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ABSTRACT

Offline Safe Reinforcement Learning (OSRL) aims to learn a policy that achieves
high performance in sequential decision-making while satisfying safety constraints,
using only pre-collected datasets. Recent works, inspired by the strong capabilities
of Generative Models (GMs), reformulate decision-making in OSRL as a condi-
tional generative process, where GMs generate desirable actions conditioned on
predefined reward and cost return-to-go values. However, GM-assisted methods
face two major challenges in constrained settings: (1) they lack the ability to
“stitch” optimal transitions from suboptimal trajectories within the dataset, and (2)
they struggle to balance reward maximization with constraint satisfaction, partic-
ularly when tested with imbalanced human-specified reward-cost conditions. To
address these issues, we propose Goal-Assisted Stitching (GAS), a novel algorithm
designed to enhance stitching capabilities while effectively balancing reward max-
imization and constraint satisfaction. To enhance the stitching ability, GAS first
augments and relabels the dataset at the transition level, enabling the construction
of high-quality trajectories from suboptimal ones. GAS also introduces novel goal
functions, which estimate the optimal achievable reward and cost goals from the
dataset. These goal functions, trained using expectile regression on the relabeled
and augmented dataset, allow GAS to accommodate a broader range of reward-
cost return pairs and achieve a better tradeoff between reward maximization and
constraint satisfaction compared to human-specified values. The estimated goals
then guide policy training, ensuring robust performance under constrained settings.
Furthermore, to improve training stability and efficiency, we reshape the dataset to
achieve a more uniform reward-cost return distribution. Empirical results validate
the effectiveness of GAS, demonstrating superior performance in balancing reward
maximization and constraint satisfaction compared to existing methods.

1 INTRODUCTION

Significant progress has been achieved in Reinforcement Learning (RL) that learns policies to
maximize rewards through constant interactions with the environment. Limited by the trial-and-error
approach, standard RL often fails in scenarios with safety constraints, such as autonomous driving
(Fang et al., 2022) and investment portfolios (Lee & Moon, 2023). It stems from two issues: (1) the
exploration process in RL can be inherently risky, as random actions may lead to unsafe outcomes,
and (2) the optimized policies often focus solely on maximizing cumulative rewards, neglecting safety
constraints. To tackle these issues, Offline Safe RL (OSRL) has emerged as a promising paradigm
that learns safe policies from a pre-collected dataset, eliminating the need for risky online exploration.

While OSRL mitigates the risks associated with online exploration by relying on static datasets, it
introduces a new challenge: the Out-Of-Distribution (OOD) problem. Specifically, the Bellman
backup may extrapolate actions beyond the dataset, leading to unpredictable or unsafe behaviors.
Early OSRL methods primarily adapted RL techniques to constrained settings using approaches
such as the Lagrange method (Stooke et al., 2020), constraint penalty (Xu et al., 2022), or the
DICE-style techniques (Lee et al., 2022). To mitigate OOD-related issues, these methods incorporate
strategies like distribution correction (Lee et al., 2022), regularization (Kostrikov et al., 2021), and
OOD detection (Xu et al., 2022). However, they still face challenges in effectively addressing OOD
problems and adapting to dynamic, real-world constraints.

More recently, Generative Model-assisted (GM) methods have emerged as an alternative to traditional
OSRL approaches to address these limitations. In OSRL, GM methods reformulate the Constrained
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Markov Decision Process (CMDP) as a goal-conditioned generating problem, where the generative
model is trained to produce trajectories that match predefined reward and cost returns specified as
inputs. This formulation provides two key benefits. First, GM methods essentially adopt a goal-
conditioned behavior cloning scheme, where the model learns to imitate behavior from the dataset
conditioned on the desired reward and cost targets. This formulation entirely bypasses the Bellman
backup procedure, which is the primary source of the OOD problem in traditional OSRL approaches.
Second, GM methods also offer greater flexibility compared to conventional methods, which typically
operate under fixed safety constraints. Because the target reward and cost returns are provided as
inputs, GM methods can seamlessly adapt to varying objectives at test time without re-training.

Nevertheless, GM methods present their own challenges. First, while GM methods bypass the
Bellman backup procedure, they lack trajectory stitching capabilities (Badrinath et al., 2023; Wu
et al., 2023; Kim et al., 2024b) — the ability to combine transitions from different trajectories
to enhance performance. This limitation restricts their ability to fully utilize suboptimal datasets
to improve performance. Second, GM methods lack an explicit mechanism to balance reward
maximization and constraint satisfaction, potentially leading to unsafe or overly conservative policies.
In this work, we propose a novel Goal-Assisted Stitching (GAS) method to address these challenges
while retaining the advantages of GM methods. The key contributions are summarized as follows.

We propose to use goal functions as intermediate values to bridge the gap between human-specified
(potentially suboptimal) reward-cost targets and the optimal achievable goals of the conditional policy
instantiated by GM methods. To achieve this, we introduce three key innovations: 1) Temporal
Segmented Return Augmentation and Transition-level Return Relabeling: To enhance GAS’s
stitching capabilities, we restructure the offline dataset at the transition level and introduce temporal
segmented return augmentation, which extracts richer information by considering reward and cost
returns over varying timesteps rather than only at trajectory endpoints. Additionally, we ensure ro-
bustness to suboptimal human-specified target return-to-goes during testing by relabeling reward-cost
return-to-goes at the transition level during training. 2) Goal Functions with Expectile Regressions:
We train the novel reward and cost goal functions using expectile regression to estimate the optimal
achievable reward and cost goals without relying on Bellman backups. These goal functions guide the
policy to stitch transitions effectively, achieving both reward maximization and constraint satisfaction
for a wider range of given target reward-cost return pairs. 3) Dataset Reshaping: To improve training
stability and efficiency, we address the data imbalance issue by reshaping the dataset to create a more
balanced reward-cost return distribution. Through extensive experiments on 2 benchmarks with
12 scenarios and 8 baselines under various constraint thresholds, GAS shows superior safety
ability under tight thresholds and 6% improvement in performance under loose thresholds.

2 RELATED WORK

RL Methods in Offline RL. Offline RL (Fujimoto et al., 2019) aims to find the policy to maximize
the cumulative rewards from a pre-collected dataset. The primary challenge lies in the OOD problem
during the Bellman backup, where the policy may select actions beyond the dataset. This issue arises
because offline RL does not allow for environment exploration to gather additional data. To this end,
most existing works try to constrain the target policy to stay close to the behavior policy with a KL
regularization term (Jaques et al., 2020; Peng et al., 2019; Siegel et al., 2020) or Wasserstein distance
(Wu et al., 2020) where the behavior policy is estimated by a generative model. For example, BCQ
(Fujimoto et al., 2019) uses a variational autoencoder (VAE) to estimate the behavior policy and
restrict the action space during the Bellman backup. Except for explicitly estimating the behavior
policy, CQL (Kumar et al., 2020) proposes to learn Q-values conservatively, encouraging those within
the dataset to act as a lower bound. Alternatively, IQL (Kostrikov et al., 2022) avoids the OOD
problem entirely by employing expectile regression to learn Q-values without querying OOD actions.

GM Methods in Offline RL. More recently, some works formulate offline RL as a return-conditioned
generation problem and address it using generative models, such as Decision Transformer (DT) (Wu
et al., 2023; Chen et al., 2021; Zheng et al., 2022), and Decision Convformer (DC) (Kim et al.,
2024a). These methods naturally avoid the OOD problem since the return-conditioned generation
problem does not need the Bellman backup procedure. However, a significant limitation of these
methods is their low stitching ability—i.e., the ability to identify and combine optimal transitions from
suboptimal trajectories—particularly when the dataset consists primarily of suboptimal trajectories.
To improve the stitching ability of GM methods, several works have been proposed. For instance,
QDT (Yamagata et al., 2023a) relabels return-to-go in the dataset with Q-values derived from RL
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methods. WT (Badrinath et al., 2023) proposes to use a sub-goal as the prompt to guide the DT
policy to find a shorter path in navigation problems. Building on these ideas, ADT (Ma et al., 2024)
proposes a hierarchical framework by replacing the return-to-go with a sub-goal learned from IQL.
In contrast to improving stitching ability in the training procedure, EDT (Wu et al., 2023) boosts the
stitching ability of DT at decision time by adaptively adjusting the history length of the attention
module.

