like Claude-3-opus (60.3 in Direct Mimic and 65.4 in Customized
Mimic). Meanwhile, Phi-3-Vision-128K despite its 4.2B parameters, reaches the overall score of 39.8
in Direct Mimic and 42.1 in Customized Mimic, which outperforms LLaVA-Next-Yi-34B (20.1 in
Direct Mimic and 35.3 in Customized Mimic). This indicates that even models with fewer parameters
can achieve decent performance through a refined training process.

A performance gap persists between open-weight LMMs and proprietary ones. Although
several open-weight LMMs can exhibit performance comparable to GPT-4o across various bench-
marks (OpenCompass, 2023), even the best-performing InternVL2-Llama3-76B falls short of achiev-
ing the performance of GPT-4o both Direct Mimic and Customized Mimic. This apparent performance
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Table 4: The ChartMimic leaderboard with Customized Mimic task. The best scores are in bold.
We also include the code execution success rate (Exec. Rate) and model size (Params).

Model Params Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GeminiProVision - 76.2 52.2 70.9 56.0 49.4 57.1 59.6 58.4
Claude-3-opus - 88.2 75.2 86.8 54.1 44.3 65.1 65.7 65.4
GPT-4o - 96.5 88.5 92.9 79.2 67.6 82.1 84.3 83.2

Open-Weight

Qwen2-VL-2B 2.6B 35.8 17.4 23.9 19.7 16.5 19.4 21.4 20.4
Cogvlm2-llama3-chat-19B 19.2B 38.7 19.0 27.9 16.5 15.7 19.8 21.6 20.7
LLaVA-Next-Mistral-7B 7.6B 49.0 20.0 32.0 22.6 19.9 23.6 24.7 24.2
IDEFICS2-8B 7.6B 49.2 21.6 32.2 18.1 12.2 21.0 27.3 24.2
InternVL2-2B 2.2B 49.3 22.2 35.4 20.0 18.1 23.9 27.8 25.9
LLaVA-Next-Yi-34B 34.8B 64.2 28.7 44.8 32.9 27.7 33.5 37.1 35.3
DeepSeek-VL-7B 7.3B 59.3 27.5 47.5 36.8 31.5 35.8 39.3 37.6
Phi-3-Vision-128K 4.2B 67.8 29.7 52.5 42.3 36.5 40.3 44.0 42.1
InternVL2-4B 4.2B 74.0 41.3 55.6 39.6 33.1 42.4 47.8 45.1
Qwen2-VL-7B 8.2B 73.3 41.0 56.3 43.5 34.2 43.8 47.8 45.8
InternVL2-8B 8.1B 73.0 43.1 54.4 39.9 35.4 43.2 48.9 46.1
MiniCPM-Llama3-V-2.5 8.4B 78.7 40.8 58.0 44.8 33.2 44.2 51.5 47.9
InternVL2-26B 26.0B 73.7 43.9 62.3 43.5 34.3 46.0 51.1 48.6
InternVL2-Llama3-76B 76.0B 89.8 57.8 79.0 63.5 50.5 62.7 66.7 64.7

disparity demonstrates the challenging nature of our ChartMimic benchmark for current open-weight
LMMs. Moreover, open-weight LMMs even exhibit notable deficiencies in generating executable
code, with a majority of them showing an execution rate below 75%. These findings highlight that
there is still a considerable scope for the open-source community to enhance LMMs’ capabilities in
terms of complex visual understanding, code generation and cross-modal reasoning.

When given additional user-customized data, LMMs exhibit performance improvements. In the
Customized Mimic task, most LMMs get performance improvement compared to the Direct Mimic
task, particularly in terms of Text Score. This enhancement can be attributed to the provision of
user-customized data, which alleviates the burden on LMMs to recognize textual and data information
within the charts. Notably, Cogvlm2-llama3-chat-19B and Qwen2-VL-2B experience a decrease in
there overall score and execution rate. This decline may arise from the reason that user-customized
data increases the burden on the models to process different modalities of information. Overall, except
for GPT-4o, the performance of the remaining LMMs is still below 65.0 in the Customized Mimic
task. This indicates that, in addition to the capability to recognize data in the chart, understanding the
layout of the chart and code generation are also key factors for LMMs to better accomplish the task.

4 DISCUSSION

4.1 DIFFERENT COMPLEXITY LEVELS

Easy Medium Hard
(a) Direct Mimic

20

40

60

80

100

O
ve

ra
ll 

Sc
or
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Easy Medium Hard
(b) Customized Mimic

GPT-4o
Claude-3-opus

GeminiProVision
InternVL2-Llama3-76B

InternVL2-26B
MiniCPM-Llama3-V2.5

Figure 3: Overall scores of top-6 performed
models at different complexity levels.

We report the performance of the top-6 models across
different complexity levels for ChartMimic in Fig. 3.
There is a consistent decline in performance across all
tasks as the difficulty increased. For example, in Di-
rect Mimic task, the performance of GPT-4o at easy,
medium, and hard levels are 86.5, 77.7, and 74.8,
respectively. These results demonstrate that Chart-
Mimic benchmark are inherently challenging and
confirms the efficacy of the established difficulty lev-
els. Additionally, for weak LMM such as MiniCPM-
Llama3-V-2.5, providing customized data at the Easy
Level can help it perform tasks better (from 46.8 to
59.7). However, at the Hard Level, even when given
customized data, their performance do not show im-
provement (from 31.9 to 31.5). This indicates that
for Easy Level, complex reasoning abilities are not
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Table 5: Results for different prompting methods for GPT-4o and different size of InternVL2 LMMs
on Direct Mimic task. The best scores for each model are in bold.

Model Params Method Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

GPT-4o -

Direct 93.2 81.5 89.8 77.3 67.2 79.0 83.5 81.2
HintEnhanced 92.0 80.9 89.7 78.2 67.9 79.2 83.0 81.1
SelfReflection 95.2 86.6 93.7 81.1 68.2 82.4 87.1 84.8
Scaffold 91.0 81.3 90.6 75.1 63.9 77.7 80.3 79.0

InternVL2-Llama3-76B 76.0B

Direct 83.2 54.1 74.5 49.2 41.5 54.8 62.2 58.5
HintEnhanced 78.0 54.3 71.7 50.2 41.6 54.5 60.3 57.4
SelfReflection 82.5 57.0 76.2 56.4 45.0 58.7 63.6 61.1
Scaffold 76.7 52.1 71.4 49.1 40.5 53.3 60.1 56.7

InternVL2-26B 26.0B

Direct 69.3 39.2 58.7 35.9 31.8 41.4 47.4 44.4
HintEnhanced 66.8 40.4 54.8 36.6 33.0 41.2 47.0 44.1
Self 69.0 39.5 57.5 35.6 30.5 40.8 47.1 43.9
Scaffold 64.3 36.0 53.5 35.4 30.3 38.8 44.0 41.4

InternVL2-8B 8.1B

Direct 61.8 31.5 51.1 28.6 26.2 34.4 38.9 36.6
HintEnhanced 58.7 30.1 38.3 30.1 27.5 31.5 35.9 33.7
SelfReflection 56.8 27.4 39.8 25.1 22.9 28.8 33.4 31.1
Scaffold 61.8 22.8 43.5 24.8 20.2 27.8 32.0 29.9

InternVL2-2B 2.1B

Direct 52.5 23.6 35.8 16.0 15.4 22.7 24.2 23.5
HintEnhanced 41.5 17.3 19.4 14.3 12.9 16.0 18.5 17.2
SelfReflection 35.5 16.3 22.2 12.8 14.8 16.5 17.3 16.9
Scaffold 38.0 6.5 17.8 3.2 2.2 7.4 15.6 11.5

required, and providing data is sufficient to complete the task well. However, for Hard Level charts,
LMMs need complex code generation capabilities grounded on visual understanding. In this case,
even when given data, if the LMMs cannot perform the corresponding code reasoning, they still
cannot complete the task. Moreover, when given addtional data, if the data is too long and complex,
the LLM may still become confused, leading to a certain decrease in performance.

4.2 DIFFERENT PROMPTING METHODS

We further examine the impact of different prompting methods on performance of ChartMimic
benchmark. Specifically, we choose the GPT-4o and InternVL2 series LMMs (2B, 8B, 26B, 76B)
to study their performance on the Direct Mimic task. We select three representative prompting
methods: HintEnhanced, SelfReflection, and Scaffold Prompting. HintEnhanced uses prompt with
chain-of-thought (Wei et al., 2022), explicitly prompting the LMMs to pay attention to important
details (e.g., layout, type, text, etc). SelfReflection (Shinn et al., 2024) involves inputting the LMMs’
own output and the corresponding rendered chart as additional information, instructing the LMM’
to self-reflect their output. Scaffold Prompting (Lei et al., 2024) overlays a dot matrix within the
figure as visual information anchors and leverages multi-dimensional coordinates as textual positional
references. We detail the experimental setups in Appendix E.

As shown in Tab. 5, SelfReflection enables GPT-4o and InternVL2-Llama3-76B to reflect on and
correct their outputs, demonstrating notable improvements over Direct Prompting. This underscore
self-reflection as a key manifestation of System 2 reasoning (Sloman, 1996; Kumar et al., 2024).
For GPT-4o, SelfReflection enhances Text, Layout, and Type Scores, though Color Score remains
unchanged due to persistent challenges in fine color discrimination. However, LMMs with less
developed reasoning capabilities (InternVL2-26B, 8B, and 2B) show no improvement or even decline
with SelfReflection. This indicates that only LMMs with substantial reasoning capabilities can
effectively engage in self-reflection and result optimization, underscoring the critical role of System
2 reasoning in addressing ChartMimic’s challenges. Regarding HintEnhanced and Scaffold methods,
they do not enhance the performance of models and reduce performance to varying degrees. Upon
examining the cases, we find that the HintEnhanced method, which involves generating captions
first, can introduce hallucinations that lead to errors in the subsequently generated code. As for
the Scaffold method, introduction of an additional dot matrix can interfere with existing coordinate
axis information in charts with high information density, thereby negatively impacting performance.
These negative effects intensify as LMMs’ reasoning capabilities decrease, further highlighting the
importance of advanced reasoning capabilities in handling complex prompting strategies. We provide
case studies of three prompting methods in Appendix E.
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(d) Color
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Figure 4: Error analysis of GPT-4o across four error types on the Direct Mimic task. The number in
brackets indicates the count of error case. Error examples can be found in Appendix Appendix H.

