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Abstract
Understanding geometric properties of the latent
spaces of natural language processing models al-
lows the manipulation of these properties for im-
proved performance on downstream tasks. One
such property is the amount of data spread in a
model’s latent space, or how fully the available
latent space is being used. We demonstrate that
the commonly used measures of data spread, av-
erage cosine similarity and a partition function
min/max ratio I(V), do not provide reliable met-
rics to compare the use of latent space across data
distributions. We propose and examine six al-
ternative measures of data spread, all of which
improve over these current metrics when applied
to seven synthetic data distributions. Of our pro-
posed measures, we recommend one principal
component-based measure and one entropy-based
measure that provide reliable, relative measures
of spread and can be used to compare models of
different sizes and dimensionalities.

1. Introduction
The product of many neural network models is a represen-
tation of the data input in a high dimensional latent space.
The distribution of data in this latent space is often used in
the application of the learned model through data clustering
for classification, measuring distance between data points
to quantify similarity, sampling to generate synthetic data
elements, or any number of other downstream tasks. For
this reason, understanding and manipulating the geomet-
ric properties of models’ latent spaces is an area of active
research.

One such geometric property is a quantification of how
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evenly the data is distributed in its latent representation. It
has been shown that many common neural network architec-
tures produce highly anisotropic latent spaces (Ethayarajh,
2019; Liu et al., 2018; Mimno & Thompson, 2017), and
recent research has demonstrated improved performance on
benchmarking tasks using various methods for enforcing
more complete use of a model’s latent space (Bihani & Rayz,
2021; Kaneko & Bollegala, 2020; Liang et al., 2021; Mu
et al., 2017).

The majority of existing work quantifies the spread of data
in a latent space with two measures of isotropy, average
cosine similarity and a measure introduced by Mu et al.
(2017) based on a ratio of principal component loadings.
We present seven synthetic data distributions and show that
these two measures do not behave as would be expected of
a reliable measure of relative data spread.

We examine six alternative ways to quantify data spread and
compare the performance of these measures on the same ex-
ample distributions. We consider two principal component
measures, two ratios of differential entropy approximations,
and two measures of relative entropy (Kullback-Leibler Di-
vergence). We show that all proposed measures behave
more intuitively on our evaluation distributions than the
two commonly used measures. In particular, we find that
our proposed Eigenvalue Early Enrichment score and Va-
sicek Ratio MSE score most closely mirror our expectations
across these example distributions and various numbers of
dimensions. Finally, we investigate the behavior of the
best-performing of the alternative data spread metrics on
real (not simulated) latent spaces produced by a pre-trained
Word2Vec model.

2. Related Work
In a natural language processing (NLP) context, the expres-
siveness of a model can be directly tied to the dimensionality
of its trained word embeddings, with model expressiveness
increasing with the number of available dimensions up to
the point of severe overfitting (Yin & Shen, 2018). However,
this increased expressiveness as a function of latent space
dimensionality depends on the model effectively using the
space across all of these dimensions.

This assumption of an evenly used latent space is not guar-
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anteed, as addressed by a growing body of work that as-
sesses and manipulates the geometry of latent spaces in
NLP models. It has been demonstrated that static word
embedding models do not use their latent spaces evenly,
with Mimno & Thompson (2017) finding a large positive
inner product between individual word vectors and a global
mean in Word2Vec, and Mu et al. (2017) finding non-zero
global mean vectors and non-uniform distribution of vari-
ance across dimensions for several common models. Con-
sidering contextual NLP models, Ethayarajh (2019) find a
non-zero average cosine similarity between word vectors
throughout all layers of ELMo, BERT, and GPT-2.

Several explanations for this uneven use of the latent space
explore the relationship between word representations and
word frequency. Gao et al. (2019) introduce the concept
of “representation degeneration” in which common words
are handled differently than rare words during training, and
word frequency has also been shown to be directly corre-
lated with word vector magnitude (Kobayashi et al., 2020)
and distance traveled during training (Gong et al., 2018).
Similarly, Mu et al. (2017) find that the top two PCA com-
ponents of static language model latent spaces are largely
dedicated to expressing word frequency information.

Attempts to “correct” this incomplete use of the latent space
have resulted in improvement on common NLP benchmark-
ing tasks. Post-training adjustments include subtracting the
global mean vector and removing highly explanatory princi-
pal components (Mu et al., 2017; Liang et al., 2021; Rajaee
& Pilehvar, 2021), using an autoencoder framework toward
a similar goal (Kaneko & Bollegala, 2020), and learning a
transformation into a more uniformly filled non-Euclidean
space (Frenzel et al., 2019). Adjustments made during train-
ing include minimizing an additional loss function (Liu
et al., 2018; Gao et al., 2019; Wang et al., 2019) and using
an isotropic Gaussian prior in a VAE (Zhang et al., 2022) or
during batch normalization (Zhou et al., 2021).

Beyond improving benchmark performance, Liao et al.
(2020) remove top principal components during an itera-
tive quantization process and Sablayrolles et al. (2018) use
a nearest-neighbor entropy approximation (Kozachenko-
Leonenko entropy) to enforce uniform spread before quan-
tizing data. Both of these methods find less data loss after
compression than quantization methods that do not focus on
using the latent space more completely.

3. Data Spread in High Dimensions
A theory of maximizing the expressiveness of a model by
maximally using the latent space of that model requires that
we first define what it means to ”maximally use the latent
space”. While this task may seem intuitive, translating these
intuitions into a well-defined, ideal latent space distribution,

particularly in high dimensions, presents several complica-
tions. Here we explore existing concepts and distributions
that can be used to help define this ideal space.

3.1. Data Spread vs. Isotropy

One concept that comes up in much of the literature in
Section 2 is that of isotropy. The definition of isotropy varies
between scientific and mathematical fields, but broadly it
is defined as “[i]dentical in all directions; invariant with
respect to direction” (Houghton Mifflin Harcourt Publishing
Company). In the context of data representations, this means
that the distribution of data representations would be the
same in any direction from the origin. Rudelson (1999)
finds that a probability distribution is in isotropic position if
its covariance matrix is the identity, and Zhou et al. (2021)
define a latent space as isotropic if all dimensions have the
same variance and are uncorrelated.