Offline Safe RL. OSRL integrates safety constraints into offline learning settings, addressing both
safety requirements and limited online interaction with the environment. This emerging field has
spawned two main approaches: RL methods and GM methods. For RL methods, CPQ (Xu et al.,
2022) employs a conditional VAE model to estimate and penalize the OOD actions. COptiDICE
(Lee et al., 2022) utilizes stationary distribution correction to mitigate the distributional shift problem.
For GM methods, which are inspired by DT, CDT (Liu et al., 2023b) transforms OSRL into a
goal-conditioned generative problem and inputs both target reward and cost return-to-go to the GPT
structure. To handle the safety-critical cases, FISOR (Zheng et al., 2024) proposes a feasibility-guided
diffusion model to ensure strict satisfaction of constraints.

Although previous works demonstrate great success in enhancing the stitching ability of GM methods
in offline RL, they cannot be utilized in OSRL directly due to the fundamentally different objectives
introduced by constrained settings. Extending GM methods to OSRL is challenging because, while
the goal of maximizing rewards remains consistent, the requirements for constraints vary across
scenarios. Our work addresses this critical gap by introducing GAS, a novel framework designed to
enhance stitching capabilities while achieving a robust balance between reward maximization and
constraint satisfaction under various constrained scenarios.

3 BACKGROUND

Constrained Markov Decision Process (CMDP). CMDP (Altman, 1998) is a standard framework
for safe RL defined by the tuple M = (S,A,P, r, c, γ), where S is the state space, A is the action
space, P(s′|s, a) is the transition function, r(s, a) is the reward function, c(s, a) is the cost function,
and γ is the discount factor. The goal of safe RL is to find a policy π(a|s) that maximizes the
cumulative rewards while satisfying the safety constraints. Given the constraint threshold L and
the trajectory τ = {(s0, a0, r0, c0), ..., (sT , aT , rT , cT )|at = π(at|st)}, with T being the trajectory
length, the optimization problem of safe RL can be written as:

max
π

V π
r (τ),

s.t. V π
c (τ) ≤ L,

(1)

where V π
r (τ) = Eτ∼π[

∑∞
t=0 γ

trt] denotes the reward value function, and V π
c (τ) =

Eτ∼π[
∑∞

t=0 γ
tct] denotes the cost value function.

Offline Safe Reinforcement Learning (OSRL). OSRL maintains the same objectives as safe RL
while additionally addressing the OOD problem due to the inability to explore. To mitigate the OOD
problem, the target policy is constrained to remain close to the behavior policy, as formulated in
eq. (2), which augments eq. (1) in the optimization.

D(π, µ) ≤ ζ, (2)
where µ is the behavior policy used in the pre-collected dataset D, D(., .) is an arbitrary dis-
tance/divergence function, and ζ is a hyper-parameter.

Constrained Decision Transformer (CDT). CDT (Liu et al., 2023b) transfers the OSRL problem
into a goal-conditioned generative problem by reformulating the dataset as:

τ = (s0, a0, R0, C0, ..., sT , aT , RT , CT ), (3)
where Rt = rt + ...+ rT is the cumulative rewards from t to the trajectory end in the dataset, named
reward return-to-go, and Ct = ct + ...+ cT is the cost return-to-go. Then CDT trains a policy π with
the GPT structure, as shown in eq. (4), to predict the action given (s,R,C) at the current timestep
and (s, a,R,C) from previous K − 1 timesteps as conditions, where K is the memory length of
GPT.

π(at|st, Rt, Ct, ..., at−K+1, st−K+1, Rt−K+1, Ct−K+1) a.k.a π(at|st, Rt, Ct,K), (4)

During testing, users need to specify the target reward return R̂ and cost return Ĉ as the input of the
CDT policy, which then generates actions to approach these targets R̂ and Ĉ.
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Figure 1: Training curve of CDT with different memory length K on task CarCircle.

4 MOTIVATION

In this section, we first analyze two critical limitations of current GM methods for OSRL: (1)
insufficient trajectory stitching capabilities and (2) the inability to balance reward maximization and
constraint satisfaction. We design our solution to specifically address these challenges.

4.1 INSUFFICIENT TRAJECTORY STITCHING CAPABILITIES

A key strength of traditional RL methods lies in their ability to stitch together different suboptimal
trajectories, enabling effective generalization across diverse experiences. This stitching ability
arises from the fact that RL only considers the current state as the condition and stitches the next
optimal transition via Bellman backup. In contrast, GM methods sacrifice this crucial ability by
additionally taking previous information as conditions to capture the temporal association among
transitions. Recent studies (Badrinath et al., 2023; Ma et al., 2024; Xiao et al., 2023; Yamagata et al.,
2023b) demonstrate that DT/CDT’s trajectory-level training paradigm is essentially a form of goal-
conditioned behavior cloning, which predicts the action based on information in previous timesteps
via the temporal attention module. Given suboptimal information as the contextual condition, GM
methods tend to memorize the suboptimal actions, resulting in suboptimal performance.

However, Kim et al. (2024b) reveals that the attention module designed for natural language pro-
cessing often fails to characterize the temporal relations for sequential transitions of MDPs in DT
(Chen et al., 2021). Specifically, while MDP policies should primarily focus on immediate previous
states, DT’s attention spans up to 20 timesteps backward, potentially diluting the focus on relevant
temporal information and adversely affecting the performance of offline RL (Kim et al., 2024b). To
validate this observation, we conducted empirical experiments comparing CDT variants with different
memory lengths (K = 1 and K = 10) for attention modules while keeping other parameters constant.
As shown in fig. 1, CDT’s performance remains largely unchanged across these memory settings
under three distinct constraints, suggesting that the attention mechanism fails to effectively leverage
temporal information in OSRL.

4.2 INABILITY TO BALANCE REWARD MAXIMIZATION AND CONSTRAINT SATISFACTION

In GM-assisted OSRL, as opposed to goal-conditioned behavior cloning, the objective should be
formulated as:

max
π

R(st, π(at|st, Rt, Ct,K))

s.t. C(st, π(at|st, Rt, Ct,K)) ≤ Ct,

Rt = R̂− (r0 + ...+ rt−1),

Ct = Ĉ − (c0 + ...+ ct−1),

(5)

where R(.) and C(.) are the non-discounted reward and cost returns under the policy π. DT-family
algorithms, due to their goal-conditioning nature (detailed in section 3), struggle to effectively balance
the dual objectives of reward maximization and constraint satisfaction in OSRL. This limitation
stems from two key challenges: First, without prior knowledge, it becomes problematic to determine
appropriate target reward-cost pairs (R̂, Ĉ) as these objectives often require careful trade-offs. The
GPT structure can only search for policies that satisfy given targets (Liu et al., 2023b) without
validating their feasibility. Consequently, specifying overly ambitious return targets R̂ alongside
stringent constraints Ĉ may lead to policy degradation when such conditions prove unrealistic.

4
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Figure 2: Overall view of GAS. Left: Comparison between CDT and GAS. CDT optimizes at a
trajectory level, while GAS enables fine-grained trajectory stitching under the guidance of reward
maximization and constraint satisfaction. Right: GAS’s stitching mechanism, where the goal function
learns the optimal reward and cost return-to-go within the constraint given any target. The policy
aims to take actions to achieve optimal goals estimated by the goal function via constrained AWR.