4.3 CORRELATION WITH HUMAN EVALUATION

Table 6: Pearson correlation coefficient
between multi-level evaluation metric
and human evaluation.

Metric Coefficient p-value

High-Level 0.7041 < 0.0001
Low-Level 0.7681 < 0.0001

To evaluate the reliability of the proposed multi-level met-
rics, we calculate their correlation with human evaluations.
Specifically, we collect 1, 200 charts collected from GPT-
4o using four different prompting methods (Sec. 4.2) on
Direct Mimic. Each charts is evaluated by three individ-
ual evaluators, who assign scores ranging from 0 to 100
based on the similarity with the ground-truth chart. Details
about the human evaluation process are provided in Ap-
pendix F. As shown in Tab. 6, the Pearson correlation coefficient (r) indicates that both the high-level
(r = 0.7041) and low-level metric (r = 0.7681) have a high correlation with human judgment,
demonstrating the reliability of our multi-level metrics. Moreover, the low-level metric demonstrates
a higher correlation with human judgments compared to the high-level metric. This is attributed to its
dependence on code execution logic, enabling it to capture detailed elements.

4.4 ERROR ANALYSIS

We conduct a detailed error analysis of the state-of-the-art GPT-4o model to elucidate the current
limitations of LMMs on ChartMimic, thereby identifying potential areas for further improvement.
Our analysis identifies and category four main types of errors, detailed below.

Code-related Errors. (1) Dimension: Errors associated with data dimension, e.g., data dimension
does not satisfy required conditions for operations; (2) Access: Errors occurring when accessing
iterable elements out of bounds or accessing undeclared variables; (3) Parameter: Errors related to
passing incorrect parameters when invoking functions. As observed in Fig. 4 (a), the majority of
errors stem from Dimension, suggesting analysis and operation on data poses a challenge for GPT-4o.

Text-related Errors. (1) Detail: The text in the generated chart is largely consistent with the ground-
truth chart text but contains minor discrepancies, such as mixing up “-” and “_”; (2) Missing: The
generated chart omits text present in the ground-truth chart; (3) Extraneous: The generated chart
contains text not found in the ground-truth chart, e.g., adding text for titles, reflecting the model’s
own interpretation of the chart; As depicted in Fig. 4 (b), the majority of errors are Missing and
Extraneous, which indicates that for GPT-4o, due to intensive information in charts, it is challenging
for it to comprehend the whole scope of the charts, even the basic text recognition task.

Type-related Errors. (1) Confusion: GPT-4o misinterprets the chart type as one that appears or
functions similarly, such as mistaking violin plots for box plots, and so on; (2) Missing: The generated
chart omits chart types present in the ground-truth chart; (3) Extraneous: The generated chart includes
chart types not present in the ground-truth chart. As demonstrated in Fig. 4 (c), although GPT-4o
exhibits remarkable capability in object recognition for natural images, it still struggles with scientific
charts, which contain more nuanced semantic meanings through visual logic.

Color-related Errors. (1) Similar: The colors are not the same as the ground-truth colors but appear
analogous. (2) Different: The colors are entirely dissimilar to the ground-truth colors. As shown in
Fig. 4 (d), though GPT-4o can not exactly recognize the accurate colors, it can identify similar ones.

To sum up, GPT-4o still faces challenges in code generation and exhibits notable visual understanding
deficiencies on ChartMimic. It has difficulty accurately recognizing visual elements in figures or may
hallucinate incorrect elements and struggle with complex data analysis. Combining these insights,
there is a need for further improvement in both visual understanding and code generation.
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5 RELATED WORK

Large Multimodal Models. The proprietary LMMs such as GPT-4o (OpenAI, 2024), Gem-
ini (Google, 2023), and Claude-3 (Anthropic, 2024) have enabled complex multimodal interac-
tions. Similarly, emerging open-weight LMMs such as LLaVA (Xu et al., 2024; Li et al., 2024a),
InternVL (Chen et al., 2023), Qwen-VL (Bai et al., 2023), DeepSeek-VL (Lu et al., 2024) have
contributed to the community. Despite these advancements, the effective evaluation of LMMs remains
a major challenge. However, effectively evaluating LMMs remains a challenge, with open-source
models performing well in benchmarks (Xu et al., 2023; Liu et al., 2023; Masry et al., 2022; Chen
et al., 2024; Yue et al., 2023; Lu et al., 2023) yet falling short in practical applications (Xie et al.,
2024; Koh et al., 2024; Si et al., 2024). This gap emphasizes the need for real-world-based evaluations
that reflect authentic use cases. ChartMimic addresses this by requiring LMMs to translate complex
visual information into code, testing their visual and coding capabilities.

Code Generation. Tasks such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
APPS (Hendrycks et al., 2021), and DS-1000 (Lai et al., 2023) are important benchmarks in natural
language processing, but the inputs for these tasks are single-modal, consisting only of text, limiting
their scope. With the emergence of LMMs, the evaluation of multimodal code generation has become
increasingly critical for assessing real-world capabilities. On top of this, MMCode (Li et al., 2024b)
attempts to address this issue, but their visual inputs may be simplistic and face the problem of a
single evaluation method. Design2Code (Si et al., 2024) evaluate LMMs’ code generation abilities
through HTML web page generation. However, their test data comes from the C4 (Raffel et al., 2020)
dataset, which may pose a risk of data leakage. Meanwhile, they just imitate the HTML and do not
take the customized instructions; we take this into consideration. Recently, Plot2Code (Wu et al.,
2024a) undertakes work similar to ours, aiming to measure models’ code generation abilities through
chart-to-code generation. Similarly, their approach of directly scraping data from the matplotlib
gallery poses a risk of data leakage. Our ChartMimic provides a new set of manually curated 4, 800
data pairs, ensuring chart diversity and offering more fine-grained evaluation methods.

Chart Understanding. ChartMimic evaluates the capabilities of LMMs in grounding chart under-
standing into code generation, bridging visual and programmatic domains. Previous works focus
on chart question answering (Masry et al., 2022; Methani et al., 2020; Xu et al., 2023; Wang et al.,
2024b; Li et al., 2024c) and chart captioning (Rahman et al., 2023; Kantharaj et al., 2022). They
assess the LMMs’ ability to understand specific data characteristics or summarize key information
into text. ChartMimic advances the field by introducing a chart-to-code task, transforming the
LMMs’ understanding of charts into code, which is neglected before but a realistic scenario for
practical, real-world usage. This approach enables a comprehensive evaluation of the LMMs’ overall
comprehension of charts and their ability to express this understanding in code form. Leveraging the
linguistic properties of code, our benchmark introduces fine-grained metrics to assess LMMs’ chart
understanding capabilities across multiple dimensions, including text, chart type, layout and color.

6 CONCLUSIONS

In this study, we develop the ChartMimic benchmark to evaluate LMMs’ proficiency capability
via chart-to-code generation. ChartMimic focuses on real-world applications for data visualization,
aiming to assess LMMs’ ability to harmonize a blend of cognitive capabilities, including visual
understanding, code generation, and cross-modal reasoning. We propose two distinct levels of
evaluation metrics (low and high level) to provide a comprehensive assessment. ChartMimic directly
contributes to the understanding of progress towards artificial general intelligence, reflecting the
expertise and reasoning abilities expected of skilled adults in various professional fields. Despite
its comprehensive nature, ChartMimic, like any benchmark, has limitations. The manual curation
process, although thorough, may introduce biases. Additionally, using scientific charts as information-
intensive visual inputs to measure LMMs’ multimodal code generation capabilities, while effective,
still encounters domain-specific challenges. Our evaluation metric, despite considering most elements’
similarity, does not uniformly score details of sub-icons, such as markers. We anticipate that
ChartMimic will inspire the development of LMMs, advancing the pursuit of artificial general
intelligence. Future research could explore various aspects, such as multimodal reasoning prompt
strategies, to further reduce the gap between open-weight LMMs and proprietary ones.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

New models added to the phi-3 family, available on microsoft azure,
May 2024. URL https://azure.microsoft.com/en-us/blog/
new-models-added-to-the-phi-3-family-available-on-microsoft-azure/.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Anthropic. Introducing the next generation of claude. 2024. URL https://www.anthropic.
com/news/claude-3-family.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Hannah K Bako, Xinyi Liu, Leilani Battle, and Zhicheng Liu. Understanding how designers find and
use data visualization examples. IEEE Transactions on Visualization and Computer Graphics, 29
(1):1048–1058, 2022.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Stephanie DH Evergreen. Effective data visualization: The right chart for the right data. SAGE
publications, 2019.

Li Fan, Lee Ching-Hung, Han Su, Feng Shanshan, Jiang Zhuoxuan, and Sun Zhu. A new era in
human factors engineering: A survey of the applications and prospects of large multimodal models.
arXiv preprint arXiv:2405.13426, 2024.

Google. Gemini: A family of highly capable multimodal models. ArXiv, abs/2312.11805, 2023. URL
https://api.semanticscholar.org/CorpusID:266361876.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. Chartllama: A multimodal llm for chart understanding and generation. arXiv preprint
arXiv:2311.16483, 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

11

https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://api.semanticscholar.org/CorpusID:266361876


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shankar Kantharaj, Rixie Tiffany Ko Leong, Xiang Lin, et al. Chart-to-text: A large-scale benchmark
for chart summarization. arXiv preprint arXiv:2203.06486, 2022.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
code generation. In International Conference on Machine Learning, pp. 18319–18345. PMLR,
2023.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
vision-language models?, 2024.

Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li, and Yang Liu. Scaffolding coordinates to promote
vision-language coordination in large multi-modal models. arXiv preprint arXiv:2402.12058,
2024.

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang,
Ziwei Liu, and Chunyuan Li. Llava-next: Stronger llms supercharge multimodal ca-
pabilities in the wild, May 2024a. URL https://llava-vl.github.io/blog/
2024-05-10-llava-next-stronger-llms/.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, and Jing Ma. Mmcode: Evaluating multi-
modal code large language models with visually rich programming problems. arXiv preprint
arXiv:2404.09486, 2024b.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Zekun Li, Xianjun Yang, Kyuri Choi, Wanrong Zhu, Ryan Hsieh, HyeonJung Kim, Jin Hyuk Lim,
Sungyoung Ji, Byungju Lee, Xifeng Yan, et al. Mmsci: A multimodal multi-discipline dataset for
phd-level scientific comprehension. arXiv preprint arXiv:2407.04903, 2024c.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281, 2023.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan. Deepseek-vl:
Towards real-world vision-language understanding, 2024.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

M Ronnier Luo, Guihua Cui, and Bryan Rigg. The development of the cie 2000 colour-difference
formula: Ciede2000. Color Research & Application: Endorsed by Inter-Society Color Council,
The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of
Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour
Society of Australia, Centre Français de la Couleur, 26(5):340–350, 2001.

12

https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://github.com/tatsu-lab/alpaca_eval


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
Chartassisstant: A universal chart multimodal language model via chart-to-table pre-training and
multitask instruction tuning. arXiv preprint arXiv:2401.02384, 2024.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
scientific plots. In CVPR, pp. 1527–1536, 2020.

OpenAI. Gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o. Accessed:
2024-05-13.

OpenCompass. Opencompass: A universal evaluation platform for foundation models. https:
//github.com/open-compass/opencompass, 2023.

Paul Parsons. Understanding data visualization design practice. IEEE Transactions on Visualization
and Computer Graphics, 28(1):665–675, 2021.

Jorge Poco and Jeffrey Heer. Reverse-engineering visualizations: Recovering visual encodings from
chart images. In Computer graphics forum, volume 36, pp. 353–363. Wiley Online Library, 2017.

Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. Making data visualization more efficient and
effective: a survey. The VLDB Journal, 29(1):93–117, 2020.

Annemarie Quispel, Alfons Maes, and Joost Schilperoord. Aesthetics and clarity in information
visualization: The designer’s perspective. In Arts, volume 7, pp. 72. MDPI, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Raian Rahman, Rizvi Hasan, Abdullah Al Farhad, et al. Chartsumm: A comprehensive benchmark
for automatic chart summarization of long and short summaries. arXiv preprint arXiv:2304.13620,
2023.

Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh Agrawala, and Jeffrey Heer.
Revision: Automated classification, analysis and redesign of chart images. In Proceedings of the
24th annual ACM symposium on User interface software and technology, pp. 393–402, 2011.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far are
we from automating front-end engineering? arXiv preprint arXiv:2403.03163, 2024.

Steven A Sloman. The empirical case for two systems of reasoning. Psychological bulletin, 119(1):3,
1996.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024.

13

https://openai.com/index/hello-gpt-4o
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang.
Cogvlm: Visual expert for pretrained language models, 2023a.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023b.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
Wu, Haotian Liu, Sadhika Malladi, et al. Charxiv: Charting gaps in realistic chart understanding in
multimodal llms. arXiv preprint arXiv:2406.18521, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. arXiv preprint arXiv:2405.07990, 2024a.

Tianhe Wu, Kede Ma, Jie Liang, Yujiu Yang, and Lei Zhang. A comprehensive study of multimodal
large language models for image quality assessment. arXiv preprint arXiv:2403.10854, 2024b.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Ruyi Xu, Yuan Yao, Zonghao Guo, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu,
and Gao Huang. LLaVA-UHD: an lmm perceiving any aspect ratio and high-resolution images.
arXiv preprint arXiv:2403.11703, 2024.

Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. Chartbench: A
benchmark for complex visual reasoning in charts. arXiv preprint arXiv:2312.15915, 2023.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic
scientific data visualization. arXiv preprint arXiv:2402.11453, 2024.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng Yan,
William Yang Wang, and Linda Ruth Petzold. Gpt-4v (ision) as a generalist evaluator for vision-
language tasks. arXiv preprint arXiv:2311.01361, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Zheng Zhu, Xiaofeng Wang, Wangbo Zhao, Chen Min, Nianchen Deng, Min Dou, Yuqi Wang, Botian
Shi, Kai Wang, Chi Zhang, et al. Is sora a world simulator? a comprehensive survey on general
world models and beyond. arXiv preprint arXiv:2405.03520, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A Data Annotation 16

A.1 Data Annotation Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.2 Data Annotation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.3 Complexity Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.4 Instruction Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B Correlation Between Test Set and Testmini set 23

C Chart Taxonomy 24

D Details of Evaluation Metrics 33

D.1 GPT-4o Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

D.2 Text Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

D.3 Layout Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

D.4 Type Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

D.5 Color Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

E Model Configurations and Prompting Methods 41

E.1 Generation Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

E.2 Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

E.3 Cases of Different Prompting Methods . . . . . . . . . . . . . . . . . . . . . . . . 44

E.4 Details of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

F Correlation with Human Evaluation 48

G Correlation with Chart Understanding and Code Generation 50

H Cases of Error Analysis 51

I Error Analysis of Open-Weight Models 54

J Ethics, Societal Impact and Scalability of ChartMimic 55

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DATA ANNOTATION

A.1 DATA ANNOTATION PRINCIPLES

Diversity of Chart Types. Data visualization has become an essential tool for conveying informa-
tion in various fields, and the design practices and requirements for different types of charts vary
significantly(Parsons, 2021). Most of previous work (Han et al., 2023; Xu et al., 2023; Masry et al.,
2022; Kantharaj et al., 2022; Rahman et al., 2023) focus only on line, bar, pie charts, etc, which are
commonly used within the field of computer science. However, with the increasing integration of
LMMs into everyday tasks, people from all fields are starting to use generative techniques as daily
assistants to enhance their design and creative processes when creating visualizations. In this light,
enriching the spectrum of chart diversity is crucial for evaluating LMMs’ proficiency in multimodal
chart-to-code generation.

Balance of Charts Complexity. Charts serve as visual aids for data presentation, enabling users to
promptly grasp the underlying patterns and significance within the data. It is essential to adopt the
appropriate chart type and complexity level to effectively convey the information (Evergreen, 2019).
Previous works have focused mainly on charts with only a single data format and low information
density, which are rarely encountered in practical settings such as academic writing. Noting that
LMMs like GPT-4o have already demonstrated outstanding data visualization capabilities, our focus
is on using charts that are actually employed in practice, such as those from research papers, and on
selecting charts with varying levels of complexity when constructing our benchmark.

Reduction of Data Leakage. Recognizing that augmenting training data is a primary method
for enhancing the performance of LMMs has led researchers to more comprehensively exploit all
accessible data during pre-training. However, this approach introduces the possibility of data leakage,
especially when pre-training data might already include resources such as the matplotlib gallery2

or other pre-existing datasets, potentially resulting in inaccurate evaluations. To mitigate this issue,
we deliberately avoid the use of code that can be readily found online or code that could be auto-
generated by large language models for chart creation in constructing our dataset, thereby reducing
the probability of data leakage. To further illustrate the potential data leakage in matplotlib gallery,
we select the code for 20 charts from the matplotlib gallery. Specifically, we provide the first half
of the code as a prefix for Llama3-8B (AI@Meta, 2024) and let the model complete the remaining
code. Then we calculate the edit distance between the generated complete code block and the ground
truth. Similarly, we apply the same process to the code in Direct Mimic, calculating the edit distance
between the generated results and the ground truth. We find that the edit distance for the code in the
matplotlib gallery is 22.1, while the edit distance for Direct Mimic’s code is 39.8. This indicates that
the code in Direct Mimic have a larger edit distance, which further reduces the risk of data leakage
compared to the matplotlib gallery ones.

Integration of Authentic User Requirements. Users from diverse domains such as finance, health-
care, education, and engineering demonstrate unique needs and preferences for data visualization.
These requirements extend beyond mere diversity; they demand the incorporation of charts capable
of articulating complex and multi-dimensional data, and conforming to domain-specific aesthetic
preferences(Qin et al., 2020; Evergreen, 2019). By aligning our dataset construction process with
these real-world demands, we enable a more relevant and precise evaluation of LMMs. Adopting this
approach not only reflects actual user patterns but also steers the research community in the iterative
improvement of LMMs. This focused development will also lead to an enhanced user experience and
increased user satisfaction, as the models become more proficient in meeting the sophisticated and
varied needs of users.

A.2 DATA ANNOTATION PIPELINE

We present the detailed description about the five-step data annotation pipeline in this section. Fig. 5
demonstrates an illustration of the data annotation pipeline.

General Filtering. To obtain a high-quality dataset aligned with real-world use cases and to avoid
data leakage, we initially scrape figures from source files of publications on arXiv3 that hold a CC BY

2https://matplotlib.org/
3https://arxiv.org/
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Data AugmentationCode and Instruction Writing
Manual Selection

and Filling
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Diversity and Information 
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Filter CustomizeFilter

Figure 5: An illustration of the data annotation pipeline, which encompasses five key steps.

4.0 license and have a publication date after February 2024. We then extract figures in PDF format,
yielding approximately 174,100 figures across various domains (such as Physics, Mathematics,
Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering and
Systems Science, Economics). We filter these figures based on file format and generation method,
retaining only Matplotlib-generated PDFs, indicating that these figures can be reproduced using
Python. This process results in a refined collection of 15,800 figures.