Working from these definitions, a measure of isotropy can
tell us whether our data are distributed similarly in all avail-
able directions, but it will say nothing about what the dis-
tribution is in any given direction. For example, data dis-
tributed on the shell of a hypersphere are equally isotropic
to data distributed in a multivariate normal distribution. In-
tuitively we’d expect those two data distributions to perform
differently on a measure of how fully the available space is
being used.

Here we have introduced the term isotropic as meaning that
a distribution appears to be the same in all directions. In
this manuscript, we will use the term spread to expand on
this notion; a distribution shows more complete spread if it
evenly spreads points in all directions (isotropy) as well as
along each axis/direction.

3.2. Reference Distributions

By definition, the uniform distribution will maximally fill
any shape in any number of dimensions, making it an ob-
vious choice for our ideally-filled latent space. However,
while data in a uniform distribution will maximally fill a
hypersphere of any radius, the probability abruptly drops
to zero outside of that radius. This may not make sense for
data representations in a continuous latent space.

Alternatively, we might consider a multivariate normal dis-
tribution ideal for maximally filling a latent space. Like a
uniformly filled hypersphere, data in a multivariate normal
distribution will be isotropic, but with probability instead
approaching zero gradually as distance from the origin in-
creases. Although using a multivariate normal distribution
will result in having a higher density of points around the
origin than we would find in referencing a uniform distribu-
tion, this gradual decrease in probability (and point density)
generally seems a realistic and desirable trait for data repre-
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sentations in a latent space.

4. Models for Comparison
While we could have used the actual output of popular
NLP models to compare different ways of measuring data
spread in high dimensional space, we don’t necessarily have
strong intuition about how fully the data representations
in these models fill the latent space or how they should
compare to each other on a sufficient measure of data spread.
Therefore we developed a collection of seven structured
distributions, each with d = {2, 10, 50, 100} dimensions
and 250d data points, and used these as intuitive benchmarks
on our proposed measures of spread.

For spherical distributions, we created a Shell, a Nested
Shell, a uniformly filled Sphere, and a Cone. For cluster-
based distributions, we created clusters that are symmetric
across the origin and identical in size (Symmetric Clusters),
asymmetric clusters of identical size (Shifted Clusters), and
symmetric clusters of unequal size (Uneven Clusters). De-
tails of the characteristics of these distributions can be found
in Appendix A.
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Figure 1. Example distributions visualized in 2 dimensions.

Figure 1 shows all seven distributions in 2-dimensional
space, and provides a visual basis for our intuitions about
how the distributions compare in terms of how fully they use
the space. Appendix B includes further discussion of how
these distributions compare in high dimensions, leading to
the following intuitions about how they should perform on
reliable measures of data spread:

1. The Shell, Nested Shell, and Sphere distributions
should all have similar scores that indicate well-spread
distributions, particularly in high dimensions.

2. The Cone distribution should have a slightly lower
score that still indicates a fairly well-spread distribu-
tion, particularly in high dimensions.

3. All three cluster models should have similar scores that
indicate poorly spread distributions, regardless of the
dimensionality of the distribution.

5. Common Measures of Isotropy
Research into the effect that data spread has on NLP model
performance generally relies on one or two measures of
spread: average cosine similarity and I(V). We compute
these values across our seven example distributions and
demonstrate that both of these common measures fall short
as relative measures of spread.

5.1. Average Cosine Similarity (ACS)

The first and simpler of these two common measures is the
average pairwise cosine similarity between word represen-
tations in an NLP model (Bihani & Rayz, 2021; Ethayarajh,
2019; Ferner & Wegenkittl, 2021; Gao et al., 2019; Liang
et al., 2021). In an isotropic latent space, the expected
pairwise cosine similarity between data points is zero.

5.2. I(V)

The second commonly used measure of spread, I(V) (some-
times called γ), is a min/max ratio of a principal component-
based partition function. I(V) was first introduced by Mu
et al. (2017) and has been used broadly in research involving
latent space isotropy (Kaneko & Bollegala, 2020; Liao et al.,
2020; Rajaee & Pilehvar, 2021; Wang et al., 2019; Zhang
et al., 2022).

Mu et al. (2017) build on the partition function explored by
Arora et al. (2015) (Equation 1), which was shown to be
constant in an isotropic space over all partitions, c, where vw
is the vector representation of word w. They used the full-
rank set of principal components as their partitions, C, and
proposed Equation 2 as a measure of isotropy. I(V) ranges
from zero to one, and holds the value one in a completely
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Table 1. Example distribution results on Average Cosine Similarity
(ACS) and I(V) in 2 and 100 dimensions. Full results shown in
Appendix D

EXAMPLE 2D 100D
DISTRIBUTION ACS I(V) ACS I(V)

Shell 0.0027 0.9737 0.0007 0.9988
Nested Shell 0.0027 0.9801 0.0007 0.9982
Sphere 0.0036 0.9613 0.0007 0.9988
Cone 0.8176 0.9469 0.5119 0.9944
Symm. Clust. 0.0020 0.7888 0.0007 0.9822
Shifted Clust. 0.0109 0.9295 0.0012 0.8326
Uneven Clust. 0.0249 0.7797 0.0043 0.9819

Normal 0.0022 0.9969 0.0008 0.9988

isotropic space.

Zc =
∑
w

exp(cT vw) (1)

I(V ) =
minc∈C Zc

maxc∈C Zc
(2)

5.3. Measure Weaknesses

I(V) and ACS both have characteristic results in an isotropic
space (ACS = 0 and I(V ) = 1), but this does not necessar-
ily mean that they are good measures of relative spread. In
particular, we find the following weaknesses after comput-
ing their values across our example distributions (Table 1):

• ACS is insensitive to uneven data distributions that
are symmetric across the origin. As an example, all
cluster distributions produce an ACS value similar to
that of the Sphere distribution.