Second, the current CDT architecture simply concatenates target return R̂ and cost Ĉ as contextual
conditions without any mechanism to balance their relative importance. This structural limitation
prevents GM methods from properly prioritizing constraint satisfaction over reward maximization—a
crucial requirement in OSRL. This misalignment between architectural design and OSRL objectives
frequently causes performance degradation in practice.

5 GOAL-ASSISTED STITCHING

In section 4.1, we highlight that extending the temporal attention module to overly long time windows
does not enhance memorization and instead hinders the stitching ability for GM methods in OSRL.
This inspires us to trade the temporal attention for a more focused approach: stitching transitions in
the dataset under the guidance of reward maximization and constraint satisfaction in a conditional
manner. To achieve this goal, we propose Goal-Assisted Stitching (GAS), a novel algorithm that
offers a more flexible balance between Rt and Ct and stitches high-quality transitions to achieve
safe and best performance as shown in fig. 2. In particular, we first estimate the optimal achievable
reward return-to-go satisfying the constraint and corresponding cost return-to-go in the dataset for a
given pair of Rt, Ct with a reward-cost goal function through expectile regression without relying
on the Bellman backup procedure. The estimated optimal reward and cost goals are then used
to guide the policy optimization through a constrained policy optimization paradigm. To further
enhance the stability and efficiency of the training procedure, we reshape the dataset in terms of
Rt, Ct distribution, ensuring a more uniform reward-cost-return distribution to support GAS training.
Theoretical analysis and the pseudocode of GAS are presented in section B and section C.

5.1 OPTIMAL ACHIEVABLE GOALS

Conceptually, the maximum achievable return-to-go V R
t and the corresponding cost return-to-go V C

t

for a given state s and the target reward/cost returns R̂ and Ĉ in the dataset should follow:

V R
t (s, R̂, Ĉ) = max

(st=s,at,Rt,Ct)∼D
Rt ∗ 1(Ct ≤ Ĉ). (6)

V C
t (s, R̂, Ĉ) = argCt

{ max
(st=s,at,Rt,Ct)∼D

Rt ∗ 1(Ct ≤ Ĉ)}. (7)

However, directly applying eqs. (6) and (7) to estimate the optimal goals raises three issues. First, the
standard definitions of Rt and Ct are the cumulative rewards and costs from the current timestep to
the trajectory end. However, good transitions often occur within shorter segments. This motivates our
introduction of Rt:Γ and Ct:Γ in section 5.2, representing cumulative values over a shorter window
from t to Γ. Second, in the training stage, the target reward/cost returns are derived from cumulative
values along the trajectory, which may not consistently align with the predefined targets in the testing
stage. To address this problem, we propose a transition-level return relabeling in the training stage
in section 5.3. Third, rare “lucky” transitions with high rewards and low costs can lead to value
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Figure 3: Necessity of temporal segmented return augmentation.

overestimation for maximum achievable goals due to transition function stochasticity. To address this
problem, we design a goal function with expectile regression to estimate the expectation of the upper
quantile of the return-to-go distribution in section 5.4.

5.2 TEMPORAL SEGMENTED RETURN AUGMENTATION

Processing the dataset in smaller temporal segments provides GM training with more abundant
information. Specifically, we leverage such insights and augment the return information in the dataset
according to:
(st, at, Rt, Ct) → {(st, at, Rt:Γ, Ct:Γ)|Γ = t, ..., T} = {(st′ , at′ , Rt′:T , Ct′:T )|t′ = t+ T − Γ},

where Rt:Γ = rt+ ...+rΓ and Ct:Γ = ct+ ...+cΓ. When sampling (st′ , at′ , Rt′ , Ct′), GAS can seek
better Rt:Γ > Rt′ & Ct:Γ ≤ Ct′ from other transitions under augmentation as long as Γ− t = T − t′

. As illustrated by fig. 3, this data augmentation scheme provides two benefits: (1) It substantially
expands the training data by including transitions of varying temporal lengths; (2) It enables more
flexible transition stitching across different timesteps by providing diverse time intervals.

5.3 TRANSITION-LEVEL RETURN RELABELING

First observed in Liu et al. (2023b), the misalignment between human-specified reward-cost targets
in the testing stage and the training inputs can lead to degraded performance for GM methods due to
their nature of behavior cloning. Inspired by the trajectory-level labeling in Liu et al. (2023b), we
propose a more fine-grained, transition-level return relabeling mechanism fitting in with transition-
level stitching. For sampled transitions D̂ = {(st, at, Rt:Γ, Ct:Γ, t

′ = t+ T − Γ)}, we relabel Rt:Γ

and Ct:Γ in eq. (8) and take relabeled values as input of goal functions V R
t:Γ(st, at, R̂t:Γ, Ĉt:Γ, t

′).

R̂t:Γ = U((1− δ)Rt:Γ, (1 + δ)Rt:Γ),

Ĉt:Γ = U(Ct:Γ, C
max),

(8)

where U(a, b) is a uniform distribution between a and b, δ ∈ (0, 1) is a hyper-parameter and Cmax is
the maximum value of cost returns. In this way, goal functions can be trained under more imbalanced
and comprehensive reward-cost targets. Notably, our proposed GAS does not directly update the
policy guided by the relabeled values. Instead, we utilize them to assist training through intermediate
optimal goals and update the policy based on these goals during optimization. As a result, GAS
retains the robustness of the policy without affecting reward maximization and constraint satisfaction.

5.4 GOAL FUNCTIONS WITH EXPECTILE REGRESSIONS

Since naively taking the maximum operator in the dataset can be prone to rare “lucky” samples, we
adopt a distributional perspective and optimize goal functions that focus more on high return-to-go
samples and less on low return-to-go samples. To this end, we employ expectile regression for
iteratively updating the estimated goal functions.

The reward goal function should output the largest reward-to-go that satisfies the constraint. To
formalize this, we first define the advantage function as:

AR
t:Γ = 1(V C

t:Γ < Ĉt:Γ) ·Rt:Γ − V R
t:Γ(st, R̂t:Γ, Ĉt:Γ, t

′ = t+ T − Γ), (9)

where 1(V C
t:Γ < Ĉt:Γ) is an indicator function of constraint satisfaction.

In this way, transitions that violate the constraint or have low return Rt:Γ are down-weighted during
expectile regression. Then the loss function with expectile regression can be defined as :

LR = ED̂[|α− 1(AR
t:Γ < 0)| · (AR

t:Γ)
2]. (10)

6
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With this loss function, the reward goal function (V R
t:Γ) converges to the expectile of the largest reward

return-to-go that satisfies the constraint controlled by α.

The optimization objective for the cost goal function differs from that of the reward goal function.
While the reward goal function aims to find the largest reward return-to-go in the dataset via expectile
regression, the cost goal function seeks to estimate the cost value associated with the optimal reward
goal. To address this, we modify the loss function of the cost goal function to eqs. (11) and (12),
assigning higher weights to transitions with higher reward goals under the constraint.