Diversity and Information Density Filtering. This stage involves a two-phase process conducted
by five domain experts from information visualization, digital media, industrial design, visual
communication design, and computer science. The information visualization expert has three years
of research experience in scientific visualization and visual analytics. The digital media specialist
focuses on human-computer interaction and multimedia design. The industrial design expert brings
perspectives from user experience and product visualization. The visual communication design expert
specializes in graphic design principles and information aesthetics. The computer science expert has
extensive experience in data visualization programming and scientific computing.

In the first phase, these experts conduct a 7-day manual review of the 15,800 figures, focusing on
visual diversity and information communication effectiveness. They reference the Matplotlib gallery,
gradually identifying and finalizing chart type while reviewing the figures, and build corresponding
type pools. For each new figure, they assess its visual elements—such as layout, axes, line styles,
marker styles, and colors—against existing figures in their corresponding type pool. If the figure as
long as exhibits a distinctive difference in at least one of these aspects, it is retained; otherwise, it is
excluded. This process results in 1,295 figures being selected for the second phase.

In the second phase, these experts independently review the 1,295 figures and further select those
figures they deem to exhibit significant distinctions and diversity. Figures selected unanimously by all
experts are directly included, while the remaining figures are subjected to a majority voting system
requiring at least 3/5 votes for inclusion. This rigorous process, which takes less than 3 days to
complete, results in a final set of 279 figures.

Manual Selection and Filling. In addition to sourcing from arXiv, we curate chart figures from
diverse platforms such as the matplotlib gallery, Stack Overflow, and plotting-related forums on
Twitter and Reddit. These charts are deliberately chosen for their distinctive styles, which are not
present in our arXiv dataset. Consequently, we obtain 600 prototype charts for ChartMimic. This
stage took us less than a week to complete the data selection.

Code and Instruction Writing. We propose to manually write codes and instructions for ChartMimic
based on the collected 600 prototype charts. To ensure annotation quality, a team of skilled Python
users—Python annotators—master’s students in computer science with 6+ years of Python and
matplotlib experience—reproduce 600 prototype charts using Python 3.9.0 and matplotlib v3.8.4.
Since the unannotated data in the figures cannot be fully restored, they can only be approximated
when writing the code. This process generates 600 (figure, code, instruction) triplets for the Direct
Mimic task and another 600 triplets for the Customized Mimic task by integrating data from various
domains into the corresponding code and instructions, comprising 1,200 high-quality seed data.

Data Augmentation. After developing the seed triplets, we proceed with a manual data augmentation
process. Python Annotators modify various elements of each seed triplet, including data, color
schemes, and mark styles, to create augmented triplets. For each seed triplet, we generate three
additional augmented triplets. This process enhances our dataset, resulting in a total of 4, 800 triplets.
The "Code and Instruction Writing" and "Data Augmentation" stages together take the data annotators
approximately 1.5 months to complete.
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A.3 COMPLEXITY LEVELS

1 2 3 4 5 6 7 8 9 10
Top-10 superfamilies in training dataset

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(a) Easy: bar_8

Type Span T&S Spurious Total
0

20

40

60

80

100
GENIA

Manual Mapping
LLM-revision

LLM-revision w/CoT
VerifNER

Type Span T&S Spurious Total
0

20

40

60

80

100
BC5CDR

Er
ro

r c
or

re
ct

io
n 

ra
te

 (%
)

(b) Medium: bar_9

60 40 20 0 20 40 60

Benefits

Reliability

Security

Privacy

14.8%

9.4%

8.3%

24.1%

29.6%

24.1%

14.8%

29.6%

29.6%

40.7%

40.7%

20.4%

18.5%

27.8%

33.3%

16.7%

8.4%

9.0%

9.3%

9.3%

Eye Movement

60 40 20 0 20 40 60

Benefits

Reliability

Security

Privacy

19.0%

9.5%

12.0%

11.9%

26.2%

26.2%

14.3%

19.0%

35.7%

45.2%

38.1%

33.3%

9.5%

23.8%

38.1%

14.3%

9.5%

14.0%

9.5%

21.4%

Brainwave

Strong Disagree Disagree Neutral Agree Strong Agree

(c) Hard: bar_21

Figure 6: Representative examples of chart complexity in ChartMimic (Easy, Medium, Hard).

Our complexity assessment framework is established upon two fundamental criteria, designed to
comprehensively evaluate both the visual and technical aspects of chart generation:

Visual Elements Complexity We systematically evaluate the sophistication of each chart through a
comprehensive scoring mechanism applied to its constituent visual components. This encompasses the
chart typology, data grouping structures, marker configurations, textual elements, chromatic schemes,
compositional layouts, and coordinate systems. Each visual component is quantitatively assessed
based on both its frequency and sophistication level (designated as 1-3 points for low/medium/high
complexity, respectively). This multi-dimensional scoring approach ensures a thorough evaluation of
the visual complexity inherent in each chart.

Implementation Complexity We incorporate code complexity as a quantitative metric, measured
primarily through code length and structural intricacy. This parameter effectively captures the
technical sophistication required for accurate chart reproduction, including the complexity of data
preprocessing, visualization logic, and stylistic customizations. The implementation complexity
provides insights into the programming challenges associated with each chart type.

Consequently, charts in ChartMimic are systematically categorized into three distinct complexity
levels, each representing a specific combination of visual and implementation challenges:

Easy: Fundamental chart configurations featuring minimal visual complexity and straightforward
implementation requirements (e.g., in Fig. 6(a), monochromatic bar charts with sparse textual
elements and simplified data representation).

Medium: Charts exhibiting intermediate complexity in visual element composition or implementation
requirements (e.g., in Fig. 6(b), dual-subplot bar charts incorporating grouped data structures, diverse
chromatic schemes, and moderate textual annotations).
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Hard: Charts demonstrating sophisticated visual elements or advanced implementation (e.g., in
Fig. 6(c), complex dual-subplot bar charts featuring divergent data patterns, extensive color schemes,
comprehensive textual annotations, and substantial code complexity).

A.4 INSTRUCTION EXAMPLES

To illustrate our instruction format and task requirements, we present examples (bar_28 and CB_29)
with their corresponding (figure, instruction, code) triplets for both Direct Mimic and Customized
Mimic tasks. Fig. 7 and Fig. 8 show the Direct Mimic and Customized Mimic tasks for a bar chart
(bar_28), respectively. The instruction provides guidance on creating the visualization. Similarly,
Fig. 9 and Fig. 10 demonstrate the tasks for a more complex combination chart (CB_29).

Figure 7: An Example of the Direct Mimic task (bar_28), showing the (figure, instruction, code)
triplet. Additionally, we also display the ground truth figure rendered from the code for illustration.
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Figure 8: An Example of the Customized Mimic task (bar_28), showing the (figure, instruction, code)
triplet. Additionally, we also display the ground truth figure rendered from the code for illustration.
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Figure 9: An Example of the Direct Mimic task (CB_29), showing the (figure, instruction, code)
triplet. Additionally, we also display the ground truth figure rendered from the code for illustration.
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Figure 10: An Example of the Customized Mimic task (CB_29), showing the (figure, instruction,
code) triplet. Additionally, we also display the ground truth figure rendered from the code for
illustration.
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Table 7: The ChartMimic benchmark with Direct Mimic task. We report the results of both Testmini
and Test set.

Model Params Test set Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GPT-4o - Testmini 93.2 81.5 89.8 77.3 67.2 79.0 83.5 81.2
Test 93.0 83.4 90.2 76.7 66.0 79.1 84.1 81.6

Open-Weight

InternVL2-2B 2.2B Testmini 52.5 23.6 35.8 16.0 15.4 22.7 24.2 23.5
Test 51.8 23.3 34.8 15.9 15.9 22.5 25.6 24.0

InternVL2-8B 8.1B Testmini 61.8 31.5 51.1 28.6 26.2 34.4 38.9 36.6
Test 61.6 33.4 47.4 25.7 24.2 32.7 39.9 36.3

InternVL2-26B 26.0B Testmini 69.3 39.2 58.7 35.9 31.8 41.4 47.4 44.4
Test 69.9 41.7 58.0 35.6 31.0 41.6 48.1 44.9

InternVL2-Llama3-76B 76.0B Testmini 83.2 54.1 74.5 49.2 41.5 54.8 62.2 58.5
Test 83.3 55.6 73.5 50.4 40.8 55.1 62.7 58.9

Table 8: The ChartMimic benchmark with Customized Mimic task. We report the results of both
Testmini and Test set.

Model Params Test set Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GPT-4o - Testmini 96.5 88.5 92.9 79.2 67.6 82.1 84.3 83.2
Test 96.2 87.2 91.7 80.1 66.4 81.4 84.8 83.1

Open-Weight

InternVL2-2B 2.2B Testmini 49.3 22.2 35.4 20.0 18.1 23.9 27.8 25.9
Test 49.6 22.4 33.9 19.2 19.6 23.8 28.4 26.1

InternVL2-8B 8.1B Testmini 73.0 43.1 54.4 39.9 35.4 43.2 48.9 46.1
Test 73.5 43.7 54.1 41.1 34.1 43.3 49.8 46.5

InternVL2-26B 26.0B Testmini 73.7 43.9 62.3 43.5 34.3 46.0 51.1 48.6
Test 74.7 44.7 66.3 46.8 35.1 48.2 50.8 49.5

InternVL2-Llama3-76B 76.0B Testmini 89.8 57.8 79.0 63.5 50.5 62.7 66.7 64.7
Test 88.1 57.9 79.6 65.6 51.7 63.7 68.2 66.0

B CORRELATION BETWEEN TEST SET AND TESTMINI SET

Tab. 7 and 8 reports the performance of GPT-4o and InternVL2 series LMMs (2B, 8B, 26B, Llama3-
76B) on Direct Mimic and Customized Mimic task. The minor differences between scores on the test
subset and the testmini subset suggest that testmini effectively mirrors the test subset, serving as a
valuable evaluation subset for model development, especially for those who have limited computing
resources.
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C CHART TAXONOMY

This section presents the chart taxonomy in ChartMimic. It encompasses a structure of 22 categories
according to chart type characteristics and data composition. The categories comprise of:

• 18 regular types, ordered as follows: Bar, Heatmap, Scatter, Box, Errorbar, Errorpoint, Line,
Violin, Radar, Pie, Density, Graph, Quiver, Contour, Histogram, Tree, Area, and 3D charts.