• I(V) is insensitive to the difference in spread be-
tween the Cone and the three other spherical distri-
butions, particularly in high dimensions.

• I(V) shows inconsistent results on the cluster models
across different dimension counts 1:

• I(V) heavily down-weights negative projections due
to the exponentiation in the partition function Zc (Equa-
tion 1). In an ideally filled space, all positive and nega-
tive directions must be equally filled.

• I(V) is sensitive to the sign of principal components,
which is arbitrary (Jolliffe & Cadima, 2016). Figure
2 shows two alternative (negated) projections of ran-
domly sampled data: when the principal components
for a single distribution are negated (causing the pro-
jected data to be reflected across the origin), the result-
ing I(V) scores can differ greatly.

1The I(V) measure is also sensitive to the random seed used to
produce these distributions. The same cluster distributions with
different seeds used for sampling the cluster centers and points
will have I(V) scores that differ greatly.
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Figure 2. 2D principal component projections of identical sample
data with component signs switched and I(V) calculated for each
set of principal components.

6. Alternative Measures of Spread
To better address the issues described in Section 5.3, we ex-
plored a variety of new options for measuring spread in high
dimensional space. Here we present two measures based on
principal components/eigenvalues and four entropy-based
measures.

In addition to the six measures proposed below, we explored
a measure that considered the Euclidean distances between
a distribution’s first and kth nearest neighbors, and a Gaus-
sian approximation of KL-Divergence. These measures are
excluded from the main body as they did not provide new
or interesting results when applied to our example distribu-
tions, but their definitions, results, and discussion can be
found in Appendix C.

6.1. Principal Component Measures

Principal components (eigenvectors) describe all of the or-
thogonal directions for a given dataset, and the associated
eigenvalues describe how much of the dataset’s variance
can be explained along each individual direction. These
eigenvalues can be used as a measure of how evenly a la-
tent space’s variance is spread along each axis. In an ideal,
well-spread space, each principal component will explain
an equal amount of the dataset’s variance, resulting in all
eigenvalues being roughly equal.

Eigenvalue Ratio (ER) We first propose to compute the
ratio of the largest and smallest eigenvalues as in Equation 3,
where C is the set of all d principal components in a d-
dimensional space, and λc is the eigenvalue associated with
component c. In an ideally filled latent space, this ratio is
equal to one; if one or more dimensions is poorly used, the
value will approach zero. Note that this measure provides no
way to differentiate between the case of one poorly utilized
dimension from the case in which many (or even most)
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Figure 3. Cumulative Sum of Eigenvalues for latent spaces in
which variance is explained on one dimension, unevenly across
many dimensions, and evenly across all dimensions.

dimensions are largely unused.

ER =
minc∈C λc

maxc∈C λc
(3)

Eigenvalue Early Enrichment (EEE) A related ap-
proach is to instead consider the cumulative sum of the
eigenvalues (which are sorted largest to smallest by conven-
tion). Figure 3 provides a visual example of the approach.

In Equation 4, we calculate the area between the cumulative
sum curve, XEEE , and the ideal linear sum, Yref , as a
proportion of the total space available above that linear
sum line (with v =

∑
C λc as the total variance in the d-

dimensional distribution). Well-spread distributions show an
EEE value close to zero, while poorly spread distributions
approach a value of one. Unlike the previous approach,
EEE is able to differentiate distributions that utilize different
fractions of the available latent space.

EEE =
AUC(XEEE − Yref )

1
2dv

(4)

6.2. Entropy Ratio Measures

In information theory, the concept of entropy quantifies the
amount of uncertainty involved in predicting an outcome,
which can be mapped to the concept of spread: with poorly
spread data, certainty is high and entropy is low; with well-
spread data, uncertainty is high, as is entropy. Shannon
entropy (Shannon, 1951) is defined for continuous data as in
Equation 5 and has been proposed, in the field of astronomy,
as a measure of the isotropy of the universe (Pandey, 2016).

H(p) =

∫
p(x) log p(x)dx (5)

For a fixed variance, this parametric definition is maximized
by the normal distribution (Arizono & Ohta, 1989; Beirlant

et al., 1997), which matches our intuition (from Section
3.2) that a multivariate normal is a good candidate for a
distribution that ideally fills the available space. Thus, the
two empirical Shannon entropy approximations discussed
below will be compared to a multivariate normal with equal
variance to create relative measures of spread.

Vasicek Ratio Mean Squared Error (VRM) Our first
entropy-based measure of data spread builds on the Vasicek
entropy approximation (Vasicek, 1976), which is limited to
univariate data and rests on the notion that ordered points
will be evenly spaced in a highly entropic space. The ap-
proximation is presented in Equation 6, and considers pairs
of points that are separated by a fixed interval, m, where m
is a positive integer smaller than n/2, n is the total number
of data points, xj = x1 if j < 1, and xj = xn if j > n.

Hvas =
1

n

n∑
i=1

log
n

2m
(xi+m − xi−m) (6)

To create a relative measure of data spread, we consider
a ratio of the empirical value for a given distribution to
the theoretical value for our reference normal distribution,
ln(

√
2πeσ2)(Arizono & Ohta, 1989). This ratio will equal

one for normally distributed data points and will approach
zero for poorly spread data 2. We compute the mean squared
error (MSE) from the target ratio of one to create a multi-
dimensional measure (Equation 7).

V RM =
1

d

d∑
i=1

(1− Hvas

ln(
√
2πeσ2)

)2 (7)

Nearest Neighbor Entropy Ratio (NNR) A multivari-
ate continuous entropy approximation rests on the notion
that highly entropic spaces will maximize the minimum
distance between points and their nearest neighbors (Beir-
lant et al., 1997; Leonenko et al., 2008; Sablayrolles et al.,
2018). Equation 8 presents this nearest neighbor approxi-
mation as defined by Beirlant et al. (1997), in which ρi is
the distance of element i to its nearest neighbor, and e is the
Euler constant.