AC
t:Γ = Ct:Γ − V C

t:Γ(st, R̂t:Γ, Ĉt:Γ, t
′ = t+ T − Γ). (11)

LC = ED̂[|α− 1(AR
t:Γ < 0)| · (AC

t:Γ)
2]. (12)

Goal-guided Policy Optimization: To ensure that the policy comprehends optimal targets under
relabeled targets returns, we incorporate the optimal reward and cost goals obtained from the goal
functions as inputs to the policy. Then we optimize the policy utilizing a constrained version of
Advantage Weight Regression (AWR), as shown in:

Lπ = ED̂[1(V
C
t:Γ < Ĉt:Γ) · |α− 1(AR

t:Γ < 0)| · (π(a|st, R̂t:Γ, Ĉt:Γ, V
R
t:Γ, V

C
t:Γ, t

′)− at)
2]. (13)

5.5 DATASET RESHAPING

Existing GM methods take reward and cost returns as input, while the reward-cost distribution
in the dataset is often highly imbalanced, a problem referred to as data imbalance (Kang et al.,
2021; Bagui & Li, 2021; Yang et al., 2021; Ren et al., 2022). The issue seriously affects the
ability of RL-based methods on constraint satisfaction (Yao et al., 2024), as well as GM-assisted
methods. We define transitions with low costs and low rewards as “conservative transitions”,
transitions with high costs and high rewards as “aggressive transitions”, and transitions with low
costs but high rewards as “ideal transitions”. As shown in fig. 4, most transitions in the dataset are
concentrated in regions where both cost and reward returns are extremely low. When training with
uniform sampling, GM methods tend to learn predominantly from these conservative transitions,
while under-representing ideal transitions that exhibit higher reward returns with lower cost returns.
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Figure 4: Original and reshaped dataset distribution.

To mitigate this issue, we propose to reshape
the dataset distribution during the training
phase. In particular, we first estimate the
reward-return distribution conditioned on
cost returns from the offline dataset and
then select all transitions that fall within
the top q% reward returns for each cost re-
turn, thereby creating a new dataset Dq =
{(s, a,R,C) ∼ D|P c(R|C) > 1 − q},
where P c indicates cumulative distribution
function. Throughout the training procedure, Dq will be sampled with a probability ϵ and the original
dataset D will be sampled with a probability 1−ϵ. As shown in fig. 4, the reshaped dataset distribution
is more balanced compared to the original one.

6 EXPERIMENT

In this section, we aim to evaluate our proposed GAS and empirically answer three questions: 1)
Can GAS achieve both safe and better performance with improved stitching ability? 2) Can GAS
preserve the zero-shot adaptation ability to different constraint thresholds? 3) Is GAS robust to
imbalanced and human-specified target reward-cost return-to-goes? Accordingly, we design the
following experimental setup to evaluate GAS.

Tasks: We evaluate GAS on the widely used Bullet-Safety-Gym (Gronauer, 2022) and Safety-
Gymnasium (Ji et al., 2023) benchmarks. For all tasks, we use the dataset provided in DSRL (Liu
et al., 2023a) as our offline dataset, following the D4RL (Fu et al., 2020) benchmark format.

Baselines: We compare our proposed GAS with the following baseline methods: (1) Constraint
penalized method: CPQ (Xu et al., 2022); (2) Distribution correction estimation: COptiDICE (Lee
et al., 2022); (3) Variational optimization with conservative estimation: VOCE (Guan et al., 2023);
(4) Weighted safe actor-critic: WSAC (Wei et al., 2024); (5) Generative model assisted algorithms:
CDT (Liu et al., 2023b) and FISOR (Zheng et al., 2024).
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Table 1: Normalized evaluation results. The normalized cost threshold is set to 1. Values shown as
“mean±std” represent the mean and standard deviation. Each value represents the average performance
over 10 evaluation episodes with 5 seeds and 3 thresholds. Bold/gray/blue indicate safe/unsafe/safe
and best-performing results. ↑ (↓) indicates that higher (lower) values are better.

Methods CPQ COptiDICE WSAC VOCE CDT FISOR GAS

Tasks R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓
Tight Constraint Threshold: Average results on thresholds with 10%, 20%, and 30% of the maximium costs for each task.

AntRun 0.02±0.01 0.00±0.00 0.60±0.03 0.45±0.22 0.29±0.04 0.30±0.28 0.23±0.05 0.87±0.36 0.72±0.03 0.93±0.46 0.29±0.03 0.00±0.00 0.72±0.02 0.70±0.30

BallRun 0.32±0.14 1.53±1.07 0.58±0.01 4.54±0.33 1.10±0.30 7.10±0.94 1.08±0.38 7.10±0.11 0.33±0.01 1.16±0.15 0.23±0.01 0.00±0.00 0.33±0.01 0.62±0.15

CarRun 0.95±0.14 0.83±0.15 0.96±0.03 0.00±0.00 0.96±0.09 0.31±0.22 0.95±0.26 8.09±0.03 0.99±0.01 0.99±0.15 0.82±0.01 0.00±0.00 0.99±0.01 0.19±0.05

DroneRun 0.41±0.21 4.47±1.40 0.74±0.16 3.42±0.27 0.38±0.12 0.41±0.13 0.67±0.20 4.21±1.21 0.61±0.01 1.01±0.15 0.37±0.05 0.41±0.17 0.60±0.02 0.22±0.13

AntCircle 0.02±0.02 0.00±0.00 0.23±0.03 2.14±0.24 0.26±0.08 0.61±0.33 0.17±0.06 0.83±0.24 0.54±0.02 1.46±0.08 0.13±0.03 0.00±0.00 0.52±0.02 0.96±0.10

BallCircle 0.66±0.23 0.61±0.44 0.70±0.02 3.53±0.00 0.73±0.08 0.30±0.08 0.74±0.07 1.10±0.33 0.73±0.00 1.23±0.18 0.28±0.02 0.20±0.03 0.71±0.00 0.84±0.20

CarCircle 0.72±0.02 1.22±0.60 0.48±0.03 2.78±0.34 0.64±0.14 0.21±0.12 0.66±0.13 1.21±0.40 0.75±0.02 0.97±0.10 0.24±0.05 0.00±0.00 0.70±0.03 0.84±0.13

DroneCircle 0.05±0.02 2.68±1.33 0.41±0.02 1.24±0.24 0.02±0.01 0.66±0.38 0.05±0.02 1.41±0.43 0.69±0.01 1.19±0.28 0.49±0.03 0.00±0.00 0.68±0.01 0.96±0.27

Average 0.39±0.10 1.42±0.62 0.59±0.04 2.26±0.21 0.55±0.11 1.24±0.31 0.57±0.15 3.10±0.39 0.67±0.01 1.12±0.19 0.36±0.03 0.03±0.01 0.66±0.02 0.67±0.17

Loose Constraint Threshold: Average results on thresholds with 70%, 80%, and 90% of the maximium costs for each task.

AntRun 0.06±0.02 0.00±0.00 0.60±0.02 0.12±0.11 0.52±0.09 0.62±0.14 0.40±0.04 0.75±0.13 0.79±0.03 0.77±0.02 0.32±0.04 0.00±0.00 0.84±0.03 0.93±0.05

BallRun 1.20±0.00 1.45±0.00 0.57±0.01 0.88±0.08 1.21±0.33 1.46±0.38 1.14±0.01 1.45±0.01 0.72±0.02 0.94±0.08 0.24±0.01 0.00±0.00 0.76±0.00 0.96±0.04

CarRun 0.95±0.05 0.73±0.32 0.96±0.04 0.15±0.14 0.94±0.08 0.31±0.08 0.95±0.09 2.00±0.02 0.99±0.02 0.87±0.04 0.82±0.00 0.01±0.00 0.99±0.00 0.69±0.05

DroneRun 0.27±0.08 0.59±0.25 0.80±0.19 0.67±0.08 1.00±0.25 1.22±0.20 0.92±0.27 1.28±0.38 0.70±0.04 0.48±0.02 0.29±0.03 0.22±0.09 0.89±0.03 0.92±0.01

AntCircle 0.10±0.05 0.18±0.16 0.25±0.03 0.50±0.06 0.62±0.05 0.83±0.12 0.05±0.02 0.32±0.27 0.65±0.02 0.55±0.03 0.15±0.05 0.00±0.00 0.77±0.02 0.74±0.01