• 4 advanced types: PIP (Plot-in-Plot), Multidiff (Multiple Differences), Combination, and
HR (Hard-to-Recognize).

The regular types are further divided into subcategories according to chart feature or data charac-
teristics, whereas each chart of the advanced types represents a unique subcategory. The taxonomy
showcases examples to showcase diversity of each category.

Bar: Bar chart uses rectangular bars to represent data and can be distinguished by its ori-
entation, horizontal or vertical, with its nuanced data attributes. There are 8 subcategories
of the data attributes for each orientation, consisting of 16 subcategories in total, as shown

in Figure 11:

1. Base (single positive data set, unordered)

2. Sorted (data in ascending or descending sequence)

3. Grouped (multiple positive data sets, adjacent)

4. Stacked (multiple positive data sets laying atop one another)

5. Normalized (proportioned stacks of positive data summing to one, a Stacked variant)

6. Diverging (multiple stacked data sets expanding from a central axis)

7. With-Negative (data sets including negative values)

8. Reverse (exclusively negative data sets)

Figure 11: Examples of Bar chart subcategories.
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Heatmap: Based on the layout and visual representations, Heatmap is categorized into
4 subcategories, each reflecting unique aspects of data presentation, as shown in Figure 12.

1. Base (the general layout of a typical heatmap)
2. Missing-Data (visualization indicating the absence of data points)
3. Triangle-Layout (heatmap configured in a triangular layout)
4. Other-Shaped (heatmap comprising elements in non-rectangular forms, such as circles)

Figure 12: Examples of Heatmap subcategories.

Scatter: Scatter plot is classified based on the dot characteristics and data distribution.
The taxonomy is divided into 4 subcategories as shown in Figure 13.

1. Base (basic scatter plot, uniform dot size, color may vary)
2. Diff-Shape (different dot shapes)
3. Diff-Size (different dot sizes, such as a bubble chart)
4. Clustered (scatter plot with clear clustering)

Figure 13: Examples of Scatter plot subcategories.

Box: Box plot is characterized by the orientation of boxes and data characteristics. The
orientation can be horizontal or vertical, while data characteristics include the grouping of
data and the presence of missing lines. The taxonomy is divided into 3 subcategories for

each orientation, consisting of 6 subcategories in total, as shown in Figure 14.

1. Base (single group of data, complete box shape)
2. Grouped (multiple groups of data, complete box shape)
3. Missed-Line (missing parts below the first quartile line and above the third quartile line)

Error Bar: An Error bar chart is an enhanced variant of the basic bar chart, augmented
with error margins to represent the variability or uncertainty within the data. Unlike Bar
chart, Error Bar chart typically does not include the categories "Normalized" and "Sorted"

in the dimension of data attributes, as these are less common. Therefore, Error Bar chart is classified
into 6 data attributes subcategories for each orientation, resulting in 12 subcategories in total, as
shown in Figure 15.

1. Base (single positive data set, unordered)
2. Grouped (multiple positive data sets, adjacent)
3. Stacked (multiple positive data sets laying atop one another)
4. Diverging (multiple stacked data sets expanding from a central axis)
5. With-Negative (data sets including negative values)
6. Reverse (exclusively negative data sets)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 14: Examples of Box chart subcategories.

Figure 15: Examples of Error Bar chart subcategories.

Error Point: Error Point chart enhances the classic Scatter chart by introducing error
bars to each data point, conveying the inherent variability or uncertainty of the data.

When classifying Error Point chart, a pivotal consideration lies in the orientation and symmetry
of the error bars, leading us to define 5 key characteristics that govern their taxonomy. These
characteristics—symmetry and asymmetry in both horizontal and vertical orientations, coupled with
a composite category encompassing both directions—culminate into 5 comprehensive subcategories,
as illustrated in Figure 16. Here we contend the following delineations:

1. Vertical-Horizontal Orientation: Distinguishing the direction of error bars, which can
profoundly affect the interpretation of the data.

2. Symmetry-Asymmetry: Acknowledging whether error bars exhibit a mirrored consistency
or an uneven distribution across data points.

Figure 16: Examples of Error Point chart subcategories.
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Line: Line chart is classified based on three primary attributes: data grouping, error
visualization methods, and dot-line characteristics for grouped data, as shown in Figure 17.

1. Data grouping: Single (individual dataset) or Grouped (multiple datasets).
2. Error visualization methods: Base (no error), Striped-Error (striped fill patterns), and

Marker-Error (markers above and below data points).
3. Dot-Line Characteristics: For single dataset, No-Marker (data points without markers),

Marker (data points with markers). For grouped datasets, Diff-Color (different colors for
each group), Diff-Marker (different marker shapes for each group), and Diff-Line (different
line styles for each group).

Figure 17: Examples of Line chart subcategories.

Violin: Violin chart is a combination of the Box chart and kernel Density chart. It provides
a deep insight into the distribution of the data, indicating where individual data points
fall within the overall data range. Based on the number of data groups and the shape and

distribution of the violin form, the taxonomy is divided into 3 subcategories, as shown in Figure 18.

1. Base (standard shape, single data group)
2. Grouped-Symmetrical (standard shape, multiple data groups)
3. Grouped-Departed (half shapes joined, multiple data groups)

Figure 18: Examples of Violin chart subcategories.

Radar: Radar chart, also known as spider chart or star plot, is a graphical method of
displaying multivariate data on a two-dimensional plane. It is particularly useful for
showing performance metrics or skill assessments across multiple areas. Radar chart is

classified based on three primary attributes: the number of data grouping, area fill, and dot-line
characteristics for grouped data, as shown in Figure 19.

1. Data Grouping: Base (a single dataset) or Grouped (multiple datasets).
2. Area Fill: FillArea (areas within the radar chart filled) or NoFillArea (areas without fill to

emphasize the outline).
3. Dot-Line Characteristics: For single dataset, NoMarker (dots without markers), Marker

(dots with markers). For grouped datasets, Diff-Color (different colors for each group),
Diff-Line (different line styles for each group), and Diff-Marker (different marker shapes
for each group).
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Figure 19: Examples of Radar chart subcategories.

Pie: Pie chart is a circular statistical graphic that divides a circle into slices to illustrate
numerical proportion, whereas ring charts, also known as donut charts, utilize a hollow

circle to serve a similar purpose. The presence of a ring, the number of layers, and the highlighted
segment are the primary attributes in the classification of pie and ring charts, as shown in Figure 20.

1. Hollowness: Pie (no ring) or Ring (with a ring).
2. Layering: SingleLayer (single data series) or MultiLayer (multiple series or categories).
3. Highlighting: Base (without highlighted segments) or Explode (with one or more segments

emphasized to capture viewer attention).

Figure 20: Examples of Pie and Ring chart subcategories.

Density: Density chart conveys the concentration and distribution of data within a space,
often used to depict the magnitude or frequency across different areas or intervals. The
orientation and data grouping are the primary attributes of the taxonomy of density plots,

as shown in Figure 21.

1. Orientation: Vertical (y-axis as density) or Horizontal (x-axis as density).
2. Data Grouping: Base (single dataset) or Grouped (multiple datasets).

Figure 21: Examples of Density chart subcategories.

Graph: Graph chart commonly represents relationships and interconnected data through
nodes (also known as vertices) and edges. It is widely used to depict networks, path-
ways, and complex inter-dependencies. The taxonomy of graph charts is based on the

directionality and weight of the edges, resulting in 4 subcategories, as shown in Figure 22.

1. Directionality: Directed (edges have direction) or Undirected (edges have no direction).
2. Weight: Weighted (edges have weight) or Unweighted (edges have no weight).
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Figure 22: Examples of Graph chart subcategories.

Quiver: Quiver chart, also known as vector field plot, is used to display the magnitude
and direction of vectors across a two-dimensional plane. This type of chart is particularly

useful in physics and engineering to represent velocity fields, gradients, or other vector-based data
spatially. The taxonomy of quiver charts is based on the vector quantity and data grouping, resulting
in 4 subcategories, as shown in Figure 23.

1. Vector Quantity: Simple (limited vectors) or Field (vector field).

2. Data Groups: Single (single group) or Grouped (multiple groups).

Figure 23: Examples of Quiver chart subcategories.

Contour: Contour chart, also called contour map or isoline graph, is used to represent
three-dimensional data on a two-dimensional plane by plotting contour lines that connect
points of equal value. This method is especially useful in fields like meteorology and

geography, where it visually communicates variations in terrain elevation or changes in meteorological
elements like temperature and pressure. The taxonomy of Contour chart is based on the representation
of the contour lines, resulting in 3 subcategories, as shown in Figure 24.

1. Line (line representation)

2. Fill-Area (color-filled representation)

3. Combination (both line and color-filled)

Figure 24: Examples of Contour chart subcategories.

Histogram: Histogram chart, often referred as hist chart, is a representation of data
distribution where the data is grouped into ranges or “bins” and illustrated as bars to show
the frequency of data points within each bin. It is particularly useful for identifying patterns

or anomalies in the data, such as skewness, peaks, or gaps in the distribution. The taxonomy of
histogram charts is based on the data grouping and positioning, resulting in 3 subcategories, as shown
in Figure 25.