HNN =

n∑
i=1

ln(ρi) + ln(2n) + e (8)

To create a relative measure, we simulate a d-dimensional
multivariate normal distribution and empirically calculate
HNN for this distribution as our theoretical maximum. We
use this in a ratio as in the previous section to create our pro-
posed measure of spread3. A fully used space will produce

2This ratio is similar to Pielou’s evenness index from the biodi-
versity literature (Pielou, 1966).

3This measure is similar to the Clark-Evans measure of disper-
sion from spatial statistics (Clark & Evans, 1979).
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a ratio close to one and a poorly used space will produce a
value approaching zero.

NNR =
HNN (X)

HNN (Y )
, Y ∼ N(0, σ2) (9)

6.3. KL-Divergence Measures

KL-Divergence (Equation 10) provides an established
framework for comparing the entropy of two distributions.
We compare our example distributions directly to a multi-
variate normal distribution to create a relative measure of
spread. Below, we describe two measures of spread based
on empirical KL-Divergence approximations.

KL =

∫
x

p(x) log
p(x)

q(x)
(10)

Discrete KL-Divergence Mean Squared Error (DKLM)
KL-Divergence can be computed for finite data sets by dis-
cretizing the data as in Equation 11. We estimate univariate
p(X ′) and q(Y ′) by binning observed and reference data
(X , Y ) into k bins along each dimension (with k = 30) and
compute the MSE from a reference of KLdisc = 0 over all
d dimensions, as in Equation 12.

KLdisc =

k∑
i=1

p(x′
i) log

p(x′
i)

q(x′
i)

(11)

DKLM =
1

d

d∑
i=1

(KLdisci)
2 (12)

Nearest Neighbor KL-Divergence (NNKL) Finally, we
propose a KL-Divergence approximation based on compar-
ing the distributions of nearest neighbor distances in our ob-
served and reference distributions. We present Equation 13,
a modified version of the approximation derived in Pérez-
Cruz (2008), which relies only on nearest neighbor distances
to point xi in our observed and reference distributions, s(xi)
and r(xi) respectively, the number of dimensions, d, and
the number of data points, n (observed) and m (reference).

NNKL =
d

n

n∑
i=1

max(0, log
rk(xi)

sk(xi)
) (13)

7. Results
Here, we evaluate each of the alternative measures proposed
in Section 6 as applied to the seven example distributions
described in Section 4 and demonstrate that all measures
better reflect our expectations as relative measures of spread.
We review the results for each of our proposed measures
below4, and finally apply our two strongest measures to a

4Patterns described in the main body hold for 10 and 50 di-
mensions as well, and complete results can be found in Appendix
D.

Table 2. Example distribution results on Eigenvalue Ratio (ER)
and Eigenvalue Early Enrichment (EEE) in 2 and 100 dimensions.

EXAMPLE 2D 100D
DISTRIBUTION ER EEE ER EEE

Shell 0.9021 0.0129 0.7845 0.0361
Nested Shell 0.8552 0.0195 0.7542 0.0422
Sphere 0.9118 0.0115 0.7889 0.0353
Cone 0.4173 0.1028 0.0090 0.0458
Symm. Clust. 0.1124 0.1995 0.0001 0.5394
Shifted Clust. 0.0915 0.2081 0.0007 0.6746
Uneven Clust. 0.1102 0.2004 0.0001 0.5397

Normal 0.7910 0.0292 0.7804 0.0362
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Figure 4. Eigenvalue Early Enrichment (EEE) scores for Sphere,
Cone, Symmetric Clusters, and Shifted Clusters distributions

pre-trained Word2Vec model.

7.1. Principal Component Measures

Our proposed ER measure considers the ratio between the
largest and smallest eigenvalues of a data distribution (i.e.
the explained variance for the first and last principal compo-
nent), where a ratio of one indicates a well-spread distribu-
tion (Equation 3). The EEE score instead considers the area
under the curve of the cumulative sum of eigenvalues as a
proportion of the total area available, where a score of zero
indicates a well-spread distribution (Equation 4).

As seen in Table 2, both measures show a gradient of spread
across our example distributions in 2 and 100 dimensions,
with the Sphere and Shell distributions most evenly spread
and the three cluster distributions least well-spread.

Although both of these measures seem to perform well on
our example distributions, the EEE score better agrees with
our expectations for a relative measure of spread, since it
considers more than just the first and last eigenvalue. Indeed,
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Table 3. Example distribution results for Vasicek Ratio MSE (VRM)
and Discrete KL-Divergence MSE (DKLM) in 2 and 100 dimen-
sions.

EXAMPLE 2D 100D
DISTRIBUTION VRM DKLM VRM DKLM

Shell 0.1891 0.1349 0.0010 0.0000
Nested Shell 0.0465 0.0774 0.0014 0.0019
Sphere 0.0106 0.0169 0.0009 0.0000
Cone 0.0686 0.0266 0.0097 0.0295
Symm. Clust. 0.1545 0.1434 0.2624 0.6200
Shifted Clust. 0.2143 0.5392 0.2386 20.5810
Uneven Clust. 0.1637 0.1470 0.2574 0.6333

Normal 0.0047 0.0190 0.0010 0.0000

Table 2 shows a disagreement between the ER score and
the EEE score on the 100-dimensional cluster distributions
which can be explained by examining the eigenvalue cumu-
lative sum curves in Figure 4. The ER score penalizes the
Symmetric Clusters distribution for having a very small last
eigenvalue, while the EEE score more accurately reflects the
more gradual decrease over all eigenvalues when compared
to the Shifted Clusters distribution.

7.2. Univariate Entropy Measures

VRM considers a ratio of the Vasicek entropy approxima-
tion between an observed distribution and a normal distribu-
tion (Equation 6) and DKLM considers the KL-divergence
between a discretized observed distribution and a normal
distribution (Equation 11). We calculated the MSE over
all dimensions to translate these into multivariate measures,
and thus zero indicates a well-spread distribution for both
measures.

Both VRM and DKLM behave as we would expect for
quality relative measures of spread, particularly in high di-
mensions (see Table 3 and Figures 5 and 6 5). Both measures
produce small MSE for the Sphere, Shell, and Nested Shell
distributions, a larger MSE for the Cone distribution, and an
even larger MSE for the cluster distributions.