BallCircle 0.77±0.07 0.92±0.12 0.94±0.02 0.75±0.00 0.81±0.07 0.82±0.15 0.97±0.01 0.94±0.02 0.92±0.00 0.92±0.06 0.29±0.02 0.00±0.00 0.92±0.00 0.90±0.08

CarCircle 0.81±0.05 0.84±0.09 0.47±0.02 0.63±0.07 0.81±0.06 1.30±0.14 0.79±0.19 1.26±0.35 0.85±0.02 0.80±0.04 0.29±0.02 0.00±0.00 0.87±0.02 0.93±0.03

DroneCircle 0.02±0.00 0.11±0.04 0.41±0.02 0.27±0.06 0.03±0.01 0.61±0.38 0.05±0.01 0.51±0.27 0.79±0.02 0.78±0.06 0.48±0.04 0.01±0.00 0.87±0.03 0.89±0.09

Average 0.52±0.04 0.60±0.12 0.63±0.04 0.50±0.08 0.74±0.12 0.90±0.20 0.66±0.08 1.06±0.18 0.80±0.02 0.76±0.04 0.36±0.03 0.03±0.01 0.86±0.02 0.87±0.05

Metrics: We evaluate performance using normalized reward and cost returns. The normalized reward
return is defined by Rnorm = Rπ

Rmax
, where Rπ is the reward return achieved by policy π and and Rmax

is the maximum reward return in the dataset. The normalized cost return is defined by Cnorm = Cπ

L ,
where Cπ is the cost return achieved by policy π and L is the selected threshold. To provide better
interpretation to decouple the two objectives in OSRL compared to traditional fixed thresholds, we
use percentage-based thresholds calibrated to each task’s cost range. Specifically, we define tight
constraints as 10%, 20%, and 30% of the maximum cost to emphasize constraint satisfaction, and
loose constraints as 70%, 80%, and 90% of the maximum cost to focus on reward maximization.

6.1 CAN GAS ACHIEVE BOTH SAFE AND BETTER PERFORMANCE WITH IMPROVED STITCHING
ABILITY?

The experiment results of different baselines under various tasks on tight and loose constraints are
presented in table 1. In tight constraint settings, only GAS achieves the best and safe performance
in all tasks. Traditional RL methods, such as CPQ, COptiDICE, WSAC, and VOCE, suffer from
severe constraint violations both on average and for each task. Even among GM methods, CDT,
while outperforming RL-assisted methods, still fails to ensure constraint satisfaction in multiple
scenarios where GAS succeeds. FISOR maintains safety in most tasks but at a substantial cost
to performance, with rewards significantly lower than GAS. In such tight constraint settings, the
superiority of GAS over CDT on constraint satisfaction comes from the stitching ability, where GAS
can stitch safe transitions among different timesteps and trajectories together. In loose constraint
settings, although most baselines exhibit safe performance, GAS achieves the best performance on
reward maximization. This performance gap between GAS and CDT highlights GAS’s advanced
reward maximization capabilities, leveraging its innovative transition stitching approach to combine
high-reward segments while maintaining robust safety guarantees. Additional results on more tasks
and baselines are provided in section E.3.

6.2 CAN GAS PRESERVE THE ZERO-SHOT ADAPTATION ABILITY TO DIFFERENT CONSTRAINT
THRESHOLDS?

A critical advantage of GM methods is their zero-shot adaptation ability in handling different
constraint thresholds without retraining. To validate this ability in GAS, we compare our method
with CDT and test thresholds from 10% to 90% of the maximum costs, increased by 10% each time.
The results are shown in fig. 5. Compared with CDT, the cumulative costs of GAS are consistently
below the constraint thresholds, whereas CDT performs unsafely in some cases, especially when
the constraint thresholds are smaller than 30% of the maximum costs. In addition, as the constraint
threshold increases, GAS flexibly adjusts its behavior and achieves progressively higher rewards
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Figure 5: Evaluation results on zero-short adaptation. The x-axis indicates different selected thresh-
olds and the y-axis indicates corresponding performance on cumulative rewards and costs. “Ideal”
line indicates the case when the cumulative costs are equal to the constraint thresholds.
while ensuring safety, but CDT tends to be overly conservative. Results on more tasks are provided
in section E.4.

6.3 IS GAS ROBUST TO IMBALANCED AND HUMAN-SPECIFIED TARGET REWARD-COST
RETURN-TO-GOES?

To demonstrate GAS’s robustness against imbalanced target reward-cost return-to-goes, we compare
GAS and a variant without transition-level return relabeling (denoted as “GAS w/o Relabel”) in
settings with the constraint threshold 20% of the maximum costs and varying target reward return-to-
goes. As shown in fig. 6, GAS consistently achieves safe performance as the target reward return-to-go
increases. In contrast, GAS w/o Relabel can only achieve safe performance for a narrow band of
reward targets. This highlights one of the GAS’s key innovations: the transition-level return relabeling
method in enhancing robustness. Ablation studies on other components of GAS are provided in
section E.5 and section E.6.

340 360 380 400 420 440 460 480 500
300

400

500

R
ew

ar
ds

BallRun

520 550 580 610 640 670 700 730
500

600

700

DroneCircle

340 360 380 400 420 440 460 480
300

350

400

450

500
DroneRun

340 360 380 400 420 440 460 480 500
Target Reward Return-to-go

0

25

50

C
os

ts

520 550 580 610 640 670 700 730
Target Reward Return-to-go

0

20

40

340 360 380 400 420 440 460 480
Target Reward Return-to-go

0

50

GAS GAS w/o Relabel Threshold

Figure 6: Evaluation results on robustness of imbalanced target reward-cost return-to-goes. The x-axis
indicates different target reward return-to-go and the y-axis indicates corresponding performance on
cumulative rewards and costs. “Threshold” line indicates constraint thresholds.

7 CONCLUSION

Aiming to address the limitations of existing GM-assisted OSRL methods, we propose a novel algo-
rithm named GAS that concentrates on enhancing the stitching ability for a better balance of reward
maximization and constraint satisfaction. GAS focuses on achieving better reward maximization and
constraint satisfaction by training specialized reward and cost goal functions via expectile regression.
These goal functions estimate the optimal achievable reward and cost returns and are used to guide
the policy in effectively stitching transitions under relabeled reward-cost return-to-goes. Experiment
results demonstrate GAS’s superiority on reward maximization, constraint satisfaction, zero-shot
adaptation, and robustness on imbalanced target reward-cost return-to-goes. A potential weakness
of GAS is the trade-off between memory capability and stitching ability, as the current attention
module struggles to fully capture true temporal dependencies in CMDPs. Future work could address
this limitation by designing more advanced memory mechanisms into GAS to further enhance the
robustness and performance of GM-assisted policies.
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REPRODUCIBILITY STATEMENT

This paper introduces a new algorithm, named GAS. A clear theoretical explanation of GAS is
illustrated in sections A and B. The clear pseudo code is shown in algorithm 1. Detailed experiment
settings, including hyperparameters, are shown in section E. The experimental code will be released
publicly after the review process if accepted.
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A EXPECTILE REGRESSION

Expectile regression (Koenker & Hallock, 2001) is a statistical modeling technique that generalizes
traditional mean regression to obtain the weighted means across different parts of the distribution.
Given a set of samples {xi|i = 1, ..., N} under a distribution, the expectile regression aims to achieve
eq. (14) where α is the expectile level and u = x− x̄α.

min
x̄α

E[|α− 1(u < 0)| · u2] → min
x̄α

E[|α− 1((x− x̄α) < 0)| · (x− x̄α)2], (14)

Property 1 (Kostrikov et al., 2022):

As α increases from 0.5 to 1, x̄α increases from the mean value to the largest value of a distribution:

lim
α→1

x̄α = max
xi

{xi|i = 1, ..., N} (15)

For example, if α = 0.5, it is the same as MSE since |0.5− 1(.)| = 0.5; if α = 0.9, it gives a weight
of 0.9 to samples x ≥ x̄α but only gives a weight of 0.1 to samples x < x̄α.