1. Base (single dataset)

2. Overlaid (overlapping multiple datasets)

3. Stacked (stacked multiple datasets)
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Figure 25: Examples of Histogram chart subcategories.

Treemap: Treemap displays hierarchical data through nested rectangles, where each branch
of the tree is represented by a rectangle that contains smaller rectangles corresponding to

sub-branches. This method allows for efficient use of space, enabling the viewer to quickly compare
sizes and proportions within the hierarchy, and is especially useful for analyzing large datasets to
reveal relationships and patterns. The taxonomy of treemap charts is based on the compactness and
edge presence, resulting in 4 subcategories, as shown in Figure 26.

1. Tight-Edge (compact with border)

2. Tight-NoEdge (compact without border)

3. Loose-Edge (loose with border)

4. Loose-NoEdge (loose without border)

Figure 26: Examples of Treemap chart subcategories.

Area: Area chart is a graphical representation where data points are connected by line
segments and the area between the line and the axis is filled with color or patterns, providing
a sense of volume. It is particularly useful for visualizing the cumulative magnitude of

values over time, allowing for a clear perception of trends and changes in the data series. The
taxonomy of area charts is based on the presence of markers, resulting in 2 subcategories as shown in
Figure 27.

1. Base (without markers)

2. Marker (with markers)

Figure 27: Examples of Area chart subcategories.

3D charts: 3D chart extends two-dimensional charting into three dimensions with spatial
representations, offering an added layer of depth to represent additional data variables
or to enhance visual appeal. Based on the above chart types and the additional surface

representation in 3D space, we classify 3D chart into 5 subcategories, as shown in Figure 28.

1. Scatter (3D scatter chart)

2. Surface (3D surface chart)

3. Line (3D line chart)
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4. Bar (3D bar chart)

5. Density (3D density plot)

Figure 28: Examples of 3D chart subcategories.

PIP: PIP chart insets a magnified or reduced portion of the main plot to highlight key data
features, as in Figs. 29 (1) and (2). They enhance readability for complex datasets and
facilitate comparative analyses, as demonstrated in Figs. 29 (3) and (4).

Figure 29: Examples of PIP charts.

Multidiff: A Multidiff chart combines at least two different chart types across multiple
subplots, with each subplot presenting one type. Derived from the categories above and
using diverse layouts, Multidiff charts offer numerous configurations, as shown in Fig. 30.

Figure 30: Examples of Multidiff charts.

Combination: Combination chart merges features from different chart types into one
plot, offering multilayered presentation. Unlike Multidiff chart with multiple subplots for
different categories, Combination chart displays multiple categories in a single plot. As

in Fig. 31 (2), a scatter plot illustrates the data distribution while adjacent density plots detail the
axis-specific spread. Additional examples are shown in Fig. 31.

Figure 31: Examples of Combination charts.

HR: An HR chart is one that defies the above 21 categories or is challenging to identify.
HR chart is typically modified from common charts with distinctive features like custom
visual arrangement or atypical markers, as shown in Fig.32.
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Figure 32: Examples of HR charts.
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D DETAILS OF EVALUATION METRICS

In this section, we present the details of evaluation metrics, including GPT-4o score for high-level
metrics and Text Score, Layout Score, Type Score and Color Score for low-level metrics. For more
information, please refer to our source code.

D.1 GPT-4O SCORE

We employ GPT-4o (OpenAI, 2024) to assess the extend to which the generated figure corresponds to
the ground-truth figure. The specific content of the prompt is presented in Fig. 33. Specifically, we
input both the generated and the ground-truth figures into the GPT-4o simultaneously. Then, GPT-4o
is instructed to evaluate the similarity between the two figures, taking into account six dimensions:
text, layout, type, data, style, and clarity. Subsequently, GPT-4o outputs a score ranging from 0 to
100 to represent the degree of similarity between the figures.

Prompt for GPT-4o Score

You are an excellent judge at evaluating visualization chart plots. The first image (reference
image) is created using ground truth matplotlib code, and the second image (AI-generated
image) is created using matplotlib code generated by an AI assistant. Your task is to score
how well the AI-generated plot matches the ground truth plot.

### Scoring Methodology:
The AI-generated image’s score is based on the following criteria, totaling a score out of 100
points:

1. Chart Types (20 points): Does the AI-generated image include all chart types present in
the reference image (e.g., line charts, bar charts, etc.)?
2. Layout (10 points): Does the arrangement of subplots in the AI-generated image match the
reference image (e.g., number of rows and columns)?
3. Text Content (20 points): Does the AI-generated image include all text from the reference
image (e.g., titles, annotations, axis labels), excluding axis tick labels?
4. Data (20 points): How accurately do the data trends in the AI-generated image resemble
those in the original image and is the number of data groups the same as in the reference
image?
5. Style (20 points): Does the AI-generated image match the original in terms of colors (line
colors, fill colors, etc.), marker types (point shapes, line styles, etc.), legends, grids, and other
stylistic details?
6. Clarity (10 points): Is the AI-generated image clear and free of overlapping elements?

### Evaluation:
Compare the two images head to head and provide a detailed assessment. Use the following
format for your response:

—
Comments:
- Chart Types: ${your comment and subscore}
- Layout: ${your comment and subscore}
- Text Content: ${your comment and subscore}
- Data: ${your comment and subscore}
- Style: ${your comment and subscore}
- Clarity: ${your comment and subscore}
Score: ${your final score out of 100}
—
Please use the above format to ensure the evaluation is clear and comprehensive.

Figure 33: Prompt for GPT-4o Score.
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Figure 34: Example of GPT-4o’s scoring results for a Direct Mimic example (bar_28).

Stability of Evaluation with GPT-4o Score. We conduct the high-level evaluation for GPT-4o on
the Direct Mimic task for 5 times to assess the stability of GPT-4o Score. The result indicate a mean
GPT-4o Score of 83.4 with a standard deviation of 0.08, demonstrating the stability of GPT-4o Score.

Cost of Evaluation with GPT-4o Score. A single-round evaluation with GPT-4o Score on the Direct
Mimic task approximately costs $5.25. Utilizing OpenAI’s batch services further reduces this cost to
$2.63 per round.

Longevity of Evaluation with GPT-4o Score. The GPT-4o Score metric is designed with long-term
viability in mind. Our approach provides a meta-evaluation framework that can adapt to evolving
language models. While currently leveraging GPT-4o, the method is model-agnostic and can be
implemented with other advanced LLMs such as Claude or Gemini. This adaptability ensures that
as more capable models emerge, the evaluation process can seamlessly transition to utilize these
superior systems. Importantly, this approach has demonstrated increasing correlation with human
assessments as model capabilities improve, as evidenced by studies like AlpacaEval (Li et al., 2023)
and MT-Bench (Zheng et al., 2023).

GPT-4o Score Examples. To demonstrate our evaluation framework, we present GPT-4o’s scoring
examples for both Direct Mimic and Customized Mimic tasks. Figs. 34 to 37 show the evaluation
results for two representative charts of different complexity levels (bar_28 and CB_29). These
examples demonstrate how GPT-4o systematically evaluates various aspects of chart reproduction
across different chart complexities and task types.

Correlation Coefficient Comparison with CLIP Score. CLIP Score (Radford et al., 2021) is widely
used for assessing figure similarity. However, our preliminary experiments indicate that it struggles
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Figure 35: Example of GPT-4o’s scoring results for a Customized Mimic example (bar_28).
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Figure 36: Example of GPT-4o’s scoring results for a Direct Mimic example (CB_29).
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Figure 37: Example of GPT-4o’s scoring results for a Customized Mimic example (CB_29).
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to differentiate variations in types and other critical elements in charts, resulting in a low correlation
coefficient of 0.53 with human evaluation. In contrast, as stated in Sec. 4.3, GPT-4o Score achieves
a correlation coefficient of 0.70 with human evaluation. Therefore, we adopt GPT-4o Score as the
high-level evaluation metric.

D.2 TEXT SCORE

Listing 1: An exemplary Python code for logging text information.
from matplotlib.backends.backend_pdf import RendererPdf

drawed_texts = []

def log_function(func):
def wrapper(*args, **kwargs):

global drawed_texts

text_string = args[4]
drawed_texts.append( text_string )

return func(*args, **kwargs)

return wrapper

RendererPdf.draw_text = log_function(RendererPdf.draw_text)

In order to accurately capture the textual content presented in the rendered figures, our code tracer
monitors the function used to add text to the rendered PDF, logging each textual element. An
exemplary Python code is provided in Listing 1, where we record the text elements by adding a log
wrapper to the “draw_text()” function in the matplotlib package. Subsequently, we employ this
approach to extract the text information from both the generated code and the ground-truth code.

Based on these two groups of texts, precision is defined as the ratio of the number of correctly
captured ground-truth text to the total number of text in the generated figure. Recall is defined as
the ratio of the number of correctly captured ground-truth text to the total number of text in the
ground-truth figure. The F1-score, calculated using precision and recall, serves as Text Score.

D.3 LAYOUT SCORE

Listing 2: An exemplary Python code for logging layout information.
def get_gridspec_layout_info(fig):

"""
Get the layout information of a given figure.
Args:

fig (matplotlib.figure.Figure): The figure to extract layout
information from.

Returns:
layout_info (list): A list of dictionaries, each containing layout

information for each subplot in the figure.
"""

layout_info = {}
for ax in fig.axes:

spec = ax.get_subplotspec()
if spec is None:

continue
gs = spec.get_gridspec()
nrows, ncols = gs.get_geometry()
row_start, row_end = spec.rowspan.start, spec.rowspan.stop - 1
col_start, col_end = spec.colspan.start, spec.colspan.stop - 1
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layout_info[ax] = dict(nrows=nrows, ncols=ncols,
row_start=row_start, row_end=row_end, col_start=col_start,
col_end=col_end)

layout_info = list(layout_info.values())
return layout_info

layout_info = get_gridspec_layout_info(fig=plt.gcf())

The layout refers to the organization of subplots within a chart figure. In each figure implemented
using matplotlib, multiple axes objects are present, each containing layout information that specifies
its position within the figure. To analyze the layout, we iterate through each axis object in the figure
and obtain their respective layout information. An exemplary Python code to accomplish this process
is provided in Listing 2, where the position information of each axis is recorded. Subsequently, we
gather the layout information from both the ground-truth code and the generated code.