The Shifted Clusters chart in Figure 6 shows how just a few
components dominate the DKLM score for this distribution,
which is possible because KL-Divergence does not have an
upper limit. Indeed, our KL-divergence measures (DKLM
and NNKL) are functions of the number of data points and
the number of dimensions, such that the range of scores for
distributions in high dimensions is much larger than in lower
dimensional distributions6. An ideal measure of spread

5To ensure that the measures are not influenced by covariance
between dimensions, we projected our distributions onto their
principal components before computing our univariate entropy
measures. This is reflected in the negative slopes and u-shaped
distributions in Figures 5 and 6, respectively.

6Table 4 provides the strongest example of this issue, with the
NNKL scores for the 100-dimensional cluster distributions being
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Figure 5. Vasicek Entropy Ratio for 100-dimensional distributions
in blue, with the reference line in orange. In a well-spread distribu-
tion, the ratio would always be one, and the VRM score would be
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Figure 6. Discrete KL-Divergence for 100-dimensional models. In
a well-spread distribution the KL-Divergence and DKLM scores
would both be zero.

should allow meaningful comparison between distributions
with different dimensionality.

7.3. Nearest Neighbor Entropy Measures

NNR considers a ratio between the nearest-neighbor entropy
approximation of the observed data and that of a multivari-
ate normal distribution (Equation 8), and NNKL considers
a nearest-neighbor approximation of the KL-divergence be-
tween the observed data and a multivariate normal distri-
bution. In a well-spread distribution, we would expect an
NNR of one, and an NNKL of zero.

Table 4 shows that, although these measures are once again
effective at identifying the less-complete spread of the

almost 300x the scores of their 2-dimensional counterparts.
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Table 4. Example distribution results on Nearest Neighbor Entropy
Ratio (NNR) and Nearest Neighbor KL-Divergence (NNKL) in 2
and 100 dimensions.

EXAMPLE 2D 100D
DISTRIBUTION NNR NNKL NNR NNKL

Shell 0.1323 7.4573 1.0024 0.2532
Nested Shell 0.3996 5.2696 0.9887 13.2125
Sphere 0.9749 0.9267 1.0023 0.2558
Cone 0.9350 1.2659 1.0022 0.2853
Symm. Clust. 0.8971 1.4874 0.7135 394.5467
Shifted Clust. 0.8312 1.9226 0.6882 429.2692
Uneven Clust. 0.9015 1.4215 0.7134 394.7038

Normal 0.9973 0.7260 1.0001 1.1751

Nearest Neighbor Distance
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Figure 7. Histograms of nearest neighbor distances for our Sphere,
Nested Shell, Cone, and Symmetric Clusters example distributions
in 2, 10, and 100 dimensions.

cluster distributions, the Cone distribution receives similar
scores to the Sphere and Shell distributions, while the scores
for the Nested Shell distribution indicate a less complete
spread, especially in high dimensions.

Figure 7 shows histograms of the nearest neighbor distances
in our example distributions, and demonstrates that these
distances are very similar for the Sphere and Cone distri-
butions as the number of dimensions increases, while the
nearest neighbor distances for the Nested Shell distribution
become increasingly separated for the two “rings” in the
distribution. This suggests that measures that rely wholly
on Euclidean distances may not be as robust as some of the
other measures we have examined.

7.4. Word2Vec Embedding Performance

The work in this paper is largely motivated by creating better
metrics for comparing the spread in natural language pro-
cessing models’ latent spaces. Thus, as a final exploration,
we compare the performance of a pre-trained Word2Vec
model (300-dimensions trained on the Google News corpus,

Table 5. Pre-trained Word2Vec Results on Early Eigenvalue En-
richment (EEE), Vasicek Ratio MSE (VRM), Average Cosine Sim-
ilarity (ACS), and I(V) measures with gradual addition of noise
sampled from uniform distributions with the listed range.

NOISE EEE VRM ACS I(V)

None 0.4058 0.1525 0.1317 0.9251
±0.001 0.4058 0.1525 0.1319 0.9251
±0.01 0.4049 0.1514 0.1280 0.9257
±0.05 0.3861 0.1320 0.1147 0.9359
±0.1 0.3375 0.0961 0.0933 0.9534
±0.3 0.1492 0.0216 0.0346 0.9883
±0.5 0.0800 0.0066 0.0192 0.9952
±1 0.0441 0.0016 0.0062 0.9991
±3 0.0367 0.0010 0.0022 0.9996

Mikolov, 2013; Mikolov et al., 2013) on our two strongest
candidate measures, EEE and VRM, along with the current
common measures, ACS and I(V). We follow the meth-
ods used in generating our example distributions and ran-
domly sample 75000 (250d) word embeddings from this
pre-trained model to use in calculating our measures of data
spread. To examine whether these measures can capture a
gradual increase in data spread when applied to a real (not
simulated) latent space, we add random uniform noise to
the pre-trained embeddings and calculate the EEE, VRM,
ACS, and I(V) scores at each addition.

Table 5 shows that the original pre-trained Word2Vec model
falls somewhere between our example Cone distribution and
our Symmetric Clusters distribution according to all four of
these measures of spread. Additionally, we see that all four
measures successfully reflect the gradual increase in data
spread as random noise is added to the pre-trained word
embeddings. This does not discount the issues with ACS
and I(V) that we raised in Section 5, but further supports the
use of EEE and VRM as relative measures of data spread
that do not suffer from the same weaknesses.

8. Conclusion
In this work, we have examined methods for quantifying
how completely data fills a latent space. We demonstrated
that the metrics commonly being used to quantify this us-
age are insufficient as relative measures of data spread, and
we proposed six alternative measures of data spread. Of
our proposed measures, all improved upon the commonly
used measures when applied to seven synthetic data distri-
butions, and we present one principal component measure
and one entropy-based measure, EEE (Early Eigenvalue
Enrichment) and VRM (Vasicek Ratio MSE) respectively,
as our strongest proposed measures.