This property makes expectile regression widely used in the estimation of the optimal value function
in reinforcement learning (Kostrikov et al., 2021; Dabney et al., 2018) since the optimal value function
is naturally defined as the largest reward return in a task.

Property 2 (Hansen-Estruch et al., 2023):

Let us represent the expectile regression as f(u) = |α− 1(u < 0)| · u2 and f ′(u) = df(u)
du for easy

and clear writing. We have:

f ′(u) = |f ′(u)| · u

|u| (16)

where f(u) is convex and f ′(0) = 0.

B THEORETICAL ANALYSIS OF GAS

B.1 ALGORITHM DERIVATION

Fowllowing the eq. (15) in property 1, eq. (9), and eq. (10), we can directly have:

lim
α→1

V R
t:Γ(st, R̂t:Γ, Ĉt:Γ, t

′ = t+ T − Γ) = max
{(st,at,Rt:Γ,Ct:Γ,t′=t+T−Γ)}

(Rt:Γ|V C
t:Γ < Ĉt:Γ) (17)

This indicates that the reward goal function finally converges to the largest reward return-to-go within
the constraint.

Then consider LR in eq. (10) as f(AR
t:Γ). When the reward goal function converges, we have

∂LR

∂V R
t:Γ

= −
∫
a

µ(a|s) · |f ′(AR
t:Γ)| ·

AR
t:Γ

|AR
t:Γ|

= −
∫
a

µ(a|s) · |f
′(AR

t:Γ)|
|AR

t:Γ|
·AR

t:Γ

= −
∫
a

π(a|s) ·AR
t:Γ

= 0

(18)

where π(a|s) = µ(a|s) · |f ′(AR
t:Γ)|

Nscale|AR
t:Γ|

is the target policy.

With the target policy, we can define the loss function of the cost goal function as LC = Eπ[(Ct:Γ −
V C
t:Γ)

2]. When it converges, we have:

13
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0 = −2Eπ[Ct:Γ − V C
t:Γ]

= −2

∫
a

π(a|s) · (Ct:Γ − V C
t:Γ)

= −2/Nscale ·
∫
a

µ(a|s) · |α− 1(AR
t:Γ < 0)| · (Ct:Γ − V C

t:Γ)

(19)

Thus, we can obtain the loss function of the cost goal function as eq. (12).

During the policy extraction, the target policy is supposed to be π(a|s) = µ(a|s) · |f ′(AR
t:Γ)|

Nscale|AR
t:Γ|

.
However, to further ensure safety, we add the constraint to the policy extraction:

π(a|s) = 1/Nscale · 1(V C
t:Γ ≤ Ĉt:Γ) · |α− 1(AR

t:Γ < 0)| · µ(a|s) (20)

Thus, the loss function of the target policy is eq. (13).

B.2 ABLATION ANALYSIS

This ablation analysis aims to study the contribution of each separate component of GAS theoretically.

B.2.1 STITCHING ABILITY (EXPECTILE REGRESSION)

Based on property 1 in section A, it is easy to prove that:

lim
α=0.5

V R
t:Γ(st, R̂t:Γ, Ĉt:Γ, t

′) < lim
α→1

V R
t:Γ(st, R̂t:Γ, Ĉt:Γ, t

′) = max
{(st,at,Rt:Γ,Ct:Γ,t′)}

(Rt:Γ|V C
t:Γ < Ĉt:Γ)

(21)
Thus the optimality guarantee is lost without expectile regression.

B.2.2 TEMPORAL SEGMENTED RETURN AUGMENTATION

We can partition the dataset after augmentation as D = Do ∪Da, where Do is the original dataset
and Da is the augmented part.

lim
α→1

ED[V R
t:Γ(st, R̂t:Γ, Ĉt:Γ, t

′)] = max
{(st,at,Rt:Γ,Ct:Γ,t′)∼D}

(Rt:Γ|V C
t:Γ < Ĉt:Γ)

= max[max
{Do}

(Rt:Γ|V C
t:Γ < Ĉt:Γ), max

{Da}
(Rt:Γ|V C

t:Γ < Ĉt:Γ)]

≥ max
{(st,at,Rt:Γ,Ct:Γ,t′)∼Do}

(Rt:Γ|V C
t:Γ < Ĉt:Γ)

(22)

This result indicates that the optimality guarantee in the original dataset is just a lower bound of that
after augmentation. With augmentation, the optimality guarantee is always larger than that in the
original dataset, which further improves the stitching ability.

B.2.3 TRANSITION-LEVEL RETURN RELABELING

Since the purpose of this method is to make GAS more robust, this paper will discuss it from the
perspective of the input and output. For simplicity, the influence on the reward goal function is
analyzed as an example, considering that it has no difference from that on the cost goal function and
the policy.

Without Relabeling, both inputs and loss functions utilize (R, C) pairs following the dataset distribu-
tion. This indicates that only with the appropriate R and C, the goal functions and policy can achieve
the optimal value:

lim
α→1

V R
t:Γ(st, Rt:Γ, Ct:Γ, t

′) = max
{(st,at,Rt:Γ,Ct:Γ,t′)}

(Rt:Γ|V C
t:Γ < Ct:Γ) (23)

However, during the test stage, the targets R̂ and Ĉ cannot be accurately known and need to be
specified by users. Thus it will suffers from inaccurate R and C signals and cannot determine which
target should be prioritized when R and C conflict with each other.

14
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With Relabeling, the targets are relabeled to consider a more robust input distribution while loss
functions still utilize true (R, C) pairs to update the outputs with expectile regression. This indicates
that even with inaccurate R and C, the goal functions can still obtain the optimal value, and the policy
can provide the corresponding action:

lim
α→1

V R
t:Γ(st, R̂t:Γ, Ĉt:Γ, t

′) = max
{(st,at,Rt:Γ,Ct:Γ,t′)}

(Rt:Γ|V C
t:Γ < Ĉt:Γ) (24)

C ALGORITHM DETAILS

We present the full algorithm of our method in algorithm 1.

Algorithm 1 Goal-Assisted Stitching (GAS)
1: Network: Initialize two goal functions V R

t:Γ(s,R,C, t′ = t+T−Γ), V C
t:Γ(s,R,C, t′ = t+T−Γ),

and policy π(a|s,R,C, V R, V C , t′ = t+ T − Γ).
2: for iteration= 0, ..., N do
3: Sample transitions D̂ = {(s, a,Rt:Γ, Ct:Γ)} ∼ D with 1− ϵ and Dq with ϵ probability.
4: Get augmented return and cost return:
5: R̂t:Γ = U((1− δ)Rt:Γ, (1 + δ)Rt:Γ).
6: Ĉt:Γ = U(Ct:Γ, C

max).
7: Get advantage function:
8: AR

t:Γ = 1(V C
t:Γ < Ĉt:Γ) ·Rt:Γ − V R

t:Γ(st, R̂t:Γ, Ĉt:Γ, t
′ = t+ T − Γ).

9: AC
t:Γ = Ct:Γ − V C

t:Γ(st, R̂t:Γ, Ĉt:Γ, t
′ = t+ T − Γ).

10: Update reward goal function:
11: LR = ED̂[|α− 1(AR

t:Γ < 0)| · (AR
t:Γ)

2].
12: Update cost goal function:
13: LC = ED̂[|α− 1(AR

t:Γ < 0)| · (AC
t:Γ)

2].
14: Policy Extraction:
15: Lπ = ED̂[1(V

C
t:Γ < Ĉt:Γ) · |α− 1(AR

t:Γ < 0)| · (π(a|st, R̂t:Γ, Ĉt:Γ, V
R
t:Γ, V

C
t:Γ, t

′)− at)
2].