Based on these two groups of layout information, precision is defined as the ratio of the number of
correctly identified ground-truth layouts to the total number of layouts in the generated figure. Recall
is defined as the ratio of the number of correctly identified ground-truth layouts to the total number
of layouts in the ground-truth figure. The F1-score, calculated using precision and recall, serves as
Layout Score.

D.4 TYPE SCORE

Listing 3: An exemplary Python code for logging type information.
from matplotlib.axes import Axes
import inspect

called_functions = {}

def log_function(func):
def wrapper(*args, **kwargs):

file_name = inspect.getfile(func)
name = file_name + "/" + func.__name__
called_functions[name] = called_functions.get(name, 0) + 1
result = func(*args, **kwargs)
return func(*args, **kwargs)

return wrapper

Axes.bar = log_function(Axes.bar)

The matplotlib package provides a variety of functions for easily generating diverse chart types, such
as using “axes.bar()” to create bar charts. By monitoring the invocations of these functions, we
can identify the types of charts being utilized. A successful invocation of a plot functions indicates
the incorporation of a specific chart type in the final visualization. Listing 3 presents an exemplary
Python code that demonstrates this approach, where we introduce a logger to the “bar()” function.
Subsequently, we gather the chart types from both the generated and ground-truth code.

Based on these two groups of chart types, precision is defined as the ratio of the number of correctly
identified ground-truth chart types to the total number of chart types in the generated figure. Recall is
defined as the ratio of the number of correctly identified ground-truth chart types to the total number
of chart types in the ground-truth figure. The F1-score, calculated using precision and recall, serves
as Type Score.

D.5 COLOR SCORE

Listing 4: An exemplary Python code for logging color information.
from matplotlib.axes import Axes
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import inspect

drawed_colors = []

def log_function(func):
def wrapper(*args, **kwargs):

func_name = inspect.getfile(func) + "/" + func.__name__
result = func(*args, **kwargs)

for item in result:
color = item.get_facecolor()
drawed_colors.append( func_name + "--" + color )

Axes.bar = log_function(Axes.bar)

In the matplotlib package, each plot function returns a chart type instance at the end of the function
invocation. These instances contain various attributes, including those related to color properties, such
as facecolor, edgecolor and colormap. To assess the color attributes, we employ the code tracer that
captures the color information of each chart type instance. An example Python code demonstrating
this approach is provided in Listing 4. Subsequently, we gather the color information from both the
ground-truth code and the generated code and calculate the similarity between them.

It is noteworthy that through preliminary experiments, we find that using exact color matching
resulted in very low color similarity, as even slight variations would result in a similarity score of
zero. To address this issue, we employ the CIEDE2000 color difference formula (Luo et al., 2001),
which converts the matching value between two colors from a discrete [0, 1] scale to a continuous
range between 0 and 1. Finally, we calculate the maximum color similarity between the sets of
colors in the ground-truth code and the generated code. Precision is defined as the ratio of maximum
color similarity to the total number of color in the generated figure. Recall is defined as the ratio
of maximum color similarity to the total number of color in the ground-truth figure. The F1-score,
calculated using precision and recall, serves as Color Score.
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E MODEL CONFIGURATIONS AND PROMPTING METHODS

E.1 GENERATION CONFIGURATIONS

Following previous setups (Wang et al., 2023b; Shi et al., 2024), for open-weight models, we
set the temperature τ = 0.1 to achieve optimal results, while for proprietary models, we set the
temperature τ = 0 for greedy decoding. For all models, we set the maximum generation length
to 4096. Additionally, we use BF16 for model inference for open-weight models. All models are
inferred on A100 80G GPU.

E.2 PROMPTS

We provide prompts for Direct, HintEnhanced, SelfReflection and Scaffold Prompting in Figs. 38
to 42. for Direct Prompting, we meticulously design a separate prompt for open-source models to
achieve optimal results, as shown in Fig. 38. while the prompt for proprietary Models is shown
in Fig. 39.

Prompt for Direct Prompting (Open-Weight Models)

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I found a very nice picture in a STEM paper, but there is no corresponding
source code available. I need your help to generate the Python code that can reproduce the
picture based on the picture I provide.

Please note that it is necessary to use figsize=({width}, {height}) to set the image
size to match the original size. Additionally, I will not provide you with the actual data in the
image, so you have to extract the actual data by yourself and based on the extracted data to
reproduce the image. Ensure that the code you provide can be executed directly without
requiring me to add additional variables.
Now, please give me the matplotlib code that reproduces the picture below.

Figure 38: Prompt for Direct Prompting (Open-Weight Models). {text} in blue font represents
placeholders, which varies according to different test examples.

Prompt for Direct Prompting (Proprietary Models)

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I found a very nice picture in a STEM paper, but there is no corresponding
source code available. I need your help to generate the Python code that can reproduce the
picture based on the picture I provide.

Note that it is necessary to use figsize=({width}, {height}) to set the image size to
match the original size.
Now, please give me the matplotlib code that reproduces the picture below.

Figure 39: Prompt for Direct Prompting (Proprietary Models). {text} in blue font represents
placeholders, which varies according to different test examples.
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Prompt for HintEnhanced Prompting

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I found a very nice picture in a STEM paper, but there is no corresponding
source code available. I need your help to generate the Python code that can reproduce the
picture based on the picture I provide.

To ensure accuracy and detail in your recreation, begin with a comprehensive analy-
sis of the figure to develop an elaborate caption. This caption should cover, but not be limited
to, the following aspects:
1. Layout Analysis: e.g., identify the picture’s composition, noting the presence and
arrangement of any subplots.
2. Chart Type Identification: e.g., determine how many charts within a subplot. Are they
independent, or do they share a common axis?
3. Data Analysis: e.g., summarize the data trend or pattern.
4. Additional Features: e.g.,identify any supplementary elements such as legends, col-
ormaps, tick labels, or text annotations that contribute to the figure’s clarity or aesthetic appeal.

Now, given the picture below, please first output your comprehensive caption and
then use the caption to assist yourself to generate matplotlib code that reproduces the picture.
Note that it is necessary to use figsize=({width}, {height}) to set the image size to match the
original size.

Figure 40: Prompt for HintEnhanced Prompting. {text} in blue font represents placeholders, which
varies according to different test examples.

Prompt for Scaffold Prompting

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I found a very nice picture in a STEM paper, but there is no corresponding
source code available. I need your help to generate the Python code that can reproduce the
picture based on the picture I provide.

I will provide you with two images. The first image is the original picture. The
second image is the picture overlaid with a dot matrix of a shape of {dot_matrix_height} *
{dot_matrix_width} to help you with your task, and each dot is labeled with two-dimensional
coordinates (x,y). Within each column, the x-coordinate increases from top to bottom, and
within each row, the y-coordinate increases from left to right.

Please first use this dot matrix as reference anchors to generate the description of
the picture (e.g., between dot A and dot B is something) and generate matplotlib code that
reproduces the picture.

Note that it is necessary to use figsize=({width}, {height}) to set the image size to
match the original size.

Figure 41: Prompt for Scaffold Prompting. {text} in blue font represents placeholders, which varies
according to different test examples.
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Prompt for SelfRevision Prompting

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I have a code for implementing the reference picture as follows:

Now, I have the Python matplotlib code for implementing the reference picture as
follows:
```python
{python_code}
```
The rendered picture of the code is:

Now, please compare whether the renderer picture is the same as the reference pic-
ture. The difference may cover, but not be limited to, the following aspects:
1. Chart Types: Does the AI-generated image include all chart types present in the reference
image (e.g., line charts, bar charts, etc.)?
2. Layout: Does the arrangement of subplots in the AI-generated image match the reference
image (e.g., number of rows and columns)?
3. Text Content: Does the AI-generated image include all text from the reference image (e.g.,
titles, annotations, axis labels), excluding axis tick labels?
4. Data: How accurately do the data trends in the AI-generated image resemble those in the
original image and is the number of data groups the same as in the reference image?
5. Style: Does the AI-generated image match the original in terms of colors (line colors, fill
colors, etc.), marker types (point shapes, line styles, etc.), legends, grids, and other stylistic
details?
6. Clarity: Is the AI-generated image clear and free of overlapping elements?

- If the generated picture matches the reference, please output the original imple-
mentation code.
- If there are discrepancies, first list the specific differences between the two pictures. Then,
modify the existing code to address these differences, ensuring the revised code is capable of
reproducing the reference picture. Finally, output the revised code.

Note that it is necessary to use figsize=({width}, {height}) to set the image size to
match the original size.

Figure 42: Prompt for SelfRevision Prompting. {text} in blue font represents placeholders, which
varies according to different test examples.
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E.3 CASES OF DIFFERENT PROMPTING METHODS

We provide cases of HintEnhanced, SelfReflection and Scaffold Prompting in Figs. 43 to 46. For an
analysis of error cases related to Direct Prompting, please refer to Appendix H.

Figure 43: An error case of HintEnhanced Prompting. The text highlighted in red is LMM’s incorrect
understanding regarding provided figures. The remaining part of response is omitted with “......”.
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Figure 44: An error case of SelfReflection Prompting. The text highlighted in red is LMM’s incorrect
understanding regarding provided figures. The remaining part of response is omitted with “......”.
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Figure 45: An good case of SelfReflection Prompting. The text highlighted in blue is LMM’s correct
reflection regarding provided figures. The remaining part of response is omitted with “......”.
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Figure 46: An error case of Scaffold Prompting. The text highlighted in red is LMM’s incorrect
understanding regarding provided figures. The remaining part of response is omitted with “......”.
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E.4 DETAILS OF MODELS

We list the evaluated models in Tab. 9.