Future work that builds on our findings includes the re-
assessment of previous methods and the development of
new methods for increasing data spread in NLP models

8
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using these two proposed measures. We expect that the ap-
plication of reliable measures of data spread in this manner
will contribute to the general understanding of NLP and
other neural network models, by further defining the geo-
metric properties associated with improved benchmarking
performance.
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A. Distribution Definitions
Shell
A relatively simple way to sample points from the surface
of a d-dimensional unit hypersphere is to sample from a
multivariate standard normal and normalize the length of the
associated vectors (Muller, 1959). Here, Xshell

i is the vector
for one of the 250d points sampled from our d-dimensional
shell.

Xshell
i =

Xi

∥ Xi ∥
, Xi ∼ N(0, Id) (14)

Nested Shell
To create a nested shell, that is, a shell within a shell, we
adjust the radius of half of our shell points to be 1

2 instead
of 1.

rnesti =

{
1 i ≤ 250d/2
1/2 i > 250d/2

(15)

Xnest
i = rnesti Xshell

i (16)

Sphere
We can sample from a uniformly filled unit hypersphere
by taking the points from our Shell distribution and ran-
domizing their distance from the origin between 0 and the
radius of the hypersphere, r. However, due to the expo-
nential relationship between the radius and the volume of a
d-dimensional hypersphere (as seen in Equations 25 and 26,
Vd = f(rd))7, we cannot sample the distance of each point
directly from a U(0, r) distribution without causing points
to be more densely concentrated around the origin. Thus,
we invert this exponent when sampling our distance from
the origin, as seen in Equation 17.

lspherei = l
1
d
i , li ∈ L ∼ U(0, r) (17)

Xsphere
i = lspherei Xshell

i (18)

Cone
A 3-dimensional cone can be described as a continuous
series of circles (2-dimensional spheres), stacked along a
third dimension (the cone’s height), where the radius of each
circle is a function of the distance from the origin, l, and
the angle/width of the cone, θ: as we move further from
the origin (as l grows), the radius of each circle increases
according to the width of the cone.

Analogously, a d-dimensional hypercone can be imagined
as a series of (d − 1)-dimensional hyperspheres that are
continuously stacked along the dth dimension. Again, the

7This exponential relationship is directly related to the discus-
sion in Section B.2, since points that are distributed uniformly
within a high-dimensional hypersphere will end up largely in the
neighborhood of the hypersphere’s radius.

radius of the ith stacked sphere, rstacki , is a function of lconei

(the sphere’s distance from the origin) and θ (the angle/width
of the cone)8. As in the case of the Sphere distribution,
we invert the exponential relationship between volume and
distance from the origin to uniformly sample within the
cone as in Equation 19.

lconei = l
1
d
i , li ∈ L ∼ U(0, r) (19)

rstacki = lconei tan(θ) (20)

We then sample from an (d − 1)-dimensional sphere of
radius rstacki as in Equations 17 and 18. The points sam-
pled from these (d− 1)-dimensional spheres (Xstack

i ) are
concatenated with the distance from the origin (lconei ) to
produce d-dimensional vectors as in Equation 21.

Xcone
i = (lconei , Xstack

i ) (21)

Clusters
Cluster distributions were created by randomly sampling d
cluster centers, mirroring these centers over the origin to
create a total of 2d cluster centers, and randomly sampling
around each center µj to create clusters. In Equation 23 we
use the floor function to ensure integer division so that the
Symmetric Clusters distribution sampled 125 points around
each cluster center.

µsymm
j =

{
µj j ≤ d

−µj/2 j > d
, µj ∼ U(−1, 1) (22)

Xsymm
i ∼ N(µsymm

⌊i/125⌋,min(1/d, 0.2)) (23)

To break symmetry, we amend Equation 23 in two ways.
For the Shifted Clusters distribution, we randomly shifted
each cluster center and again sampled 125 points around
each cluster center.

µshift
i = µsymm

i + Si, Si ∼ U(0, 1) (24)

For the Uneven Clusters distribution, we randomized the
number of points in each symmetric cluster, such that the
clusters in each mirrored cluster pair, (µsymm

i , µsymm
i+d ),

have k and (250− k) points, respectively, and k is sampled
from a U(0, 250) distribution.

B. Example Distributions in High Dimensions
B.1. Geometry

While not central to our work, there are several non-intuitive
geometric characteristics that will come up when discussing

8We chose to define θ = 1/
√
d as it produced distributions

that more consistently demonstrated the strengths and weaknesses
of common and proposed measures of spread across different
numbers of dimensions.
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data spread in high dimensional spaces. Here we provide
a brief description of two particular characteristics that are
often included in defining the curse of dimensionality.

First, the volume and surface area of a hypersphere (with
a fixed radius) approach zero as the number of dimensions
grows above ∼7. Second, the volume approaches zero more
quickly than the surface area, which results in almost all
of the points within a uniformly filled hypersphere being
concentrated on a very thin shell of that hypersphere. The
equations for surface area (Sd(r)) and volume (Vd(r)) in d
dimensions are shown in Equations 25 and 26 respectively.

Sd(r) =
2πd/2

Γ(d/2)
rd−1 (25)

Vd(r) = Sd
r

d
(26)

In Equation 25 the gamma function in the denominator will
dominate as d grows, bringing the surface area to zero as
the number of dimensions increases. The additional d factor
in the denominator of the volume function causes Vd(r) to
approach zero even more quickly than Sd(r) as d grows,
with the result that data points are increasingly concentrated
in the neighborhood of a hypersphere shell with a fixed
radius as the number of dimensions grows 9

B.2. Visualizing the Distributions

Figure 8 shows density plots of the raw data values along
each dimension in the 10-dimensional distributions. Even in
just ten dimensions, the distribution of data among the three
spherical distributions (Shell, Nested Shell, Sphere) are quite
similar, and even the Cone distribution is fairly similar with
the exception of the dth dimension along which the cone
points. As discussed in Section B.1, this is a consequence of
the data points being more densely concentrated on the shell
of a fixed-radius hypersphere as the number of dimensions
grows.