D RETURN RELABELING TECHNIQUE DETAILS

The misalignment problem between the training and test phases is first proposed in Liu et al. (2023b),
which indicates that users may select target reward-cost pairs different from the training inputs. This
misalignment problem has become serious when users select imbalanced target reward-cost pairs,
such as extremely large target rewards and extremely small target costs. To address this issue, CDT
(Liu et al., 2023b) proposes a trajectory-level return relabel method as CDT only learns policy within
the trajectory. This method, although it improves the robustness of CDT, degrade the ability to
maximize rewards and satisfy constraints, as the relabeled returns provide wrong information about
the trajectory. Inspired by the trajectory-level return labeling in Liu et al. (2023b), we propose a more
fine-grained, transition-level return relabeling mechanism fitting in with transition-level stitching.
Different from CDT, our proposed GAS does not directly update the policy guided by only the
relabeled values. Instead, we utilize them to assist training through intermediate optimal goals and
update the policy based on these goals in the loss function during optimization. As a result, GAS
retains the robustness of the policy without affecting reward maximization and constraint satisfaction.

E EXPERIMENT DETAILS

E.1 BENCHMARK AND TASKS

Bullet-safety-gym (Gronauer, 2022) and Safety-gamnasium (Ji et al., 2023) are utilized for experi-
ments. We consider 8 cases in Bullet-safety-gym and 4 cases in Safety-gamnasium, involving two
tasks (Run and Circle) and multiple types of robots (Ant, Ball, Car, Drone, and Point). The tasks
AntCircle, PointCircle1, PointCircle2, CarCircle1, and CarCircle2 are considered as complex tasks
with episode length T = 500 and maximum cost Cmax ≥ 200, while other tasks are regarded as
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Table 2: Benchmark details. The cost range indicates the maximum cumulative costs among the
offline trajectories. Offline trajectories indicate the number of trajectories in the offline dataset.

Benchmarks Task State Space Action Space Cost Range Episode Length (T) Offline Trajectories

Bullet-safety-gym

AntRun 33 8 150 200 1816
BallRun 7 2 80 100 940
CarRun 7 2 40 200 651

DroneRun 17 4 140 200 1990
AntCircle 34 8 200 500 5728
BallCircle 8 2 80 200 886
CarCircle 8 2 100 300 1450

DroneCircle 18 4 100 300 1923

Safety-gymnasium PointCircle1 28 2 200 500 1098
PointCircle2 28 2 300 500 895
CarCircle1 40 2 250 500 1271
CarCircle2 40 2 400 500 940

simpler tasks with episode length less than 301. Details of the parameter settings for each tasks are
shown in table 2, which is part of DSRL (Liu et al., 2023a). As for the cost definition and reward
definition, we follow the same standard with DSRL.

E.2 HYPERPARAMETER

Table 3: Hyperparameters of GAS.
Parameter Value Parameter Value

Number of layers 7 Hidden size 128
Embedding size 64 Batch Size 2048

Learning rate 0.0001 Adam betas (0.9,0.999)
Grad norm clip 0.25 Weight decay 0.0001

Expectile level α 0.8 Reward relabel level δ 0.1
Dataset reshape threshold q% 10% Sample probability ϵ 0.5

The table 3 shows the detailed hyperparameter for GAS used in section 6 and table 4 shows the target
reward and cost return-to-go pairs used in the testing stage. Notably, GAS is not sensitive to the target
reward-cost return-to-go pairs as we demonstrate in section 6.3.

Table 4: Target reward and cost return-to-go pairs for GAS in testing stage.
Benchmark Task Cost range 10% 20% 30% 70% 80% 90%

Bullet-safety-gym

AntRun 150 (690, 15) (690, 30) (700, 45) (750, 105) (800, 120) (820, 135)
BallRun 80 (420, 8) (420, 16) (500, 24) (900, 56) (1000, 64) (1200, 72)
CarRun 40 (572, 4) (572, 8) (572, 12) (572, 28) (572, 32) (572, 36)

DroneRun 140 (400, 14) (420, 28) (45, 42) (600, 98) (620, 112) (640, 126)
AntCircle 200 (160, 20) (200, 40) (240, 60) (320, 140) (350, 160) (400, 180)
BallCircle 80 (500, 8) (600, 16) (690, 24) (800, 56) (810, 64) (820, 72)
CarCircle 100 (370, 10) (390, 20) (410, 30) (480, 70) (480, 80) (480, 90)

DroneCircle 100 (600, 10) (650, 20) (700, 25) (830, 70) (850, 80) (870, 90)

Safety-gymnasium PointCircle1 200 (43,20) (45,40) (46,60) (52,140) (54,160) (58,180)
PointCircle2 300 (36,30) (41,60) (42,90) (45,210) (47,240) (48,270)
CarCircle1 250 (4,25) (8,50) (10,75) (13,175) (15,200) (18,225)
CarCircle2 400 (8,40) (14,80) (15,120) (22,280) (23,320) (27,360)

E.3 MORE EXPERIMENTS ON IMPROVED STITCHING ABILITY

The table 5 is an extension of table 1 on four tasks of Safety-gymnasium: PointCircle1 and PointCir-
cle2, CarCircle1 and CarCircle2. Furthermore, we also compare GAS with two recent RL-based
algorithms that incorporate zero-shot adaptation ability, including CAPS (Chemingui et al., 2025)
and CCAC (Guo et al., 2025) in table 6. Similar to table 1, GAS exhibits superiority on constraint
satisfaction in tight constraint settings and reward maximization in loose constraint settings, which
benefit from the improved stitching ability.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Additional normalized evaluation results on more tasks.
Methods CPQ COptiDICE WSAC VOCE CDT FISOR GAS

Tasks R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓
Tight Constraint Threshold: Average results on thresholds with 10%, 20%, and 30% of the maximium costs for each task.
PointCircle1 0.66±0.09 1.80±0.91 0.91±0.02 5.76±0.30 0.40±0.12 3.02±1.44 0.54±0.10 4.83±0.80 0.70±0.01 0.63±0.17 0.73±0.03 1.23±0.39 0.69±0.01 0.38±0.14

PointCircle2 0.74±0.11 4.53±1.22 0.91±0.02 5.92±0.26 0.55±0.05 1.64±0.65 0.85±0.09 5.31±0.65 0.77±0.01 1.18±0.13 0.84±0.02 1.42±0.23 0.75±0.02 0.99±0.2

CarCircle1 0.45±0.16 3.00±1.44 0.79±0.03 4.95±0.45 0.48±0.10 5.12±2.37 0.14±0.06 9.03±0.70 0.71±0.04 2.25±0.44 0.75±0.03 2.15±0.68 0.56±0.03 0.62±0.30

CarCircle2 0.65±0.07 2.32±0.90 0.79±0.04 3.82±0.38 0.58±0.05 1.29±0.44 0.57±0.06 4.72±0.46 0.72±0.03 2.26±0.34 0.57±0.03 0.40±0.27 0.50±0.01 0.74±0.20

Loose Constraint Threshold: Average results on thresholds with 70%, 80%, and 90% of the maximium costs for each task.
PointCircle1 0.66±0.17 0.34±0.26 0.90±0.01 1.18±0.07 0.88±0.03 1.31±0.08 0.59±0.18 1.34±0.25 0.73±0.01 0.31±0.06 0.73±0.04 0.92±0.17 0.88±0.01 0.97±0.03

PointCircle2 0.61±0.17 0.98±0.29 0.91±0.02 1.23±0.06 0.90±0.03 1.08±0.12 0.83±0.07 1.11±0.07 0.76±0.01 0.18±0.05 0.84±0.03 0.74±0.15 0.88±0.01 0.95±0.03

CarCircle1 0.54±0.15 1.01±0.26 0.80±0.03 1.01±0.08 0.63±0.06 1.28±0.16 0.29±0.09 1.52±0.22 0.71±0.04 0.57±0.11 0.75±0.03 0.48±0.13 0.82±0.02 0.89±0.07

CarCircle2 0.76±0.05 1.20±0.06 0.79±0.04 0.79±0.08 0.71±0.05 0.75±0.13 0.53±0.05 1.09±0.07 0.73±0.04 0.58±0.12 0.58±0.03 0.09±0.05 0.80±0.03 0.82±0.08

Table 6: Additional normalized evaluation results on more baselines.
Methods CAPS CCAC GAS

Tasks R ↑ C ↓ R ↑ C ↓ R ↑ C ↓
Tight Constraint Threshold.