Model Params Language Model Vision Model Model Code/API

GPT-4o - - - gpt-4o-2024-05-13
Claude-3-opus - - - claude-3-opus-20240229
GeminiProVision - - - gemini-pro-vision
InternVL2-Llama3-76B 76.0B Llama-3-70B-Instruct InternViT-6B OpenGVLab/InternVL2-Llama3-76B
LLaVA-Next-Yi-34B 34.8B Yi-34B CLIP ViT-L/14 llava-hf/llava-v1.6-34b-hf
InternVL2-26B 26.0B InternLM2-20B InternViT-6B OpenGVLab/InternVL2-26B
Cogvlm2-llama3-chat-19B 19.2B Llama-3-8B-Instruct EVA2-CLIP-E THUDM/cogvlm2-llama3-chat-19B
Phi-3-Vision-128K-Instruct 4.2B Phi-3 CLIP ViT-L/14 microsoft/Phi-3-vision-128k-instruct
IDEFICS2-8B 7.6B Mistral-7B SigLip-400M HuggingFaceM4/idefics2-8b
LLaVA-Next-Mistral-7B 7.6B Mistral-7B CLIP ViT-L/14 llava-hf/llava-v1.6-mistral-7b-hf
DeepSeek-VL-7B 7.3B DeekSeek-7B SAM-B & SigLIP-L deepseek-ai/deepseek-vl-7b-chat
MiniCPM-Llama3-V2.5 8.4B Llama3-8B-Instruct SigLip-400M openbmb/MiniCPM-Llama3-V-2_5
Qwen2-VL-7B 8.2B Qwen2-7B ViT-600M Qwen/Qwen2-VL-7B-Instruct
InternVL2-8B 8.1B InternLM2.5-7B InternViT-300M OpenGVLab/InternVL2-8B
InternVL2-4B 4.2B Phi-3 InternViT-300M OpenGVLab/InternVL2-4B
Qwen2-VL-2B 2.6B Qwen2-1.5B ViT-600M Qwen/Qwen2-VL-2B-Instruct
InternVL2-2B 2.2B InternLM2-1.8B InternViT-300M OpenGVLab/InternVL2-2B

Table 9: Model code/API of the evaluated models.

F CORRELATION WITH HUMAN EVALUATION

Figure 47: A screenshot of the human evaluation questionnaire.
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In order to evaluate the reliability of the proposed automatic metrics, we calculate their correlation
with human evaluations. Specifically, a selection of 300 test examples from the Direct Mimic task is
utilized. Subsequently, we gather the results generated by GPT-4o using four different prompting
methods (Sec. 4.2) on these test examples. This process yields 1, 200 figures to be assessed.

Each figure is independently assessed by three evaluators through a questionnaire, who assign scores
on a scale of 0 to 100 based on the similarity between the generated figures and the ground-truth
figures. The final score for each figure is calculated as the mean of scores given by the three evaluators.
Our evaluators comprise volunteer graduate students holding bachelor’s degrees in computer science.
To facilitate their assessments, we provide a scoring rubric in the questionnaire, which closely aligns
with the low-level and high-level metric evaluations. The scoring criteria encompass the following
dimensions: chart type, layout, textual content, data, style, and clarity. A screenshot of the final
questionnaire is available in Fig. 47.

Upon collecting the human evaluation results, we calculate the Pearson correlation coefficient to
ascertain the correlation between our automatic metrics and human evaluation.
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G CORRELATION WITH CHART UNDERSTANDING AND CODE GENERATION
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(b) Correlation with Code Generation

Figure 48: Performance correlation of ChartMimic with benchmarks assessing chart understanding
and code generation capabilities.

In an effort to shed light on the factors enhancing performance on ChartMimic, we explore the
performance correlation between ChartMimic and existing benchmarks that evaluate chart under-
standing and code generation capabilities. Specifically, we select ChartQA (Masry et al., 2022) as the
benchmark for chart understanding and HumanEval (Chen et al., 2021) as the benchmark for code
generation. We then calculate two Pearson correlation coefficients to quantify these relationships:
The correlation coefficient between the performance of LMMs in the Direct Mimic task and their
performance in the ChartQA task, denoted as rchart, and the correlation coefficient between the
performance of LMMs in the Direct Mimic task and the performance of their corresponding LLMs in
the HumanEval task, denoted as rcode .

As depicted in Fig. 48, the calculated values are rchart = 0.6877 and rcode = 0.8714. These results
indicate that both chart understanding and code generation abilities influence the performance in
the Direct Mimic task, with code generation having a more significant impact. This implies that for
future model development aimed at enhancing multimodal code generation capabilities, it is crucial
to focus on the foundational code generation abilities of LMMs.
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H CASES OF ERROR ANALYSIS

We provide cases of text-related, type-related and color-related errors in Figs. 49 to 54. These cases
encompass various error types mentioned in Sec. 4.4.
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(a) Ground-truth figure (Combination_20)

0.0 0.2 0.4 0.6 0.8 1.0
redicted probability

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n 

of
 p

os
iti

ve
s

Subgroups
Calibration curve

(b) Generated figure

Figure 49: Error Case 1. In this case, the errors include text-related errors of the Missing type and
type-related errors of the Missing type.
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(a) Ground-truth figure (bar_7)
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(b) Generated figure

Figure 50: Error Case 2. In this case, the errors include type-related errors of the Extraneous type,
and color-related errors of the Different type.
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Figure 51: Error Case 3. In this case, the errors include text-related errors of the Detail and Missing
type, and color-related errors of the Different type.
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(a) Ground-truth figure (multidiff_9)
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(b) Generated figure

Figure 52: Error Case 4. In this case, the errors include text-related errors of the Missing type,
type-related errors of the Missing type, and color-related errors of the Different type.
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(a) Ground-truth figure (HR_22)
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(b) Generated figure

Figure 53: Error Case 5. In this case, the errors include type-related errors of the Confusion type, and
color-related errors of the Similar type.
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Figure 54: Error Case 6. In this case, the errors include text-related errors of the Extraneous type,
type-related errors of the Confusion type and color-related errors of the Similar type.
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Figure 55: Error analysis of InternVL2-Llama3-76B across four error types on the Direct Mimic task.
The number in brackets indicates the count of error case.

Figure 56: Error analysis of InternVL2-26B across four error types on the Direct Mimic task. The
number in brackets indicates the count of error case.

I ERROR ANALYSIS OF OPEN-WEIGHT MODELS

We conduct detailed error analysis on representative open-weight models of different scales, sampling
100 cases for each model. For large-scale models such as InternVL2-Llama3-76B and InternVL2-
26B (Fig. 55, Fig. 56), the error patterns align closely with those observed in GPT-4o. Specifically,
Code-related Errors predominantly arise from dimensional inconsistencies, while Text-related Errors
primarily manifest as missing elements. Type-related Errors mainly comprise missing components
cases, and Color recognition demonstrates the capability to identify similar, if not identical, chromatic
properties. In contrast, smaller-scale models like DeepSeek-VL-7B (Fig. 57) exhibit markedly
different error distributions. Code-related issues show a significant increase in Access and Parameter
Errors (approximately 53.7%), while Text-related errors demonstrate a higher prevalence of missing
elements (approximately 66.7%). Type-related cases reveal a substantial increase in missing errors
(approximately 78.4%). Moreover, the degradation in color recognition is more severe, with the model
failing to identify even similar colors. These findings indicate that while larger models encounter
challenges similar to GPT-4o, smaller models exhibit more fundamental difficulties in both code
generation and visual comprehension.
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Figure 57: Error analysis of DeepSeek-VL-7B across four error types on the Direct Mimic task. The
number in brackets indicates the count of error case.

J ETHICS, SOCIETAL IMPACT AND SCALABILITY OF CHARTMIMIC

ChartMimic is designed as a comprehensive evaluation framework for advancing LMMs, with a
strong emphasis on ethical considerations, societal impact and scalability. Its primary objective is to
provide researchers with a rigorous, ethically sound tool for assessing LMMs’ capabilities across
critical domains, including visual understanding, code generation and cross-modal reasoning.

Ethical Considerations. The ethical integrity of ChartMimic is foundational to its design and
implementation. Our dataset is derived from scientific domains, specifically using figures from
arXiv papers distributed under the CC BY 4.0 license. This focus on scientific content significantly
mitigates potential ethical concerns related to bias, representation, or sensitive personal information
that often arise in datasets derived from social media or general web content. The scientific nature of
our data ensures: Minimal risk of perpetuating societal biases or stereotypes; Absence of personally
identifiable information; Content that is generally neutral and objective, focusing on factual scientific
representations. Our manual annotation process for code generation incorporates stringent ethical
controls. Annotators are trained to ensure that the information conveyed in the code does not contain
any biased content and strictly adheres to the factual representation of the scientific charts. This
process further reinforces the ethical robustness of our dataset.

Societal Impact. By providing a benchmark rooted in scientific data, ChartMimic contributes
to the development of LMMs that can better understand and interact with complex, data-driven
visualizations. This capability has far-reaching positive implications for scientific communication,
data analysis, and knowledge dissemination across various fields.

Scalability. The architecture of ChartMimic is inherently extensible, featuring a modular code-
base that facilitates the seamless integration of additional chart types and evaluation metrics. Our
data collection methodology leverages the continuous update cycle of arXiv, enabling sustainable
expansion of the dataset while maintaining its focus on ethically sound, scientific content. The
evaluation framework also demonstrates notable scalability: The concept of low-level metric can be
readily adapted to other programming environments such as JavaScript and R. The high-level metric
incorporates a meta-evaluation approach using LMMs, which allows for sustainable alignment with
human preferences as stronger models emerge.
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