The density plots for the cluster distributions help to demon-
strate the effect of the transformations between the Symmet-
ric Clusters distribution and the Shifted and Uneven Clusters
distributions. They also make clear the stark difference be-
tween the data uniformity of the spherical distributions and
the cluster based distributions.

Figure 9 shows histograms of vector norms for our Sphere,
Cone, and Symmetric Clusters distributions in 2, 10, and
100 dimensions, with a reference normal distribution for
comparison10. The first item of note is that, as the number
of dimensions grows, the shape of the Sphere and Cone

9It should be noted that this effect is only observed when con-
sidering a bounded space, such as a hypersphere, as can be seen
by comparing the histograms of the vector norms of a hypersphere
and a normal distribution in Figure 9.

10The Cone distribution’s vector norms are longer than the other
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Figure 8. Density plots for 10-Dimensional example distributions
show distribution of data values along each dimension; Top row
shows the four spherical models; Bottom row shows the three
cluster models.
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Figure 9. Histograms of vector norms for our reference normal dis-
tribution and our Sphere, Cone, and Symmetric Clusters example
distributions in 2, 10, and 100 dimensions

histograms becomes increasingly similar to the expectation
for the Shell histogram (in which all vectors have the same
norm by definition). Again, this follows from the charac-
teristic described in Section B.1, in that points within a
hypersphere are forced onto a thin shell of that hypersphere
in high dimensions.

Our cluster distributions are not affected by this character-
istic of high-dimensional geometry, since each cluster is
defined by a mean and variance, rather than a strict radius.
This is apparent in the histograms for the Symmetric Clus-
ters distribution, which is largely unchanged in shape as the
dimensions grow.

distributions across all dimension counts. This is an artifact of
holding the variance equal across all distributions, which we do to
provide a more accurate comparison to the normal distribution as
described in Section 6.2
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C. Additional Proposed Measures of Spread
C.1. KNN Overlap

One (computationally expensive) way to simulate a fully
used latent space is to maximize the smallest pairwise Eu-
clidean distance between points in a distribution. Indeed,
there are several works that build on this concept by cre-
ating loss functions designed to maximize the distance of
each point to its nearest neighbors during training (Liu et al.,
2018; Sablayrolles et al., 2018). We sought to develop a
relative measure based on this concept.

In visualizing the effect of their nearest-neighbor-based loss
function, Sablayrolles et al. (2018) include a chart showing
histograms for the first and 100th nearest neighbor distances
for a sample of their data. The motivation behind this ap-
proach is that, for an evenly filled space, the distribution
of Euclidean distances of the first nearest neighbors for all
points will not overlap with (will be smaller than) the dis-
tribution of the distances to the 100th nearest neighbors.
Alternatively, in an unevenly used space, these distributions
will overlap.

Although Sablayrolles et al. (2018) did not quantify this
overlap, we developed a measure based on the proportion
of sampled data points falling in the intersection of the
distributions for the first and kth nearest neighbor distances,
where k = min(5d, 100) (for d dimensions). This measure
is visualized in Figure 10. Values range from zero (the
expected value when for a well-spread distribution) to one
(for a poorly spread distribution).

This was the only measure that we explored that didn’t
clearly improve on commonly used measures. As seen in
Table 6, this measure is very small for almost all example
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Figure 10. Based on findings from Sablayrolles et al. (2018), his-
tograms of Euclidean distance to first and kth nearest neighbors
should have less overlap in a well-spread distribution than in a
poorly spread distribution.

Table 6. Example distribution results for KNN Overlap.

EXAMPLE DIST. 2D 10D 50D 100D

Shell 0.0120 0.0000 0.0000 0.0000
Nested Shell 0.0480 0.0924 0.0000 0.0000
Sphere 0.0240 0.0000 0.0002 0.0001
Cone 0.0100 0.0008 0.0004 0.0001
Symm. Clust. 0.1560 0.0508 0.0061 0.0078
Shifted Clust. 0.1700 0.0516 0.0078 0.0067
Uneven Clust. 0.1960 0.0896 0.8468 0.8491

Normal 0.1960 0.1580 0.1940 0.2260

distributions. And although the 2-dimensional distribution
values reflect a reasonable relative measure of spread, these
relative differences become smaller as the number of di-
mensions increases. We did try adjusting the value for k to
account for this difference, but found that the scores for the
cluster distributions were particularly sensitive to the choice
of k.

Figure 11 shows that the Uneven Clusters distribution has
very high overlap with k = 100. In the Uneven Clusters dis-
tribution, the randomization of cluster size will cause many
of the clusters to have more than the standard 125 data points
used in the Symmetric Clusters distribution. However, the
randomly sized clusters still share the same tight distribu-
tion around a point, causing the 100th nearest neighbor to
very frequently be quite close. Alternatively, increasing
k causes the KNN Overlap score for the Symmetric Clus-
ters and Shifted Clusters distributions to drop to zero, since
their clusters are are all exactly 125 points (meaning that a
point’s 126th nearest neighbor is almost guaranteed to be
much farther away than its first nearest neighbor).

C.2. Gaussian KL-Divergence (GKL)

A common method for calculating KL-Divergence is to esti-
mate continuous parameters from the observed distribution
and then calculate the closed-form of Equation 10. Here, µp

and σp are the mean and covariance matrix of the observed
distribution, and d is the number of dimensions. We propose
a measure based on the closed-form KL-divergence between
two multivariate Gaussians in Equation 27, where the tr()
function is the sum of the diagonal elements of the ma-
trix (Duchi, 2007). Although we don’t expect our example
distributions to be well-approximated by a normal distribu-
tion, this method shows up frequently in machine learning
frameworks (e.g. Variational Autoencoders (Doersch, 2016),
t-SNE (Van der Maaten & Hinton, 2008), Reinforcement
Learning (Filippi et al., 2010)).