AntRun 0.64±0.04 0.96±0.27 0.14±0.01 0.01±0.01 0.72±0.02 0.70±0.30

BallRun 0.15±0.04 1.04±0.25 0.77±0.00 3.65±0.10 0.33±0.01 0.62±0.15

CarRun 0.98±0.00 0.38±0.42 0.96±0.00 0.47±0.72 0.99±0.01 0.19±0.05

DroneRun 0.51±0.04 1.11±1.41 0.40±0.05 3.07±0.80 0.60±0.02 0.22±0.13

AntCircle 0.47±0.06 0.31±0.11 0.22±0.03 0.75±0.33 0.52±0.02 0.96±0.10

BallCircle 0.63±0.02 0.47±0.05 0.77±0.01 0.35±0.01 0.71±0.00 0.84±0.20

CarCircle 0.64±0.04 0.66±0.06 0.76±0.01 1.42±0.38 0.70±0.03 0.84±0.13

DroneCircle 0.64±0.02 0.62±0.06 0.35±0.04 0.78±0.15 0.68±0.01 0.96±0.27

PointCircle1 0.62±0.06 1.37±0.62 0.71±0.02 1.54±0.37 0.69±0.01 0.38±0.14

PointCircle2 0.71±0.04 0.90±0.26 0.10±0.12 3.87±2.21 0.75±0.02 0.99±0.2

CarCircle1 0.69±0.03 1.62±0.43 0.52±0.08 3.96±1.43 0.56±0.03 0.62±0.30

CarCircle2 0.56±0.06 0.82±0.37 0.57±0.02 2.44±1.08 0.50±0.01 0.74±0.20

Loose Constraint Threshold.
AntRun 0.85±0.03 1.00±0.11 0.08±0.02 0.00±0.00 0.84±0.03 0.93±0.05

BallRun 0.47±0.10 1.18±0.03 1.21±0.00 1.44±0.00 0.76±0.00 0.96±0.04

CarRun 0.99±0.00 0.28±0.35 0.86±0.05 0.19±0.20 0.99±0.00 0.69±0.05

DroneRun 0.53±0.05 0.22±0.28 0.60±0.10 0.81±0.13 0.89±0.03 0.92±0.01

AntCircle 0.70±0.04 0.61±0.06 0.19±0.03 0.40±0.08 0.77±0.02 0.74±0.01

BallCircle 0.92±0.01 0.84±0.02 0.92±0.01 0.83±0.01 0.92±0.00 0.90±0.08

CarCircle 0.86±0.01 0.93±0.01 0.81±0.03 0.93±0.08 0.87±0.02 0.93±0.03

DroneCircle 0.85±0.03 0.94±0.01 0.21±0.03 0.57±0.12 0.87±0.03 0.89±0.09

PointCircle1 0.76±0.06 0.68±0.21 0.75±0.03 0.97±0.19 0.88±0.01 0.97±0.03

PointCircle2 0.80±0.04 0.70±0.16 0.06±0.05 0.09±0.17 0.88±0.01 0.95±0.03

CarCircle1 0.80±0.03 0.80±0.06 0.42±0.11 1.04±0.19 0.82±0.02 0.89±0.07

CarCircle2 0.72±0.05 0.54±0.09 0.49±0.06 1.21±0.05 0.80±0.03 0.82±0.08

E.4 MORE EXPERIMENTS ON THE ZERO-SHOT ADAPTATION ABILITY
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Figure 7: Evaluation results on zero-shot adaptation with complex tasks. The x-axis indicates different
selected thresholds and the y-axis indicates corresponding performance on cumulative rewards and
costs. “Ideal” line indicates the case when the cumulative costs are equal to the constraint thresholds.

The fig. 7 demonstrates the zero-shot adaptation ability comparison of GAS and CDT on more
complex tasks. Even on more complex tasks, GAS can preserve the reward maximization and
constraint satisfaction ability for all cost ranges. CDT, in contrast, suffers from constraint violation in
tight constraint settings or is overly conservative as the threshold increases.
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E.5 ABLATION STUDY ON STITCHING ABILITY AND TSRA

To verify the theoretical improvement for GAS’s component in section B, we compare GAS to
a variant without expectile regression (denoted as ”GAS w/o Stitching” ) and a variant without
Temporal Segmented Return Augmentation (denoted as ”GAS w/o TSRA”). As shown in fig. 8,
without expectile regression, GAS w/o Stitching degrades to conditional behavior cloning (α = 0.5),
which has similar performance and problems to CDT. This result is also consistent with section 4.1,
where both GAS w/o Stitching and CDT suffer from insufficient stitching ability. Besides, the
performance of GAS w/o TSRA is almost completely inferior to GAS. This result validates the
theoretical analysis result, where the optimality without augmentation is just a lower bound of that
with augmentation. Furthermore, GAS w/o TSRA suffers from constraint violation for tight constraint
thresholds compared to GAS. This result indicates that the flexible sub-trajectories augmented
by TSRA provide additional benefits when original trajectories fail to satisfy the tight constraint
thresholds.
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Figure 8: Ablation studies on the stitching ability (expectile regression) and temporal segmented
return augmentation.

E.6 ABLATION STUDY ON DATASET RESHAPING METHOD

To assess the importance of the dataset reshaping on the training stability and efficiency, we compare
GAS and a variant without dataset reshaping (denoted as “GAS w/o DR”) in DroneCircle and
CarCircle tasks under different constraint thresholds. As shown in figs. 9 and 10, the dataset
reshaping method can significantly improve the training efficiency of GAS while reducing the
training variance.
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Figure 9: Ablation study of dataset distribution reshaping on task DroneCircle.
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Figure 10: Ablation study of dataset distribution reshaping on task CarCircle.

E.7 INFRASTRUCTURE AND TIME COST

We run all the experiments and all the baselines with:

1. GPT version: NVIDIA GeForce RTX 3080.
2. CPU version: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz.

Table 7: Training iterations and time for GAS and baselines on task CarCircle.
Method CPQ COptiDICE WSAC VOCE CDT FISOR GAS

Iteration times 4e5 4e5 3e4 4e4 4e5 4e5 4e5

Time 2h19min 2h43min 3h10min 3h38min 11h32min 1h44min 8h20min

We also test the training time of GAS and baselines on task CarCircle, as shown in table 7. For
most baselines, we follow the same iteration times. As for WSAC and VOCE, we follow the training
standard of the original paper and make sure their convergence since training 4e5 times is much too
long for them. Notably, both GAS and CDT only need to be trained once for all thresholds, even
though the training time is much longer, while other baselines need to be re-trained for each threshold.
Besides, GAS is faster than CDT as GAS only utilizes the MLP architecture, but CDT utilize the
Transformer architecture.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs are utilized to polish writing (e.g., grammar, spelling, word choice).
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