GKL =
1

2
(µ⊤

p µp + tr(σp)− d− log |σp|) (27)

With this measure, we were surprised to find that Table
7 indicates that data spread becomes less complete as we
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Figure 11. KNN Overlap Proportion for 100D Sphere, Cone, Sym-
metric Clusters, and Shifted Clusters distributions, with the nearest
neighbor distances in blue, and the 100th nearest neighbor dis-
tances in orange

Table 7. Example distribution results for Gaussian KL-Divergence
(GKL).

EXAMPLE DIST. 2D 10D 50D 100D

Shell 0.0013 0.0078 0.0478 0.0985
Nested Shell 0.0031 0.0122 0.0662 0.1344
Sphere 0.0011 0.0086 0.0500 0.0945
Cone 0.0926 0.7479 1.4945 1.8939
Symm. Clust. 0.5064 3.5500 18.5039 18.4996
Shifted Clust. 0.5902 4.3510 18.5038 18.4996
Uneven Clust. 0.5141 3.6196 18.5039 18.4996

Normal 0.0069 0.0130 0.0516 0.0993

move from the three spherical distributions, to the Cone
distribution, and to the cluster distributions. However, GKL
does not produce results that differ greatly from our other
measures, and GKL similarly suffers from the weakness of
KL-Divergence measures described in Section 7.2, in that
the range for high dimensional distributions is much larger
than it is for lower dimensional distributions.
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D. Extended Results

Table 8. Example distribution results on Average Cosine Similarity (ACS) and I(V).

EXAMPLE 2D 10D 50D 100D
DISTRIBUTION ACS I(V) ACS I(V) ACS I(V) ACS I(V)

Shell 0.0027 0.9737 0.0008 0.9916 0.0008 0.9977 0.0007 0.9988
Nested Shell 0.0027 0.9801 0.0008 0.9881 0.0008 0.9964 0.0007 0.9982
Sphere 0.0036 0.9613 0.001 0.9905 0.0008 0.9976 0.0007 0.9988
Cone 0.8176 0.9469 0.5728 0.9471 0.5201 0.9890 0.5119 0.9944
Symm. Clust. 0.0020 0.7888 0.0004 0.8857 0.0007 0.9643 0.0007 0.9822
Shifted Clust. 0.0109 0.9295 0.0108 0.8251 0.0023 0.8360 0.0012 0.8326
Uneven Clust. 0.0249 0.7797 0.0183 0.8972 0.0076 0.9664 0.0043 0.9819

Normal 0.0022 0.9969 0.0007 0.9934 0.0008 0.9974 0.0008 0.9988

Table 9. Example distribution results on Eigenvalue Ratio (ER) and Eigenvalue Early Enrichment (EEE).

EXAMPLE 2D 10D 50D 100D
DISTRIBUTION ER EEE ER EEE ER EEE ER EEE

Shell 0.9021 0.0129 0.8380 0.0307 0.7943 0.0354 0.7845 0.0361
Nested Shell 0.8552 0.0195 0.7991 0.0381 0.7550 0.0417 0.7542 0.0422
Sphere 0.9118 0.0115 0.8210 0.0323 0.7845 0.0363 0.7889 0.0353
Cone 0.4173 0.1028 0.0807 0.1155 0.0185 0.0536 0.0090 0.0458
Symm. Clust. 0.1124 0.1995 0.0126 0.4987 0.0003 0.5503 0.0001 0.5394
Shifted Clust. 0.0915 0.2081 0.0070 0.5792 0.0021 0.6558 0.0007 0.6746
Uneven Clust. 0.1102 0.2004 0.0134 0.5067 0.0003 0.5506 0.0001 0.5397

Normal 0.7910 0.0292 0.7917 0.0398 0.7839 0.0368 0.7804 0.0362

Table 10. Example distribution results for Vasicek Ratio MSE (VRM) and Discrete KL-Divergence MSE (DKLM).

EXAMPLE 2D 10D 50D 100D
DISTRIBUTION VRM DKLM VRM DKLM VRM DKLM VRM DKLM

Shell 0.1891 0.1349 0.0012 0.0003 0.0010 0.0000 0.0010 0.0000
Nested Shell 0.0465 0.0774 0.0013 0.0027 0.0014 0.0025 0.0014 0.0019
Sphere 0.0106 0.0169 0.0011 0.0003 0.001 0.0000 0.0009 0.0000
Cone 0.0686 0.0266 0.0603 0.0735 0.0172 0.0521 0.0097 0.0295
Symm. Clust. 0.1545 0.1434 0.1983 0.6150 0.2655 0.7538 0.2624 0.6200
Shifted Clust. 0.2143 0.5392 0.2401 0.6748 0.2398 22.5188 0.2386 20.5810
Uneven Clust. 0.1637 0.1470 0.1990 0.8154 0.2637 0.8012 0.2574 0.6333

Normal 0.0047 0.0190 0.0012 0.0017 0.0010 0.0001 0.0010 0.0000

Table 11. Example distribution results on Nearest Neighbor Entropy Ratio (NNR) and Nearest Neighbor KL-Divergence (NNKL).

EXAMPLE 2D 10D 50D 100D
DISTRIBUTION NNR NNKL NNR NNKL NNR NNKL NNR NNKL

Shell 0.1323 7.4573 0.9981 0.8837 1.0028 0.3357 1.0024 0.2532
Nested Shell 0.3996 5.2696 0.9950 1.0005 0.9899 5.3053 0.9887 13.2125
Sphere 0.9749 0.9267 0.9994 0.8082 1.0026 0.3703 1.0023 0.2558
Cone 0.9350 1.2659 0.9939 1.1920 1.0022 0.4667 1.0022 0.2853
Symm. Clust. 0.8971 1.4874 0.8505 14.1981 0.7458 160.3722 0.7135 394.5467
Shifted Clust. 0.8312 1.9226 0.8111 17.5756 0.7188 177.1980 0.6882 429.2692
Uneven Clust. 0.9015 1.4215 0.8495 13.9207 0.7457 160.4552 0.7134 394.7038

Normal 0.9973 0.7260 0.9996 0.7083 0.9999 0.9290 1.0001 1.1751
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